2018中考数学真题汇编二次函数

合集下载

(2021年整理)2018年全国中考数学真题汇编_二次函数(含答案)

(2021年整理)2018年全国中考数学真题汇编_二次函数(含答案)

2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整)的全部内容。

2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018年全国中考数学真题汇编_二次函数(含答案)(推荐完整)〉这篇文档的全部内容。

中考数学真题汇编:二次函数一、选择题1. 已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B。

点火后24s火箭落于地面C。

点火后10s的升空高度为139m D。

火箭升空的最大高度为145m【答案】D2。

关于二次函数,下列说法正确的是()A . 图像与轴的交点坐标为B。

图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D3。

2018年中考数学真题专题汇编--二次函数压轴题

2018年中考数学真题专题汇编--二次函数压轴题
2 ① 求点 P 的坐标 ② 在直线 PD 上是否存在点 M ,使 △ABM 为直角三角形?若存在,求出符合条 件的所有 点 M 的坐标;若不存在.请说明理由 .
25.( 2018 山东枣庄)如图,已知二次函数
2
y ax
3 x c(a
0) 的图象与 y 轴
2
交于点 A( 0,4) ,与 x 轴交于点 B, C ,点 C 坐标为 (8,0) ,连接 AB, AC .
交 AB 于点 M ,当 AMN 面积最大时,求此时点 N 的坐标 .
28.(2018 四川成都)如图,在平面直角坐标系 的抛物线 y ax2 bx c 与直线 l : y kx m k
xOy 中,以直线 x 5 为对称轴 12
0 交于 A 1,1 , B 两点,与 y 轴
交于 C 0,5 ,直线 l 与 y 轴交于 D 点.
26、( (2018 湖南株洲 ))如图,已知二次函数 y ax2 5 3x c( a 0) 的图象抛物
线与 x 轴相交于不同的两点 A(x1,0) , B(x2,0) ,且 x1 x2 ,
(1)若抛物线的对称轴为 x 3 求的 a 值; ( 2)若 a 15 ,求 c 的取值范围; ( 3)若该抛物线与 y 轴相交于点 D,连接 BD ,且 ∠OBD = 60°,抛物线的对称 轴 l 与 x 轴相交点 E,点 F 是直线 l 上的一点,点 F 的纵坐标为 3 1 ,连接 AF,
2018 年中考数学真题专题汇编 --二次函数压轴题
28. (2018 甘肃白银)如图,已知二次函数 y ax2 2x c 的图象经过点 C (0,3) , 与 x 轴分别交于点 A ,点 B(3,0) .点 P 是直线 BC 上方的抛物线上一动点 .

2018中考数学试题二次函数解答题试题汇编(含答案解析)

2018中考数学试题二次函数解答题试题汇编(含答案解析)

2018年全国各地中考数学试题《二次函数》解答题试题汇编(含答案解析)1.(2018•达州)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.2.(2018•眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)3.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.4.(2018•抚顺)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?5.(2018•张家界)如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.6.(2018•资阳)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.7.(2018•葫芦岛)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?8.(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.9.(2018•山西)综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.10.(2018•青岛)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.11.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.12.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.13.(2018•襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y=,且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?14.(2018•荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)15.(2018•贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.16.(2018•盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.17.(2018•天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.18.(2018•邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM 为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN 的值;若不存在,请说明理由.19.(2018•济宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.20.(2018•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.21.(2018•温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.22.(2018•黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.24.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?26.(2018•娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B (3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.27.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.28.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.29.(2018•淄博)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.30.(2018•兰州)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.31.(2018•绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).32.(2018•巴中)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE 是等腰三角形?33.(2018•绵阳)如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S=S△AOQ?若存在,求出点Q的坐标;△AOC若不存在,请说明理由.34.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?35.(2018•遵义)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C (0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.36.(2018•随州)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?37.(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x 轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.38.(2018•怀化)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.39.(2018•黄石)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.40.(2018•达州)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?41.(2018•遂宁)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x 轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.42.(2018•岳池县三模)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.43.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.44.(2018•宜宾)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.45.(2018•深圳)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.46.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.47.(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.48.(2018•无锡)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m >0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.49.(2018•青海)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B (3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.50.(2018•日照)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.51.(2018•湖北)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?52.(2018•郴州)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.53.(2018•东营)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B 两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.54.(2018•扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?。

