人教版八年级数学上册三角形认识单元培优卷(含答案)
八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)
2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。
人教版八年级数学上册 全等三角形单元培优测试卷
人教版八年级数学上册全等三角形单元培优测试卷一、八年级数学轴对称三角形填空题(难)1.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=32,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4.∴CM+MN的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.2.如图,点P是AOB∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,PN PM MN++的最小值是5 cm,则AOB∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.3.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:①A E=CF;②△EPF是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF ,在△APE 与△CPF 中,{?PAE PCFAP CPEPA FPC ∠=∠=∠=∠,∴△APE ≌△CPF (ASA ),同理可证△APF ≌△BPE ,∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②④正确; 而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.4.如图,A,B,C 三点在同一直线上,分别以AB,BC (AB>BC )为边,在直线AC 的同侧作等边ΔABD 和等边ΔBCE,连接AE 交BD 于点M,连接CD 交BE 于点N,连接MN. 以下结论:①AE=DC ,②MN//AB ,③BD ⊥AE ,④∠DPM=60°,⑤ΔBMN 是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBC BE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD ,∴MN//AB ,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在ABC ∆中,AB AC =,点D 和点A 在直线BC 的同侧,,82,38BD BC BAC DBC =∠=︒∠=︒,连接,AD CD ,则ADB ∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC,∴BE=BC,∴△EBC是等边三角形,∴∠BEC=60°,EB=EC,又∵AB=AC,EA=EA,∴△AEB≌△AEC(SSS),∴∠BEA=∠CEA=1302BEC∠=︒,∴∠ADB=30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D关于直线AB的对称点E,构造等边三角形和全等三角形的模型是解题的关键.6.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
人教版数学八年级上册第11章《三角形》培优测试题(含答案)
第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。
2020年人教版八年级数学上册《全等三角形》单元培优(含答案)
2020年人教版八年级数学上册《全等三角形》单元培优一、选择题1.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA2.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定4.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()。
A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定5.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25° B.30° C.35° D.40°6.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个7.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.48.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7二、填空题9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).10.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .13.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.14.如图,△ABC的三条角平分线交于O点,已知△ABC的周长为20,OD⊥AB,OD=5,则△ABC 的面积= .15.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题16.如图,已知AB=AC,AD=AE,BD=CE,求证:∠3=∠1+∠2.17.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.18.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB 和∠CAP的度数.20.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.21.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.22.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.D2.C3.C4.C5.C6.C.7.D.8.D9.答案为:①②③.10.答案为:相等或互补.11.答案为:128°.12.答案为:(-2,0),(-2,4),(2,4);13.答案为:1<AD <9.14.答案为:50.15.答案为:①②④.16.证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS).∴∠BAD=∠1,∠ABD=∠2.∵∠3=∠BAD +∠ABD ,∴∠3=∠1+∠2.17.证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC ,即∠EAC=∠BAF ,在△ABF 和△AEC 中,∵,∴△ABF ≌△AEC (SAS ),∴EC=BF ;(2)如图,根据(1),△ABF ≌△AEC ,∴∠AEC=∠ABF ,∵AE ⊥AB ,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM (对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.18.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE19.答案为:80°,50°;20.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B21.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.22.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。
人教版数学八年级上册《三角形》单元测试附答案
A.100°B.90°C.80°D.70°
9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )
【详解】如图,设翻折前A点的对应点为F.根据折叠的性质知:∠3=∠4,∠F=∠A.
由三角形的外角性质知:∠DEF=∠5+∠3=∠A+∠2+∠3.
在△DEF中,∠DEF=180°﹣∠4﹣∠F,故180°﹣∠4﹣∠F=∠A+∠2+∠3,即:
180°﹣∠4﹣∠A=∠A+∠2+∠3,180°﹣∠4﹣∠3=2∠A+∠2,即∠1=2∠A+∠2,2∠A=∠1﹣∠2.
12.如图,已知DE∥BC,若∠A=58°,∠BDE=128°,则∠C=_____°
13.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
14.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.
15.如果三角形 两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为________cm.
(3)如图3,在(2)的条件下,如果CE=2,AE= ,求ME的长.
一、单选题(共10题;共30分)
1.下列长度的三条线段能组成三角形的是()
A.5,6,11B.5,6,10C.3,4,8D.4a,4a,8a(a>0)
【答案】B
【解析】
【分析】
根据三角形的三边关系对各选项进行逐一分析即可.
