集合的含义与表示例题练习及讲解
高中数学集合的含义与表示 例题解析

集合的含义与表示 例题解析【例1】己知集合A ={x |x =m +n 2,m ,n ∈Z },判断下列元素x 与集合A 的关系:(1)231-=x ;(2)x =A ,A ∈Z ;(3)x =x 1+x 2(其中x 1∈A ,x 2∈A );(4)x =x 1x 2(其中x 1∈A ,x 2∈A ).解析:判断某对象是否为某集合的元素,关键在于判断它们是否具备该集合元素公有的属性,本题中将x 值试着写成m +n 2的形式,若m ,n 是整数,便可完成判定,若无法表在成上式或m ,n 不为整数,则x 不为集合中元素.(1)x =23231+=-,即m =3,n =1,其中3∈Z ,∴ A ∉-231.(2)x =A =A +02(A ∈Z ,0∈A ), ∴ A ∈A ;(3)∵ x 1,x 2∈A ,设x 1=m 1+n 12,x 2=m 2+n 22,(m 1、m 2 、n 1、n 2 ∈Z ),则x 1+x 2=(m 1+m 2)+(n 1+n 2)2,由m 1+m 2∈Z ,n 1+n 2∈Z ,∵ x 1+x 2∈A ;(4)同理x 1x 2=(m 1+n 12)(m 2+n 22)=(m 1m 2+2m 1 n 2)+(m 1 n 2+m 2 n 1)2,由于m 1m 2+2 n 1 n 2∈Z ;m 1 n 2+m 2 n 1∈Z ,∴ x 1x 2∈A .点评:理解一个集合的意义重点在于抓住代表元素及公共属性,而判断元素与集合的关系,依据就是元素的公共属性,解题时需做必要的恒等变形.【例2】设x ,y 都是实数,观察下列四个集合:A ={y =x +1};B ={x |y =x +1};C ={y |y =x +1},D ={(x ,y )|y =x +1}.它们所表达的意义是否相同?解析:集合A 采用列举法表示,是单元素集合,二元一次方程y =x +1则集合A 中唯一元素. 集合B 代表元素是方程y =x +1中x 的取值.由二元一次方程可知,集合B 中元素x 可取任意实数值,所以B =R ,属元限集合.集合C 中代表元素y 指满足方程y =x +1的取值,所以由方程知识可知C =R ,即B 与C 表示同一个集合.集合D 中代表元素为有序数对(x ,y ),由此来看每一个元素均为方程y =x +1的一个解,故此集合D 即为方程y =x +1的解集.另外将(x ,y )理解为平面坐标系中一点的坐标,则每个元素即对应坐标平面内的一个点,所以集合D 的几何意义即表示直线y =x +1.从以上解析来看,A 、B 、C 、D 四个集合意义各不相同.点评:本题将集合的符号语言转化为文字语言,或者将集合语言转化成自然语言,经过语言转化有助于加深对集合理解,准确地理解元素的意义,作到准确、全面的转化.试解相关题:下面的问题你能解答吗?请试一试用列举法表示下列集合:(1)A ={x ∈N |x-99∈N }; (2)B ={y |y =-x 2+6,x ∈N ,y ∈N };(3)C ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N }思路:集合A 中元素x ,x-99均为自然数. 集合B 中y 值为涵数y =-x 2+6的函数值的集合.集合C 中元素为点,抛物线上横坐标、纵坐标均为自然数的点.答案:A ={0,6,8};B ={1,3,9};C ={(0,3),(1,5),(2,2)}.【例3】(1)方程组⎩⎨⎧=-=+52y x y x 的解集用列举法表示为____________;用描述法表示为____________. (2){(x ,y )|x +y =6,x ,y ∈N }用列举法表示为____________.解析:问题解决的关键主要是判断进而确定集合中元素是什么.(1)因⎩⎨⎧=-=+52y x y x 的解集为方程组的解,解该方程组x =27,y =-23. 则用列举法表示为{(27,-23)}, 用描述法表示为⎩⎨⎧(x ,y )|⎭⎬⎫⎩⎨⎧=-=+52y x y x .(2)因x +y =6,x ,y ∈N 的解有:⎩⎨⎧==,,60y x ⎩⎨⎧==,,51y x ⎩⎨⎧==,,42y x ⎩⎨⎧==,,33y x ⎩⎨⎧==,,24y x ⎩⎨⎧==,,15y x ⎩⎨⎧==,,06y x 故列举法表示该集合,就是{(0,3),(1,5)(2,4)(3,3)(4,2)(5,1)(6,0)}.【例4】用适当的方法表示(1)方程x 2+(3-1)x -3=0有理数解的集合;(2)图中阴影部分的点(邻边界上的点).解:(1)方程x 2+ (3-)x -3=0得x =1或x =-3,∴ 有理数解为x =1.∴ 集合用列举法表示为{1}.(2)⎪⎩⎪⎨⎧(x ,y )|⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥≤≤-≤≤-0122xy y x . 试题相关题:在直角坐标平面内用阴影表示下面的点集: ⎪⎩⎪⎨⎧)(x ,,⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤-≤≤-0232252xy y x ⎪⎪⎪⎭⎪⎪⎪⎬⎫.答案:。
集合的含义及其表示

集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。
三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。
思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。
