2019届高考二轮复习资料 物理专题三 第2讲
2019年高考物理高中物理步步高大二轮专题复习课件及试题专题三 第2课时
第2课时 动力学和能量观点的综合应用
内容索引
高考题型1 动力学方法和动能定理的综合应用 高考题型2 动力学和能量观点分析多运动组合问题
高考题型3 含弹簧的动力学和能量问题
高考题型1
动力学方法和动能定理的综合应用
1.相关规律和方法 动力学规律主要有:运动学的基本规律、牛顿运动定律、圆周运动的知 识和动能定理. 2.解题技巧 如果涉及到加速度、时间和受力的分析和计算,一般应用动力学方法; 如果只涉及位移、功和能量的转化问题,通常采用动能定理分析.
由牛顿第二定律F-mg-Ff=ma
解得F=5.1 N
解析 答案
(2)调整动力后无人机继续上升,恰能悬停在距离地面高度H=78 m处,求 无人机从h上升到H的过程中,动力系统所做的功. 答案 12.6 J 解析 由运动学公式v=at
1 2 由动能定理 W-(mg+Ff)(H-h)=0-2mv
解得W=12.6 J
1 2 1 由动能定理有-⑦
⑧
m 23gR 由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为 p=mv1= 2 ⑨
解析 答案
(3)小球从C点落至水平轨道所用的时间.
答案 3 5 5R g
解析
小球离开 C点后在竖直方向上做初速度不为零的匀加速运动,加
解析
答案
高考题型2
动力学和能量观点分析多运动组合问题
1.多运动过程模型
多运动过程通常包括匀变速直线运动、平抛运动、圆周运动,或者是一
般的曲线运动.在实际问题中通常是两种或者多种运动的组合.
2.分析技巧
多个运动过程的组合实际上是多种物理规律和方法的综合应用,分析这
种问题时注意要独立分析各个运动过程,而不同过程往往通过连接点的
2019版高考物理(通用版)二轮复习讲义:第二部分第一板块第3讲吃透“三场特性”探秘复合场中的运动问题
第3讲 |吃透“三场特性”,探秘复合场中的运动问题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄提能点(一) 对电场、重力场的综合考查⎣⎢⎢⎡⎦⎥⎥⎤重难增分类考点讲练结合过关 [研一题]————————————————————————————————[多选]如图所示,一质量为m 的带电小球用长为L 不可伸长的绝缘细线悬挂于O 点,在O 点下方存在一个水平向右、场强为E 的匀强电场,小球静止时细线与竖直方向成45°角,不计空气阻力,重力加速度为g ,则下列说法正确的是( )A .若剪断细线,小球将做曲线运动B .小球带负电,且电荷量为mg EC .若突然将电场方向变为水平向左,小球在最低点速率为2gLD .若突然将电场方向变为水平向左,小球一定能运动到O 点右侧等高处[解析] 若剪断细线,小球在恒力作用下将做直线运动,选项A 错误;对小球受力分析,由平衡条件可知小球带负电,且qE =mg tan 45°,解得q =mg E,选项B 正确;将电场方向变为水平向左,小球从题图所示位置运动到最低点,由动能定理有mgL (1-cos 45°)+EqL sin 45°=12m v 2,解得v =2gL ,选项C 正确;将电场方向变为水平向左,小球运动到O 点右侧与初始位置等高处时速度最大,则小球一定能运动到O 点右侧等高处,选项D 正确。
[答案] BCD[悟一法]————————————————————————————————解决电场力做功问题时的注意点1.利用电场线的特点、等势面的特点来分析电场力做功情况。
2.应用公式W AB =qU AB 计算时,W AB 、q 、U AB 一般都要带正、负号计算。
[通一类]————————————————————————————————1.在竖直平面内有水平向右、场强为E 的匀强电场,在匀强电场中有一根长为L 的绝缘细线,一端固定在O 点,另一端系一质量为m 的带电小球,它静止时位于A 点,此时细线与竖直方向成37°角,如图所示。
鲁科版(2019)高中物理必修三第2章复习—课件(共36张PPT)
答案 BD
27
2.如图所示,三块平行放置的带电金属薄板A、B、C中央 各有一小孔,小孔分别位于O、M、P点。由O点静止释放 的电子恰好能运动到P点。现将C板向右平移到P′点,则 由O点静止释放的电子( )
A.运动到P点返回 B.运动到P和P′点之间返回 C.运动到P′点返回 D.穿过P′点
28
mvL2=2
3
3 mg
由A点到等效最高点,根据动能定理得 -233mgL(1+cos 30°)=12mv2-12mvA2
联立解得vA= 2gL 3+1 。
答案:(1)正电
3mg 3q
(2)
2gL 3+1
22
23
解析:(1)设小滑块到达Q点时速度为v,
由牛顿第二定律得
mg+qE=mRv2
①
小滑块从开始运动至到达Q点过程中,由动能定理得
大小,选项C错误;沿着电场线方向电势降低,故x1处的电
势比x2处的电势低,选项D正确。
[答案] AD
15
(三) E-x图像 在给定了电场的Ex图像后,可以由图线确定电场强度的变化情
况,E>0表示场强沿正方向,E<0表示场强沿负方向;Ex图线 与x轴所围成的面积表示电势差,如果取x=0处为电势零点,则 可由图像的面积分析各点电势的高低,综合分析粒子的运动, 进一步确定粒子的电性、电场力做功及粒子的动能变化、电势 能变化等情况。
。 答案 B
10
重点题型分析 一、静电场中的三类常考图像问题
(一) φ-x图像
(1)φx图线上某点切线的斜率的绝对值表示电场强度的大小,φx图线存 在极值,其切线的斜率为零,则对应位置处电场强度为零。
(2)在φx图像中可以直接判断各点电势的大小,并可根据电势大小关系 确定电场强度的方向。
2019届高三物理二轮复习配套课件:第一部分+专题整合+专题二+功能与动量+第2讲
图2-2-2
水平飞出,小物块落地点到轨道下端的距离与轨道半径
考 点 突 破 · 考 向 探 究
有关,此距离最大时,对应的轨道半径为(重力加速度为 g) v2 A. 16g
菜 单
v2 B. 8g
v2 C. 4g
v2 D. 2g
高考专题辅导与训练·物理
第一部分
高 考 导 航 · 考 题 考 情
高考专题辅导与训练·物理
第一部分
高 考 导 航 · 考 题 考 情
专题二
能量和动量
解析
此过程中,PM 段细绳的机械能不变, MQ
段细绳的机械能的增量 2 1 2 1 1 ΔE= mg-6l- mg-3l= mgl,由功能原理可 3 3 9 1 知,在此过程中,外力做的功为 W= mgl,故 A 正确, 9 B、C、D 错误。
