高考数学一轮复习 第7讲 函数的图象与性质教学案

合集下载

高三数学一轮复习教学案:三角函数

高三数学一轮复习教学案:三角函数

三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。

届数学一轮复习第二章函数概念及基本初等函数Ⅰ第7节函数的图象教学案含解析

届数学一轮复习第二章函数概念及基本初等函数Ⅰ第7节函数的图象教学案含解析

第7节函数的图象考试要求 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.知识梳理1。

利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线。

2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象错误!y=-f(x)的图象;y=f(x)的图象错误!y=f(-x)的图象;y=f(x)的图象错误!y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象错误!y=log a x(a〉0,且a≠1)的图象. (3)伸缩变换y=f(x)错误!y=f(ax).y=f(x)错误!y=Af(x)。

(4)翻折变换y=f(x)的图象错误!y=|f(x)|的图象;y=f(x)的图象错误!y=f(|x|)的图象.[常用结论与微点提醒]1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称。

(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.2.图象的左右平移仅仅是相对于...x.而言,如果x的系数不是1,常需把系数提出来,再进行变换.3。

图象的上下平移仅仅是相对于...y.而言的,利用“上减下加”进行。

诊断自测1.判断下列结论正误(在括号内打“√"或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a〉0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称。

高三数学一轮复习三角函数的图像与性质教案

高三数学一轮复习三角函数的图像与性质教案

三角函数的图像与性质先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

6.对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;8.求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

9.五点法作y =A sin (ωx +ϕ)的简图: 五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。

二.典例分析考点一:三角函数的定义域与值域典题导入(1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( )A . B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1D.⎣⎢⎡⎦⎥⎤-1,54(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈,画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1.(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎢⎡⎦⎥⎤0,π2,试求其值域.解:令t =sin x ,则t ∈.∴y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54.∴y ∈.∴函数的值域为.由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1. (1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2k ∈Z .利用数轴可得 函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3. 答案:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <π2,或π≤x ≤4 (2)B考点二:三角函数的单调性典题导入(2012·华南师大附中模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求:(1)函数的周期;(2)求函数在上的单调递减区间.由y =sin ⎝ ⎛⎭⎪⎫π3-2x 可化为y =-sin ⎝ ⎛⎭⎪⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .从而x ∈时, y =sin ⎝ ⎛⎭⎪⎫π3-2x 的减区间为⎣⎢⎡⎦⎥⎤-π,-7π12,⎣⎢⎡⎦⎥⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z . (2)f (x )=sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递增,所以f ⎝ ⎛⎭⎪⎫π7<f ⎝ ⎛⎭⎪⎫π6,而c =f ⎝ ⎛⎭⎪⎫π3=2sin2π3=2sin π3=f (0)<f ⎝ ⎛⎭⎪⎫π7, 所以c <a <b .答案:(1)⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z (2)B考点三:三角函数的周期性与奇偶性典题导入(2012·广州调研)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),给出下面四个命题:①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,故④正确.综上可知,选C.C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|; (3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2013·青岛模拟)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2(2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝ ⎛⎭⎪⎫-π8,0B .(0,0)C.⎝ ⎛⎭⎪⎫-18,0D.⎝ ⎛⎭⎪⎫18,0 解析:(1)选A 对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝ ⎛⎭⎪⎫ax +π4,又函数的最小正周期为1,故2πa =1,∴a=2π,故f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π4.将x =-18代入得函数值为0.板书设计 三角函数的图像与性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间3.函数Bx A y ++=)sin(ϕω),(其中00>>ωA 4.对称轴与对称中心 5.五点法作图教学三角函数的图像与性质是三角函数的重点知识之一,复习时,要让学生熟练记忆三角函数的图。

高考数学一轮复习考点知识专题讲解7---二次函数与幂函数

高考数学一轮复习考点知识专题讲解7---二次函数与幂函数

高考数学一轮复习考点知识专题讲解二次函数与幂函数考点要求1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)图象(抛物线)定义域 R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a对称轴x =-b2a顶点坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =1212x 是幂函数.(×)(2)若幂函数y =x α是偶函数,则α为偶数.(×)(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.(√)(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.(×) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝ ⎛⎭⎪⎫14等于()A .-12B.12C .±12D.22答案B解析设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝ ⎛⎭⎪⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________. 答案(-∞,40]∪[160,+∞) 解析依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y=f(x)为二次函数,若y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点,则函数解析式为________.答案f(x)=x2-4x解析因为y=f(x)在x=2处取得最小值-4,所以可设f(x)=a(x-2)2-4(a>0),又图象过原点,所以f(0)=4a-4=0,a=1,所以f(x)=(x-2)2-4=x2-4x.题型一幂函数的图象与性质例1(1)若幂函数y=x-1,y=x m与y=x n在第一象限内的图象如图所示,则m与n的取值情况为()A.-1<m<0<n<1B.-1<n<0<m<1 2C.-1<m<0<n<1 2D.-1<n<0<m<1答案D解析幂函数y=xα,当α>0时,y=xα在(0,+∞)上单调递增,且0<α<1时,图象上凸,∴0<m<1.当α<0时,y=xα在(0,+∞)上单调递减.不妨令x=2,由图象得2-1<2n,则-1<n<0.综上可知,-1<n<0<m<1.(2)(2022·长沙质检)幂函数f(x)=(m2-3m+3)x m的图象关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图象不关于y轴对称,舍去,当m=2时,f(x)=x2的图象关于y轴对称,因此m=2.教师备选1.若幂函数f(x)=(a2-5a-5)12ax-在(0,+∞)上单调递增,则a等于()A.1B.6 C.2D.-1 答案D解析因为函数f(x)=(a2-5a-5)12ax-是幂函数,所以a2-5a-5=1,解得a=-1或a=6. 当a=-1时,f(x)=12x在(0,+∞)上单调递增;当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是() A.⎣⎢⎡⎭⎪⎫2,167B .(0,2] C.⎝ ⎛⎭⎪⎫-∞,167D .[2,+∞)答案A解析因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎨⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎢⎡⎭⎪⎫2,167.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1(1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则() A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案A解析由题意得b =233<234=432=a ,a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数f (x )=x m -3(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于()A .1B .2C .1或2D .3 答案B解析因为f (x )=x m -3在(0,+∞)上是减函数, 所以m -3<0,所以m <3. 又因为m ∈N *,所以m =1或2. 又因为f (x )=x m -3是奇函数, 所以m =2.题型二 二次函数的解析式例2已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解方法一(利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二(利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12, 所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎪⎫x -122+8. 因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三(利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8, 即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍去).故所求函数的解析式为f (x )=-4x 2+4x +7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1B.x2+2x+1C.2x2-2x+1D.2x2+2x-1答案B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得ax 2+bx +c =x 2+2ax +(b -1),所以⎩⎨⎧ a =1,b =2a ,c =b -1,解得⎩⎨⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案f (x )=x 2-4x +3解析∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3, 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1二次函数的图象例3设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()答案D解析因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2二次函数的单调性与最值 例4已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ).解f (x )=x 2-tx -1=⎝⎛⎭⎪⎫x -t 22-1-t 24.(1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝ ⎛⎭⎪⎫t 2=-1-t 24.③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t 24,-2<t <4,3-2t ,t ≥4.延伸探究本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解f (-1)=t ,f (2)=3-2t ,f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎨⎧t ,t ≥1,3-2t ,t <1.教师备选1.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是________.(填序号)①当x >3时,y <0;②4a +2b +c =0; ③-1≤a ≤-23;④3a +b >0.答案①③解析依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故①正确;当x =2时,y =4a +2b +c >0,故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a , ∵2≤c ≤3,∴2≤-3a ≤3, ∴-1≤a ≤-23,故③正确,④错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1. (1)若f (x )在[0,1]上单调,求实数a 的取值范围; (2)若x ∈[0,1],求f (x )的最小值g (a ). 解(1)当a =0时,f (x )=-2x +1单调递减; 当a >0时,f (x )的对称轴为x =1a ,且1a>0,∴1a≥1,即0<a ≤1;当a <0时,f (x )的对称轴为x =1a 且1a<0,∴a <0符合题意. 综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减, ∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a.(ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a+1=-1a +1.(ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x +1在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎨⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3(1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是() A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4] C .[-3,-22] D .[-4,-3] 答案B解析∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增, 当x >0时,f (x )=x 2+ax +2, 对称轴为x =-a 2,∴2≤-a2≤3,解得-6≤a ≤-4.(2)(2022·汉中模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________. 答案[1,2]解析由题意知,f (x )=-(x -1)2+6, 则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若f (x )是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12等于() A .3B .-3C.13D .-13答案C解析设f (x )=x α,则4α2α=2α=3,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=13.2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为() A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 答案B解析二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点, 设二次函数为g (x )=ax 2+bx , 可得⎩⎨⎧a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .3.(2022·延吉检测)若函数y =(m 2-3m +3)·224m m x +-为幂函数,且在(0,+∞)上单调递减,则实数m 的值为() A .0B .1或2C .1D .2 答案C解析由于函数y =(m 2-3m +3)224mm x +-为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意.当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.4.已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为() A .-2或1B .-2C .1D .1或2 答案A解析因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.5.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是()A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案D解析因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎨⎧-b 2a =-1,9a -3b +c =0,解得⎩⎨⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确; 对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0, 故选项C 不正确; 对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.6.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是() A .[2,+∞) B.(2,+∞) C .(-∞,0) D .(-∞,2) 答案A解析二次函数y =kx 2-4x +2图象的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝ ⎛⎭⎪⎫116,14,则m -2n +3k =________. 答案0解析因为f (x )是幂函数, 所以m =1,k =0,又f (x )的图象过点⎝ ⎛⎭⎪⎫116,14,所以⎝ ⎛⎭⎪⎫116n =14,解得n =12,所以m -2n +3k =0.8.已知函数f (x )=4x 2+kx -8在[-1,2]上不单调,则实数k 的取值范围是________. 答案(-16,8)解析函数f (x )=4x 2+kx -8的对称轴为直线x =-k 8,则-1<-k8<2,解得-16<k <8.9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点. (1)求f (x )的解析式,并解不等式f (x )≤3; (2)若g (x )=f (sin x ),求函数g (x )的值域.解(1)由题意得⎩⎪⎨⎪⎧-1+3=-b -2a ,-1×3=3a ,解得⎩⎨⎧a =-1,b =4,∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0, 解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞). (2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1], 当t =-1时,g (t )有最小值0, 当t =1时,g (t )有最大值4,故g (t )∈[0,4].∴g (x )的值域为[0,4].10.(2022·烟台莱州一中月考)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解(1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎨⎧ c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎨⎧ c =2,2ax +b +a =2x +1,所以⎩⎨⎧ c =2,2a =2,b +a =1,解得⎩⎨⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数, 当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎨⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·安康模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案C解析若f (x )<0对x ∈[1,3]恒成立,则⎩⎨⎧ f (1)=2-4m <0,f (3)=18-6m <0,解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于()A .0B .1C.12D .2 答案A解析由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =13log 23,b =23log 13, ∴a -1b =13log 23-2311log 3=0.13.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案[2,4]解析解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].14.设关于x 的方程x 2-2mx +2-m =0(m ∈R )的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案7解析由题意有⎩⎨⎧ α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1, α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)·(x 2+ax +b )是偶函数,则f (x )的值域是________.答案[-16,+∞)解析因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎨⎧ f (-3)=f (3)=0,f (1)=f (-1)=0,代入得⎩⎨⎧ 9-3a +b =0,1+a +b =0,解得⎩⎨⎧ a =2,b =-3.所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m ,2n ]? 解(1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n ,解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。