记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。
高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题(含解析)数学必修1(苏教版)1.1 集合的含义及其表示一位渔民专门喜爱数学,但他如何也不明白集合的意义,因此他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家专门难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家专门兴奋,快乐地告诉渔民:“这确实是集合!”你能明白得数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b} B.{a}{a,b}C.a{a} D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素差不多上正整数,且若aM,则6-aM,则所有满足条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素能够是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2 B.{xR|x2-1=0}C.{xR|x2+x+1=0} D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2 D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a =-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③能力提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,现在A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,现在A=-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2021+b202 1的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2021+b2021=(-1)2021+02021=1.17.设正整数的集合A满足:“若xA,则10-xA”.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)如此的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地显现在A中.同理,2和8,3和7,4和6成对地显现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
集合的概念与表示(解析版)

第1章集合1.1集合的概念与表示一、基础巩固1.(2020三明期中)已知集合A={12,a2+4a,a﹣2},且﹣3∈A,则a=()A.﹣1 B.﹣3或﹣1 C.3 D.﹣3【答案】D【解析】∵集合A={12,a2+4a,a﹣2},且﹣3∈A,∴a2+4a=﹣3或a﹣2=﹣3,解得a=﹣1,或a=﹣3,当a=﹣1时,A={12,﹣3,﹣3},不合题意,当a=﹣3时,A={12,﹣3,﹣5},符合题意.综上,a=﹣3.故选:D.2.(2020衡水校级月考)已知集合A={0,1,2,3},集合B={(x,y)|x∈A,y∈A,x≠y,x+y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【答案】C【解析】当x=0时,y=1,2,3;满足集合B.当x=1时,y=0,2;满足集合B.当x=2时,y=0,1;满足集合B.当x=3时,y=0.满足集合B.共有8个元素.故选:C.3.(2020安庆期中)下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}【答案】B【解析】根据集合的定义,依次分析选项可得:对于A:M、N都是点集,(2,3)与(3,2)是不同的点,则M、N是不同的集合,故不符合;对于B:M、N都是数集,都表示2,3两个数,是同一个集合,符合要求;对于C:M是点集,表示直线x+y=1上所有的点,而N是数集,表示函数x+y=1的值域,则M、N是不同的集合,故不符合;对于D :M 是数集,表示1,2两个数,N 是点集,则M 、N 是不同的集合,故不符合; 故选:B .4. (2018年高考全国Ⅱ卷理数)已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 ( ) A .9 B .8 C .5 D .4【答案】A 【解析】,当时,; 当时,; 当时,,所以共有9个元素.选A .5. (2020·河北省石家庄一中高一期末) 如果集合{|42,}S x x n n ==+∈N ,{|42,}T x x k k ==-∈Z ,则( )A .S TB .T SC .S T =D .S T ⋂=∅【答案】A【解析】因为{|42,}S x x n n ==+∈N则{2,6,10,14}S =⋅⋅⋅,{|42,}T x x k k ==-∈Z 则{6,2,2,6,10,14}T =⋅⋅⋅--⋅⋅⋅根据集合与集合的关系可知S T ,故选:A6. (2020·湖南省长沙一中高一期末)已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .7. (2020南苏州月考) 用列举法可以将集合{A a a =使方程2210ax x ++=有唯一实数解}表示为( ) A .