2018年全国各地中考数学真题汇编:二次函数(含答案)-数学备课大师【全免费】

2018年全国各地中考数学真题汇编:二次函数(含答案)-数学备课大师【全免费】

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年中考数学真题汇编二次函数(含答案)

2018年中考数学真题汇编二次函数(含答案)

中考数学真题汇编:二次函数一、选择题1.给出以下函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,以下说法正确的选项是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右边C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如下图,以下结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.假设抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,取得的抛物线过点( )A. B. C. D.【答案】B6.假设抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,取得的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时刻t(s)知足函数表达式h=﹣t2+24t+1.那么以下说法中正确的选项是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,假设二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),那么①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部份,与轴的交点在点和之间,对称轴是.关于以下说法:①;②;③;④(为实数);⑤当时,,其中正确的选项是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且通过第三象限的点P.假设点P的横坐标为-1,那么一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同窗在研究函数(b,c是常数)时,甲发觉当时,函数有最小值;乙发觉是方程的一个根;丙发觉函数的最小值为3;丁发觉当时,.已知这四位同窗中只有一名发觉的结论是错误的,那么该同窗是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如下图,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年全国各地中考数学试题《二次函数》试题汇编

2018年全国各地中考数学试题《二次函数》试题汇编

2018年全国各地中考数学试题《二次函数》试题汇编(含答案解析)一、选择题1.(2018•临安区)抛物线y=3(x-1)2+1的顶点坐标是()A.(1,1)B.(-1,1)C.(-1,-1)D.(1,-1)2.(2018•岳阳)抛物线y=3(x-2)2+5的顶点坐标是()A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)3.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁4.(2018•上海)下列对二次函数y=x2-x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的5.(2018•山西)用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式为()A.y=(x-4)2+7B.y=(x-4)2-25C.y=(x+4)2+7D.y=(x+4)6.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a-b=0D.a-b+c=07.(2018•潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或68.(2018•益阳)已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0 B.b<0 C.b2-4ac<0 D.a+b+c<09.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0),则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3.其中正确的个数是()A.1B.2C.3D.410.(2018•连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m11.(2018•成都)关于二次函数y=2x2+4x-1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-312.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当-1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤13.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A.B.C.D.14.(2018•毕节市)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2-4ac>0;④a-b+c>0,其中正确的个数是()A.1B.2C.3D.415.(2018•河北)对于题目“一段抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确16.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(-1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③-3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.317.(2018•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2 C.x<0或x>2 D.0<x<218.(2018•陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限19.(2018•恩施州)抛物线y=ax2+bx+c的对称轴为直线x=-1,部分图象如图所示,下列判断中:①abc>0;②b2-4ac>0;③9a-3b+c=0;④若点(-0.5,y1),(-2,y2)均在抛物线上,则y1>y2;⑤5a-2b+c<0.其中正确的个数有()A.2B.3C.4D.520.(2018•德州)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.21.(2018•威海)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>022.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有()A.1个B.2个C.3个D.4个23.(2018•攀枝花)抛物线y=x2-2x+2的顶点坐标为()A.(1,1) B.(-1,1)C.(1,3)D.(-1,3)24.(2018•北京)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m25.(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点;与二次函数y=-2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1B.9C.16D.24 26.(2018•黄冈)当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A.-1B.2C.0或2D.-1或2 27.(2018•阜新)如图,抛物线y=ax2+bx+c交x轴于点(-1,0)和(4,0),那么下列说法正确的是()A.ac>0B.b2-4ac<0C.对称轴是直线x=2.5D.b>028.(2018•长沙)若对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),则符合条件的点P()A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个29.(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0有两个不相等的实数根30.(2018•安顺)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个31.(2018•兰州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论()①abc>0;②b-a>c;③4a+2b+c>0;④3a>-c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤32.(2018•绥化)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个33.(2018•日照)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a-b<0;③b2>(a+c)2;④点(-3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个34.(2018•江西模拟)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个35.(2018•南关区校级一模)对于函数y=5x2,下列结论正确的是()A.y随x的增大而增大B.图象开口向下C.图象关于y轴对称D.无论x取何值,y的值总是正的36.(2018•平房区二模)二次函数y=3(x-2)2-5与y轴交点坐标为()A.(0,2)B.(0,-5)C.(0,7)D.(0,3)37.(2018•东城区一模)当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是()A.x>0B.x<1C.x>1D.x为任意实数38.(2018•武汉模拟)已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1B.1或-3C.-1或3D.3或-3 39.(2018•顺德区模拟)抛物线y=(x-1)2+3()A.有最大值1B.有最小值1C.有最大值3D.有最小值3 40.(2018•马鞍山二模)某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x-40)(500-10x)B.y=(x-40)(10x-500)C.y=(x-40)[500-10(x-50)]D.y=(x-40)[500-10(50-x)]41.