数学教案高中函数图像

数学教案高中函数图像

数学教案高中函数图像教学目标:学生能够掌握各种函数的图像特征,能够准确地绘制函数的图像。

教学重点和难点:掌握各类函数的图像特征,理解函数图像的规律性。

教学准备:教师准备幻灯片、黑板、彩色粉笔、教材、作业本等。

教学过程:一、引入学习(5分钟)教师通过简单的例子引入学生,让学生了解学习高中函数图像的重要性和意义。

二、讲解函数图像的基本特征(15分钟)1. 直线函数:y = kx + b- 当k>0时,函数图像是一条斜率为正的直线,向上倾斜;- 当k<0时,函数图像是一条斜率为负的直线,向下倾斜;- 当b>0时,函数图像与x轴平行,但在y轴的位置不同;- 当b<0时,函数图像与x轴交于一点,该点为y轴截距。

2. 二次函数:y = ax^2 + bx + c- 当a>0时,函数图像开口向上,顶点在下方;- 当a<0时,函数图像开口向下,顶点在上方。

3. 指数函数:y = a^x- 当a>1时,函数图像递增,经过(0,1)点;- 当0<a<1时,函数图像递减,经过(0,1)点。

4. 对数函数:y = loga(x)- 函数图像经过(1,0)点;- 当0<a<1时,函数图像斜率为正,向右上倾斜;- 当a>1时,函数图像斜率为负,向左上倾斜。

三、练习与讨论(20分钟)教师让学生分组进行练习,根据给定的函数绘制函数图像,并相互讨论、比较图像的差异和特点。

四、总结巩固(10分钟)教师总结各种函数图像的特征和规律性,强化学生对函数图像的理解和记忆。

五、作业布置(5分钟)教师布置相关的作业,让学生巩固学习成果。

教学反思:通过本节课的学习,学生能够初步掌握各类函数图像的特征,能够准确地绘制函数图像,提升了学生对函数图像的理解和应用能力。

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

答案: D
3.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所 有的点( )
A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度 C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度 解析: 由y=2x得到y=2x-3-1,只需向右平移3个单位,向下平 移1个单位. 答案: A
1.(2010·重庆卷)函数f(x)=4x2+x 1的图象(
)
A.关于原点对称
B.关于直线y=x对称
C.关于x轴对称
D.关于y轴对称
解析: ∵f(x)=4x2+x 1=2x+2-x,∴f(-x)=f(x),是偶函数. 答案: D
2.(2009·北京卷)为了得到函数y=lg
x+3 10
的图象,只需把函数y=
答案: A
【变式训练】 3.若1<x<3,a为何值时,x2-5x+3+a=0有两解、 一解、无解?
解析: 原方程化为:a=-x2+5x-3,① 作出函数 y=-x2+5x-3(1<x<3)的图象如图, 显然该图象与直线 y=a 的交点的横坐标是方程①的解, 由图可知,当 3<a<143时,原方程有两解; 当 1<a≤3 或 a=143时,原方程有一解; 当 a>143或 a≤1 时,原方程无解.
分别画出下列函数的图象: (1)y=|lg x|; (2)y=2x+2; (3)y=x2-2|x|-1.
lg x x≥1 解析: (1)y=-lg x 0<x<1. 图象如图①. (2)将y=2x的图象向左平移2个单位.图象如图②.
x2-2x-1 x≥0 (3)y=x2+2x-1 x<0 .图象如图③.
有两个不同实根,则a的取值范围为( )

届数学一轮复习第二章函数的概念及基本初等函数I第七节函数的图象学案理含解析

届数学一轮复习第二章函数的概念及基本初等函数I第七节函数的图象学案理含解析

第七节函数的图象[最新考纲][考情分析][核心素养]1。

在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数。

2。

会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.本节的常考点有函数图象的辨析、函数图象和函数性质的综合应用及利用图象解方程或不等式,其中函数图象的辨析仍将是2021年高考考查的热点,题型多以选择题为主,属中档题,分值为5分。

1.逻辑推理2.数学运算3.数据分析4.数学建模‖知识梳理‖1.利用描点法作函数图象其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等);最后:描点,连线.2.利用图象变换法作函数的图象(1)平移变换y=f(x)错误!错误!y=f(x-a);y=f(x)错误!错误!y=f(x)+b.(2)伸缩变换y=f(x)y=f(ωx);y=f(x)错误!y=Af(x).(3)对称变换y=f(x)――――――→,关于x轴对称y=错误!-f(x);y=f(x)错误!y=错误!f(-x);y=f(x)错误!y=错误!-f(-x).(4)翻折变换y=f(x)错误!y=f(|x|);y=f(x)错误!y=|f(x)|。

►常用结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a -x),则函数y=f(x)的图象关于直线x=a对称.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)将函数y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图象.()(2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(3)函数y=f(x)与y=-f(-x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案:(1)×(2)×(3)√(4)√二、走进教材2.(必修1P23T2改编)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()答案:C3.(必修1P24A7改编)下列图象是函数y=错误!的图象的是()答案:C三、易错自纠4.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1解析:选D与曲线y=e x关于y轴对称的图象对应的解析式为y=e-x,将函数y=e-x的图象向左平移1个单位长度即得y =f(x)的图象,∴f(x)=e-(x+1)=e-x-1,故选D.5.(2019年浙江卷)在同一直角坐标系中,函数y=错误!,y=log a 错误!(a〉0,且a≠1)的图象可能是()解析:选D可分别取a=12和a=2,在同一直角坐标系内画出相应图象(图略),对比可知,D正确,故选D.6.已知函数f(x)的图象如图所示,则函数g(x)=log错误!f(x)的定义域是________.解析:当f(x)>0时,函数g(x)=log错误!f(x)有意义,由函数f(x)的图象知满足f(x)〉0时,x∈(2,8].答案:(2,8]错误!|题组突破|1.(2019年全国卷Ⅰ)函数f(x)=错误!在[-π,π]的图象大致为()解析:选D∵f(x)=错误!,x∈[-π,π],∴f(-x)=-sin x-xcos(-x)+(-x)2=-错误!=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f(π)=错误!=错误!>0,因此排除B、C,故选D.2.(2020届合肥调研)函数f(x)=ln错误!的图象大致为()解析:选B解法一:易知f(x)定义域为{x|x≠0}.又因为f(-x)=ln错误!=ln错误!=ln错误!=f(x),所以函数f(x)为偶函数,故排除A、D;又f(1)=ln错误!<0,f(2)=ln错误!=ln2-错误!〉0,所以f(2)>f(1),故排除C.故选B.解法二:因为f(x)=ln错误!=ln错误!,所以当x→+∞时,f(x)→+∞,排除A、C;当x→-∞时,1-错误!→-1,x错误!→+∞,则f(x)→+∞,排除D,故选B.3。