{}1A = B .{}0A = C .{}0,1A = D .{}0A =或{}1【答案】C【解析】由题意可知集合A 的元素表示能使方程2210ax x ++=有唯一实数解的a 的 值,当0a =时,210x += ,解得12x =-,成立;当0a ≠时,方程2210ax x ++=有唯一实数解,则440a ∆=-=, 解得:1a =,{}0,1∴=A .故选:C8. (多选题2020南通月考)若集合A ={x ∈N |x 2≤1},a =-1,则下列结论不正确的是( )A .a ∉AB .a ∈AC .{a }∈AD .{a }∉A【答案】BCD【解析】集合A ={x ∈N |x 2≤1}={0,1},a =-1,根据元素和集合的关系得到a ∉A .故选B 、C 、D. 二、拓展提升9. (2020扬州月考)若集合{}2(2)210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的个数是______. 【答案】3【解析】若集合A 有且只有2个子集,则方程2(2)210k x kx +++=有且只有1个实数根,20k +=即2k =-时,方程化为410x -+=,14x =,符合题意,20k +≠即2k ≠-时,只需△244(2)0k k =-+=,解得:1k =-或2k =,故满足条件的k 的值有3个,故答案为:3.10.(2020无锡月考) 已知集合A ={x ∈R |ax 2﹣3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多只有一个元素,求a 的取值范围. 【解析】(1)若A 是空集, 则方程ax 2﹣3x +2=0无解此时△=9﹣8a <0 即a >89 (2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根 当a =0时方程为一元一次方程,满足条件 当a ≠0,此时△=9﹣8a =0,解得:a =89∴a =0或a =89 若a =0,则有A ={32};若a =89,则有A ={34}; (3)若A 中至多只有一个元素, 则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是:a =0或a ≥89。
(完整版)集合的概念及表示练习题及答案

新课标集合的含义及其表示姓名:、选择题:1.下面四个命题:(1)集合N中的最小元素是1:( 2)若a N,则a N (3) x2的解集为{2 , 2} ; ( 4) 0.7 Q,其中不正确命题的个数为 ( )4xA. 0B. 1C.2D.32.下列各组集合中,表示同一集合的是A. M 3,2 , N 2,3B. 3,2 , N 2,3C. M x, y x y 1 , N y 1D. M 1,2 ,N 1.23.下列方程的实数解的集合为-的个数为(1) 4x2 9y2 4x 12y 5 0;(2)6x20;⑶ 2x 1 23x 2 0;(4)6x2A.1B.2C.3D.44.集合A x 1 0 ,B 6x 10 0 , x Q 4x 5 解集含有3个元素;(3) 0 (4)满足1 x x的实数的全体形成的集合。
其中正确命题的个数是( )A.0B. 1C. 2D.3二. 填空题:一,2x 4 08. 用列举法表示不等式组2x 4 0的整数解集合为1 x 2x 19. 已知集合A x x N,里I N用歹0举法表示集合A为6 x10. 已知集合A a-_41有惟一解,乂列举法表示集合A为x a三、解答题:11. 已知A= 1,a,b , B a, a2,ab,且A=B,求实数a,b ;12. 已知集合A xax2 2x 1 0, x R , a为实数(1)若A是空集,求a的取值范围(2)若A是单元素集,求a的值(3)若A中至多只有一个元素,求a的取值范围D xx为小丁2的质数,其中时空集的有A. 1 个B.2个C.3 个D.4 个5.下列关系中表述正确的是A. 0 x20B. 0 0,0C. 0D. 06.A. 下列表述正确的是(0 B. 1,2 2,1 C. D. 07. 卜面四个命题:(1)集合N中的最小元素是 1 : (2)方程13.设集合M a a x2 y2,a Z(1)请推断任意奇数与集合M的关系(2)关丁集合M你还可以得到一些什么样的结论参考答案:DBBBDBCa>1(2) a=0or1 (3) a=0-一一…- 178. 1,0,1,2 9 0,2,3,4,5 ; 10, 一,2,2 11,a= -1,b=0 ; 12, (1)4or a 113 (1)任意奇数都是集合M的元素(2)略。
集合及表示意义及例题讲解附答案

集合的含义及表示如自然数的集合,有理数的集合,不等式的解的集合。
到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等集合的含义是什么呢?观察下列实例:(1)1~20以内的所有质数;2,3,5,7,9,11,13,17,19(2)绝对值小于3的整数;-2,-1,0,1,2(3)满足x-3>2 的实数;X>5(4)我国古代四大发明; 造纸术、活字印刷术、指南针,火药(5)英山一中高一(10)班的所有同学;(6)平面上到定点O的距离等于定长的所有的点.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集).(2)元素:集合中每个对象叫做这个集合的元素.集合的含义:一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称集)表示方法:集合通常用{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示元素与集合的关系:如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作.集合的三个特征确定性:它的元素必须是确定的。