第一部分
高 考 导 航 · 考 题 考 情
专题二
能量和动量
考 点 突 破 · 考 向 探 究
综 合 训 练 · 限 时 检 测
答案
BCD
菜
单
高考专题辅导与训练·物理
第一部分
高 考 导 航 · 考 题 考 情
专题二
能量和动量
4. (2017· 全国卷Ⅰ)一质量为 8.00×104 kg 的太空飞 船从其飞行轨道返回地面。 飞船在离地面高度 1.60×105 m 处以 7.5×103m/s 的速度进入大气层,逐渐减慢至速 度为 100 m/s 时下落到地面。取地面为重力势能零点,
x 最大,故选 B。
答案
B
菜
单
高考专题辅导与训练·物理
第一部分
高 考 导 航 · 考 题 考 情
高三物理二轮复习:专题3 功和能课件 第2讲
专题三
第二讲
走向高考 · 二轮专题复习新课标版 ·物理
拓展提升
一、基础知识要记牢 1.机械能守恒条件 (1)只有重力或系统内弹簧弹力做功。 (2)虽受其他力,但其他力不做功或其他力的总功为零。
2.三种表达式
(1)守恒观点:Ek1+Ep1=Ek2+Ep2 (2)转化观点:ΔEp=-ΔEk (3)转移观点:ΔEA增=ΔEB减
到C过程,由机械能守恒定律:mg(h1+h2)=Ep,C对。
专题三
第二讲
走向高考 · 二轮专题复习新课标版 ·物理
功能关系的应用
(2014· 山东卷)2013 年我国相继完 成“神十”与“天宫”对接、“嫦娥”携“玉 兔”落月两大航天工程。 某航天爱好者提出“玉 兔”回家的设想: 如图, 将携带“玉兔”的返回 系统由月球表面发射到 h 高度的轨道上,与在该轨道绕月球做 圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。设 “玉兔”质量为 m,月球半径为 R,月面的重力加速度为 g 月。
专题三
第二讲
走向高考 · 二轮专题复习新课标版 ·物理
以月面为零势能面,“玉兔”在 h 高度的引力势能可表示 GM+h 为 EP= ,其中 G 为引力常量,M 为月球质量。若忽略 RR+h 月球的自转,从开始发射到对接完成需要对“玉兔”做的功为 ( ) mg月R A. (h+2R) R+h mg月R 2 C. (h+ R) 2 R+h mg月R B. (h+ 2R) R+h mg月R 1 D. (h+ R) 2 R+h
专题三
第二讲
走向高考 · 二轮专题复习新课标版 ·物理
故当 θ3=90° 时,A 的速度最大,设为 vAm,此时 B 下降到 最低点,B 的速度为零,此过程中 B 下降的高度为 h2,则有 1 2 h mgh2= mvAm, 其中 h2= -h, 代入数据解得 vAm=1.63m/s。 2 sinθ1
专题三:第2讲-牛顿第二定律
考点3 瞬时加速度问题分析 1.力和加速度旳瞬时相应关系 所谓瞬时性,就是物体旳加速度 a 与其所受旳合外力 F 有 瞬时相应旳关系,每一瞬时旳加速度只取决于这一瞬时旳合外 力.也就是物体一旦受到不为零旳合外力旳作用,物体立即产 生加速度;当合外力旳方向、大小变化时,物体旳加速度方向、 大小也立即发生相应旳变化;当物体旳合外力为零时,物体旳 加速度也立即为零.由此可知,力和加速度之间是瞬时相应旳.
2.求瞬时加速度时旳几类力学模型 在应用牛顿第二定律求解物体旳瞬时加速度时,经常会遇 到轻绳、轻杆、轻弹簧和橡皮绳这些常见旳力学模型.全方面准 确地了解它们旳特点,可帮助我们灵活正确地分析问题. (1)这些模型旳共同点:都是质量可忽视旳理想化模型,都 会发生形变而产生弹力,同一时刻内部弹力到处相等且与运动 状态无关.
题组1
相应考点1
1.(2011 年惠州调研)电梯内有一个物体,质量为 m,用绳
子挂在电梯的天花板上,当电梯以g3的加速度竖直加速下降时,
细线对物体的拉力为( )
A.mg
2mg B. 3
4mg C. 3
5mg D. 3
解析:由牛顿第二定律 F 合=ma 得 mg-T=m·31g,解得
T=2m3 g.
答案:AB
热点1 用牛顿运动定律求解两类动力学问题
【例1】建筑工人用如图 3-2-5所示旳定滑轮装置运送
建筑材料.质量为70.0 kg 旳工人站在地面上,经过定滑轮将
20.0 kg旳建筑材料以0.50 m/s2旳加速度拉升,忽视绳子和定滑
轮旳质量及定滑轮旳摩擦,则工人对地面旳压力大小为(取g=
10 m/s2)( )
③轻弹簧:既能承受拉力,又可承受压力,力旳方向沿弹 簧旳轴线;受力后发生较大形变,弹簧旳长度既可变长,又可 变短,遵照胡克定律;因形变量较大,产生形变或使形变消失 都有一种过程,故弹簧旳弹力不能突变,在极短时间内可以为 弹力不变;当弹簧被剪断时,弹力立即消失.
2019届高考物理二轮复习专项2题型3三大技巧破解计算题课件(36张)(全国通用)
⑥求乙球过 D 点的速度 vD′的范围? 建模: 竖直面内圆周运动模型(B→D 过程) 规律:动能定理 -mg·2R-qE·2R=12mvD′2-12mvm2
⑦求小球落点到 B 点的距离范围? 建模: 类平抛运动 规律: 水平方向匀速运动__x′=vD′t
[典例 2] 如图 2,ABD 为竖直平面内的光滑绝缘轨道,其中 AB 段是水平 的,BD 段为半径 R=0.2 m 的半圆,两段轨道相切于 B 点,整个轨道处在竖直 向下的匀强电场中,场强大小 E=5.0×103V/m.一不带电的绝缘小球甲,以速度 v0 沿水平轨道向右运动,与静止在 B 点带正电的小球乙发生弹性碰撞.已知甲、 乙两球的质量均为 m=1.0×10-2kg,乙所带电荷量 q=2.0×10-5C,g 取 10 m/s2.(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)求:
3.必要演算、明确结果 (1)演算时一般要从列出的一系列方程,推导出结果的计算式,然后代入数据并写出结果(要 注意简洁,千万不要在卷面上书写许多化简、数值运算式). (2)计算结果的有效数字位数应根据题意确定,一般应与题目中所列的数据的有效数字位数 相近,若有特殊要求,应按要求确定. (3)计算结果是数据的要带单位(最好采用国际单位),是字母符号的不用带单位. (4)字母式的答案中所用字母都必须使用题干中所给的字母,不能包含未知量,且一些已知 的物理量也不能代入数据. (5)题中要求解的物理量应有明确的答案(尽量写在显眼处),待求量是矢量的必须说明其方 向. (6)若在解答过程中进行了研究对象转换,则必须交代转换依据,对题目所求要有明确的回 应,不能答非所问.
