5.4一次函数的图象和性质(3)
一次函数的图象及性质
![一次函数的图象及性质](https://img.taocdn.com/s3/m/5ec3426a4a73f242336c1eb91a37f111f0850d51.png)
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程
一次函数的图象ppt课件
![一次函数的图象ppt课件](https://img.taocdn.com/s3/m/25f3784058eef8c75fbfc77da26925c52cc591bc.png)
3
探究新知
正比例函数的图象
知识点
探究1:画出正比例函数y=2x的图象
怎样画出给定函数的图象?一般可以分为哪几个步骤?
“描点法”,分成“列表、描点、连线”三个步骤.
(1) 列表:
x
… -3
-2
-1
0
1
2
3
…
y=2x
… -6
-4
-2
0
2
4
6
…
4
4
探究新知
探究1:画出正比例函数y=2x的图象
y=-2x
交点的坐标:y=3x 和y=-3x+2.
解:对于函数y=3x,取x=0,得y=0,
得到点(0,0);取x=1,得y=3,
得到点(1,3).
过点(0,0),(1,3)画直线,
就得到函数y=3x的图象,它与坐标
轴的交点是原点(0,0).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
பைடு நூலகம்-3
-4
2
它与x轴的交点是( 3 ,0),与y轴
的交点是(0,2).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
-3
-4
y=-3x+2
-5
15
15
探究新知
例3 画出一次函数y=2x-1与y=-0.5x+1的图象,并求出它们与
坐标轴的交点坐标.
y
y=2x-1
解:列表:
x
y=2x-1
y=-0.5x+1
考点08 一次函数的图象与性质【无答案】
![考点08 一次函数的图象与性质【无答案】](https://img.taocdn.com/s3/m/9f1ae17fe418964bcf84b9d528ea81c759f52e7a.png)
考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。
也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象1.下列函数:①y=4x;②y=﹣;③y=;④y=﹣4x+1,其中一次函数的个数是()A.1B.2C.3D.42.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是()A.B.C.D.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是()A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是.6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过()A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是()A.m>0B.m<0C.m>1D.m<14.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为5.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1y2.(填“<”或“>”或“=”)考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为()A.B.C.D.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为()A.2B.﹣2 C.2或﹣2D.m的值不存在3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y=.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式.考向四:一次函数与方程不等式间的关系1.已知方程2x﹣1=﹣3x+4的解是x=1,则直线y=2x﹣1和y=﹣3x+4的交点坐标为()A.(1,0)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)2.如图,直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为.3.如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是()A.B.C.D.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y=.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是()A.4B.3C.2D.16.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是,当y1>y2时,x的取值范围是,当y1<y2时,x的取值范围是.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
一次函数图像及性质
![一次函数图像及性质](https://img.taocdn.com/s3/m/4ea1f06ba26925c52cc5bf31.png)
第4讲、一次函数的图象与性质姓名:____________【知识回顾】一、一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图象叫做直线y=kx+b.特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。
2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;二、一次函数的性质:【典例精讲】◆【要点1】正比例函数的图像性质:正比例函数的图象是通过坐标原点的一条 直线: 当k>0时,图象在一、三象限,呈上升趋势,y 随x 的增大而增大; 当k<0时,图象在二、四象限,呈下降趋势,y 随x 的增大而减小; ◆【要点2】一次函数的图像性质:当121212k k b b =≠ 且时,∥,当1212k k ⋅⊥=-1,则,l l【例1】1、已知函数:①、0.26y x =+;②、172y x =-+;③、32y x =-;④、2y x =-; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数3(3)m y m x -=-的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )xyxyb >0b <0k >0k <xy Ox yO xyO xyO0b >0b <A B C