即,给定一个集合,那么元素与集合的关系只有“属于”及“不属于”两种。
互异性:同一集合中不应重复出现同一元素.一个给定集合中的元素是指属于这个集合的互不相同的对象。
无序性:集合中的元素无顺序,可以任意排列,调换.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
判断下列对象是否能构成一个集合?①身材高大的人②所有的一元二次方程③直角坐标平面上纵横坐标相等的点④细长的矩形的全体⑥的近似值的全体⑦我国的小河流⑧所有的数学难题三常用数集及记(1)非负整数集(自然数集):全体非负整数的集合.记作N,.(2)正整数集:非负整数集内排除0的集.记作N*或N+,.(3)整数集:全体整数的集合.记作Z,.(4)有理数集:全体有理数的集合.记作Q,.(5)实数集:全体实数的集合.记作R,.注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+.Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*.集合的表示方法例,请表示下列集合:,①方程x2-9=0的解的集合;{3,-3}②大于0且小于10的奇数的集合;{1,3,5,7,9}③不等式x-7<3的解集;④抛物线y=x2上的点集;1.列举法:把集合的元素一一列出来写在大括号的方法。
集合的含义与表示题型及解析

集合的含义与表示题型及解析1.下列各组对象能组成集合的是 (1)著名影星 (2)我国的小河流 (3)攀枝花市十二中高2012级学生 (4)高中数学的难题 (5)中央电视台著名节目主持人 (6)A 市跑得快的汽车 (7)上海市所有的中学生 (8)我国著名的数学家 (9)高一5班的好学生 (10)不等于0的实数 (11)平方等于自身的数 (12)一年级2班某次数学考试成绩在100分以上的同学分析:根据集合元素应该满足的确定性,分析四个答案中的元素是否满足确定性,可得到答案.解:根据集合的定义,依次分析可得:“著名影星”没有具体的标准,元素不具有确定性,不能构成集合;“我国的小河流”没有具体的标准,元素不具有确定性,不能构成集合;“攀枝花市十二中高2012级学生”,其中元素具有确定性,能构成集合;“高中数学的难题”没有具体的标准,元素不具有确定性,不能构成集合;中央电视台著名节目主持人具有不确定性,故构不成集合;A 市跑得快的汽车具有不确定性,故构不成集合;上海市所有的中学生是确定的,故可以构成集合;我国著名的数学家具有不确定性,故构不成集合;“高一5班的好学生” 具有不确定性,故构不成集合;不等于0的实数具有确定性,故构成集合;平方等于自身的数具有确定性,故构成集合;一年级2班某次数学考试成绩在100分以上的同学具有确定性,故构成集合2.下列表示集合的式子正确的是①﹛2,3,4﹜ ②﹛1,2,3,4,1n ﹜ ③﹛-3,4,327-,6﹜ ④﹛a,b,c,d,c ﹜⑤﹛0,5,6,8﹜⑥﹛1,x,4,7,(-2)2﹜ 3.已知x ∈{0,2,x 2),则实数x 的值是多少?分析:将x 依次等于集合中的值并验证即解:①若x=0,则x 2=0,不合题意,②若x=2,符合题意,③若x=x 2时,x=0(舍去),或x=1.∴x=1或24.设A 表示集合{2,3,a 2+2a ﹣3},B 表示集合{|a+3|,2},若已知5∈A ,且5∉B ,求实数a 的值分析:通过5∈A ,且5∉B 列出混合组,求出a 的值即可解:∵5∈A ,且5∉B ,∴,即,∴a=﹣45.设P 、Q 为两个非空实数集合,定义集合M={x|x=a+b ,a ∈P ,b ∈Q},若P={0,2,5}Q={1,2,6},则集合M 中元素的个数是分析:根据已知条件写出M 的所有元素即可. 解:a=0,b=1,a+b=1;a=0,b=2,a+b=2;a=0,b=6,a+b=6;a=2,b=1,a+b=3;a=2,b=2,a+b=4;a=2,b=6,a+b=8;a=5,b=1,a+b=6;a=5,b=2,a+b=7;a=5,b=6,a+b=11;∴集合M 中元素的个数为86.下列各数属于哪些集合,请填出它们所属的集合 -5,-0.5,0,53,3解:-5∈Z ;-0.5∈Q ;0∈N ;53∈R ;3∈N +7.集合{x︱-2< x< 3}可以用列举法表示吗?这个不能用列举法,这个集合有无数个元素,列举法适用于有限个元素的集合;如果x ∈Z ,就可以用列举法了8.用列举法表示下列集合:①{平方为1的数};②{x||x|=3};③{x|x 2﹣4x ﹣5=0};④{x ∈Z|﹣2≤x <10};⑤方程组的解集 分析:对于这几个集合,要用列举法表示,只需根据限制条件求出集合的所有元素,然后列举法表示出来即可 解:①平方为1的数为1,和﹣1;∴列举法表示为{1,﹣1}; ②|x|=3;∴x=±3;∴列举法表示为:{﹣3,3}; ③解x 2﹣4x ﹣5=0得,x=﹣1,或5;∴列举法表示为:{﹣1,5};④x ∈Z ,﹣2≤x <10;∴x 的取值为:﹣2,﹣1,0,1,2,3,4,5,6,7,8,9;∴列举法表示为:{﹣2,﹣1,0,1,2,3,4,5,6,7,8,9};⑤解得:;∴列举法表示为{(3,1)}9.