人教版八年级上册数学 三角形解答题单元培优测试卷
人教版八年级上册数学 三角形解答题单元培优测试卷一、八年级数学三角形解答题压轴题(难)1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小. (2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°, ∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON =60°,在射线OM 上找一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定0°< ∠OAC < 90°).(1)∠ABO 的度数为 °,△AOB (填“是”或“不是”灵动三角形); (2)若∠BAC =60°,求证:△AOC 为“灵动三角形”;(3)当△ABC 为“灵动三角形”时,求∠OAC 的度数.【答案】(1)30°;(2)详见解析;(3)∠OAC=80°或52.5°或30°.【解析】【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO 的度数,根据“智慧三角形”的概念判断;(2)根据“智慧三角形”的概念证明即可;(3)分点C 在线段OB 和线段OB 的延长线上两种情况,根据“智慧三角形”的定义计算.【详解】(1)答案为:30°;是;(2)∵AB ⊥OM∴∠B AO =90°∵∠BAC =60°∴∠OAC =∠B AO-∠BAC=30°∵∠MON =60°∴∠ACO =180°-∠OAC-∠MON =90°∴∠ACO =3∠OAC ,∴△AOC 为“灵动三角形”;(3)设∠OAC= x°则∠BAC=90-x, ∠ACB=60+x , ∠ABC =30°∵△ABC 为“智慧三角形”,Ⅰ、当∠ABC =3∠BAC 时,°,∴30=3(90-x ), ∴x=80Ⅱ、当∠ABC =3∠ACB 时,∴30=3(60+x ) ∴x= -50 (舍去)∴此种情况不存在,Ⅲ、当∠BCA =3∠BAC 时,∴60+x =3(90-x ),∴x =52.5°,Ⅳ、当∠BCA =3∠ABC 时,∴60+x =90°,∴x =30°,Ⅴ、当∠BAC =3∠ABC 时,∴90-x =90°,∴x =0°(舍去)Ⅵ、当∠BAC =3∠ACB 时,∴90-x =3(60+x ),∴x= -22.5(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°。
人教版八年级上学期数学《三角形》单元测试卷含答案
[答案]8
[解析]
试题分析:因为A B=A C,A D⊥B C,所以B D=C D,因为△A B C 周长为32 ,所以A C+C D= 32 =16,又因为△A C D的周长为24,所以A D=" 24" -(A C+C D)="24-16=" 8.
2.如图,△A B C中,A D为△A B C的角平分线,BE为△A B C的高,∠C=70°,∠A B C=48°,那么∠3是()
A.59°B.60°C.56°D.22°
[答案]A
[解析]
[详解]根据题意可得,在△A B C中, ,则 ,
又 A D为△A B C 角平分线,
又 在△AEF中,BE为△A B C的高
[详解]①∵∠A+∠B=∠C,
∴∠A+∠B+∠C=2∠C=180°
∴∠C=90°
∴△A B C是直角三角形,故小题正确;
②∵∠A:∠B:∠C=1:2:3,
∴最大角∠C=180°× =90°
故小题正确
③∵∠A=90°-∠B
∴∠A+∠B=90°
∴∠C=180°-90°=90°
故正确
④∵∠A=∠B= ∠C
10.作△A B C的高A D,中线AE,角平分线AF,三者中有可能画在△A B C外的是
A.A DB.AEC.AFD.都有可能
[答案]A
[解析]
[分析]
三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段;中线是三角形的顶点到对边中点的线段;三角形一角的平分线与对边的交点到该角顶点的线段.
[详解]三角形的中线和角平分线都在三角形的内部,高线可能在△A B C的外部.
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)
人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10×3=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. (−2)m +2⋅(−2)m−1的值是( )A 、0B 、-2C 、2D 、(−2)m+1 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 4. 若二次三项式26x ax +-可分解成(x −2)(x +b),则a ,b 的值分别为( ) A . 1,3 B . 1-,3 C . 1,3- D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。
8.如图,等边三角形△ABC 的边长是6,面积是9√3,AD 是BC 边上的高, 点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、3√3D 、6√39. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5×3=15分)11. a 4b −6a 3b +9a 2b 分解因式得正确结果为 . 12. 满足(n −1)n+2=1的整数n 的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。
数学八年级上册《三角形》单元检测卷含答案
故答案为36.