④
(2)设碰撞后甲、乙的速度分别为 v 甲、v 乙 根据动量守恒有:
2019年高考物理名师导学二轮复习资料2019二轮物理(教师)2
(这是边文,请据需要手工删加)(这是边文,(专题三能量与动量功和功率、动能和动能定理、重力做功与重力势能、功能关系、机械能守恒定律及其应用,动量、动量定理、动量守恒定律及其应用弹性碰撞和非弹性碰撞是历年高考的重点,以后还会这样.本专题命题点多,特别重视对考纲中5个Ⅱ级考点的考查,题型多变.在复习备考中引起足够重视,对5个Ⅱ级考点逐一落实.加强对诸如:变力做功、动能定理的综合应用,弹簧、皮带模型中的能量关系,滑块滑板模型中的动量和能量计算,动量定理和动量守恒在生活中的应用、人船模型、动量守恒的多过程问题、弹性碰撞的理解和应用,以应对高考对理解能力、建模能力、过程综合分析能力、应用数学处理物理问题的能力的综合考查.第1讲功功率动能定理知识网络【p22】基础落实【p22】1.动能定理的内容及表达式内容:合外力对物体做的功等于__物体动能的变化__.表达式:W合=__E k2-E k1__.2.对动能定理的进一步理解(1)W总是所有外力对物体做的__总功__,这些力对物体所做功的__代数和__等于物体动能的增量.(2)动能定理与参考系的选取有关.中学物理中一般取__地面__为参考系.(3)动能定理既适用于物体的直线运动,也适用于__曲线__运动;既适用于恒力的功,也适用于__变力__的功.力可以是各种性质的力,既可以同时作用,也可以分段作用;只要求出在作用过程中各力做功的多少和正负即可.动能定理是计算物体的位移或速率的简捷公式,当题目中涉及到位移时可优先考虑__动能定理__.这些正是运用动能定理解题的优越性所在.(4)若物体的运动过程包含几个不同的过程,应用动能定理时,可以分段考虑,也可以全程作为一个整体考虑.考 点 突 破 【p 23】考点一 功和功率例1如图所示,水平传送带正以v =2 m /s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动,若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m /s 2,则把这个物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是多少?1 s 时,摩擦力对物块做功的功率是多少?物块相对传送带运动的过程中传送带克服摩擦力做功的功率是多少?【解析】物块受向右的摩擦力为: F f =μmg =0.1×2×10 N =2 N加速度为a =F fm =μg =0.1×10 m /s 2=1 m /s 2当物块与传送带相对静止时,物块的位移为: x =v 22a =222×1m =2 m 摩擦力做的功为:W =F f x =2×2 J =4 J相对静止后物块与传送带之间无摩擦力,此后物块匀速运动到B 端,物块由A 端运动到B 端所用的时间为:t =v a +l -x v =⎝⎛⎭⎫21+8-22s =5 s则物块在被传送过程中所受摩擦力的平均功率为: P =W t =45W =0.8 W1 s 时,物块的速度为v 1=at =1 m /s则摩擦力对物块做功的功率为 P 1=F f v 1=2×1 W =2 W传送带的速度为v =2 m /s ,故传送带克服摩擦力做功的功率为P 2=F f v =2×2 W =4 W . 【答案】0.8 W 2 W 4 W【方法总结】求解平均功率时,常用P =W t ,在匀变速直线运动中则还可使用P =F v -cos θ.式中的速度要取物体的对地速度.例2某一空间飞行器质量为m,从地面起飞时,恰好沿与水平方向成θ=30°角的直线斜向右上方匀加速飞行,此时,发动机提供的动力方向与水平方向夹角α=60°,经时间t 后,将动力方向沿逆时针旋转60°,同时适当调节其大小,使飞行器沿原方向匀减速飞行,飞行器所受空气阻力不计,重力加速度为g,求:(1)t 时刻飞行器的速率v;(2)t 时刻发动机动力的功率P;(3)从起飞到上升到最大高度的整个过程中,飞行器发动机的动力做的总功W.【解析】(1)对飞行器进行受力分析如图,根据正弦定理 F 合sin (90°-α)=F sin (90°+θ)=mgsin (α-θ)得F =3mg ,F 合=mg根据牛顿第二定律有F 合=ma 得a =gt 时刻飞行器的速率v =at =gt(2)设t 时刻发动机动力的功率为P ,则P =Fv cos (α-θ) 得P =32mg 2t(3)动力方向沿逆时针旋转60°,恰好与速度方向垂直,减速过程发动机动力做的功为零.飞行器从地面到最大高度的整个过程中发动机动力做的总功W =0+P 2t 得W =34mg 2t 2【答案】(1)gt (2)32mg 2t (3)34mg 2t 2变式训练1 如图所示,轻绳的一端通过定滑轮与质量为m 、可看成质点的小物体相连,另一端受到大小为F 的恒力作用,开始时绳与水平方向夹角为θ.小物体从水平面上的A 点被拖动到水平面上的B 点,A 、B 距离为L,随后从B 点沿斜面被拖动到滑轮O 处,B 、O 距离也为L.小物体与水平面及斜面间的动摩擦因数均为μ,若小物体从A 运动到O 的过程中,F 对小物体做的功为W F ,小物体在BO 段运动过程中克服摩擦力做的功为所W f ,则W F =________,W f =________.【解析】(1)小物体从A 运动到O 的过程中,利用几何关系可知绳子末端前进的长度s =2L cos θ,所以F 对小物体做的功:W F =Fs =2FL cos θ.(2)根据几何关系得BO 斜面倾角为2θ,小物体在BO 段运动过程中受到的滑动摩擦力大小f =μmg cos 2θ,小物体在BO 段运动过程中克服摩擦力做的功为W f =fL =μmgL cos 2θ.【答案】2FL cos θ μmgL cos 2θ变式训练2 如图所示,一物体在水平恒力的作用下沿光滑水平面做曲线运动,当物体从M 点运动到N 点时,其速度方向恰好改变了90°,则物体在M 点到N 点的运动过程中,以下说法错误的是( )A .物体做匀变速运动B .水平恒力先做正功后做负功C .M 、N 两点速度大小可能相等D .速度先减小后增大 【解析】物体受恒力作用,则加速度恒定,物体做匀变速运动,选项A 正确;物体从M 点运动到N 点时,其速度方向恰好改变了90°,可以判断恒力方向应为右下方,与初速度的方向夹角要大于90°小于180°因此恒力先做负功后做正功,动能先减小后增大,速度先减小后增加,且M 、N 两点速度大小可能相等,选项CD 正确,B 错误;此题选项错误的选项,故选B .【答案】B例3(多选)一质量为800 kg 的电动汽车由静止开始沿平直公路行驶,达到的最大速度为18 m /s ,利用传感器测得此过程中不同时刻电动汽车的牵引力F 与对应的速度v,并描绘出F -1v 图象,图中AB 、BC 均为直线.若电动汽车行驶过程中所受的阻力恒定,由图象可知下列说法正确的是( )A .电动汽车由静止开始一直做变加速直线运动B .电动汽车的额定功率为10.8 kWC .电动汽车由静止开始经过2 s ,速度达到6 m /sD .