(2018•大祥区模拟)小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为-3,④当x<0时,y>0,⑤当0<x1<x2<2时,y1>y2,⑥对称轴是直线x=2.你认为其中正确的个数为()A.2B.3C.4D.542.(2018•江阴市一模)若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A.1或-1B.1C.-1D.0 43.(2018•黄浦区一模)已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>044.(2018•诸城市一模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤45.(2018•玄武区一模)已知二次函数y=x2-5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(-1,0)B.(4,0)C.(5,0)D.(-6,0)46.(2018•黔南州二模)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.47.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.148.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.49.(2018•乐山)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣50.(2018•贵港)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.451.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个 B.2个 C.3个 D.4个52.(2018•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1 B.2 C.3 D.453.(2018•青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c 在平面直角坐标系中的图象可能是()A.B.C.D.54.(2018•衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个55.(2018•抚顺)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个 B.2个 C.3个 D.4个56.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥57.(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>258.(2018•资阳)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个 B.3个 C.2个 D.1个59.(2018•巴中)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m60.(2018•资中县一模)下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y= 61.(2018•普陀区一模)下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1) C.D.y=(x﹣1)2﹣x262.(2018•石家庄二模)定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x的图象大致是()A.B.C.D.63.(2018•河池二模)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A.B.C.﹣2 D.二、填空题1.(2018•自贡)若函数y=x2+2x-m的图象与x轴有且只有一个交点,则m的值为.2.(2018•哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为.3.(2018•贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为元.4.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交5.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).6.(2018•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,下列结论中:①abc<0;②9a-3b+c<0;③b2-4ac>0;④a>b,7.(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是.8.(2018•绵阳)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面9.(2018•沈阳)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=+4x和直线y2=2x.我们规定:当x 10.(2018•新疆)如图,已知抛物线y1=-x2取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于确结论的序号).11.(2018•黔西南州)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵12.(2018•遵义)如图抛物线y=x2+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中13.(2018•镇江)已知二次函数y=x2-4x+k的图象的顶点在x轴下方,则实数k14.(2018•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,①abc>0②方程ax2+bx+c=0的两个根是x1=-1,x2=3③2a+b=0④当x>0时,y随x的增大而减小14.(2018•昆山市一模)设A(x1,y1)、B(x2,y2)是抛物线y=2x2+4x-2上的15.(2018•庆云县二模)已知关于x的二次函数y=x2+(1-a)x+1,当x的取值范17.(2018•金牛区校级模拟)已知二次函数y=ax2+bx+c的图象如图所示,若18.(2018•邵阳模拟)二次函数y=ax2+bx的图象如图,若一元二次方程2221.(2018•江都区模拟)已知二次函数y=ax2+bx+c的部分图象如图所示,则关22.(2018•河东区模拟)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠-1),23.(2018•武汉)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.24.(2018•德阳)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.25.(2018•南充)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是(填写序号).三.解答题(共20小题)1.(2018•遂宁)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x 轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.2.(2018•岳池县三模)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.3.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.4.(2018•宜宾)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.5.(2018•深圳)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.6.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.7.(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.8.(2018•无锡)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.9.(2018•青海)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.10.(2018•日照)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.11.(2018•湖北)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?12.(2018•郴州)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.13.(2018•东营)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.14.(2018•扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.15.某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x 年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x ≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.16.(2018•衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.17.(2018•湘潭)如图,点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.18.(2018•十堰)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?19.(2018•荆州)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.20.(2018•宁夏)抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.21.(2018•毕节市)某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x (元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?22.(2018•淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.23.(2018•达州)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.24.(2018•眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图。