13.如图所示的图形中,x的值为______.
【答案】60度
【解析】
【分析】
根据由三角形外角和性质即可得出.
【详解】由三角形外角和得出:(x+70)°=x°+(x+10)°
解得x=60°
故答案为60度.
【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D= ∠A= ×30°=15°.
故选A.
【点睛】
点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.
【结束】
15.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.
【答案】15或16或17
【解析】
试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为17,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或17.
16.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__°.
三、解答题(共52分)
17.如图,在△ABC中,∠ACB=90°,CD是高.
(1)图中有几个直角三角形?是哪几个?
人教版八年级数学上册 三角形认识 单元培优卷(含答案)
八年级数学上册三角形认识单元培优卷一、选择题:1、如图所示的△ABC中,线段BE是△ABC边AC上的高的是( ).2、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15mB.17mC.20mD.28m3、已知一个多边形的内角和是720º,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4、若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10B.9C.8D.65、将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°6、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50°B.30°C.20°D.15°7、三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个8、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数 ( )A.1个B.2个C.3个D.4个9、如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°11、一个正方形和两个等边三角形的位置如图所示,若∠1= 50°,则∠2+∠3 =()A.190°B.130°C.100°D.80°12、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°二、填空题:13、如图,自行车的三角形支架,这是利用三角形具有性.14、已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.15、如果一个多边形的每一个外角都是30°,则这个多边形对角线的条数是,它的内角和是,它的外角和是 .16、如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .17、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为__________.18、如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2018,得∠A2018,则∠A2018=____.(用含α的式子表示)三、解答题:19、如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20、在各个内角都相等的多边形中,一个外角比一个内角少120°,求这个多边形的一个内角的度数和它的边数.21、如图, AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF//AD交BA的延长线于点F,求△BCF的面积。
人教版八年级上册数学《三角形》单元测试题带答案
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
人教版八年级数学上册《全等三角形》培优专题训练(含答案)
《全等三角形全等三角形》》培优专题培优专题训练训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等.经典例题如图所示,ABC DEF ???,30A ∠=°,50B ∠=°,2BF =.求DFE ∠的度数与EC的长.解题策略在ABC ?中,+180A B ACB ∠∠+∠=°(三角形内角和为180°).因为30A ∠=°,50B ∠=°(已知),所以1803050100ACB ∠=°-°-°=°因为ABC DEF ???(已知),所以ACB DFE ∠=∠(全等三角形对应角相等)BC EF =(全等三角形对应边相等),因此100DFE ∠=°,所以2EC EF FC BC FC BF =-=-==画龙点睛1.在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2.在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1.如图,若ABC ADE ???,则这对全等三角形的对应边是;对应角是.2.如图,若ABD ACD ???,试说明AD 与BC 的位置关系.3.如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4.如图,ABE ?和ACD ?是ABC ?分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是.2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ???;(2)BOE COD ???.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ???( ASA).(2)由AOE AOD ???,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=°-∠,180CDO ADO ∠=°-∠,所以BEO CDO ∠=∠.在AOE ?和AOD ?中,因为BEO CDO ∠=∠,OE OD =,BOE COD ∠=∠,所以BOE COD ???(ASA).画龙点睛1.判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了.2.要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ???的是().(A) CB CD =(B)BAC DAC ∠=∠(C)BCA DCA∠=∠(D)90B D ∠=∠=°2.如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3.如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4.如图所示,已知BD 、CE 分别是ABC ?的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。