电动汽车行驶中所受的阻力为600 N【解析】AB 段牵引力不变,根据牛顿第二定律知,电动汽车的加速度不变,做匀加速直线运动,故A 错误;额定功率P =F min v max =600×18 W =10.8 kW ,故B 正确;当最大速度v max =18 m /s 时,牵引力为F min =600 N ,故恒定阻力f =F min =600 N ,故D 正确.匀加速运动的加速度a =3000-600800 m /s 2=3 m /s 2,到达B 点时的速度v =P F =108003000m /s =3.6 m /s ,所以匀加速的时间t =va=1.2 s ,若电动汽车在2 s 内由静止开始一直做匀加速运动,则经过2 s 时的速度v =at =6m /s ,所以电动汽车由静止开始经过2 s ,速度小于6 m /s ,故C 错误;【答案】BD【方法总结】解决本题的关键能够从图线中分析出电动车在整个过程中的运动情况,一开始牵引力恒定,汽车先做匀变速直线运动.此后牵引力与速度的乘积一定,即功率一定,做加速度减小的加速运动.当牵引力等于阻力时,速度达到最大.变式训练3 (多选)汽车在平直公路上以速度v 0匀速行驶,发动机功率为P,牵引力为F 0,t 1时刻,司机减小了油门,使汽车的功率立即减为原来的一半,并保持该功率继续行驶,到t 2时刻,汽车又恢复了匀速直线运动.能正确表示这一过程中汽车牵引力F 和速度v 随时间t 变化的图象是( )A BC D【解析】由题,汽车以功率P 、速度v 0匀速行驶时,牵引力与阻力平衡.当司机减小油门,使汽车的功率减为一半时,根据P =Fv 得知,汽车的牵引力突然减小到原来的一半,即为F =12F 0,而阻力没有变化,则汽车开始做减速运动,由于功率保持为P2,随着速度的减小,牵引力逐渐增大,根据牛顿第二定律得知,汽车的加速度逐渐减小,做加速度减小的变加速运动.当汽车再次匀速运动时,牵引力与阻力再次平衡,大小相等,由P =Fv 得知,此时汽车的速度为原来的一半.故选AD .【答案】AD考点二 动能定理例4(多选)如图所示,ABC 是一个位于竖直平面内的圆弧形轨道,高度为h,轨道的末端C 处与水平面相切.一个质量为m 的小木块从轨道顶端A 处由静止释放,到达C 处停止,此过程中克服摩擦力做功为W 1,到达B 处时速度最大为v 1,加速度大小为a B ;小木块在C 处以速度v 向左运动,恰好能沿原路回到A 处,此过程中克服摩擦力做功为W 2,经过B 处的速度大小为v 2.重力加速度为g.则( )A .v =2ghB .v 1<v 2C .W 1<W 2D .a B =0【解析】从C 到A ,由动能定理:12mv 2=mgh +W 2,解得v =2gh +2W 2m,选项A 错误;木块下滑过程,从A 到B 过程,由动能定理:12mv 21=mgh AB -W f1;木块上滑从B 到A ,根据动能定理:12mv 22=mgh AB +W f2,可得v 1<v 2,选项B 正确;从A 到C 的整个过程中的速度平均值要小于从C 到A 过程的速度的平均值,故从A 到C 的整个过程中物体对曲面的压力要小于从C 到A 过程中物体对曲面的压力,从A 到C 的整个过程中曲面对物体的摩擦力要小于从C 到A 过程中曲面对物体的摩擦力,故从A 到C 的整个过程中曲面对物体的摩擦力的功要小于从C 到A 过程中曲面对物体的摩擦力的功,即W 1<W 2,选项C 正确;在B 点沿半径方向有向心加速度,故a B 不为零,选项D 错误;故选B 、C .【答案】BC例5(多选)如图所示,光滑水平面上放着足够长的木板B,木板B 上放着木块A,A 、B 接触面粗糙.现用一水平拉力F 作用在B 上,使其由静止开始运动,用f 1表示B 对A 的摩擦力,f 2表示A 对B 的摩擦力,下列说法正确的有( )A .F 做的功一定等于A 、B 系统动能的增加量 B .F 做的功可能大于A 、B 系统动能的增加量C .f 1对A 做的功等于A 动能的增加量D .f 2对B 做的功等于B 动能的增加量【解析】由于开始运动后,A 是否会相对于B 发生运动,从题中给出的条件不能判断,所以也就是如果两者发生相对运动,对整体分析可知,F 做功转化为两个物体的动能及系统的内能;故F 做的功大于AB 系统动能的增加量,A 错误,B 正确;由动能定理可知,f 1对A 做的功等于A 动能的增加量,C 正确;f 2对B 做负功,和拉力做功的总功等于B 动能的增加量,D 错误.【答案】BC【方法总结】在分析A 、B 组成的系统的动能变化时,既要考虑外力做功,也要考虑内力做功,由于内力是一对相互作用的摩擦力,若为静摩擦力,对系统不做功.若为滑动摩擦力,对系统恒做负功.所以外力做功要加上一个负功,才等于系统的动能增量.故外力做功大于等于系统的动能增量.变式训练4 (多选)如图,传送带A 、B 之间的距离为L =3.2 m ,与水平面间夹角θ=37°,传送带沿顺时针方向转动,速度恒为v =2 m /s ,在上端A 点无初速度放置一个质量为m =1 kg 、大小可视为质点的金属块,它与传送带的动摩擦因数为μ=0.5,金属块滑离传送带后,经过弯道BCD,沿半径R =0.4 m 的光滑圆轨道做圆周运动,刚好能通过最高点E,已知B 、D 两点的竖直高度差为h =0.5 m (取g =10 m /s 2,sin 37°=0.6,cos 37°=0.8).则( )A .金属块经过D 点时的速度为2 5 m /sB .金属块经过D 点时的速度为 5 m /sC .金属块在BCD 弯道上克服摩擦力做功3 J D .金属块在BCD 弯道上克服摩擦力做功5 J【解析】对金属块在E 点,有:mg =mv 2ER ,代入数据解得:v E =2 m /s ,在从D 到E 过程中,由动能定理得: -2mgR =12mv 2E -12mv 2D代入数据得:v D =2 5 m /s ;A 正确;B 错误;金属块刚放上时,有:mg sin θ+μmg cos θ=ma 1 代入数据得:a 1=10 m /s 2设经位移s 1达到共同速度,有:v 2=2a 1s 1代入数据解得:s 1=0.2 m <3.2 m ;继续加速过程中,有:mg sin θ-μmg cos θ=ma 2 代入数据解得:a 2=2 m /s 2s 2=L -s 1=3 m ,v 2B -v 2=2a 2s 2,解得:v B =4 m /s 在从B 到D 过程中,由动能定理可知: mgh -W =12mv 2D -12mv 2B 解得:W =3 J ;C 正确;D 错误;故选A 、C . 【答案】AC变式训练5 如图所示,水平轨道BC 的左端与固定的光滑竖直14圆轨道相切于B 点,右端与一倾角为30°的光滑斜面轨道在C 点平滑连接(即物体经过C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2 kg 的滑块从圆弧轨道的顶端A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R =0.45 m ,水平轨道BC 长为0.4 m ,与滑块间的动摩擦因数μ=0.2,光滑斜面轨道上CD 长为0.6 m ,g 取10 m /s 2,求:(1)滑块第一次经过B 点时对轨道的压力大小; (2)整个过程中弹簧具有的最大弹性势能;(3)滑块在水平轨道BC 上运动的总时间及滑块最终停在何处? 