高考数学一轮复习7 第7讲 对数与对数函数

高考数学一轮复习7 第7讲 对数与对数函数

第7讲对数与对数函数最新考纲考向预测1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0且a≠1).命题趋势对数函数中利用性质比较对数值大小,求对数型函数的定义域、值域、最值等仍是高考考查的热点,题型多以选择、填空题为主,属中档题.核心素养数学运算、直观想象1.对数概念如果a x=N(a>0且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log a N=N(a>0且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=logcblogca(a>0,且a≠1,c>0,且c≠1,b>0)a >1 0<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.常用结论1.换底公式的三个重要结论①log a b =1logba ;②log a m b n =nm log a b ;③log a b ·log b c ·log c d =log a d . 2.对数函数图象的特点(1)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. (2)函数y =log a x 与y =log 1a x (a >0且a ≠1)的图象关于x 轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 常见误区1.在运算性质log a M n =n log a M 中,要特别注意M >0的条件,当n ∈N *,且n 为偶数时,在无M >0的条件下应为log a M n =n log a |M |.2.研究对数函数问题应注意函数的定义域.3.解决与对数函数有关的问题时,若底数不确定,应注意对a >1及0<a <1进行分类讨论.1.判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是相等函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 2.log 29·log 34=( ) A .14 B .12 C .2D .4解析:选D.原式=log 232×log 322=4log 23×log 32=4×lg 3lg 2×lg 2lg 3=4. 3.函数y =log 2(x +1)的图象大致是( )解析:选C.函数y =log 2(x +1)的图象是把函数y =log 2x 的图象向左平移一个单位长度得到的,图象过定点(0,0),函数定义域为(-1,+∞),且在(-1,+∞)上是增函数,故选C.4.(易错题)函数f (x )=1lg (x +1)+2-x 的定义域为________.解析:由f (x )=1lg (x +1)+2-x ,得⎩⎨⎧x +1>0,lg (x +1)≠0,2-x≥0,得x ∈(-1,0)∪(0,2].答案:(-1,0)∪(0,2]5.(易错题)函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或a =12.答案:2或12对数式的化简与求值[题组练透]1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B.19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a =3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log34=log39log34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log34=log39log34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B. 2.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12. 答案:12 3.计算:(1)⎝⎛⎭⎪⎫lg 14-lg 25÷100-12;(2)(1-log63)2+log6 2·log618log64.解:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log63+(log63)2+log663·log6(6×3)log64=1-2log63+(log63)2+1-(log63)2log64=2(1-log63)2log62=log66-log63log62=log62log62=1.[提醒] 对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.对数函数的图象及应用(1)若函数y =a |x |(a >0且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为____________.【解析】 (1)由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a |x |在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象大致为选项B.(2)构造函数f (x )=4x 和g (x )=log a x , 当a >1时不满足条件, 当0<a <1时,画出两个函数在⎝⎛⎦⎥⎤0,12上的图象,可知,只需两图象在⎝⎛⎦⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎫12≥g ⎝ ⎛⎭⎪⎫12,即2≥log a 12,则a ≤22, 所以a 的取值范围为⎝ ⎛⎦⎥⎤0,22.【答案】 (1)B (2)⎝ ⎛⎦⎥⎤0,22对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.函数y =2log 4(1-x )的图象大致是( )解析:选 C.函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;函数y =2log 4(1-x )在定义域上单调递减,排除D.选C.对数函数的性质及应用 角度一 比较对数值的大小(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b【解析】 因为23<32,所以2<323,所以log 32<log 3323=23,所以a <c .因为33>52,所以3>523,所以log 53>log 5523=23,所以b >c ,所以a <c <b ,故选A.【答案】 A比较对数值的大小的方法角度二 解简单的对数不等式或方程(1)已知函数f (x )为奇函数,当x >0时,f (x )=log 3x ,则满足不等式f (x )>0的x的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧log2x ,x>0,log 12(-x ),x<0,若f (a )<f (-a ),则实数a 的取值范围是________.【解析】 (1)由题意知y =f (x )的图象如图所示,所以满足f (x )>0的x 的取值范围是(-1,0)∪(1,+∞).(2)由f (a )<f (-a )得⎩⎨⎧a>0,log2a<log 12a 或⎩⎨⎧a<0,log2(-a )>log 12(-a ),即⎩⎪⎨⎪⎧a>0,log2a<-log2a 或 ⎩⎪⎨⎪⎧a<0,log2(-a )>-log2(-a ),解得0<a <1或a <-1. 【答案】 (1)(-1,0)∪(1,+∞)(2)(-∞,-1)∪(0,1)解对数不等式的函数及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. 角度三 对数型函数的综合问题(1)(多选)已知函数f (x )=ln(x -2)+ln(6-x ),则( ) A .f (x )在(2,6)上单调递增 B .f (x )在(2,6)上的最大值为2ln 2 C .f (x )在(2,6)上单调递减D .y =f (x )的图象关于直线x =4对称(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)【解析】 (1)f (x )=ln(x -2)+ln(6-x )=ln[(x -2)(6-x )],定义域为(2,6).令t =(x -2)(6-x ),则y =ln t .因为二次函数t =(x -2)(6-x )的图象的对称轴为直线x =4,又f (x )的定义域为(2,6),所以f (x )的图象关于直线x =4对称,且在(2,4)上单调递增,在(4,6)上单调递减,当x =4时,t 有最大值,所以f (x )max =ln(4-2)+ln(6-4)=2ln 2,故选BD.(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a≥1,即⎩⎪⎨⎪⎧2-a>0,a≥1,解得1≤a <2,即a ∈[1,2).【答案】 (1)BD (2)A解与对数函数有关的函数的单调性问题的步骤1.已知函数f (x )=log 2(1+2-x ),则函数f (x )的值域是( ) A .[0,2) B .(0,+∞) C .(0,2)D .[0,+∞)解析:选B.f (x )=log 2(1+2-x ),因为1+2-x >1,所以log 2(1+2-x )>0,所以函数f (x )的值域是(0,+∞),故选B.2.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则f (-2)________f (a +1).(填“<”“=”或“>”)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,所以a +1>2.因为f (x )是偶函数,所以f (-2)=f (2)<f (a +1).答案:<3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增, 则y =ax 2-x 在[3,4]上单调递增, 且y =ax 2-x >0恒成立, 即⎩⎨⎧12a ≤3,9a -3>0,解得a >13.答案:⎝ ⎛⎭⎪⎫13,+∞思想方法系列5 换元法的应用换元法又称变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者将题目变为熟悉的形式,简化复杂的计算和推证.若x ,y ,z ∈R +,且3x =4y =12z ,x +yz ∈(n ,n +1),n ∈N ,则n 的值是( ) A .2 B .3 C .4D .5【解析】 设3x =4y =12z =t (t >1), 则x =log 3t ,y =log 4t ,z =log 12t , 所以x +y z =log3t +log4t log12t =log3t log12t +log4t log12t =log 312+log 412 =2+log 34+log 43.因为1<log 34<2,0<log 43<1, 所以1<log 34+log 43<3.又log 34+log 43>2log34·log43=2, 所以4<2+log 34+log 43<5, 即x +yz ∈(4,5). 所以n =4. 【答案】 C换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中再研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于研究指数型、对数型函数的性质、三角函数式的化简求值、解析几何中计算等.函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log2x +122-14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.答案:-14[A 级 基础练]1.已知log a 12=m ,log a 3=n ,则a m +2n =( ) A .3 B .34 C .9D .92解析:选D.因为log a 12=m ,log a 3=n ,所以a m =12,a n =3. 所以a m +2n =a m ·a 2n =a m ·(a n )2=12×32=92.2.函数y =log3(2x -1)+1的定义域是( ) A .[1,2]B .[1,2)C .⎣⎢⎡⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log3(2x -1)≥log 313,x>12,解得x ≥23.故选C.3.(2021·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.4.(多选)在同一平面直角坐标系中,f (x )=kx +b 与g (x )=log b x 的图象如图,则下列关系不正确的是( )A .k <0,0<b <1B .k >0,b >1C .f ⎝ ⎛⎭⎪⎫1x g (1)>0(x >0)D .x >1时,f (x )-g (x )>0解析:选ABC.由直线方程可知,k >0,0<b <1,故A ,B 不正确;而g (1)=0,故C 不正确;而当x >1时,g (x )<0,f (x )>0,所以f (x )-g (x )>0.所以D 正确.5.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的为( )A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增解析:选BC.函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称, 所以f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数, 所以A 错误,B 正确; 根据偶函数性质可知D 错误;因为1-|x |≤1,所以h (x )≤log 21=0,故C 正确. 6.设2a =5b =m ,且1a +1b =2,则m =________.解析:因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,所以1a +1b =1log2m +1log5m =log m 2+log m 5=log m 10=2.所以m 2=10, 所以m =10. 答案:107.(2021·贵州教学质量测评改编)已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,则点A 的坐标为________;若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.解析:令x +3=1可得x =-2,此时y =log a 1-89=-89,可知定点A 的坐标为⎝⎛⎭⎪⎫-2,-89.点A 也在函数f (x )=3x +b 的图象上,故-89=3-2+b ,解得b =-1.所以f (x )=3x -1,则f (log 32)=3log 32-1=2-1=1.答案:⎝ ⎛⎭⎪⎫-2,-89 18.已知函数f (x )=⎩⎨⎧ln x +b ,x>1,ex -2,x≤1,若f (e)=-3f (0),则b =________,函数f (x )的值域为________.解析:由f (e)=-3f (0)得1+b =-3×(-1),即b =2,即函数f (x )=⎩⎪⎨⎪⎧ln x +2,x>1,ex -2,x≤1.当x >1时,y =ln x +2>2;当x ≤1时,y =e x -2∈(-2,e -2].故函数f (x )的值域为(-2,e -2]∪(2,+∞).答案:2 (-2,e -2]∪(2,+∞) 9.已知函数f (x -3)=log a x6-x (a >0,a ≠1).(1)求f (x )的解析式;(2)判断f (x )的奇偶性,并说明理由.解:(1)令x -3=u ,则x =u +3,于是f (u )=log a 3+u 3-u(a >0,a ≠1,-3<u <3),所以f (x )=log a 3+x3-x (a >0,a ≠1,-3<x <3).(2)f (x )是奇函数,理由如下:因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x =log a 1=0,所以f (-x )=-f (x ),又定义域(-3,3)关于原点对称. 所以f (x )是奇函数.10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x>0,3-x>0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 级 综合练]11.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以2>a >1.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.12.(多选)已知函数f (x )=⎩⎨⎧log2(x -1),x>1,⎝ ⎛⎭⎪⎫12x ,x≤1,则()A .若f (a )=1,则a =0B .f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=2 019C .若f (f (a ))=2-f (a ),则0≤a ≤3D .若方程f (x )=k 有两个不同的实数根,则k ≥1解析:选BC.由f (a )=1,得⎩⎪⎨⎪⎧a>1,log2(a -1)=1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a =1,解得a =3或a =0,故选项A 不正确;f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=f ⎝ ⎛⎭⎪⎫log212 019=⎝ ⎛⎭⎪⎫12log212 019=2log 22 019=2 019,选项B 正确;f (f (a ))=2-f (a )=⎝ ⎛⎭⎪⎫12f (a ),所以f (a )≤1,得⎩⎪⎨⎪⎧a>1,log2(a -1)≤1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a ≤1,解得0≤a ≤3,选项C 正确;作出函数f (x )的图象(如图),结合函数图象可知,当方程f (x )=k 有两个不同的实数根时,k ≥12,选项D 不正确.13.已知函数f (x )=-log 2x ,则下列四个结论中正确的是________.(填序号) ①函数f (|x |)为偶函数;②若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1;③函数f (-x 2+2x )在(1,3)上单调递增.解析:对于①,f (|x |)=-log 2|x |,f (|-x |)=-log 2|-x |=-log 2|x |=f (|x |),所以函数f (|x |)为偶函数,故①正确;对于②,若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则f (a )=|f (b )|=-f (b ),即-log 2a =log 2b ,即log 2a +log 2b =log 2ab =0,得到ab =1,故②正确;对于③,函数f (-x 2+2x )=-log 2(-x 2+2x ),由-x 2+2x >0,解得0<x <2,所以函数f (-x 2+2x )的定义域为(0,2),因此在(1,3)上不具有单调性,故③错误.答案:①②14.已知函数f (x )=log 2⎝⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解:(1)因为函数f (x )是R 上的奇函数, 所以f (0)=0,求得a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0为所求.(2)因为函数f (x )的定义域是一切实数, 所以12x +a >0恒成立.即a >-12x 恒成立, 由于-12x ∈(-∞,0), 故只要a ≥0即可.(3)由已知得函数f (x )是减函数.故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝⎛⎭⎪⎫12+a ≥2⇒⎩⎨⎧a +12>0,a +1≥4a +2.故-12<a ≤-13.[C 级 创新练]15.形如y =1|x|-1的函数因其图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数f (x )=log a (x 2+x +1)(a >0,a ≠1)有最小值,则“囧函数”与函数y =log a |x |的图象的交点个数为( )A .1B .2C .4D .6解析:选 C.令u =x 2+x +1,则函数f (x )=log a u (a >0,a ≠1)有最小值.因为u =⎝ ⎛⎭⎪⎫x +122+34≥34,所以当函数f (x )是增函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上有最小值;当函数f (x )是减函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上无最小值.所以a >1,此时“囧函数”y =1|x|-1与函数y =log a |x |在同一平面直角坐标系内的图象如图,由图象可知,它们的图象的交点个数为4.故选C.16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称;而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=kx (k ≠0)是“自反函数”.“自反函数”f (x )=kx (k ≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k >0时,f (x )=k x 在区间(-∞,0),(0,+∞)上为减函数;当k <0时,f (x )=kx 在区间(-∞,0),(0,+∞)上为增函数;f (x )=kx (k ≠0)是奇函数,但不是周期函数.。