人教版八年级数学上册第11章三角形培优专题训练(含答案)
人教版八年级数学上册第11章三角形培优专题训练一、选择题1.下列长度的三条线段能组成三角形的是()A.5cm,2cm,4cm B.5cm,2cm,2cmC.5cm,2cm,3cm D.5cm,12cm,6cm2.如图,在△ABC中,CD是AB边上的高,CM是∠ACB的角平分线,若∠CAB=45°,∠CBA=75°,则∠MCD的度数为()A.15°B.20°C.25°D.30°3.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.4.下列说法中正确的是()A.三角形的三条高都在三角形内B.直角三角形只有一条高C.锐角三角形的三条高都在三角形内D.三角形每一边上的高都小于其他两边5.已知AD为△ABC的中线,且AB=10cm,AC=8cm,则△ABD与△ACD的周长之差为()A.2cm B.4cm C.6cm D.18cm6.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠3=60°C.∠2=∠3 D.∠1=∠48.如图所示,∠1=∠2=145°,则∠3=()A.80°B.70°C.60°D.50°9.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°10.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10或11 B.11或12或13 C.11或12 D.10或11或12 11.若一个多边形的内角和与外角和之差是720°,则此多边形是()边形.A.6 B.7 C.8 D.912.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°13.如图∠1,∠2,∠3是五边形ABCDE的三个外角,若∠A+∠B=215°,则∠1+∠2+∠3=()A.140°B.180°C.215°D.220°二、填空题14.如图,在△ABC中,BD平分∠ABC.CD是△ABC外角的角平分线,若∠A=50°,则∠D=.15.如图,在△ABC中,已知DE∥BC,∠1=∠2,∠BEC=96°,则∠FGE=°.16.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是cm.17.如图,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠BOE的度数是.三、解答题18.如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=度时,∠ADC=∠C.19.如图,在△ABC中,BD平分∠ABC,DE∥BC交AB于点E,∠C=50°,∠BDC=95°,求∠BED的度数.20.如图,已知CD是△ABC的角平分线,∠CDE=∠DCE.(1)求证:DE∥BC;(2)若CD⊥AB,∠A=30°,求∠CED的度数.21.如图,已知四边形ABCD中,∠B=90°,点E在AB上,连接CE、DE.(1)若∠1=35°,∠2=25°,则∠CED=°;(2)若∠1=∠2,求证:∠3+∠4=90°.参考答案1.解:A、2+4>5,能构成三角形,符合题意;B、2+2<5,不能构成三角形,不符合题意;C、2+3=5,不能构成三角形,不符合题意;D、5+6<12,不能构成三角形,不符合题意.故选:A.2.解:∵∠CAB=45°,∠CBA=75°,∴∠ACB=180°﹣∠CAB﹣∠CBA=60°.∵CM是∠ACB的角平分线,∴∠ACM=∠ACB=30°.∴∠CMB=∠CAB+∠ACM=75°.∵CD是AB边上的高,∴∠CDA=∠CDB=90°.∵∠CDB=∠MCD+∠CMB.∴∠MCD=∠CDB﹣∠CMB=90°﹣75°=15°.故选:A.3.解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.4.解:A、三角形的三条高不一定都在三角形内,如钝角三角形的高在三角形外部,说法错误,不符合题意;B、直角三角形有三条高,说法错误,不符合题意;C、锐角三角形的三条高都在三角形内,说法正确,符合题意;D、三角形每一边上的高不一定小于其他两边,说法错误,不符合题意;故选:C.5.解:∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=10,AC=8,∴△ABD与△ACD的周长之差=10﹣8=2(cm).故选:A.6.解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:A.7.解:Rt△ABC中,∵∠ACB=90°,∴∠1+∠2=90°,故A正确;∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∴∠2=∠3,故C正确;∵∠3+∠4=90°,∴∠1=∠4,故D正确;故选:B.8.解:∵∠1、∠2、∠3是△ABC的三个外角,∴∠1+∠2+∠3=360°,∵∠1=∠2=145°,∴∠3=360°﹣145°×2=70°,故选:B.9.解:∵CF∥AB,∴∠B=∠FCM,∵CF平分∠ACM,∠ACF=50°,∴∠FCM=∠ACF=50°,∴∠B=50°,故选:D.10.解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选:D.11.解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n﹣2)×180°=1080°,解得:n=8,即多边形是八边形,故选:C.12.解:因为五边形ABCDE是正五边形,所以∠E=∠CDE==108°,AE=DE,所以,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.13.解:五边形ABCDE的内角和为(5﹣2)×180°=540°,∵∠A+∠B=215°,∴∠AED+∠EDC+∠BCD=540°﹣215°=325°,又∵∠AED+∠EDC+∠BCD+∠1+∠2+∠3=180°×3=540°,∴∠1+∠2+∠3=540°﹣325°=215°.故选:C.14.解:∵∠ACE是△ABC的一个外角,∴∠A=∠ACE﹣∠ABC,同理:∠D=∠DCE﹣∠DBC,∵BD平分∠ABC,CD平分∠ACE,∴∠DBE=∠ABC,∠DCE=∠ACE,∴∠D=(∠ACE﹣∠ABC)=∠A=×50°=25°,故答案为:25°.15.