【解析】(1)滑块从A 点到B 点,由动能定理可得: mgR =12mv 2B -0解得:v B =3 m /s滑块在B 点:F -mg =m v 2BR解得:F =60 N由牛顿第三定律可得:物块经过B 点时对轨道的压力F′=F =60 N (2)滑块第一次到达D 点时,弹簧具有最大的弹性势能E p滑块从A 点到D 点,设该过程弹簧弹力对滑块做的功为W ,由动能定理可得: mgR -μmgL BC -mgL CD sin 30°+W =0 E p =-W解得:E p =1.4 J(3)将滑块在BC 段的运动全程看做匀减速直线运动,加速度a =μg =2 m /s 2 则滑块在水平轨道BC 上运动的总时间t =v Ba=1.5 s滑块最终停止在水平轨道BC 间,设滑块在BC 段运动的总路程为s ,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得:-μmgs =0-12mv 2B解得s =2.25 m结合BC 段的长度可知,滑块最终停止在BC 间距B 点0.15 m 处(或距C 点0.25 m 处). 【答案】(1)60 N (2)1.4 J (3)1.5 s 最终停止在距B 点0.15 m 处限 时 训 练 【p 121】A 组1.如图所示,水平传送带两端点A 、B 间的距离为L ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度逆时针匀速运动,此人仍然用相同的恒定的水平力F 拉物体,使它以相对传送带以v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是( )A .W 1=W 2,P 1<P 2,Q 1=Q 2B .W 1=W 2,P 1<P 2,Q 1>Q 2C .W 1>W 2,P 1=P 2,Q 1>Q 2D .W 1>W 2,P 1=P 2,Q 1=Q 2【解析】当传送带不运动时,拉力做功W 1=FL ,物体从A 运动到B 的时间t 1=Lv 1,因摩擦而产生的热量Q =fL .当传送带运动时,拉力做功W 2=FL ,物体从A 运动到B 的时间t 2=Lv 1+v 2<t 1,因摩擦而产生的热量Q 2=f v 1t 2.拉力做功功率P 1=W 1t 1,P 2=W 2t 2,比较可知W 1=W 2,P 1<P 2.又v 1t 2<v 1t 1,v 1t 1=L ,得Q 1>Q 2.故选B.【答案】B2.(多选)一质量为m 的物体以速度v 0在足够大的光滑水平面上运动,从零时刻起,对该物体施加一水平恒力F ,经过时间t ,物体的速度减小到最小值35v 0,此后速度不断增大.则( )A .水平恒力F 大小为2m v 05tB .水平恒力作用2t 时间,物体速度大小为v 0C .在t 时间内,水平恒力做的功为-825m v 20D .若水平恒力大小为2F ,方向不变,物体运动过程中的最小速度仍为35v 0【解析】由物体速度减小到最小值35v 0,可知恒力F 的方向与速度v 0的方向间的夹角为钝角,将v 0沿F 的方向和垂直于F 的方向进行分解,可知垂直于F 方向的速度大小v x =35v 0,平行于F 方向的速度大小v y =45v 0,根据牛顿第二定律可知F =m v y t =4m v 05t ,A 错误;水平恒力作用2t时间,垂直于F 方向的速度大小v x =35v 0不变,平行于F 方向的速度大小v y =45v 0,物体速度大小为v 0,B 正确;在t 时间内,水平恒力做的功为W =12m v 2x -12m v 20=-825m v 20,C 正确;若水平恒力大小为2F ,方向不变,物体运动过程中的最小速度仍为35v 0,D 正确.【答案】BCD3.如图所示,质量为m 的物块与转轴OO ′相距R ,物块随水平转台由静止开始缓慢转动,当转速增加到一定值时,物块即将在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为mgR8,若物块与转台之间的最大静摩擦力与滑动摩擦力相等,则物块与转台间的动摩擦因数为A .0.125B .0.15C .0.25D .0.5【解析】由于物体做圆周运动,物体刚开始滑动这一时刻,物体受到转台的摩擦力达到最大静摩擦力,并由此提供向心力,则有:μmg =m v 2R ,解得:v =μgR ,设转台对物块做的功为W ,根据动能定理得:W =12m v 2=mgR8,又v =μgR ,联立解得:μ=0.25,故选C.【答案】C4.以水平面为零势能面,小球水平抛出时重力势能等于动能的2倍,那么在抛体运动过程中,当其动能和势能相等时,水平速度和竖直速度之比为( )A.3∶1 B .1∶1 C .1∶ 2 D.2∶1【解析】最高点处时mgh =2E k =m v 20,解得v 0=gh ,设动能和势能相等时,高度为h ′,由机械能守恒定律可知mgh ′+12m v 2=mgh +12m v 20,联立解得h ′=3h4,则竖直分速度v y =2g ×h 4=gh2,故水平速度和竖直速度之比为:v 0∶v y =2∶1,D 正确. 【答案】D5.如图所示,一半径为R ,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 后,继续上升一段距离D .W <12mgR ,质点到达Q 后,继续上升一段距离【解析】根据动能定理可得P 点动能E k P =mgR ,经过N 点时,半径方向的合力提供向心力,可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR+W =3mgR 2-mgR ,即摩擦力做功W =-mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg sin θ=ma =m v 2R ,根据左右对称,在同一高度,由于摩擦力做功导致右半部分的速度小,轨道弹力变小,滑动摩擦力f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,仍会继续向上运动一段距离,对照选项C 对.【答案】C6.(多选)质量为m 的小球穿在足够长的水平直杆上,小球与杆之间的动摩擦因数为μ,受到方向始终指向O 点的力F 作用,且F =ks ,k 为比例系数,s 为小球和O 点的距离.小球从a 点由静止出发恰好运动到d 点;小球在d 点以初速度v 0向a 点运动,恰好运动到b 点.已知Oc 垂直于杆且c 为垂足,b 点为ac 的中点,Oc =d ,cd =bc =l .不计小球的重力,下列说法正确的是( )A .小球从a 运动到d 的过程中只有两个位置F 的功率为零B .小球从a 运动到b 的过程与从b 运动到c 的过程克服摩擦力做功相等C .v 0=2μkdlmD .小球在d 的速度至少要2v 0才能运动到a 点【解析】小球从a 运动到d 的过程中,在a 点、d 点速度为零,拉力的功率为零,在c 点拉力的方向和速度方向垂直,功率为零,有三处,A 错误;因为不计小球的重力,所以F 在垂直杆方向上的分力即为小球与杆之间的正压力,N =F sin θ(θ为力F 与杆之间的夹角),故摩擦力F f =μN =μF sin θ,从a 到b 摩擦力做功为W f 1=μF sin θ·l =μk ()s ·sin θ·l =μkdl ,同理从b 到c 克服摩擦力做功为W f 2=μF sin θ·l =μk ()s ·sin θ·l =μkdl ,B 正确;根据动能定理可得μF sin θ·2l =2μk ()s ·sin θ·l =2μkdl =12m v 20,解得v 0=2μkdlm,C 正确;设在d 点的速度为v ,恰好能运动到a 点,根据动能定理可得12m v 2=3μkdl ,联立v 0=2μkdl m ,解得v =62v 0,D 错误. 