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图2­7­1A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图2­7­2,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图2­7­2A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图2­7­3所示,则f (x )的解析式可以是( )图2­7­3A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图2­7­4所示,那么函数y =log b (x -a )的图象可能是( )图2­7­4(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图2­7­5所示,那么不等式f xcos x <0的解集为________.图2­7­5 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图2­7­6所示,则( )图2­7­6A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图2­7­7所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图2­7­7(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图2­7­8,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图2­7­8f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图2­7­9所示给定的直角坐标系内画出f (x )的图象;图2­7­9(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。

教案数学高中函数图像

教案数学高中函数图像

教案数学高中函数图像
教学重点和难点:函数的图像概念和性质;绘制一元二次函数、绝对值函数、指数函数、对数函数的图像。

教学准备:黑板、彩色粉笔、教材、教学PPT。

教学过程:
一、导入
教师通过引导学生回顾函数的概念和性质,引出本节课的主题——函数的图像。

二、讲解
1. 函数的图像概念和性质:函数的图像是由函数的自变量和因变量按照一定规律对应所得到的图形。

图像的性质包括对称性、增减性、奇偶性等。

2. 绘制一元二次函数的图像:通过讲解一元二次函数的一般式和顶点式,并结合实例进行绘图。

3. 绘制绝对值函数、指数函数、对数函数的图像:讲解这些特殊函数的性质和图像特点,引导学生绘制图像。

三、练习
老师布置练习题,让学生通过计算和绘图来加深对函数图像的理解和掌握。

四、拓展
引导学生思考如何利用函数图像解决实际问题,例如通过函数图像分析函数的性质、求解方程等。

五、总结
总结本节课的重点内容,强调函数图像的重要性和应用价值。

六、作业
布置作业:练习册上的相关题目,让学生巩固和深化所学内容。

教学反思
通过本节课的教学,学生能够掌握函数图像的基本原理和方法,并能够独立绘制一些常见函数的图像。

同时,通过练习和实例分析,学生能够运用函数图像解决实际问题,提高了他们的数学建模能力。

高考数学一轮总复习第二章函数第7讲函数的周期性与奇偶性课件文新人教A版

高考数学一轮总复习第二章函数第7讲函数的周期性与奇偶性课件文新人教A版

1.函数奇偶性的定义:一般地,如果 对于函数f(x)的
定义域内任意一个x

(1)都有 f(-x)=-f(x),那么函数 f(x)就叫做 奇函数 ;
(2)都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数.
2.奇函数的图象关于 原点 成 中心 对称图形,若奇
函数的定义域含数 0,则必有 f(0)=0(zh;ō偶n 函数的图象关于
第八页,共41页。
4.函数的周期性的定义:设函数 y=f(x),x∈D. 若 存 在 非 零 常 数 T , 使 得 对 任 意 的 x∈D 都 有 __f_(x_+__T_)_=_f_(_x_) _,则函数 f(x)为周期函数,称 T 为 y =f(x)的一个周期.若函数 f(x)对定义域中任意 x 满 足 f(x+a)=-f(x)或 f(x+a)=-f(1x)(a≠0)等,则 函数 f(x)必是_周__期__函__数__,它的一个周期为_2_|a_|_.如 果 在 周 期 函 数 f(x) 的 所 有 周 期 中 _存_在__一__个__最__小__的_正__数__,那么这个最小正数就叫做 f(x) 的__最__小__正__周_期___.
第四页,共41页。
3.已知 f(x)是定义在 R 上周期为 4 的奇函数,当 x∈(0,
2]时,f(x)=2x+log2x,则 f(2 017)=( C )
A.-2
1 B.2
C.2
D.5
【解析】因为 f(x)是定义在 R 上周期为 4 的奇函数,所 以 fx+4=fx,f-x=-fx.当 x∈(0,2]时,f(x)=2x+log2x,
2.分段函数要对其定义域的每一个区间上的奇偶性 进行判断,最后综合得出在定义域内总有 f(-x)=f(x)或 f(-x)=-f(x),从而判定其奇偶性,不能以其中某一个 区间来代替整个定义域.

高中数学函数性质的教案

高中数学函数性质的教案

高中数学函数性质的教案
教学内容:函数的性质
教学目标:
1.了解函数的定义,了解函数的性质;
2.能够判断一个函数是奇函数还是偶函数;
3.能够判断一个函数的周期性。