解:∵DE∥BC,∴∠2=∠EBC,∵∠1=∠2,∴∠EBC=∠1,∴GF∥BE,∴∠BEC+∠FGE=180°,∵∠BEC=96°,∴∠FGE=180°﹣∠BEC=180°﹣96°=84°.故答案为:84.16.解:根据三角形的三边关系,得10﹣2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.17.解:由题意:∠OED=108°,∠OBA=120°,∴∠OEB=72°,∠OBE=60°,∴∠BOE=180°﹣72°﹣60°=48°,故答案为:48°.18.解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=×64°=32°.∵∠ADC=∠B+∠BAD=44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=×(153°﹣∠C)=76.5°﹣.∴∠ADC=∠B+∠BAD=27°+76.5°﹣∠C=103.5°﹣∠C.∵∠ADC=∠C,∴103.5°﹣∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.19.解:∵∠C=50°,∠BDC=95°,∴∠DBC=180°﹣∠C﹣∠BDC=180°﹣50°﹣95°=35°.∵BD平分∠ABC,∴∠EBC=2∠DBC=70°,∵DE∥BC,∴∠BED+∠EBC=180°,∴∠BED=180°﹣70°=110°.20.(1)证明:∵CD是△ABC的角平分线,∴∠BCD=∠ECD,∵∠CDE=∠DCE,∴∠EDC=∠BCD,∴DE∥BC;(2)解:∵CD⊥AB,∴∠ADC=90°,∵∠A=30°,∴∠ACD=60°,∴∠EDC=∠ACD=60°,∴∠CED=180°﹣∠EDC﹣∠ECD=60°.21.解:(1)∵∠1=35°,∠2=25°,∠B=90°,∴∠BEC=180°﹣∠B﹣∠2=180°﹣90°﹣25°=65°,∠CED=180°﹣∠1﹣∠CEB=180°﹣35°﹣65°=80;故答案为:80.(2)∵∠1=∠2,∵∠B=90°,∴∠2+∠BEC=90°,∴∠1+∠BEC=90°,∴CDE=180°﹣90°=90°,∴∠3+∠4=180°﹣∠CDE=180°﹣90°=90°。
人教版数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)
人教版数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.3.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.【答案】92°.【解析】【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】由折叠的性质得:∠C'=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点睛】考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.4.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】题目给出等腰三角形有两条边长为10cm 和6cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm 时,周长=6+6+10=22cm ;(2)当腰长为10cm 时,周长=10+10+6=26cm ,所以其周长是22cm 或26cm .故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.如图,五边形ABCDE 的每一个内角都相等,则外角CBF =∠__________.【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF 等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=( )A .13B .12C .32D .23【答案】D【解析】【分析】根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据1ACO S ∆=,即可求得COD S ∆的值.【详解】∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,∴AO :DO=3:2.∵△ACO 和△COD 中,AD 边上的高相同,∴S △AOC :S △COD = AO :DO=3:2,∵1ACO S ∆=,∴COD S ∆=23. 故选D .【点睛】本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.8.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,那么∠AHE 和∠CHG 的大小关系为( )A .∠AHE >∠CHGB .∠AHE <∠CHGC .∠AHE=∠CHGD .不一定【答案】C【解析】【分析】 先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.【详解】∵AD 、BE 、CF 为△ABC 的角平分线∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.9.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
人教版八年级数学上册 全等三角形单元培优测试卷
【答案】C
【解析】
【分析】
根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.
【详解】
选取①②:
在 和 中
选取①④:
在 和 中
选取③④:
在 和 中
故选C.
【点睛】
本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.
人教版八年级数学上册 全等三角形单元培优测试卷
一、八年级数学轴对称三角形填空题(难)
1.如图,在等边 中取点 使得 , , 的长分别为3,4,5,则 _________.
【答案】
【解析】
【分析】
把线段AP以点A为旋转中心顺时针旋转60 得到线段AD,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS证得△ADB≌△APC,连接PD,根据旋转的性质知△APD是等边三角形,利用勾股定理的逆定理可得△PBD为直角三角形,∠BPD=90 ,由△ADB≌△APC得S△ADB=S△APC,则有S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD,根据等边三角形的面积为边长平方的 倍和直角三角形的面积公式即可得到S△ADP+S△BPD= ×32+ ×3×4= .