【答案】BC7.(多选)如图所示,一光滑的定滑轮固定在水平桌面的右端,一质量为m B 的物体B 用细线通过定滑轮与质量为m A 的物体A 相连,开始时系统处于静止状态,现用一水平恒力F 拉物体B ,使物体A 上升,已知当物体A 上升距离为h 时,物体A 的速度为v ,重力加速度为g ,此过程中下列说法正确的是( )A .物体B 克服摩擦力的功等于物体B 机械能的变化B .物体A 增加的重力势能等于物体B 克服摩擦力所做的功C .细绳对物体A 做的功为12m A v 2+m A ghD .物体B 克服摩擦力所做功为Fh -12(m A +m B )v 2-m A gh【解析】由于物体B 在水平面上运动,重力势能不变,所以机械能变化量等于动能变化量,根据动能定理可知F 与摩擦力做功之和等于B 的动能变化量,即B 的机械能变化量,A 错误;物体A 增加的重力势能等于物体A 克服重力所做的功,B 错误;A 受到重力和绳子的拉力作用,根据动能定理可知W T -W GA =ΔE k A ,故W T =ΔE GA =12m A v 2+m A gh ,C 正确;对整体分析,过程中有拉力、摩擦力和A 的重力对整体做功,故有W F -W f -W GA =12(m A +m B )v 2,而W F =Fh ,W GA=m A gh ,代入可得W f =Fh -12(m A +m B )v 2-m A gh ,D 正确.【答案】CD8.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图中两图线所示.取g =10 m/s 2,下列说法正确的是( )A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013mD .小球上升到2 m 时,动能与重力势能之差为0.5 J【解析】在最高点E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功W 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12m v 2,由动能定理:-fH -mgH =12m v 2-12m v 20得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理,-fh ′-mgh ′=E k2-12m v 20得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.【答案】D9.(多选)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8,重力加速度为g ).则A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g【解析】由动能定理可知:mg ·2h -μmg cos 45°·h sin 45°-μmg cos 37°·hsin 37°=0,解得μ=67,选项A 正确;对前一段滑道,根据动能定理有mgh -μmg cos 45°·h sin 45°=12m v 2,解得:v =2gh7,则选项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度大小为a =mg sin 37°-μmg cos 37°m =-335g ,选项D 错误;故选AB.【答案】ABB 组10.如图所示,某生产厂家为了测定该厂所生产的玩具车的性能,将两个完全相同的玩具车A 、B 并排放在两平行且水平的轨道上,分别通过挂钩连接另一个与玩具车等质量的货车(无牵引力),控制两车以相同的速度v 0做匀速直线运动.某时刻,通过控制器使两车的挂钩断开,玩具车A 保持原来的牵引力不变,玩具车B 保持原来的输出功率不变,当玩具车A 的速度为2v 0时,玩具车B 的速度为1.5v 0,则( )A .在这段时间内两车的位移之比为6∶5B .玩具车A 的功率变为原来的4倍C .两车克服阻力做功的比值为12∶11D .两车牵引力做功的比值为5∶1【解析】设挂钩断开瞬间的牵引力为F ,车受的摩擦力大小f =F 2,对A 分析有Fx 1-fx 1=12m (2v 0)2-12m v 20=32m v 20;对B 分析有Pt -fx 2=12m (1.5v 0)2-12m v 20=58m v 20,已知P =F v 0,对A 分析由动量定理得:(F -f )t =2m v 0-m v 0,x 1=v 0+2v 02t ,解得:x 1∶x 2=12∶11,故A 错;克服阻力做功W f =fx ,则W f 1W f 2=x 1x 2=1211,故C 正确;牵引力做功W A =Fx 1=3m v 20,W B =Pt =2m v 20,得W A W B =32,故D 错;由P A =F ·2v 0=2P ,故B 错.综上分析,C 正确.【答案】C11.(多选)如图是某缓冲装置,劲度系数足够大的轻质弹簧与直杆相连,直杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f ,直杆质量不可忽略.一质量为m 的小车以速度v 0撞击弹簧,最终以速度v 弹回.直杆足够长,且直杆与槽间的最大静摩擦力等于滑动摩擦力,不计小车与地面间的摩擦.则( )A .小车被弹回时速度v 一定小于v 0B .直杆在槽内移动的距离等于1f ⎝⎛⎭⎫12m v 20-12m v 2 C .直杆在槽内向右运动时,小车与直杆始终保持相对静止D .弹簧的弹力可能大于直杆与槽间的最大静摩擦力【解析】小车在向右运动的过程中,弹簧的形变量若始终小于fk 时,直杆和槽间无相对运动,小车被弹回时速度v 一定等于v 0;若形变量大于fk 时,杆和槽间出现相对运动,克服摩擦力做功,小车的动能减小,所以小车被弹回时速度v 一定小于v 0,A 错误;对整个过程应用动能定理得fs =ΔE k ,直杆在槽内移动的距离s =1f ⎝⎛⎭⎫12m v 20-12m v 2,B 正确;直杆在槽内向右运动时,开始小车速度比杆的大,所以不可能与直杆始终保持相对静止,C 错误;当弹力等于最大静摩擦力时,直杆开始运动,此时小车的速度大于直杆的速度,弹簧进一步被压缩,弹簧的弹力大于最大静摩擦力,D 正确.【答案】BD12.由学生组成的一个课题小组,在研究变力做功时,设计了如下的模型:如图甲,在水平地面上放置一个质量为m =5 kg 的物体,让其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示,已知物体与地面之间的动摩擦因数为μ=0.4,g =10 m/s 2.(1)画出0~4 m 内物体加速度a 随位移x 的图象. (2)物体速度最大时推力的功率为多少? (3)推力F 减为零后物体还能滑行多远?【解析】(1)由牛顿运动定律得:F -f =ma得:a =F -fm当F =100 N ,x =0时,a =16 m/s 2 当F =f =20 N 时,a =0,x =3.2 m F =0 N 时,x =4 m ,a =-4 m/s 2图象如图所示.(2)由题图可得推力F 随位移x 的变化关系式为F =100-25x (N) 又当物体速度最大时,物体加速度为0 所以:此时F ′=f =μmg解得:x =3.2 m 此时推力F ′=20 N物体从开始到速度最大时,由动能定理得:W F -μmgx =12m v 2m由F -x 图象的物理意义得: W F =S 面积=12(20+100)×3.2 J =192 J。