用列举法表示集合 ①{x ∈N|x -56∈N} ②﹛(x ,y )|0≤x ≤1,0≤y <2,x ,y ∈Z}分析:根据已知条件,分别让x 从0,取到6,判断是否为自然数,并且能看出x ≥6时,x -56<0,这样找出使x -56∈N 的x 即求出了集合{x ∈N|x-56∈N}解:①∵x ∈N ,x -56∈N ;∴x=0,x -56=56;x=1,x -56=23;x=2,x -56=2;x=3,x-56=3;x=4,x -56=6;x=5,x -56不存在;x=6,x -56=-6,即x ≥6时,x -56<0;所以集合{x ∈N|x-56∈N}={2,3,4}②分析:首先根据0≤x ≤1,0≤y <2,x ,y ∈Z 分别写出x 与y 的值,然后按照题意写出集合即可.解:∵集合为{(x ,y )|0≤x ≤1,0≤y <2,x ,y ∈Z},∴x=0,1;y=0,1,∴集合为:{(0,0),(0,1),(1,0),(1,1)}10.用描述法表示下列集合:(1)小于100但不小于10的奇数;(2){1,﹣3,5,﹣7,9,﹣11…};(3)直角坐标平面内第四象限内的点2c的图象上所有点的集合;(5)抛物线y=x 2-2x+2的点组成的集合;(6)使分析:根据描述法的表示方法,不难求出答案解:(1)小于100但不小于10的奇数的集合={x|x=2n ﹣1,n ∈N *,6≤n ≤50};(2){1,﹣3,5,﹣7,9,﹣11…}={x|x=(﹣1)n ﹣1(2n ﹣1),n ∈N *};(3)直角坐标平面内第四象限内的点集:{(x ,y )|x >0且y <0};(4)抛物线y=ax 2+bx+c的点组成的集合:{(x ,y )|y=ax 2+bx+c};(5)抛物线y=x 2-2x+2的点组成的集合:{(x ,y )|y=x 2-2x+2};(6)使x 的集合:11.用适当的方法表示下列集合 (1)方程组⎩⎨⎧=+=-8231432y x y x 的解集:(2)所有的正方形;(3)抛物线y=x 2上的所有点组成的集合;(4)方程x (x 2+2x+1)=0的解;(5)不等式x ﹣3>4的解集;(6)已知集合P={x|x=2n ,0≤n ≤2且n ∈N};(7)抛物线y=x 2﹣2x 与x轴的公共点的集合;(8)直线y=x 上去掉原点的点的集合;(9)小于20的素数组成的集合;(10)方程x 2﹣4=0的解的集合;(11)由大于3小于9的实数组成的集合;(12)所有奇数组成的集合;(13)台州九个县市区构成的集合;(14)大于2且小于6的所有实数构成的集合;(15)由小于10的所有质数组成的集合;(16)两边长分别为3,5的三角形中,第三条边可取的集合.分析:根据列举法和描述法的定义可以表示各集合解:(1)用有序数对(x ,y )表示该方程组的解,所以描述法表示方程组解集为:{(x ,y )|⎩⎨⎧=+=-8231432y x y x }; (2){x|x 是正方形};(3)点表示为(x ,y ),所以描述法表示该集合为:{(x ,y )|y=x 2};(4)解方程x (x 2+2x+1)=0得:x=0或x=﹣1,故方程x (x 2+2x+1)=0的解集为{﹣1,0};(5)解不等式x ﹣3>4得:x >7,故不等式x ﹣3>4的解集为{x|x >7};(6)已知集合P={x|x=2n ,0≤n ≤2且n ∈N}={0,2,4};(7)抛物线y=x 2﹣2x 与x 轴的公共点的集合={(0,0),(2,0)};(8)直线y=x 上去掉原点的点的集合={(x ,y )|y=x ,(x ≠0)};(9)小于20的素数组成的集合,列举法为{2,3,5,7,11,13,17,19};(10)方程x 2﹣4=0的解的集合.列举法为:{﹣2,2};(11)由大于3小于9的实数组成的集合.描述法为:{x|3<x <9,x ∈R}.(12)所有奇数组成的集合.描述法为:{x|x=2n+1,n ∈z}(13){x|x 是台州九个县市区};(14)用描述法表示{x|2<x <6,x ∈R};(15)由于质数又称素数.指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数 故10以内所有质数:2、3、5、7,则它们组成的集合是{2,3,5,7};(16)设三角形第三边长度为x ,根据三角形三边长度的关系得:x >5﹣3,x >2;x <5+3,x <8,所以x 的取值范围为:2<x <8.又由第三条边长是整数,故第三条边可取的整数的集合用列举法表示为{3,4,5,6,7},用描述法表示为{x|2<x <8,x ∈N}。
集合的含义与表示 习题(含答案)

集合的含义与表示 习题(含答案)一、单选题1.已知A 中元素x 满足x =3k -1,k∈Z,则下列表示正确的是( )A . -1∉AB . -11∈AC . 3k 2-1∈A D . -34∉A2.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②0∈N ∗;③集合{y |y =x 2−1}与集合{(x,y )|y =x 2−1}是同一个集合;④空集是任何集合的真子集.A . 0个B . 1个C . 2个D . 3个3.已知集合A={1,x ,x 2-2x},且3∈A ,则x 的值为( )A . -1B . 3C . -1或3D . -1或 -34.下列说法:①集合{x∈N|x 3=x}用列举法表示为{-1,0,1};②实数集可以表示为{x|x 为所有实数}或{R};③方程组{x +y =3x −y =−1的解集为{x =1,y =2}. 其中正确的有( )A . 3个B . 2个C . 1个D . 0个5.集合M ={(1,2),(2,1)}中元素的个数是A . 