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
14.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为( )
2021年人教版数学八年级上册《三角形》专题培优练习(含答案)
2021年人教版数学八年级上册《三角形》专题培优练习一、选择题1.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°2.如图,l1∥l2,则下列式子中值等于180°的是()A.∠α+∠β+∠γB.∠α+∠β-∠γC.∠α+∠γ-∠βD.∠β-∠α+∠γ3.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°4.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BDG=8,S△AGE=3,则S△ABC=( )A.25B.30C.35D.405.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )A.2a+2b-2cB.2a+2bC.2cD.06.如图,∠1,∠2,∠3,∠4的数量关系为( )A.∠1+∠2=∠4-∠3B.∠1+∠2=∠3+∠4C.∠1-∠2=∠4-∠3D.∠1-∠2=∠3-∠47.若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为( )A.4∶3∶2B.3∶2∶4C.5∶3∶1D.3∶1∶58.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M,若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°9.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )A.120° B.108° C.72° D.36°10.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是()A.54 B.54 C.60 D.6611.如图,半径为2的正六边形ABCDEF的中心在坐标原点0,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2018秒时,点P的坐标是( )A.(1,)B.(-1,-)C.(1,-)D. (-1,)12.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°二、填空题13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .17.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.18.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H.下面说法中正确的序号是 .①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.三、解答题19.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE= .(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)20.如图,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40的两部分,求AC和AB的长.21.已知:如图,在△ABC 中,∠B>∠C ,AE 为∠BAC 的平分线,AD ⊥BC 于点D.求证:∠DAE=12(∠B -∠C).22.如图,∠EOF=90°,点A ,B 分别在射线OE ,OF 上移动,连结AB 并延长至点D ,∠DBO 的平分线与∠OAB 的平分线交于点C ,试问:∠ACB 的度数是否随点A ,B 的移动而发生变化?如果保持不变,请说明理由;如果随点A ,B 的移动而发生变化,请给出变化的范围.23.如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,BE 平分∠ABC ,分别交AC ,CD 于点E ,F. 求证:∠CEF=∠CFE.24.如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,试说明∠A、∠B、∠C、∠D之间的关系;(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.①若∠D=40°,∠B=36°,则∠P=________;②探究∠P与∠D、∠B之间有何数量关系,并说明理由.25.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.参考答案1.答案为:B.2.答案为:B.3.答案为:B.4.答案为:B.5.答案为:D.6.答案为:A.7.答案为:C.8.答案为:B9.答案为:B.10.答案为:D.11.答案为:D12.答案为:9.13.答案为:100°.14答案为:40°.15.答案为:92°16.答案为:100°17.答案为:2b﹣2c.18.答案为:①②③.19.解:∵AD⊥BC于D,∴∠ADC=90°,∵AE平分∠BAC,∴∠EAC=∠BAC,而∠BAC=180°﹣∠B﹣∠C,∴∠EAC=90°﹣∠B﹣∠C,∵∠DAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣∠C﹣[90°﹣∠B﹣∠C]=(∠B﹣∠C),(1)若∠B=70°,∠C=40°,则∠DAE=(70°﹣40°)=15°;(2)若∠B ﹣∠C=30°,则∠DAE=×30°=15°;(3)若∠B ﹣∠C=α(∠B >∠C ),则∠DAE=α;故答案为15°.20.解:∵AD 是BC 边上的中线,AC=2BC ,∴BD=CD ,AC=4BD .设BD=CD=x ,AB=y ,则AC=4x .