教学重点:
1.函数的定义;
2.奇函数与偶函数的判断;
3.函数的周期性。

教学难点:
1.如何判断函数的奇偶性;
2.如何判断函数的周期性。

教学过程:
一、引入:通过实景图片或实例引入函数的概念,让学生了解函数的定义及其作用。

二、理解:讲解函数的定义及性质,让学生对函数有一个全面的认识。

三、实例分析:通过几个具体的函数实例,让学生判断这些函数是奇函数还是偶函数,同时判断这些函数的周期性。

四、练习:让学生自行解答几道函数性质相关的题目,巩固所学知识。

五、总结:总结本课内容,强调函数的性质对数学问题的解决的重要性。

六、作业布置:布置相关作业,让学生进一步巩固所学内容。

七、反馈:下节课进行作业批改及学生问题解答,及时纠正学生的错误认识。

教学工具:投影仪、实例图片、幻灯片、黑板白板等。

教学评估:
1.学生能够准确判断函数的奇偶性;
2.学生能够准确判断函数的周期性;
3.学生能够解决相关的函数性质问题。

高三数学一轮复习讲义 三角函数的图像与性质教案

高三数学一轮复习讲义 三角函数的图像与性质教案

芯衣州星海市涌泉学校三角函数的图象与性质根底梳理1.“五点法〞描图(1)y=sinx的图象在[0,2π]上的五个关键点的坐标为(0,0)(π,0)(2π,0)(2)y=cosx的图象在[0,2π]上的五个关键点的坐标为(0,1),,(π,-1),,(2π,1)2.三角函数的图象和性质函数性质y=sinx y=cosx y=tanx 定义域R R {x|x≠kπ+,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:__x=kπ+(k∈Z)___;对称中心:_(kπ,0)(k∈Z)___对称轴:x=kπ(k∈Z)___;对称中心:_(kπ+,0)(k∈Z)__对称中心:_(k∈Z)__周期2π_ 2ππ单调性单调增区间_[2kπ-,2kπ+](k∈Z)___;单调减区间[2kπ+,2kπ+](k∈Z)__单调增区间[2kπ-π,2kπ](k∈Z)____;单调减区间[2kπ,2kπ+π](k∈Z)______单调增区间_(kπ-,kπ+)(k∈Z)___奇偶性奇函数偶函数奇函数3.=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.假设只有个别的x值满足f(x+T)=f(x),或者者找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.4.求三角函数值域(最值)的方法:(1)利用sinx、cosx的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sinx≤1,-1≤cosx≤1,所以1叫做y=sinx,y=cosx的上确界,-1叫做y=sinx,y=cosx的下确界.(2)形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sinx或者者cosx看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y=sin2x-4sinx+5,令t=sinx(|t|≤1),那么y =(t-2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y=Asin(ωx+φ)(ω>0)的形式,再根据根本三角函数的单调区间,求出x所在的区间.应特别注意,应在函数的定义域内考虑.注意区分以下两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x系数的正负号)(1)y=sin;(2)y=sin.热身练习:1.函数y=cos,x∈R().A.是奇函数B.既不是奇函数也不是偶函数C.是偶函数D.既是奇函数又是偶函数2.函数y=tan的定义域为().A. B.C.D.3.函数y=sin(2x+)的图象的对称轴方程可能是()A.x=-B.x=-C.x=D.x=【解析】令2x+=kπ+,那么x=+(k∈Z)∴当k=0时,x=,选D.4.y=sin的图象的一个对称中心是().A.(-π,0) B.C. D.解析∵y=sinx的对称中心为(kπ,0)(k∈Z),∴令x-=kπ(k∈Z),x=kπ+(k∈Z),由k=-1,x=-π得y=sin的一个对称中心是.答案B5.以下区间是函数y=2|cosx|的单调递减区间的是()A.(0,π)B.C.D.6.函数f(x)=sin(2x+φ),其中φ为实数,假设f(x)≤|f()|对任意x∈R恒成立,且f()>f(π),那么f(x)的单调递增区间是()A.[kπ-,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ-,kπ](k∈Z)【解析】当x∈R时,f(x)≤|f()|恒成立,∴f()=sin(+φ)=±1可得φ=2kπ+或者者φ=2kπ-,k∈Z∵f()=sin(π+φ)=-sinφ>f(π)=sin(2π+φ)=sinφ∴sinφ<0∴φ=2kπ-由-+2kπ≤2x-≤+2kπ得x∈[kπ+,kπ+](k∈Z),选C.7.函数f(x)=cos x∈R的最小正周期为___4π_____.8..y=2-3cos的最大值为___5_____,此时x=_____π+2kπ,k∈Z_________.9.函数y=(sinx-a)2+1,当sinx=1时,y取最大值;当sinx=a时,y取最小值,那么实数-1≤a≤0.10.函数f(x)=sin2x+sinxcosx在区间[,]上的最大值是.【解析】∵f(x)=+sin2x=sin2x-cos2x+=sin(2x-)+,又≤x≤,∴≤2x-≤.∴当2x-=即x=时,f(x)取最大值.题型一与三角函数有关的函数定义域问题例1求以下函数的定义域:(1)y=lgsin(cosx);(2)y=.解(1)要使函数有意义,必须使sin(cosx)>0.∵-1≤cosx≤1,∴0<cosx≤1.利用单位圆中的余弦线OM ,依题意知0<OM≤1, ∴OM 只能在x 轴的正半轴上,∴其定义域为{x|-+2kπ<x<+2kπ,k∈Z}. (2)要使函数有意义,必须使sinx -cosx≥0.利用图象.在同一坐标系中画出[0,2π]上y =sinx 和y =cosx 的图象,如下列图. 在[0,2π]内,满足sinx =cosx 的x 为,,再结合正弦、余弦函数的周期是2π, 所以定义域为.变式训练1(1)求函数y lg(2sin 1)tan 1cos()28x x x π-+--=+的定义域;解(1)要使函数有意义,那么 ⇒图①如图①利用单位圆得:∴函数的定义域为{x|2kπ+<x<2kπ+,k∈Z}. (2)求函数y 122log tan x x =++的定义域.要使函数有意义 那么⇒利用数轴可得图②图②∴函数的定义域是{x|0<x<或者者π≤x≤4}. 题型二、三角函数的五点法作图及图象变换 例2函数f(x)=4cosxsin(x +)-1. (1)用五点法作出f(x)在一个周期内的简图;(2)该函数图象可由y =sinx(x∈R)的图象经过怎样的平移变换与伸缩变换得到? 【解析】(1)y =f(x)=4cosxsin(x +)-1 =4cosx(sinx +cosx)-1=sin2x +2cos2x -1 =sin2x +cos2x =2sin(2x +)2x+0π2πx-y020-20∴函数y=f(x)在[-,]上的图象如下列图.【点评】“五点法作图〞应抓住四条:①化为y=Asin(ωx+φ)(A>0,ω>0)或者者y=Acos(ωx+φ)(A>0,ω>0)的形式;②求出周期T=;③求出振幅A;④列出一个周期内的五个特殊点.当画出某指定区间上的图象时,应列出该区间的特殊点.题型三三角函数图象与解析式的互相转化例3函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)的部分图象如下列图.(1)求f(x)的解析式;(2)设g(x)=[f(x-)]2,求函数g(x)在x∈[-,]上的最大值,并确定此时x的值.【解析】(1)由图可知A=2,=,那么=4×∴ω=.又f(-)=2sin[×(-)+φ]=2sin(-+φ)=0∴sin(φ-)=0∵0<φ<,∴-<φ-<∴φ-=0,即φ=∴f(x)=2sin(x+).(2)由(1)可得f(x-)=2sin[(x-)+]=2sin(x+)∴g(x)=[f(x-)]2=4×=2-2cos(3x+)∵x∈[-,]∴-≤3x+≤,∴当3x+=π,即x=时,g(x)max=4.【点评】根据y=Asin(ωx+φ)+K的图象求其解析式的问题,主要从以下四个方面来考虑:①A确实定:根据图象的最高点和最低点,即A=;②K确实定:根据图象的最高点和最低点,即K=;③ω确实定:结合图象,先求出周期,然后由T=(ω>0)来确定ω;④φ确实定:由函数y=Asin(ωx+φ)+K最开始与x轴的交点(最靠近原点)的横坐标为-(即令ωx +φ=0,x=-)确定φ.例4假设方程sinx+cosx=a在[0,2π]上有两个不同的实数根x1,x2,求a的取值范围,并求此时x1+x2的值.【解析】∵sinx+cosx=2sin(x+),x∈[0,2π],作出y=2sin(x+)在[0,2π]内的图象如图.由图象可知,当1<a<2或者者-2<a<1时,直线y=a与y=2sin(x+)有两个交点,故a的取值范围为a∈(-2,1)∪(1,2).当1<a<2时,x1++x2+=π.∴x1+x2=.当-2<a<1时,x1++x2+=3π,∴x1+x2=.【点评】利用三角函数图象形象直观,可使有些问题得到顺利、简捷的解决,因此我们必须准确把握三角函数“形〞的特征.例4函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的间隔为,且图象上一个最低点为M(,-2).(1)求f(x)的解析式;(2)将函数f(x)的图象向右平移个单位后,再将所得图象上各点的横坐标缩小到原来的,纵坐标不变,得到y=g(x)的图象,求函数y=g(x)的解析式,并求满足g(x)≥且x∈[0,π]的实数x的取值范围.【解析】(1)由函数图象的最低点为M(,-2),得A=2,由x轴上相邻两个交点间的间隔为,得=,即T=π,∴ω==2.又点M(,-2)在图象上,得2sin(2×+φ)=-2,即sin(+φ)=-1,故+φ=2kπ-,k∈Z,∴φ=2kπ-,又φ∈(0,),∴φ=.综上可得f(x)=2sin(2x+).(2)将f(x)=2sin(2x+)的图象向右平移个单位,得到f1(x)=2sin[2(x-)+],即f1(x)=2sin2x的图象,然后将f1(x)=2sin2x的图象上各点的横坐标缩小到原来的,纵坐标不变,得到g(x)=2sin(2·2x),即g(x)=2sin4x.由得.那么即.故≤x≤或者者≤x≤.题型四、三角函数的奇偶性与周期性及应用例1函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.(1)假设cos cosφ-sin sinφ=0,求φ的值;(2)在(1)的条件下,假设函数f(x)的图象的相邻两条对称轴之间的间隔等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.【解析】(1)由cos cosφ-sin sinφ=0得cos(+φ)=0.∵|φ|<,∴φ=.(2)由得=,∴T=,ω=3∴f(x)=sin(3x+).设函数f(x)的图象向左平移m个单位后所对应的函数为g(x),那么g(x)=sin[3(x+m)+]=sin(3x+3m+)g(x)是偶函数当且仅当3m+=kπ+(k∈Z)即m=+(k∈Z)∴最小正实数m=.题型五三角函数的单调性与周期性例2写出以下函数的单调区间及周期:(1)y=sin;(2)y=|tanx|.解(1)y= sin,它的增区间是y=sin的减区间,它的减区间是y=sin的增区间.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.由2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z.故所给函数的减区间为,k∈Z;增区间为,k∈Z.最小正周期T==π.(2)观察图象可知,y=|tanx|的增区间是,k∈Z,减区间是,k∈Z.最小正周期:T=π.