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。

(完整版)2018中考二次函数真题

(完整版)2018中考二次函数真题

二次函数参考答案与试题解析一.选择题(共22小题)1.(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x的值.【解答】解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选:D.2.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.3.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.4.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.5.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.6.(2018•连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.7.(2018•成都)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否在成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.8.(2018•凉州区)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x 取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.9.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.10.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.11.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个 B.2个 C.3个 D.4个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①错误;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:C.12.(2018•青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数图象一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.13.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当a=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.14.(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B. C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.15.(2018•威海)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.16.(2018•衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.17.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a >0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.18.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c >0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.19.(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.【解答】解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.20.(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.21.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.22.(2018•安顺)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.。

2018年中考数学真题汇编 二次函数试题答案

2018年中考数学真题汇编 二次函数试题答案

2018中考数学真题汇编:二次函数试题1-8页+试题答案8-25页一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B.C. D.3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-34.二次函数的图像如图所示,下列结论正确是( )A. B.C. D. 有两个不相等的实数根5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 49.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. B.C. D.二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

2018年中考数学真题汇编:二次函数(含答案)(2)

2018年中考数学真题汇编:二次函数(含答案)(2)

2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学真题汇编:二次函数(含答案)(2)(word版可编辑修改)的全部内容。

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A。

①③ B。

③④ C。

②④ D. ②③【答案】B2.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )A。

B。

C。

D.【答案】B3。

关于二次函数,下列说法正确的是( )A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4。

二次函数的图像如图所示,下列结论正确是( )A。

B. C。

D。

有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A。

B. C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A。

(-3,-6) B. (—3,0) C。

(—3,-5) D。

2018年中考数学真题汇编 二次函数

2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B.C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0) C. (-3,-5) D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(). 乙 C.丙 D.丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C.D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【精编】2018年中考数学真题汇编 二次函数

【精编】2018年中考数学真题汇编 二次函数

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B.B.C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6) B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

各地2018年中考数学试卷精选汇编 二次函数(含解析)

各地2018年中考数学试卷精选汇编 二次函数(含解析)
二次函数
一、选择题 1. (2018•山东枣庄•3 分)如图是二次函数 y=ax2+bx+c 图象的一部分,且过点 A(3,0),二次函数图象 的对称轴是直线 x=1,下列结论正确的是( )
A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0 【分析】根据抛物线与 x 轴有两个交点有 b2﹣4ac>0 可对 A 进行判断;由抛物线开口向上得 a>0,由抛物 线与 y 轴的交点在 x 轴下方得 c<0,则可对 B 进行判断;根据抛物线的对称轴是 x=1对 C 选项进行判断; 根据抛物线的对称性得到抛物线与 x 轴的另一个交点为(﹣1,0),所以 a﹣b+c=0,则可对 D 选项进行判断. 【解答】解:∵抛物线与 x 轴有两个交点, ∴b2﹣4ac>0,即 b2>4ac,所以 A 选项错误; ∵抛物线开口向上, ∴a>0, ∵抛物线与 y 轴的交点在 x 轴下方, ∴c<0, ∴ac<0,所以 B 选项错误; ∵二次函数图象的对称轴是直线 x=1,
C、 当 x<-1时 y 的值随值的增大而减小,当-1<x<0 时,y 随 x 的增大而增大,因此 C 不符合题意;
D、 a=2>0,当 x=-1时,y的最小值=2-4-1=-3,因此 D 符合题意;
故答案为:D
【分析】求出抛物线与 y 轴的交点坐标,可对 A 作出判断;求出抛物线的对称轴,可对 B 作出判断;根据
二次函数的增减性,可对 C 作出判断;求出抛物线的顶点坐标,可对 D 作出判断;即可得出答案。
2
1. (2018•山东菏泽•3 分)已知二次函数 y=ax +bx+c的图象如图所示,则一次函数 y=bx+a与反比例函数
y=
在同一平面直角坐标系中的图象大致是( )