2019高中物理人教版选修32同步基础讲义
第 1 讲电磁感觉现象和产生感觉电流的条件题一: (1)以以下图,在磁感觉强度为 B、方向以以下图的匀强磁场中,一带有开关的线框上有一金属棒,金属棒以速度 v 匀速向右运动,线圈上有一电流表,开关不闭合时,线圈会产生感觉电流吗?(2)以以下图,当开关闭合时,下面线圈会不会产生感觉电流?闭合此后,下面线圈会不会产生感觉电流?当开关断开时,下面线圈会不会产生感觉电流?(3)一铁芯上饶有两个线圈,一线圈上连接一滑动变阻器和电源,另一线圈连接一电流表,当滑动变阻器向下滑动时,连接电流表的线圈会不会产生感觉电流?当滑动变阻器向上滑动时,连接电流表的线圈会不会产生感觉电流?(4)一线框 abcd 从一通电导线左边运动到右边,线框 abcd 在搬动的过程中,经过线框 abcd 的磁通量怎么变化?是不是素来有感觉电流?题二:以以下图,一条形磁铁外面有一线框,线框从地址 1 减小到地址 2,线框内会不会产生感觉电流?第 2 讲判断感觉电流的方向、楞次定律题一: (1)以以下图,一通电导线周围有一线框 abcd,通电导线的电流方向以以下图,当线框水平向右运动时,线框内的感生电流的方向是怎样的?当线框水平向左运动时,线框内的感生电流的方向是怎样的?(2)一线框内存在磁场,磁场方向以以下图,导轨在线框上水平向右搬动,那么感生电流的磁场方向是怎样?第 3 讲产生感觉电流的条件、判断感觉电流习题课金题精讲题一:一通电导线电流方向以以下图,在导线左边有一线框 abcd,线框从通电导线左边以速度 v 匀速运动到右边,线框内的电流怎样变化?题二:两根通电直导线,电流方向以以下图,一线框在图中地址,水平向右运动到如图虚线地址,线框内的电流方向怎样变化?题三:一铁芯上绕两个线圈,电路以以下图,当滑动变阻器向上搬动时,判断感生电流的方向。
题四:天花板上吊一线圈,条形磁铁以速度 v 向右运动,线圈怎样运动?题五:以以下图,线圈从地址 1 减小到地址 2,线圈产生的感生电流的方向是怎样的?题六:两根平行的圆滑金属轨道上放两个金属棒,当磁铁向下运动时,回路中的电流是怎样的?第4 讲法拉第电磁感觉定律金题精讲题一: (1)两个线圈 1、2 的半径分别为 r、2r,半径为 r 的圆内有均匀变化的磁场,磁场方向如图 1 所示,线圈 1、2 的感生电动势之比为多少?电流强度之比是多少?(2)一圆形闭合线圈内有一正方形线圈,如图 2 所示,圆的半径为 r,两个线圈的粗细、电阻率都相同,圆线圈内有均匀的磁场,且随着时间均匀增加,矩形线圈内的电流为 I1,圆形线圈内的电流为I2,电流强度之比 I1:I2 是多少 ?图 1 图 2题二:一圆柱形铁芯上饶有线圈,且连接一电阻,电阻 R 为 99 Ω,线圈的电阻 r 为 1Ω,如图 1 所示,线圈的匝数 n 为 500,磁感线穿过线圈,磁感觉强度 B 随时间均匀变化,图象如图 2 所示,线2圈的横截面积 S为 20 cm,求电路的电流为多大,方向是什么?图 1 图 2第5 讲法拉第电磁感觉定律的实行金题精讲题一: (1)如图 1 所示,一半圆形的导体棒以速度 v 水平向右运动,磁感觉强度为 B,两平行杆之间的距离为 L0,求产生的感生电动势。
2019高考物理二轮练习精品资料ⅲ重点题三
2019高考物理二轮练习精品资料ⅲ重点题三提示:1、考试范围:选修3—1〔60%〕必修1、2〔40%〕2、本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分。
总分值100分,考试时间90分钟。
第一卷〔选择题共48分〕【一】选择题〔每题3分,共48分。
〔每题3分,共48分。
每题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得3分,选对但不全的得2分,有选错或不选的得0分〕1、甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,T=0时刻同时经过公路旁的同一个路标、在描述两车运动的V-T图中(如图1所示),直线A、B分别描述了甲、乙两车在0~20秒的运动情况、关于两车之间的位置关系,以下说法正确的选项是()A、在0~10秒内两车逐渐靠近B、在10秒~20秒内两车逐渐远离C、在5秒~15秒内两车的位移相等D、在T=10秒时两车在公路上相遇2、A、B、C三个物体通过细线和光滑的滑轮相连,处于静止状态,如图2所示,C是一箱砂子,砂子和箱的重力都等于G,动滑轮的质量不计,打开箱子下端开口,使砂子均匀流出,经过时间T0流完,那么如图3所示的哪个图线表示在这个过程中桌面对物体B的摩擦力FF随时间的变化关系()图33.印度安得拉邦斯里赫里戈达岛的萨蒂什·达万航天中心,一枚PSLV-C14型极地卫星运载火箭携带七颗卫星发射升空,成功实现“一箭七星”发射,那么以下说法正确的选项是()A、火箭发射时,喷出的高速气流对火箭的作用力大于火箭对气流的作用力B、发射初期,火箭处于超重状态,但它受到的重力却越来越小C、高温高压燃气从火箭尾部喷出时对火箭的作用力与火箭对燃气的作用力大小相等D、发射的七颗卫星进入轨道正常运转后,均处于完全失重状态4、M为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,如图4所示,皮带轮半径为R,传送带与皮带轮间不会打滑,当M可被水平抛出时,A轮每秒的转数最少是()A.12πgrB.grC.grD.12πgr5、在山西太原卫星发射中心发射的“风云三号”气象卫星,是我国第二代极轨气象卫星,卫星上装有十多台有效载荷,可实现全球、全天候、多光谱、三维、定量遥感功能、气象卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为H,卫星能在一天内将地面上赤道各处在日照条件下的情况全部拍下来,地球半径为R,地球表面处的重力加速度为G,地球的自转角速度为ω0.那么以下说法正确的选项是()A、气象卫星运行速度为V=Rg R+hB、气象卫星的周期为2πR+h gC、气象卫星在通过赤道上空时,卫星上的摄像机应拍摄地面上赤道圆周的弧长至少为S=πω0(R+h)3gD、气象卫星到达赤道正上方时,应在同步卫星的上方6、如图5所示为某探究活动小组设计的节能运动系统,斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲磁场高考命题轨迹考情分析带电粒子在匀强磁场中的运动综合了洛伦兹力、牛顿运动定律、匀速圆周运动等知识,是高考命题的热点和重点,命题时涉及的情景比较多,并善于变化情景考查相关知识点.