探究进步(1)求形如y=Asin(ωx+φ)或者者y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原那么是:①把“ωx+φ(ω>0)〞视为一个“整体〞;②A>0(A<0)时,所列不等式的方向与y =sinx(x∈R),y=cosx(x∈R)的单调区间对应的不等式方向一样(反).(2)对于y=Atan(ωx+φ)(A、ω、φ为常数),其周期T=,单调区间利用ωx+φ∈,解出x的取值范围,即为其单调区间.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象断定.变式训练2(1)求函数y=sin+cos的周期、单调区间及最大、最小值;(2)函数f(x)=4cosxsin -1.①求f(x)的最小正周期;②求f(x)在区间上的最大值和最小值.解:y =sin +cos 11cos 4sin 4cos 4sin 42222x x x x =+++ (1)周期为T=242,232k x k k Z πππππ-+≤+≤+∈函数的递增区间为(k∈Z);3242,232k x k k Z πππππ+≤+≤+∈函数的递减区间为(k∈Z) ymax =2;ymin =-2 (2)f(x)=4cosxsin -114cos cos )12x x x =+-2cos 2cos 1x x x =+-2cos 22sin(26)x x x π=+=+x ∈,22[,]663x πππ+∈-最大值为2;最小值为-1题型六、三角函数的对称性与单调性及应用例2向量m =(sin2x -1,cosx),n =(1,2cosx),设函数f(x)=m n ⋅,x∈R. (1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间. 【解析】(1)f(x)=m·n=sin2x -1+2cos2x =sin2x +cos2x =2sin(2x +) ∴对称轴方程为:2x +=kπ+,即x =+(k∈Z). (2)由-+2kπ≤2x+≤+2kπ得-+kπ≤x≤kπ+ ∴f(x)的单调递增区间为[kπ-,kπ+](k∈Z). 【点评】对于f(x)=Asin(ωx+φ)(A>0,ω>0):①假设求y =f(x)的对称轴,只需令ωx+φ=kπ+(k∈Z),求出x ; 假设求y =f(x)的对称中心的横坐标,只零令ωx+φ=kπ(k∈Z),求出x ; ②假设求y =f(x)的单调增区间,只需令2kπ-≤ωx+φ≤2kπ+,求出x ; 假设求y =f(x)的单调减区间,只需令2kπ+≤ωx+φ≤2kπ+,求出x. 题型七三角函数的对称性与奇偶性例3(1)f(x)=sinx +cosx(x∈R),函数y =f(x +φ)的图象关于直线x =0对称,那么φ的值是________. (2)假设函数y =3cos(2x +φ)的图象关于点中心对称,那么|φ|的最小值为() A.B.C.D.(1)f (x)=2sin π()3x +,y =f(x +φ)=2sin ()3x πϕ++图象关于x =0对称, 即f(x +φ)为偶函数.∴+φ=+kπ,k∈Z, 即φ=kπ+,k∈Z,所以当k =0时,φ=. (2)A 3cos 4(2)3πϕ⨯+=3cos 2π(2π)3ϕ++=3cos 2()0,3πϕ+= ∴+φ=kπ+,k∈Z,∴φ=kπ-,k∈Z, 取k =0,得|φ|的最小值为.应选探究进步假设f(x)=Asin(ωx+φ)为偶函数,那么当x =0时,f(x)获得最大或者者最小值.假设f(x)=Asin(ωx+φ)为奇函数,那么当x =0时,f(x)=0. 假设求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x. 假设求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.变式训练3(1)函数f(x)=sinx +acosx 的图象的一条对称轴是x =,那么函数g(x)=asinx +cosx 的最大值是()A.B.C.D.由题意得f(0)=f 10()3π,∴a=--.∴a=-,g(x)=-sinx +cosx =sin 2()3x π+, ∴g(x)max=.(2)假设函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是x =,函数f′(x)的图象的一个对称中心是,那么f(x)的最小正周期是________.(1)B(2)π 由题设,有π()4f ω=±,即(a +b)=±,由此得到a =b. 又()08f π'=,所以aω(cos sin )88πωπω-=0,从而tan =1,=kπ+,k∈Z,即ω=8k +2,k∈Z,而0<ω<5,所以ω=2, 于是f(x)=a(sin2x +cos2x)=asin (2)4x π+故f(x)的最小正周期是π.题型八三角函数的值域与最值的求法及应用 例3(1)求函数y =的值域;(2)求函数y =sinxcosx +sinx +cosx 的最值;(3)假设函数f(x)=1cos 24sin()2x x π++-asin ·cos(π-)的最大值为2,试确定常数a 的值.【解析】22sin (1sin )11sin x x x-+()y==2sinx(1-sinx)=2sinx -2sin2x =-2(sinx -)2+. ∵1+sinx≠0,∴-1<sinx≤1.∴-4<y≤.故函数y =的值域为(-4,].(2)令t =sinx +cosx ,那么sinxcosx =,且|t|≤. ∴y=(t2-1)+t =(t +1)2-1,∴当t =-1时,ymin =-1;当t =时,ymax =+. (3)f(x)=+asincos =cosx +sinx =sin(x +φ),(其中tanφ=) 由得=2,解得a =±.【点评】求三角函数的最值问题,主要有以下几种题型及对应解法. (1)y =asinx +bcosx 型,可引用辅角化为y =sin(x +φ)(其中tanφ=).(2)y =asin2x +bsinxcosx +ccos2x 型,可通过降次整理化为y =Asin2x +Bcos2x +C. (3)y =asin2x +bcosx +c 型,可换元转化为二次函数. (4)sinxcosx 与sinx±cosx 同时存在型,可换元转化.(5)y =(或者者y =)型,可用别离常数法或者者由|sinx|≤1(或者者|cosx|≤1)来解决,也可化为真分式去求解.(6)y =型,可用斜率公式来解决.例4函数f(x)=sin2x +acos2x(a∈R,a 为常数),且是函数y =f(x)的一个零点. (1)求a 的值,并求函数f(x)的最小正周期;(2)当x∈[0,]时,求函数f(x)的最大值和最小值及相应的x的值.【解析】(1)由是y=f(x)的零点得f()=sin+acos2=0,求解a=-2,那么f(x)=sin2x-2cos2x=sin2x-cos2x-1=sin(2x-)-1,故f(x)的最小正周期为T==π.(2)由x∈[0,]得2x-∈[-,],那么-≤sin(2x-)≤1,因此-2≤sin(2x-)-1≤-1,故当x=0时,f(x)取最小值-2,当x=时,f(x)取最大值-1.设a∈R,f(x)=cosx(asinx-cosx)+cos2(-x)满足f(-)=f(0),求函数f(x)在[,]上的最大值和最小值.【解析】f(x)=asinxcosx-cos2x+sin2x=sin2x-cos2x由f(-)=f(0)得-·+=-1,解得a=2.∴f(x)=sin2x-cos2x=2sin(2x-)当x∈[,]时,2x-∈[,],f(x)为增函数.当x∈[,]时,2x-∈[,],f(x)为减函数.∴f(x)在[,]上的最大值为f()=2又∵f()=,f()=∴f(x)在[,]上的最小值为f()=.题型九分类讨论及方程思想在三角函数中的应用例题:函数f(x)=-2asin+2a+b的定义域为,函数的最大值为1,最小值为-5,(1)求a和b的值.(2)假设a>0,设g(x)=f且lgg(x)>0,求g(x)的单调区间.点评①求出2x+的范围,求出sin(2x+)的值域.②系数a的正、负影响着f(x)的值,因此要分a>0,a<0两类讨论.③根据a>0或者者a<0求f(x)的最值,列方程组求解.解(1)∵x∈,∴2x+∈.∴sin∈,∴-2asin∈[-2a,a].∴f(x)∈[b,3a+b],又∵-5≤f(x)≤1,∴b=-5,3a+b=1,因此a=2,b=-5.(2)由(1)得a=2,b=-5,∴f(x)=-4sin-1,g(x)=f=-4sin-1=4sin-1,又由lgg(x)>0得g(x)>1,∴4sin-1>1,∴sin>,∴2kπ+<2x+<2kπ+,k∈Z,其中当2kπ+<2x+≤2kπ+,k∈Z时,g(x)单调递增,即kπ<x≤kπ+,k∈Z,∴g(x)的单调增区间为,k∈Z.又∵当2kπ+<2x+<2kπ+,k∈Z时,g(x)单调递减,即kπ+<x<kπ+,k∈Z.三角函数的图象与性质练习一一、选择题1.对于函数f(x)=2sinxcosx,以下选项正确的选项是()A.f(x)在(,)上是递增的B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为2【解析】f(x)=sin2xf(x)在(,)上是递减的,A错;f(x)的最小正周期为π,C错;f(x)的最大值为1,D错;选B.2.假设α、β∈(-,),那么“α<β〞是“tanα<tanβ〞的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】α、β∈(-,),tanx在此区间上单调递增.当α<β时,tanα<tanβ;当tanα<tanβ时,α<β.应选C.3.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,将该函数的图象向左平移个单位后,得到的图象对应的函数为奇函数,那么f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称【解析】由得ω=2,那么f(x)=sin(2x+φ)设平移后的函数为g(x),那么g(x)=sin(2x++φ)(|φ|<)且为奇函数∴φ=-,f(x)=sin(2x-)∴图象关于直线x=对称,选B.4.f(x)=sinx,x∈R,g(x)的图象与f(x)的图象关于点(,0)对称,那么在区间[0,2π]上满足f(x)≤g(x)的x的取值范围是()A.[,] B.[,]C.[,] D.[,]【解析】设(x,y)为g(x)的图象上任意一点,那么其关于点(,0)对称的点为(-x,-y),由题意知该点必在f(x)的图象上.∴-y=sin(-x),即g(x)=-sin(-x)=-cosx,由得sinx≤-cosx⇒sinx+cosx=sin(x+)≤0又x∈[0,2π]∴≤x≤.5.函数f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),假设对任意x∈R,都有f(+x)=f(-x),那么g()=____.【解析】由f(+x)=f(-x),知y=f(x)关于直线x=对称,∴sin(ω·+φ)=±1.∴g()=3cos(ω·+φ)=3=0.6.设函数f(x)=2sin(+),假设对任意x∈R,都有f(x1)≤f(x)≤f(x2)恒成立,那么|x2-x1|的最小值为____.【解析】由“f(x1)≤f(x)≤f(x2)恒成立〞,可得f(x1)、f(x2)分别是f(x)的最小值、最大值.∴|x2-x1|的最小值为函数f(x)的半周期,又T==4.∴|x2-x1|min=2.7.函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.(1)求f′(x)及函数y=f′(x)的最小正周期;(2)当x∈[0,]时,求函数F(x)=f(x)f′(x)+f2(x)的值域.【解析】(1)f′(x)=cosx-sinx=-sin(x-)∴y=f′(x)的最小正周期为T=2π.(2)F(x)=cos2x-sin2x+1+2sinxcosx=1+sin2x+cos2x=1+sin(2x+)∵x∈[0,],∴2x+∈[,]∴sin(2x+)∈[-,1],∴函数F(x)的值域为[0,1+].8.设函数f(x)=2cosx(sinx+cosx)-1,将函数f(x)的图象向左平移α个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)假设0<α<,且g(x)是偶函数,求α的值.