(完整版)2018年中考数学二次函数压轴题汇编(最新整理)

(完整版)2018年中考数学二次函数压轴题汇编(最新整理)

1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB 及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M 上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是 .②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.6.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.7.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.8.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是 .A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.9.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.10.在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.11.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P 在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q 点(异于点P)的坐标.12.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E 是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE 上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.13.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD 上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.15.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB 的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.16.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B( ),C( );(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值= .17.已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.18.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B 的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.19.如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m 的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE 的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.20.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.21.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0≤x≤1,抛物线上的点到x轴距离的最大值为3时,求b 的值.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D 作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD 于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.23.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.24.已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P 与点M距离最大时函数C2的解析式.25.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).26.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.27.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF 的值.28.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.29.如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC 交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD 的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.30.如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A 在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x 轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.31.如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P、Q 的坐标;若不存在,说明理由.32.如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.33.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.34.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.35.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.36.如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).37.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.38.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x 轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.39.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.40.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE 的面积不小于1时m的取值范围. 1.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.2.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b= ,c= ;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.3.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.4.如图,在平面直角坐标系xOy中,已知A,B两点的坐标分别为(﹣4,0),(4,0),C(m,0)是线段A B上一点(与A,B点不重合),抛物线L1:y=ax2+b1x+c1(a<0)经过点A,C,顶点为D,抛物线L2:y=ax2+b2x+c2(a<0)经过点C,B,顶点为E,AD,BE的延长线相交于点F.(1)若a=﹣,m=﹣1,求抛物线L1,L2的解析式;(2)若a=﹣1,AF⊥BF,求m的值;(3)是否存在这样的实数a(a<0),无论m取何值,直线AF与BF都不可能互相垂直?若存在,请直接写出a的两个不同的值;若不存在,请说明理由.5.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P 的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.6.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.7.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?8.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.9.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】10.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q 为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x 轴于点E.(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,求点M的横坐标.12.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P 的坐标.13.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.14.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存OPMN在,请说明理由.15.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M 运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【答案】4 -4三、解答题15.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形。

若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式。

请根据以下点的坐标,求出线段的长度或抛物线的函数关系式。

①P1(4,0),P2(0,0),P3(6,6)。

②P1(0,0),P2(4,0),P3(6,6)。

【答案】①∵P1(4,0),P2(0,0),4-0=4>0,∴绘制线段P1P2,P1P2=4.②∵P1(0,0),P2(4,0),P3(6,6),0-0=0,∴绘制抛物线,设y=ax(x-4),把点(6,6)坐标代入得a= ,∴,即。

16.如图,抛物线(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C ,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【答案】(1)设抛物线的函数表达式为y=ax(x-10)∵当t=2时,AD=4∴点D的坐标是(2,4)∴4=a×2×(2-10),解得a=∴抛物线的函数表达式为(2)由抛物线的对称性得BE=OA=t∴AB=10-2t当x=t时,AD=∴矩形ABCD的周长=2(AB+AD)=∵<0∴当t=1时,矩形ABCD的周长有最大值,最大值是多少(3)如图,当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4)∴矩形ABCD对角线的交点P的坐标为(5,2)当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。