分两种情况讨论:①AC +CD=60,AB +BD=40,则4x +x=60,x +y=40,解得x=12,y=28,即AC=4x=48,AB=28,BC=2x=24,此时符合三角形三边关系定理. ②AC +CD=40,AB +BD=60,则4x +x=40,x +y=60,解得x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理.综上所述,AC=48,AB=28.21.证明:∵AE 为∠BAC 的平分线,∴∠BAE=12∠BAC=12(180°-∠B -∠C). ∵AD ⊥BC ,∴∠BAD=90°-∠B ,∴∠DAE=∠BAE -∠BAD=12(180°-∠B -∠C)-(90°-∠B)=12(∠B -∠C). 22.解:∠ACB 的度数不随点A ,B 的移动发生变化.理由如下:∵BC ,AC 分别平分∠DBO ,∠BAO ,∴∠DBC=12∠DBO , ∠BAC=12∠BAO. ∵∠DBO +∠OBA=180°,∠OBA +∠BAO +∠AOB=180°,∴∠DBO=∠BAO +∠AOB ,∴∠DBO -∠BAO=∠AOB=90°.∵∠DBC +∠ABC=180°,∠ABC +∠ACB +∠BAC=180°,∴∠DBC=∠BAC +∠ACB ,∴12∠DBO=12∠BAO +∠ACB ,∴∠ACB=12(∠DBO -∠BAO)=12∠AOB=45°. 23.证明:∵BE 平分∠ABC ,∴∠ABE=∠CBE.∵∠ACB=90°,CD ⊥AB ,∴∠CEF +∠CBE=90°,∠DFB +∠ABE=90°,∴∠CEF=∠DFB.又∵∠CFE=∠DFB ,∴∠CEF=∠CFE.24.解:(1)在△AOD 中,∠AOD=180°-∠A -∠D ,在△BOC 中,∠BOC=180°-∠B -∠C ,∵∠AOD=∠BOC ,∴180°-∠A -∠D=180°-∠B -∠C.∴∠A +∠D=∠B +∠C.(2)①38°,②根据“8字形”数量关系,∠OAD +∠D=∠OCB +∠B , ∠DAM +∠D=∠PCM +∠P ,∴∠OCB -∠OAD=∠D -∠B ,∠PCM -∠DAM=∠D -∠P.∵AP 、CP 分别是∠DAB 和∠BCD 的平分线,∴∠DAM=12∠OAD ,∠PCM=12∠OCB .∴∠PCM -∠DAM=12∠OCB -12∠OAD. ∴∠D -∠P=12(∠D -∠B). ∴2∠P=∠B +∠D ,即∠P 与∠D 、∠B 之间的数量关系为2∠P=∠B +∠D.25.解:(1)(2)共连接了8个点.(3)1+2+3+…+(n+1)=0.5[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=0.5(n+1)(n+2). 故填0.5(n+1)(n+2).。
2024-2025学年人教新版八年级上册数学《第11章 三角形》单元测试卷(有答案)
2024-2025学年人教新版八年级上册数学《第11章三角形》单元测试卷一.选择题(共10小题,满分30分,每题3分)1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.学习了四边形之后,小颖同学用如图所示的方式表示了四边形与特殊四边形的关系,则图中的“M”和“N”分别表示()A.平行四边形,正方形B.正方形,菱形C.正方形,矩形D.矩形,菱形4.一个正n边形的一个外角与它相邻的内角相等,则n的值为()A.4B.5C.6D.75.下面是三根小棒的长度(单位:cm),能围成三角形的是()A.1,2,3B.3,4,8C.5,5,10D.2,8,76.如图,有一个直角三角形纸板破损了一个角,如果把它补成完整的三角形纸板,需要补的角的度数是()A.45°B.35°C.55°D.25°7.将一副三角板按如图所示方式摆放,使有刻度的边互相垂直,则∠1=()A.45°B.50°C.60°D.75°8.空调安装在墙上时,一般都会采用如图的方法固定,这种方法应用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短9.如图,点P是△ABC的重心,过点P作AC的平行线,分别交AB,BC于点D,E,若AC=6,则DE 的长为()A.2B.3C.4D.510.如图,将一副三角尺按不同位置摆放,摆放方式中∠α≠∠β的图形有()A.B.C.D.二.填空题(共10小题,满分30分,每题3分)11.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是.12.一个三角形,一个内角的度数是另两个内角度数和的.另两个内角的度数相差18°.这个三角形的最小的内角的度数是.13.如图,在生活中,为了保证儿童的安全,通常儿童座椅主体框架成三角形,这是利用了.14.已知a,b,c是△ABC的三边长,满足|a﹣7|+(b﹣2)2=0,c为奇数,则c=.15.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是12,则平行四边形A'B'C'D'的面积是.16.如图,∠ACB=90°,AC=6,BC=8,点D在AB上,∠A=2∠BCD,则CD的长为.17.如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB =.18.在△ABC中,AD,BE为三角形的高,M为AD,BE所在直线的交点,∠BMD=52°,则∠C的度数是.19.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S=4cm2,则阴影△ABC 部分的面积为cm2.20.如图,点D是△ABC的重心,连接AD并延长交BC于点E,AB=4,△ABE的周长比△ACE的周长大1.8,则AC=.三.解答题(共7小题,满分60分)21.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.22.已知:如图,点P是△ABC的重心,过P作AC的平行线,分别交AB,BC于点D,E,作DF∥EC,交AC于点F,若△ABC的面积为18cm2,求四边形ECFD的面积.23.