D-1-111-11-11y=-x+1y=-x+1y=-x+1y=-x+1xy xy xy xyA 、12y y >B 、12y y <C 、12y y =D 、无法确定4、函数b ax y +=与y bx a =+的图象在同一坐标系内的大致位置正确的是( )变式训练1:关于一次函数y =-x +1的图象,下列所画正确的是( )◆【要点3】----求直线与坐标轴的交点直线y kx b =+与x 轴的交点坐标,令0y =,得交点(kb-,0);求与y 轴的交点坐标,令0x =,得交点(0,b );【例2】1、直线23y x =-+经过 象限,与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,图象与坐标轴所围成的三角形面积是 ; 2、 若直线14-=+-=x y m x y 与的图象交于y 轴上一点,则________m =;3、(12培优)若直线p x y +=3与直线q x y +-=2的图象交x 轴于同一点,则p 、q 之间的关系式为 ; 练习:1、(12∙重点轮动)直线2y kx =+与x 轴交于点(1-,0),则______k =;2、(桂林)直线1-=kx y 一定经过点( )A 、(1,0) B 、(1,k ) C 、(0,k ) D 、(0,1-) 3.已知一次函数y= -2x+3, 填空:(1)此一次函数的图像是 ,它经过 象限,y 随x 的增大而(2)直线y= -2x+3的斜率是 ,在y 轴上的截距是 ,在x 轴上的截距是 与x 轴的交点坐标是 ,直线与y 轴的交点坐标是 ,交点之间的距离是 ,与两坐标轴所围成的面积是xy O xyO xyO xyOAB C D(3)将此直线向左平移3个单位得直线 ,再向上平移4个单位得直线 (4)当x 时,y >0,当x= 时,y=0, 当x 时,y <0,当 -1<y <3时,x 的取值范围是 ,当 -2<x <1时,y 的取值范围是 .(5)若一直线y=kx+b 与直线y= -2x+3平行,且过点(-3,1),则这条直线的解析式是 . ◆【要点4】----一次函数与方程(组)及不等式的关系 例3、1:函数x y =1,34312+=x y .当21y y >时,x 的范围是( ) A..x <-1 B .-1<x <2 C .x <-1或x >2 D .x >2y 2y 1(2,2)(-1,1)xyy=-2x+6o36xy2.已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为 总结:当y=0时,正好是图象与 轴的交点 当y >0时,图象位于 轴 方 当y <0时,图象位于 轴 方 ◆【要点5】、一次函数与二元一次方程组之间的关系 直线1 : y=11b x k + 直线:2 y=22b x k +(1)、当12121212k k b b =≠ 且时,∥,这时与没有公共点,所以方程组没有解 (2)、当21212121 与重合,这时与时,且b b k k ==有无数个公共点,方程组有无数个解。
一次函数的图像和性质
![一次函数的图像和性质](https://img.taocdn.com/s3/m/76263447e45c3b3567ec8b52.png)
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的图像和性质教案3篇
![一次函数的图像和性质教案3篇](https://img.taocdn.com/s3/m/792a129d1711cc7930b71625.png)
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
浙教版八年级上册第六章《一次函数》知识点及典型例题
![浙教版八年级上册第六章《一次函数》知识点及典型例题](https://img.taocdn.com/s3/m/bbb423a1dd3383c4bb4cd2e3.png)
新浙教版八年级上册第六章《一次函数》知识点总结及典型例题关于基本概念和性质的知识点1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vts=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。
在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
★★★判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应例题:1、下列说法正确的是:()A 变量x,y满足y2=x,则y是x的函数 B变量x,y满足x+3y=1,则y是x的函数C 等式43πr3是所含字母r的函数 D 在V=43πr3中,43是常量,r是自变量,V是πr的函数例题:2、下列解析式中,y不是x的函数的是()A y+x=0B |y|=2xC y=2|x|D y=2x2+4 例题:3、下列各曲线中,能表示y是x的函数的是()函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
例题:东方超市鲜鸡蛋每个0.4元,那么所付款y元与买鲜鸡蛋个数x(个)之间的函数关系式是_______________.例题:平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是__________.自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法:(1)必须使关系式成立。
一次函数的图像和性质
![一次函数的图像和性质](https://img.taocdn.com/s3/m/c969001dabea998fcc22bcd126fff705cc175ca5.png)
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
初中数学一次函数的图象和性质
![初中数学一次函数的图象和性质](https://img.taocdn.com/s3/m/405556f9ec3a87c24028c4d0.png)
一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。
4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。
例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
辅导讲义3(一次函数的图像及性质)
![辅导讲义3(一次函数的图像及性质)](https://img.taocdn.com/s3/m/2399f52c650e52ea5418980e.png)
面积相等的两部分,那么b的值为
16.(2011湖北黄石)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
考点4用待定系数法求一次函数的解析式
[例4](2011广东株洲)直线L过A、B两点,A( , ),B( , ),
则直线L的解析式为.