【解析】(1)∵f(x)=2sinxcosx+2cos2x-1=sin2x+cos2x=sin(2x+),∴f(x)的最小正周期T==π.(2)g(x)=f(x+α)=sin[2(x+α)+]=sin(2x+2α+),g(x)是偶函数,那么g(0)=±=sin(2α+),∴2α+=kπ+,k∈Z.α=+(k∈Z),∵0<α<,∴α=.三角函数的图象与性质练习二1.函数f(x)=sin 图象的对称轴方程可以为() A.x = B.x =C.x = D.x =解析令2x +=kπ+(k∈Z),得x =+(k∈Z),令k =0得该函数的一条对称轴为x =.此题也可用代入验证法来解.答案D2.y =sin 的图象的一个对称中心是() A.(-π,0) B.C. D.3.函数y =3cos(x +φ)+2的图象关于直线x =对称,那么φ的可能取值是() A. B.-C. D.二、填空题4.函数y =lg(sinx)+的定义域为____(2k ,2k ]3πππ+(k∈Z)_________. 5.函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全一样.假设x∈[0,],那么f(x)的取值范围是____32⎡⎤-⎢⎥⎣⎦,3___________. 4.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω等于________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sin ω=,且0<ω<,因此ω=.答案6.关于函数f(x)=4sin (x∈R),有以下命题:①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y =4cos ;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x =-对称.其中正确命题的序号是___________.②③解析函数f(x)=4sin 的最小正周期T =π,由相邻两个零点的横坐标间的间隔是=知①错.利用诱导公式得f(x)=4cos =4cos =4cos ,知②正确.由于曲线f(x)与x 轴的每个交点都是它的对称中心,将x =-代入得f(x)=4sin =4sin0=0,因此点是f(x)图象的一个对称中心,故命题③正确.曲线f(x)的对称轴必经过图象的最高点或者者最低点,且与y 轴平行,而x =-时y =0,点不是最高点也不是最低点,故直线x =-不是图象的对称轴,因此命题④不正确.答案②③三、解答题7.设函数f(x)=sin(-π<φ<0),y=f(x)图象的一条对称轴是直线x=.(1)求φ;(2)求函数y=f(x)的单调增区间.解(1)-(2)由(1)得:f(x)=sin,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y=f(x)的单调增区间为,k∈Z.8.(1)求函数y=2sin(-<x<)的值域;(2)求函数y=2cos2x+5sinx-4的值域.解(1)∵-<x<,∴0<2x+<,∴0<sin≤1,∴y=2sin的值域为(0,2].(2)y=2cos2x+5sinx-4=2(1-sin2x)+5sinx-4=-2sin2x+5sinx-2=-22+.∴当sinx=1时,ymax=1,当sinx=-1时,ymin=-9,∴y=2cos2x+5sinx-4的值域为[-9,1].三角函数的图象与性质练习三一、选择题1.定义在R上的函数f(x)既是偶函数又是周期函数,假设f(x)的最小正周期是π,且当x∈时,f(x)=sinx,那么f的值是()A.-B.C.-D.2.函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,那么ω的最小值等于()A. B. C.2 D.33.函数f(x)=cos2x+sin是()A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.有最大值又有最小值的偶函数二、填空题4.设定义在区间(0,)上的函数y=6cosx的图象与y=5tanx的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=sinx的图象交于点P2,那么线段P1P2的长为___________.5.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω=___________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sinω=,且0<ω<,因此ω=.答案6.给出以下命题:①函数y=cos是奇函数;②存在实数α,使得sinα+cosα=;③假设α、β是第一象限角且α<β,那么tanα<tanβ;④x=是函数y=sin的一条对称轴;⑤函数y=sin的图象关于点成中心对称图形.其中正确的序号为___________.三、解答题7.假设函数f(x)=sin2ax-sinax·cosax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值;(2)假设点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.7.解(1)f(x)=(1-cos2ax)-sin2ax=-(sin2ax+cos2ax)+=-sin+.∵y=f(x)的图象与y=m相切,∴m为f(x)的最大值或者者最小值,即m=或者者m=.(2)∵切点的横坐标依次成公差为的等差数列,∴f(x)的最小正周期为.T==,a>0,∴a=2,即f(x)=-sin+.由题意知sin=0,那么4x0+=kπ(k∈Z),∴x0=-(k∈Z).由0≤-≤(k∈Z)得k=1或者者2,因此点A的坐标为,.三角函数的图象与性质练习四一、选择题1.函数f(x)=2sinxcosx是().A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数解析f(x)=2sinxcosx=sin2x.∴f(x)是最小正周期为π的奇函数.答案C2.函数y=sin2x+sinx-1的值域为().A.[-1,1]B.C.D.解析(数形结合法)y=sin2x+sinx-1,令sinx=t,那么有y=t2+t-1,t∈[-1,1],画出函数图象如下列图,从图象可以看出,当t=-及t=1时,函数取最值,代入y=t2+t-1可得y∈.答案C3.假设函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,那么ω=().A.B.C.2D.3解析由题意知f(x)的一条对称轴为x=,和它相邻的一个对称中心为原点,那么f(x)的周期T=,从而ω=.答案B4.函数f(x)=(1+tanx)cosx的最小正周期为().A.2πB.C.πD.解析依题意,得f(x)=cosx+sinx=2sin.故最小正周期为2π.答案A5.以下函数中,周期为π,且在上为减函数的是().A.y=sin B.y=cosC.y=sin D.y=cos解析(挑选法)∵函数的周期为π.∴排除C、D,∵函数在上是减函数,∴排除B.答案A【点评】此题采用了挑选法,表达了挑选法的方便、快捷、准确性,在解选择题时应注意应用.6.函数f(x)=sin(x∈R),下面结论错误的选项是().A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数解析∵y=sin =-cosx ,∴T=2π,在上是增函数,图象关于y 轴对称,为偶函数.答案D二、 填空题7.y=-|sin 〔x+4π〕|的单调增区间为___[kπ+π4,kπ+3π4]〔k∈Z〕_____. 8.要得到⎪⎭⎫ ⎝⎛-=42cos 3πx y 的图象,可以将函数y=3sin2x 的图象向左平移_8π__单位. 9.假设动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,那么MN 的最大值为____.10函数(02x π≤≤)的值域是_____[-1,0]_____. 11.()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,那么ω=__________.14312、给出下面的3个命题:〔1〕函数|)32sin(|π+=x y 的最小正周期是2π;〔2〕函数)23sin(π-=x y 在区间)23,[ππ上单调递增;〔3〕45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是. 13.假设函数f(x)=cosωxcos(ω>0)的最小正周期为π,那么ω的值是________.解析f(x)=cosωxcos=cosωxsinωx=sin2ωx,∴T==π.∴ω=1.答案114.函数y =tan 的图象与x 轴交点的坐标是______.解析由2x +=kπ,k∈Z,得:x =-,k∈Z,故交点坐标为(k∈Z).答案(k∈Z)15.函数f(x)=sin(x +θ)+cos(x +θ)是偶函数,那么θ的值是________.解析(回忆检验法)据可得f(x)=2sin ,假设函数为偶函数,那么必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,经代入检验符合题意.答案三、解答题16.f(x)=sinx +sin.(1)假设α∈[0,π],且sin2α=,求f(α)的值;(2)假设x∈[0,π],求f(x)的单调递增区间.解(1)由题设知f(α)=sinα+cosα.∵sin2α==2sinα·cosα>0,α∈[0,π],∴α∈,sinα+cosα>0.由(sinα+cosα)2=1+2sinα·cosα=,得sinα+cosα=,∴f(α)=.(2)由(1)知f(x)=sin ,又0≤x≤π,∴f(x)的单调递增区间为.17.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =.(1)求φ;(2)求函数y =f(x)的单调增区间.解(1)令2×+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,又-π<φ<0,那么-<k <-,k∈Z,∴k=-1,那么φ=-.(2)由(1)得:f(x)=sin ,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y =f(x)的单调增区间为,k∈Z.18、设函数2()sin()2cos 1468x x f x πππ=--+.〔1〕求()f x 的最小正周期. 〔2〕假设函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值. 解:〔Ⅰ〕()f x =sin cos cos sin cos 46464x x x πππππ--=3cos 424x x ππ-sin()43x ππ- 故()f x 的最小正周期为T=24ππ=8(Ⅱ)解法一:在()y g x =的图象上任取一点(,())x g x ,它关于1x =的对称点(2,())x g x -.由题设条件,点(2,())x g x -在()y f x =的图象上,从而=sin[]243x πππ--cos()43x ππ+ 当304x ≤≤时,23433x ππππ≤+≤,因此()y g x =在区间4[0,]3上的最大值为 解法二: 因区间4[0,]3关于x=1的对称区间为2[,2]3,且()y g x =与()y f x =的图象关于x=1对称,故()y g x =在4[0,]3上的最大值为()y f x =在2[,2]3上的最大值由〔Ⅰ〕知()f x sin()43x ππ-当223x ≤≤时,6436ππππ-≤-≤因此()y g x =在4[0,]3上的最大值为max 6g π== 19、设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,. 〔1〕务实数m 的值;〔2〕求函数()f x 的最小值及此时x 值的集合.(3)求函数的单调区间;(4)函数图象沿向量c 平移得到x y 2sin 2=的图象,求向量c 。