如图,在△ABC中,∠B=38°,∠C=60°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE 的度数.24.如图,在五边形ABCDE中,AP平分∠EAB,且AP∥DE,交CD于点P.(1)五边形ABCDE的内角和为度;(2)若∠C=100°,∠D=75°,∠E=135°,求∠B的度数.25.如图,AD是△ABC的高,CE是△ABC的角平分线,BF是△ABC的中线.(1)若∠ACB=50°,∠BAD=65°,求∠AEC的度数;(2)若AB=9,△BCF与△BAF的周长差为3,求BC的长.26.如图,在△ABC中,∠ACB=90°,∠CDB=90°,CE是△ABC的角平分线,已知∠CEB=105°,求∠ECB,∠ECD的大小.27.如图,已知每个小正方形格的面积是1平方厘米,求不规则图形的面积是多少平方厘米.参考答案与试题解析一.选择题(共10小题,满分30分,每题3分)1.B2.D3.B4.A5.D6.B7.D8.C9.C10.D二.填空题(共10小题,满分30分,每题3分)11.12.12.45°.13.三角形的稳定性.14.7.15.6.16..17.40°.18.52°或128°.19.见试题解答内容20.2.2.三.解答题(共7小题,满分60分)21.见试题解答内容22.见试题解答内容23.11°.24.(1)540;(2)∠B=140°.25.(1)50°(2)12或15.26.45°,15°.27.不规则图形的面积是19平方厘米.。
人教版数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)
人教版数学八年级上册 全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD=2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是_____.【答案】30【解析】【分析】由于BD =2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC .【详解】解:∵BD =2DC ,∴S △ABD =2S △ACD ,∴S △ABC =3S △ACD .∵E 是AC 的中点,∴S △AGE =S △CGE .又∵S △GEC =3,S △GDC =4,∴S △ACD =S △AGE +S △CGE +S △CGD =3+3+4=10,∴S △ABC =3S △ACD =3×10=30. 故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.3.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B【解析】 正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B .4.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.5.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.9.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°【答案】A【解析】【分析】由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC,∴∠B=∠C,又∵DM平分∠BDE,EN平分∠DEC,∴∠BDM=∠EDM,∠CEN=∠DEN,∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,∠C=∠ENM-∠CEN=∠ENM-∠DEN,∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,∵四边形DMNE内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A.10.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC 三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.11.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,/2=50
7、三条线段a,b,c
A.4个B.5
C.20
长度均为整数且a=3,b=5.
C.6
D.15
则以a,b,c
D.7
七边形
)
,则/3的度数等于
为边的三角形共有()
个
8、现有3cm,
A.1个
9、如图,在△
7 cm,
B.2
ABC中,/
4cm,
9cm长的四根木棒,任取其中三根可以组成不同三角形的个数
D.80
12、如图,/MON=90,点A,B分别在射线OM ON上运动,BE平分/ /BAO=45时,则/C的度数是
13、如图,自行车的三角形支架,这是利用三角形具有性
4、若一个正多边形的一个外角是
A.10B.9
5、将一副直角三角尺如图放置,已知
7200,
D.28m
)
45
C.20m
则这个多边形是(
C.六Hale Waihona Puke 形,则这个正多边形的边数是(
C.8
AE// BC,
则/AFD的度数是
D.
D.6
A.45°B.50
6、如图,将三角尺的直角顶点放在直尺的一边上,
C.60
o
/1= 30
个C.3
B、/C的平分线BE,
个D.4个
CD相交于点F,/ABC=42, /A=60°
,则/
A.118°
B.119
C.120
D.121
C=90°,若沿图中虚线剪去/C,则/1 +/2=(
C.270°D.315
11、一个正方形和两个等边三角形的位置如图所示,若/
仁50°,则/2+Z3 =(
B.130
C.100
八年级数学上册三角形认识单元培优卷
一、选择题:
1、如图所示的△ABC中,线段BE是厶ABC边AC上的高的是().
测得
2、为估计池塘两岸A,间的距离不可能是(
B间的距离,杨阳在池塘一侧选取了一点P,
)
PA=i6m PB=i2m
那么
AB
A.15mB.17m
3、已知一个多边形的内角和是
A.四边形B.五边形