22.(桂林)如图,是一个正比例函数的图像,把该图像向左平移
一个单位长度,得到的函数图像的解析式为.
23.(天津)已知一次函数的图象过点 与 ,则该函数的图象与 轴交点的坐标为__________.
A.y=x+1B.y=x-1C.y=xD.y=x-2
19.把直线一次函数y=6x+1向下平移2个单位,再向右移动3个单位得到的图像解析式为________
20.(湖北黄石)将函数y=-6x的图象 向上平移5个单位得直线 ,则直线 与坐标轴围成的三角形面积为.
21.直线L1经过点A(-3,1)、B(0,2),该直线向右平移3个单位得到直线L2,则直线L2的解析式为.
2.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;
与两条坐标轴围成的三角形的面积是__________.
3.一次函数 与x轴和y轴的交点的坐标分别是_______、_______;
与两条坐标轴围成的三角形的面积是__________.
考点2一次函数y=kx+b(k 0)图像与性质
学员编号:年级:课时数:3课时
学员姓名:辅导科目:学科教师:
初三一次函数的图像和性质分析知识点
![初三一次函数的图像和性质分析知识点](https://img.taocdn.com/s3/m/e25db5e680eb6294dd886c80.png)
2019初三一次函数的图像和性质分析知识点1 基本信息1.y的变化值与对应的x的变化值成正比例,比值为k即:△y/△x=k (△为任意不为零的实数),即函数图像的斜率。
2.一次函数的表达式:y=kx+b3.性质:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
当b0时,该函数与y轴交于正半轴;当b0时,该函数与y轴交于负半轴当x=0时,b为函数在y轴上的截距。
4.一次函数定义域xR,值域f(x)R5.一次函数在xR上的单调性:若f(x)=kx+b,k0,则该函数在xR上单调递增。
若f(x)=kx+b,k0,则该函数在xr上单调递减。
2 函数性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的,坐标为(0,b).当y=0时,该函数图像在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tan(角为一次函数图象与x轴正方向夹角,90)形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
3 图像性质1.作法与图形:通过如下3个步(1)列表(2)描点:一般取两个点,根据两点确定一条直线的道理;(3)连线,可以作出一次函数的图像一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
2019—2020年最新浙教版数学八年级上册5.4《一次函数的图象和性质》练习题【精心整理测试卷】.doc
![2019—2020年最新浙教版数学八年级上册5.4《一次函数的图象和性质》练习题【精心整理测试卷】.doc](https://img.taocdn.com/s3/m/cd9a166303d8ce2f00662371.png)
5.4一次函数的图象和性质一、选择题1.已知一次函数y kx k=-,若y随着x的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R和2R的两个电阻,其两端电压U关于电流强度I的函数图象如图,则阻值(A)1R>2R(B)1R<2R(C)1R=2R(D)以上均有可能4.若函数bkxy+=(b k,为常数)>y时,x 的取值范围是A 、1>xB 、2>xC 、1<xD 、2<x 5.下列函数中,一次函数是(). (A)(B )(C )(D )6.一次函数y=x+1的图象在().(A )第一、二、三象限(B )第一、三、四象限 (C )第一、二、四象限(D )第二、三、四象限 7.将直线y=2x 向上平移两个单位,所得的直线是A .y=2x+2B .y=2x-2C .y=2(x-2)D .y=2(x+2) 8.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为 A.(0,0)B.11(,)22-C.22-D.11(,)22- 9.如图,把直线l沿x 轴正方向向右平移2个单位得到直线l′,则直线l /的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-2 10.直线y=kx+1一定经过点()A .(1,0)B .(1,k)C .(0,k)D .(0,1)11.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,yxE DCA且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=45xC.y=54xD.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-1二、填空题1.