2020年高考数学一轮复习讲练测专题2.7函数的图象(讲)(含解析)(2021-2022学年)

2020年高考数学一轮复习讲练测专题2.7函数的图象(讲)(含解析)(2021-2022学年)

第07讲函数的图象---讲1. 会运用函数图象理解和研究函数的性质.2。

高考预测:(1)函数图象的辨识(2)函数图象的变换(3)主要有由函数的性质及解析式选图;由函数的图象来研究函数的性质、图象的变换、数形结合解决不等式、方程等问题.常常与导数结合考查。

3.备考重点(1)基本初等函数的图象(2)两图象交点、函数性质、方程解的个数、不等式的解集等方面的应用知识点1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.【典例1】【2018年全国卷Ⅲ理】设函数.(1)画出的图象;(2)当,,求的最小值.【答案】(1)见解析;(2)ﻬ【解析】(1)的图象如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.【规律方法】 函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. 【变式1】【北京海淀十一学校2017—2018学年高一上期中】对、,记,函数.(1)求,.(2)写出函数的解析式,并作出图像.ﻬ(3)若关于的方程有且仅有个不等的解,求实数的取值范围.(只需写出结论)【答案】见解析.ab ∈R (0)f (4)f -()f x x()f x m =3m【解析】解:(1)∵,函数,∴,.(2)(3)或.知识点2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换5m=my=f(x)的图象错误!y=-f(x)的图象;y=f(x)的图象错误!y=f(-x)的图象;y=f(x)的图象错误!y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象错误!y=log a x(a〉0,且a≠1)的图象.(3)伸缩变换y=f(x)错误!未定义书签。

高中物理函数与图像教案

高中物理函数与图像教案

高中物理函数与图像教案教学内容:函数与图像教学目标:通过本节课的教学,学生能够理解函数与图像的相关概念,能够正确地画出给定函数的图像,并能够进行简单的函数图像分析。

教学重点与难点:函数与图像的关系、函数图像的基本性质、函数图像分析方法。

教学准备:教师准备好课件、黑板、彩色粉笔、课本等教学工具。

教学步骤:一、导入教师将函数与图像的相关概念介绍给学生,让学生了解函数与图像之间的关系,并起到导入本节课内容的作用。

二、讲解1. 介绍函数的定义及常见函数的图像形状,如直线、抛物线、正弦曲线等。

2. 讲解函数的图像的基本性质,如对称性、单调性、周期性等。

3. 讲解函数图像的绘制方法,如通过函数的性质来确定图像的形状、方向等。

三、实践1. 教师示范如何根据函数的表达式来绘制函数的图像。

2. 学生跟着教师的示范,练习画出给定函数的图像,并进行简单的函数图像分析。

四、练习与讨论1. 学生进行练习,画出给定函数的图像,并进行图像分析。

2. 学生互相交流、讨论自己所画函数图像的特点及问题,并从中学习。

五、总结与拓展1. 教师对本节课的重点内容进行总结,强调函数与图像的相关概念及函数图像的基本性质。

2. 引导学生自主拓展学习,如通过查阅相关资料,了解更多函数与图像的知识。

六、作业布置布置作业:要求学生练习画出更多函数的图像,并进行函数图像分析。

教学反思:本节课通过引导学生了解函数与图像的关系,讲解函数图像的基本性质,让学生通过实践来练习画图并进行图像分析,达到了教学目标。

在今后的教学中,可以适当增加一些生动有趣的例题,引导学生主动思考和探究,提高他们的学习兴趣和能力。

【学海导航】湖南省高三数学总复习一轮 第2单元第7讲 函数的性质(三)周期性、对称性课件 理 新课标

【学海导航】湖南省高三数学总复习一轮 第2单元第7讲 函数的性质(三)周期性、对称性课件 理 新课标
函数的周期性与对称性的概念,能综理解合运 用函数的性质解题.
x 1
1 . 函 数 f x = 2 x 2 - x + 1 的 对 称 轴 方 程 是 4 .
2 .已 知 函 数 fx满 足 f(x + 4 )= fx, 当 2x 3 时 , fx= x , 则 f1 0 6 .5 = .
所 以 f x 是 周 期 函 数 ,2C 就 是 它 的 一 个 周 期 .
评析:特殊值法是解决抽象函数问题常用的有 效方法,通过所给关系式,对其中的变量进行 有效赋值,注意借助具体模型思考,联系解题 目标赋值.
素材3.设f x是定义在[1,1]上的偶函数,
当x[1,0]时,f x g(2 x),且当x2,3时,
R,

x1
x

2

f
x1

f
x2

a
a 2-
1
[
(
a
- x1
a - x1
)- ( a
- x 2
a - x2
)]

a
a 2-
1
(
a
x1

a x2
) (1+
1 a ax1 x2
).
当 a 1时 , a 2- 1 0, a - x1 a x2 0, 所 以 f x1 f x 2 ,
当 0 a 1时 , a 2- 1 0, a - x1 a x2 0, 所 以 f x1 f x 2 ,
其图象关于原点对称.
解 析 : 将 a= 1 代 入 g x得
2
g
x = ( x- 1) [
1 2
1
x- 1

-1
1 2

2024届新高考一轮总复习人教版 第二章 第7节 函数的图象 课件(45张)

2024届新高考一轮总复习人教版 第二章 第7节 函数的图象 课件(45张)

f(x)-k
f(x)-h
(2)伸缩变换 ①y=f(x)―a0―><1a―,<1―横,―坐横―标坐―缩标―短伸为―长原为―来原―的来―1a的―倍a1―,倍―纵,―坐纵―标坐不―标变不―变→ y=__f(_a_x_)__. ②y=f(x)―0―<a>a―<1,1―,纵―纵坐―坐标―标伸―缩长―短为为―原原―来来―的的―a倍a―倍,―,横―横坐―坐标―标不不―变变→ y=__a_f(_x_)__.
(2) (2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象, 则该函数是( )
x2-2x-1,x≥0, (3)y=x2+2x-1,x<0, 其图象如图③所示.
【思维升华】 作函数图象的两种常用方法 (1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据 这些函数的特征直接作出; (2)图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得 到,可利用图象变换作出,但要注意变换顺序.
(4)函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)对称.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)函数 y=f(1-x)的图象可由 y=f(-x)的图象向左平移 1 个单位长度得到.( ) (2)当 x∈(0,+∞)时,函数 y=|f(x)|与 y=f(|x|)的图象相同.( ) (3)函数 y=f(x)与 y=-f(-x)的图象关于原点对称.( ) (4)若函数 y=f(x)满足 f(1+x)=f(1-x),则函数 f(x)的图象关于直线 x=1 对称.( ) 答案:(1)× (2)× (3)√ (4)√
2.将函数 y=log2(2x+2)的图象向下平移 1 个单位长度,再向右平移 1 个单位长度,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲 函数的图象与性质
【学习目标】函数的图象(B 级)函数的基本性质(B 级)
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.
【知识要点】
1.函数单调性:一般地,设函数()f x 的定义域为A ,区间I A ⊆,如果对于区间I 内任意两个自变量12,x x ,当12x x <时,①若 则()f x 在区间I 上是增函数,②若 则()f x 在区间I 上是减函数
2.偶函数:如果对函数()f x 的定义域内 x 都有 ,
那么称函数()f x 是偶函数。

其图象关于 对称。

奇函数:如果对函数()f x 的定义域内 x 都有 ,
那么称函数()f x 是奇函数。

其图象关于 对称。

3.利用导数确定函数单调性
【自主学习】
1. (必修1 P28例6改编)画出函数f (x )=x 2+1的图象,若0<x 1<x 2,
则f (x 1) f (x 2).
2. (必修1 P25复习题3改编)已知函数f (x )=(x -1)2
+1,x ∈{-1,0,1,2,3},
则函数的值域为 .
3. (必修1 P40练习2改编)已知函数f (x )=|x +1|,则函数f (x )的单调
增区间为 .
4. (必修1 P45思考11改编)已知函数y =f (x )是R 上的奇函数,且当x >0时,f (x )=1,
则函数y =f (x )的解析式为 .
5. (必修1 P53拓展15改编)若函数f (x )满足f (x +y )=f (x )+f (y ),
则函数f (x )是 函数.
【课堂探究】
例1 (2014·南通一模)已知a 为实常数,y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,f (x )=2x -3
2a x
+1. (1) 求函数f (x )的单调区间; (2) 若f (x )≥a -1对一切x >0恒成立,求实数a 的取值范围.
例2.(2015·启东中学)已知定义域为R 的函数f (x )=1-22+++x x b a 是奇函数.
(1) 求实数a ,b 的值;
(2) 求证:函数f (x )在R 上是减函数;
(3) 若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.
例3.已知函数f (x )=a -1
x -ln x (a ∈R ).
(1) 若a =2,求函数f (x )在(1,e 2)上的零点个数(e 为自然对数的底数);
(2) 若f (x )恰有一个零点,求实数a 的取值集合.
【针对训练】
1. (2015·苏州调研)已知函数y =log 2-1+a x x
为奇函数,则实数a 的值为 .
2. 若函数f (x )=mx 2
+x +5在[-2,+∞)上是单调增函数,则实数m 的取值
范围是 .
3. 已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)= .
4. (2015·南师附中)已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ), 且在[0,2]上,f (x )=(1-)01sin π12≤≤⎧⎨<≤⎩
x x x x x ,,,,那么f 294⎛⎫ ⎪⎝⎭+f 416⎛⎫ ⎪⎝⎭= . 5. (2015·海安中学)已知奇函数f (x )的定义域为R ,若f (x +2)为偶函数,
且f (1)=1,则f (8)+f (9)= .
【巩固提升】
6.如图,设函数f (x )=x +a x (a ∈R )的定义域为(0,+∞),且f (2)=52
.设点P 是函数图象上的任意一点,过点P 分别作直线y =x 和y 轴的垂线,垂足分别为M ,
N.
(1) 写出f (x )的单调减区间(不必证明);
(2) 设点P 的横坐标x 0,求点M 的坐标(用x 0的代数式表示);
(3) 设O 为坐标原点,求四边形OMPN 面积的最小值.。

相关文档
最新文档