1B . 2C . 3D . 46.如果A ={x|x >−1},那么( )A . 0⊆AB . {0}∈AC . φ∈AD . {0}⊆A7.设非空集合S={x|m≤x≤n}满足:当x∈S 时,有x 2∈S,给出如下三个命题:①若m=1则S={1}; ②若m=−12,则14≤n≤1; ③若n=12,则−√22≤m≤0.其中正确的命题的个数为( )A . 0B . 1C . 2D . 38.若集合A={x|ax 2+ax −1=0}只有一个元素,则a =( )A . -4B . 0C . 4D . 0或-49.已知集合A {x|x =a 0+a 1×2+a 2×22+a 3×23},其中a k ∈{0,1}(k =0,1,2,3),且a 3≠0,则A 中所有元素之和是( ).A . 120B . 112C . 92D . 8410.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为A . 9B . 8C . 5D . 4二、解答题11.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M.12.用另一种方法表示下列集合:(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x =|x|,x<5且x∈Z};(4){(x ,y)|x +y =6,x∈N +,y∈N +};(5){-3,-1,1,3,5}.三、填空题13.给出下列集合:①{(x,y)|x≠1,y≠1,x≠2,y≠-3};②{(x,y)|{x ≠1y ≠1 且{x ≠2y ≠−3 };③{(x,y)|{x ≠1y ≠1或{x ≠2y ≠−3}; ④{(x,y)|[(x -1)2+(y -1)2]·[(x-2)2+(y +3)2≠0]}.其中不能表示“在直角坐标系xOy 平面内,除去点(1,1)、(2,-3)之外所有点的集合”的序号有________.14.列举法表示方程x 2−(2a +3)x +a 2+3a +2=0的解集为______.15.若集合{x ∈R|a <x <2a -4}为空集,则实数a 的取值范围是________.参考答案1.C【解析】【分析】判断一个元素是不是集合A的元素,只要看这个元素是否满足条件x=3k−1,k∈Z;判断一个元素是集合A的元素,只需令这个数等于3k−1,解出k,判断k是否满足k∈Z,据此可完成解答.【详解】当k=0时,3k−1=−1,故−1∈A,故选项A错误;∉Z,故选项B错误;若−11∈A,则−11=3k−1,解得k=−103令3k2−1=3k−1,得k=0或k=1,即3k2−1∈A,故选项C正确;当k=−11时,3k−1=−34,故−34∈A,故选项D错误;故选C.【点睛】该题是一道关于元素与集合关系的题目,解题的关键是掌握集合的含义.2.A【解析】【分析】根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.【详解】对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N*,错误;对于③,集合{y=x2-1}列举的是一个等式,集合{(x,y)|y=x2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选:A.【点睛】本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.3.A【解析】【分析】推导出x=3或x2-2x=3,分别代入集合A,能求出x的值.【详解】:∵集合A={1,x,x2-2x},且3∈A,∴x=3或x2-2x=3,当x=3时,A={1,3,3},不满足元素的互异性,故x≠3,当x2-2x=3时,解得x=-1或x=3(舍),当x=-1时,A={1,-1,3},成立.故x=-1.故选:A.【点睛】本题考查实数值的求法,考查元素与集合的关系等基础知识,考查化归与转化思想、分类与整合思想,是基础题.4.D【解析】【分析】x3=x的解为-1,0,1,因为x∈N从而可知①错误;实数集可以表示为{x|x为实数}或R,故②错误;集合{x=1,y=2}表示x=1与y=2两条直线,故③错误.【详解】∵x3=x的解为-1,0,1,∴集合{x∈Z|x3=x}用列举法表示为{-1,0,1},故①正确;实数集可以表示为{x|x为实数}或R,故②错误;方程组{x+y=3x−y=−1的解集为{(1,2)},集合{x=1,y=2}中的元素是x=1,y=2;故③错误;故选D.【点睛】本题考查了元素与集合的关系的判断及集合的表示法的应用,属于基础题.5.B【解析】【分析】根据题意,集合是用列举法表示的,集合M 是点集,只包含两个点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章第一节 集合的含义与表示1.1典型例题例1:判断下列各组对象能否构成一个集合(1)班级里学习好的同学(2)考试成绩超过90分的同学 (3)很接近0的数(4)绝对值小于0.1的数 答: 否 能 否 能例2:判断以下对象能否构成一个集合(1)a ,-a(2)12,0.5 答:否 否例3:判断下列对象是否为同一个集合{1,2,3} {3,2,1}答:是同一个集合例4:42=x 解的集合答:{2,-2}例5:文字描述法的集合(1)全体整数(2)考王教育里的所有英语老师答:{整数} {考王教育的英语老师}例6:用符号表示法表示下列集合(1)5的倍数(2)三角形的全体构成的集合(3)一次函数12-=x y 图像上所有点的集合(4)所有绝对值小于6的实数的集合答:(1)},5z k k x x ∈={(2){三角形} (3)(){}12,-=x y y x (4){}R x x x ∈<<-,66例如7:用韦恩图表示集合A={1,2,3,4}答:例8:指出以下集合是有限集还是无限集(1)一百万以内的自然数; (2)0.1和0.2之间的小数答:有限集;无限集例9:(1)写出x^2+1=o 的解的集合。