当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分。

∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分。

当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积。

∵AB∥CD∴线段OD平移后得到线段GH∴线段OD的中点Q平移后的对应点是P在△OBD中,PQ是中位线∴PQ= OB=4所以,抛物线向右平移的距离是4个单位。

17.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【答案】(1)解:当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s(2)解:当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s(3)解:y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m18.在平面直角坐标系中,点,点.已知抛物线(是常数),定点为.(1)当抛物线经过点时,求定点的坐标;(2)若点在轴下方,当时,求抛物线的解析式;(3)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.【答案】(1)解:∵抛物线经过点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(2)解:如图1,抛物线的顶点的坐标为.由点在轴正半轴上,点在轴下方,,知点在第四象限.过点作轴于点,则.可知,即,解得,.当时,点不在第四象限,舍去.∴.∴抛物线解析式为.(3)解:如图2:由可知,当时,无论取何值,都等于4.得点的坐标为.过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则.∵,,∴.∴.∵,∴.∴.∴,.可得点的坐标为或.当点的坐标为时,可得直线的解析式为.∵点在直线上,∴.解得,.当时,点与点重合,不符合题意,∴.当点的坐标为时,可得直线的解析式为.∵点在直线上,∴.解得(舍),.∴.综上,或.故抛物线解析式为或.19.如图,已知二次函数的图象经过点,与轴分别交于点,点.点是直线上方的抛物线上一动点.(1)求二次函数的表达式;(2)连接,,并把沿轴翻折,得到四边形.若四边形为菱形,请求出此时点的坐标;(3)当点运动到什么位置时,四边形的面积最大?求出此时点的坐标和四边形的最大面积.【答案】(1)解:将点B和点C的坐标代入,得,解得,.∴该二次函数的表达式为.(2)解:若四边形POP′C是菱形,则点P在线段CO的垂直平分线上;如图,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标等于.∴,解得,(不合题意,舍去),∴点P的坐标为(,).(3)解:过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(m,),设直线BC的表达式为,则, 解得.∴直线BC的表达式为.∴Q点的坐标为(m,),∴.当,解得,∴AO=1,AB=4,∴S四边形ABPC =S△ABC+S△CPQ+S△BPQ==当时,四边形ABPC的面积最大.此时P点的坐标为,四边形ABPC的面积的最大值为.20.如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.【答案】(1)(,2)(2)解:如图1,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2-15t+9=0,(t-3)(t- )=0,t1=3(舍),t2= ,②当△PAQ∽△CBQ时,,∴,t2-9t+9=0,t= ,∵0≤t≤6,>7,∴x= 不符合题意,舍去,综上所述,当△CBQ 与△PAQ 相似时,t 的值是或 (3)解:当t=1时,P (1,0),Q (3,2),把P (1,0),Q (3,2)代入抛物线y=x 2+bx+c 中得:,解得:,∴抛物线:y=x 2-3x+2=(x- )2- ,∴顶点k ( ,- ),∵Q (3,2),M (0,2),∴MQ ∥x 轴,作抛物线对称轴,交MQ 于E ,∴KM=KQ ,KE ⊥MQ ,∴∠MKE=∠QKE=∠MKQ ,如图2,∠MQD= ∠MKQ=∠QKE ,设DQ 交y 轴于H ,∵∠HMQ=∠QEK=90°,∴△KEQ ∽△QMH ,∴ ,∴,∴MH=2,∴H (0,4), 易得HQ 的解析式为:y=- x+4,则,x2-3x+2=- x+4,解得:x1=3(舍),x2=- ,∴D(- ,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM= ∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y= x,则,x2-3x+2= x,解得:x1=3(舍),x2= ,∴D(,);综上所述,点D的坐标为:D(- ,)或(,)21.平面直角坐标系中,二次函数的图象与轴有两个交点.(1)当时,求二次函数的图象与轴交点的坐标;(2)过点作直线轴,二次函数的图象的顶点在直线与轴之间(不包含点在直线上),求的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线相交于点,求的面积最大时的值.【答案】(1)解:当m=-2时,y=x2+4x+2当y=0时,则x2+4x+2=0解之:x1= ,x2=(2)解:∵=(x-m)2+2m+2∴顶点坐标为(m,2m+2)∵此抛物线的开口向上,且与x轴有两个交点,二次函数图像的顶点在直线l与x轴之间(不包括点A在直线l上)∴解之:m<-1,m>-3即-3<m<-1(3)解:根据(2)的条件可知-3<m<-1根据题意可知点B(m,m-1),A(m,2m+2)∴AB=2m+2-m+1=m+3S△ABO=∴m=−时,△ABO的面积最大。

相关文档
最新文档