若正比例函数y=mx(m≠0)和反比例函数y=nx(n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数()1f x x=+,那么()1f=3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:____出发的早,早了____小时,先到达,先到_____小时,电动自行车的速度为____km/h,汽车的速度为____km/h.h )第16题图6.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.7.若一次函数y=ax+1―a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则|a ―= 。
(完整版)一次函数的图像与性质
![(完整版)一次函数的图像与性质](https://img.taocdn.com/s3/m/cf3f86ed0b1c59eef8c7b4a4.png)
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数的图像(解析版)
![一次函数的图像(解析版)](https://img.taocdn.com/s3/m/d3fe6604abea998fcc22bcd126fff705cc175c19.png)
5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。
《一次函数的图象和性质》教学设计优秀5篇
![《一次函数的图象和性质》教学设计优秀5篇](https://img.taocdn.com/s3/m/a5769dbeb8d528ea81c758f5f61fb7360b4c2b26.png)
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
(完整版)一次函数的图像与性质知识点总结
![(完整版)一次函数的图像与性质知识点总结](https://img.taocdn.com/s3/m/dfd3b69027d3240c8547ef99.png)
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x,y 间的关系式可以表示成y=kx+b(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数。
例如:y=2x+3,y=—x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b(k,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-kb ,0)。
但也不必一定选取这两个特殊点。
画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k |大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)设甲仓库运往A地水泥x吨,求总运费y关于x 的函数解析式,并画出图象
解:由题意可得 y = 1.2×20 x + 1×25×(100 - x)+1.2×15×(70-x) +0.8×20[110-(100-x)] = -3x+3920 (0≤x≤70)
a< –1 减小,则a满足________ .
3. 直线y=kx+b过第二、三、四象限,则 < < k____0,b____ 0.
1. 已知A(-1, y1), B(3, y2), C(-5, y3)是一次函数
y=-2x+b图象上的三点,用“<”连接y1, y2, y3
y2 <y1< y3 为_________ . 2. 已知A(x1, y1), B(x2, y2), C(x3, y3)是一次函数 y=-2x+b图象上的三点,当x1<x2<x3时,用“<”
-3
-2
-1
o
-1 -2 -3
1
2
3
4
5
6
x
y=-x+3
4. 如图y1= k1x+b1, y2=k2x+b2 , 当x______,有y1>y2
y1= k1x+b1
(4,3)
x=?
y2=k2x+b2
例3:要从甲乙两个仓库向AB两工地运送水泥,已知 甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需70吨水泥,B工地需110吨水泥。两仓库到A,B 两工地的路程和每吨每千米的运费如下表:
· · ·
-1
-2
-3
·
平行的直线 从左向右“下降”的直 线
·
你发现这三个 函数图象有什 么相同点吗?
函数 名称
函数解析式 和自变量的 取值范围
图象
性质
y 一 次 函 数 y=kx+b (k≠0) x取 一切实数 k<0 o k>0
当k>0时, (0,b) y 随x 的增大 o x 而增大
y
(0,b)
y1>y2>y3 连接y1, y2, y3为_________ .
y=-x+3, 3. 对于一次函数y= x+3, 4≤y≤7 -1≤y≤2 y 围是___________.
7 6
当1≤x≤4时, y的取值范 < -1 当x>4时,y____;
y=x+3
5
<1 当x____时, y>2.
4 3 2 1
.