(2)分析并指出其含义:0;{0};∅;{};{∅}答:(1)∅;(2)分别是数字零,含有一个元素是0的集合;空集;空集;含有一个元素是空集的集合。
1.1 随堂测验1、{x^2,x }是一个集合,求x 的取值范围2、集合{}2,1,2--=x x A ,{}2,12,2---=x x B ,A 、B 中有且仅有一个相同的元素-2,求x.3、指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)young 中的字母; (2)五中高一(1)班全体学生;(3)门前的大树 (4)漂亮的女孩4、用列举法表示下列集合(1)方程()()0422=--x x 的解集;(2)平方不超过50的非负整数;(3)大于10的奇数.5、指出以下集合的区别{}1-=x y {}1-=x y x {}1-=x y y (){}1,-=x y y x6、某班有30个同学选修A 、B 两门选修课,其中选修A 的同学有18人,选修B的同学有15人,什么都没选的同学有4人,求同时选修A 、B 的人数。
7、将下列集合用区间表示出来(1){}R x x x ∈>,2(2)1+=x y ,自变量x 的取值范围.第一章第二节 集合之间的关系与运算1.2 典型例题例1:下列各组三个集合中,哪两个集合之间具有包含关系? 用Venn 图表示两个集合间的“包含”关系(1)S={-2,-1,1,2}, A={-1,1}, B={-2,2};(2)S=R, A={x 丨x ≤0}, B={x 丨x>0}.答:(1)S B S A ⊆⊆,(2) S B S A ⊆⊆,例2:1、写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集.答:子集有{a ,b },真子集有{a },{b },{}.例3:已知A={1,x,2x},B={1,y,y^2},若B A ⊆且A B ⊆,求实数x 和y 的值.答:例4:{}10<<=x x A ,{}21<<-=x x B 对于任意A x ∈,则B x ∈,故B A ⊆.例5: 已知集合{}N a a x x M ∈+==,12,集合{}N b b b y y P ∈++==,222,试问M 与P 相等吗?并说明理由.例6:列举集合{1,2,3}的所有子集、真子集、非空子集、非空真子集例7:已知全集,,},3,2{},1{},6,5,4,3,2,1{B A B A B A I 求===,,B C A C I I )()(B C A C I I ,)]()[(B C A C C I I I .例8:设{}062<--=x x x A ,{}90<-<=m x x B ,(1)若B B A = ,求实数m 的取值范围;(2)若∅=B A ,求实数m 的取值范围。
例9:全集U={x 丨x 是不大于9的正整数},A,B 都是U 的子集,C U A ∩ B={1,3},C U B ∩ A={2,4,8},(C U A )∩(C U B )={6,9},求集合A,B.1.2 随堂测验1、已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.2、设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________.3、已知集合A ={x ∈R |-8≤x -4≤1},B ={x |2x ≥14},则集合A ∩B =________. 4、若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B 等于( ) A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}5、已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.6、已知集合A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.1.3强化提高A 级1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1} 2.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N 等于( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}3.设集合A ={x |x ∈Z 且-15≤x ≤-2},B ={x |x ∈Z 且|x |<5},则A ∪B 中的元素个数是( )A .10B .11C .20D .21(第4题要理解集合中代表元素的几何意义,使集合元素具体化)4.已知集合M ={y |y =x 2+1,x ∈R },N ={y |y =x +1,x ∈R },则M ∩N 等于( )A .[1,+∞)B .[-1,+∞)C .[1,2)D .[-1,2) 5.已知集合A ={-1,0,1},B ={x |0<x <2},则A ∩B =________.6.已知x ∈N ,则方程x 2+x -2=0的解集用列举法可表示为________.7.已知集合A ={3,4,5,12,13},B ={2,3,5,8,13},则A ∩B =________.B 级8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )等于( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1} (第9题考查集合的概念,首先要理解集合B 中代表元素的意义)9.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(第10题化简集合,将集合具体化是解决本题的关键)10.已知全集为R ,集合A ={x |(12)x ≤1},B ={x |x 2-6x +8≤0},则A ∩(∁R B )等于( ) A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4} 11.已知集合A ={-1,a },B ={2a ,b },若A ∩B ={1},则A ∪B =________.12.已知集合A ={1,2,a +1},B ={-1,3,a 2+1},若A ∩B ={2},则实数a 的值是________. (第13题先解不等式,再根据集合相等、集合交集等意义求解)13.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.14.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B ={y |y =12x 2-x +52,0≤x ≤3}. (1)若A ∩B =∅,求a 的取值范围;(2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A )∩B .答案精析随堂测验1、-32解析 因为3∈A ,所以m +2=3或2m 2+m =3. m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3, 所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意. 所以m =-32. 2、 1解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意. 若a 2+4=3,无解.故a =1.3、 {x |-2≤x ≤5}解析 解不等式组得A =[-4,5],又由初等函数的单调性得B =[-2,+∞),所以A ∩B =[-2,5].4、 B [∵A ={x |-1≤x ≤1}, B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.]5、解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4. 6、解 ∵A ∩B ={x |1<x <3},∴b =3,-1≤a <1,又A ∪B ={x |x >-2},∴-2<a ≤-1,∴a =-1.强化提高1.B [∵-1,0∈B,1∉B,∴A∩B={-1,0}.]2.D [M={x|x=0或x=-2}={0,-2},N={0,2},∴M∪N={-2,0,2}.]3.C [∵A∪B={x|x∈Z且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A∪B中共20个元素.]4.A [M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R},∴M∩N={y|y≥1}.]5.{1}解析A∩B={-1,0,1}∩{x|0<x<2}={1}.6.{1}解析由x2+x-2=0,得x=-2或x=1.又x∈N,∴x=1.7.{3,5,13}解析作出Venn图如图,故A∩B={3,4,5,12,13}∩{2,3,5,8,13}={3,5,13}.8.D [∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U(A∪B)={x|0<x<1}.]-2,-1,0,1,2.]9.C [x-y∈{}10.C [A={x|x≥0},B={x|2≤x≤4},∴A∩(∁R B)={x|x≥0}∩{x|x>4或x<2}={x|0≤x<2或x>4}.]11.{-1,1,2}解析由A∩B={1},得1∈A,a=1,2a=2,所以b=1.故A∪B={-1,1,2}.12.-1解析因为A∩B={2},所以2∈B,于是由a2+1=2,得a2=1,解得a=±1,当a=1时,a+1=2(舍去).当a=-1时,A={0,1,2},B={-1,3,2}满足条件.所以a=-1.13.解 由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧ m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.所以实数m 的取值范围是{m |m >5,或m <-3}.14.解 A ={y |y <a 或y >a 2+1}, B ={y |2≤y ≤4}.(1)当A ∩B =∅时,⎩⎪⎨⎪⎧ a 2+1≥4,a ≤2, ∴3≤a ≤2或a ≤- 3.(2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意Δ=a 2-4≤0,∴-2≤a ≤2. ∴a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5}. ∴∁R A ={y |-2≤y ≤5},∴(∁R A )∩B ={y |2≤y ≤4}.第一章第二节典型例题。