1. 一次函数的图象是什么? 一次函数y=kx+b(k≠0)的图象是一条直线 。 2. 如何画一次函数的图象? 作一次函数的图象时,只要确定两个点, 再过这两个点做直线就可以了. 3. 如何求一次函数图像与坐标轴的交点? 与x轴交点:当y=0 与y轴交点:当x=0
y = 2x +3
与y轴:(0,3) 与x轴:(-1.5,0)
· · ·
-1
-2
-3
x
y=2x-3 与y轴:(0,-3) 与x轴:(1.5,0) 平行的直线 从左向右“上升”的直 线
·
你发现这三个 函数图象有什 么相同点吗?
y = -2x +3
与y轴:(0,3) 与x轴:(1.5,0)
y = -2x
(0,0) (1,-2)
y = -2x -3
与y轴:(0,-3) 与x轴:(-1.5,0)
1 坐标(0,1),且平行于直线 y x ,求这 2
个一次函数的解析式. 解:∵
设函数y x b 2
又∵
1 y kx b 平行于直线 y x 2 1
图象与 y 轴的交点坐标(0,1)
b 1
1 y x 1 2
y
k>0 b>0
y
k>0
b<0
y = 2x
(0,0) (1,2)
y = 2x -3
与y轴:(0,-3) 与x轴:(1.5,0)
y=2x+3
y=2x+3 与y轴:(0,3) 与x轴:(-1.5,0) y=2x (0,0) (1,2)
. . . . . . . . . . . . . . .
3
2
·
y
y=2x
·
y=2x-3
1
. . . . . . . . . . . . . . . - 2 -1 0 2 1
与y轴:(0,3)
y=-2x-3
2
. . . . . . . . . . . . . . .
y = -2x +3
y=-2x
3
·
y=-2x+3 x
y
与x轴:(1.5,0)
y = -2x (0,0) (1,-2) y = -2x -3
与y轴:(0,-3) 与x轴:(-1.5,0)
1
. . . . -1 . . . . . . . . . . . -2 2 0
今天我们学会了…
一次函数的性质 对于一次函数y=kx+b(k,b为常数,且 k≠0),当k﹥0时,y随x的增大而增大; 当k﹤0时,y随x的增大而减小。 会根据自变量的取值范围,求一次 函数的取值范围
基本方法:(1)几何图象法;
(2)代数解析法:
及利用图象和性质解决简单的问题
5.一次函数
y kx b 的图象与 y 轴的交点
o x o
y=kx+b
y k<0
(k 0)
y
b>0
o x o
k<0 b<0
x
利用图象解决自变量、应变量取值范围问题
y
求X<1时,函数y的取值范围 求y<2时,自变量x的取值范围
(1,2) O
x
1、选图象
2、看投影
y kx b (k 0)
y
练 习
1.如图,x取何值时
y 1 k1x b1
当k<0时, y 随x 的增大 x 而减小
当k>0时 y
当k<0时
y
b>0
o
b>0
x
o y
x
y
o
x
o
b<0
x
b<0
1. 下列函数中,y随x的增大而增大的是( C ) A. y=–3x C. y=√3 x– 4 B. y= –0.5x+1 D. y= –2x-7
2. 一次函数y=(a+1)x+5中,y的值随x的值增大而
函数:
y= -3x+3920 (0≤x≤70) 的图象如右图 所示:
y
3920 3900
(元)
3800
3710
说明:右图的 纵轴中3700 以下的刻度省 略.
3700
40 60
80
(吨)
x
问题(2):当甲、乙仓库各运往A、B两工地多少吨 水泥时,总运费最省?
问题(2):当甲、乙仓库各运往A、B两工地多少吨水泥时, 总运费最省?
y1 y2
O
(1,3)
x
x=?
y 2 k 2 x b2
解:在一次函数y=-3x+3920 中,K<0 所以y随着 x的增大而减小 因为0≤x≤70 ,所以当 x = 70 时,y的值最小 当x = 70 时,y = -3 x +3920 = -3×70+3920=3710(元)
当甲仓库向A工地运送70吨水泥,则他向B工地运送 30吨水泥;乙仓库不向A工地运送水泥,而只向B工地运送 80吨时,总运费最省