高考对于带电粒子在磁场中的运动的考查,近年一般为选择题,也较少与电场组合,难度适中,又多出现通电导线磁场的叠加与受力问题,可见考查方向发生了变化.知识方法链接 1.对磁场的理解(1)磁感应强度是矢量,其方向与通电导线在磁场中所受力的方向垂直; (2)电流元必须垂直于磁场方向放置,公式B =FIL才成立;(3)磁场中某点的磁感应强度是由磁场本身决定的,与通电导线受力的大小及方向都无关. 2.安培力大小的计算公式:F =BIL sin θ(其中θ为B 与I 之间的夹角). (1)若磁场方向和电流方向垂直:F =BIL . (2)若磁场方向和电流方向平行:F =0. 3.安培力方向的判断:左手定则.方向特点:垂直于磁感线和通电导线确定的平面. 4.两个常用的等效模型(1)变曲为直:图1甲所示通电导线,在计算安培力的大小和判断方向时均可等效为ac 直线电流.图1(2)化电为磁:环形电流可等效为小磁针,通电螺线管可等效为条形磁铁,如图乙. 5.求解磁场中导体棒运动趋势的方法(1)分析:正确对导体棒进行受力分析,应特别注意通电导体棒受到的安培力的方向,安培力与导体棒和磁感应强度组成的平面垂直.(2)作图:必要时将立体的受力分析图转化为平面受力分析图,即画出与导体棒垂直的平面内的受力分析图. (3)求解:根据平衡条件或牛顿第二定律或动能定理列式分析求解. 真题模拟精练1.(2017·全国卷Ⅲ·18)如图2所示,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零,如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )图2A .0 B.33B 0 C.233B 0D .2B 0 答案 C让P中的电流反向、其他条件不变时,如图乙所示,由几何关系可知,a点处磁感应强度的大小B=B20+B21=23 3B0,故选项C正确,A、B、D错误.2.(多选)(2017·全国卷Ⅰ·19)如图3所示,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()图3A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1答案BC3.(多选)(2017·全国卷Ⅱ·21)某同学自制的简易电动机示意图如图4所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()图4A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉答案AD解析装置平面示意图如图所示.如图所示的状态,磁感线方向向上,若形成通路,线圈下边导线中电流方向向左,受垂直纸面向里的安培力,同理,上边导线中电流受垂直纸面向外的安培力,使线圈转动.当线圈上边导线转到下边时,若仍通路,线圈上、下边中电流方向与图示方向相比均反向,受安培力反向,阻碍线圈转动.若要线圈连续转动,则要求左、右转轴只能上一侧或下一侧形成通路,另一侧断路.故选A 、D.知识方法链接1.基本公式:q v B =m v 2r ,T =2πrv重要结论:r =m v qB ,T =2πmqB2.基本步骤:(1)画轨迹:依题意画出粒子运动轨迹,或可能的轨迹,找到临界情况的轨迹. (2)定圆心:入射点与出射点所受洛伦兹力方向的交点.(3)求半径或圆心角:由图中几何关系求半径从而可求出速度,求圆心角从而可求出时间. 3.基本“语言翻译”:运动语言→几何语言 速度→半径(m 、q 、B 一定时r ∝v ) 时间→圆心角(t =θ2πT )时间→弦长(圆心角θ<π时,圆心角越大,弧长越长,弦长越长,代表时间越长) 时间→弧长4.圆的几个基本特点:(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角. (2)粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角. (3)沿半径方向射入圆形磁场的粒子,出射时亦沿半径方向.(4)磁场圆与轨迹圆半径相同时,以相同速率从同一点沿各个方向射入的粒子,出射速度方向相互平行.反之以相互平行的相同速率射入时,会从同一点射出(即磁聚焦现象).真题模拟精练4.(2017·全国卷Ⅱ·18)如图5所示,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v 2∶v 1 为( )图5A.3∶2B.2∶1C.3∶1 D .3∶ 2答案 C解析 当粒子在磁场中运动半个圆周时,打到圆形磁场边界的位置距P 点最远,则当粒子射入的速率为v 1,轨迹如图甲所示,设圆形磁场半径为R ,由几何知识可知,粒子运动的轨道半径为r 1=R cos 60°=12R ;若粒子射入的速率为v 2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r 2=R cos 30°=32R ;根据Bq v =m v 2r 得r =m v qB ,故v 2∶v 1=r 2∶r 1=3∶1,故选项C 正确.甲 乙5.(2017·山东泰安市一模)如图6所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里.P 为屏上的一个小孔,PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域,粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )图6A.2m v (1-cos θ)qBB.2m v (1-sin θ)qBC.2m v cos θqBD.2m v sin θqB答案 A解析 粒子做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:q v B =m v 2r ,解得粒子的轨迹半径r =m vqB.粒子沿着右侧边界射入,轨迹如图甲,此时出射点最近,和边界交点与P 间距为:2r cos θ; 粒子沿着左侧边界射入,轨迹如图丙,此时出射点最近,和边界交点与P 间距为:2r cos θ; 粒子垂直边界MN 射入,轨迹如图乙,此时出射点最远,和边界交点与P 间距为:2r ; 故屏MN 上被粒子打中的区域的长度为:2r -2r cos θ=2r (1-cos θ)=2m v (1-cos θ)qB.6.(2017·安徽省十校联考) 如图7所示,平行边界MN 、PQ 之间有垂直纸面向里的匀强磁场,磁感应强度的大小为B ,两边界间距为d ,边界MN 上A 点有一粒子源,可沿纸面内任意方向射出完全相同的质量为m 、电荷量为q 的带正电的粒子,粒子射出的速度大小均为v =2qBd 3m ,若不计粒子的重力及粒子间的相互作用,则粒子能从PQ 边界射出的区域长度与能从MN 边界射出的区域长度之比为( )图7A .1∶1B .2∶3 C.3∶2 D .27∶7答案 C解析 粒子在磁场中运动的轨道半径为r =m v qB =23d ,则粒子能从PQ 边界射出的区域长度为2(23d )2-(13d )2=233d ,粒子能从MN 边界射出的区域长度为2r =43d ,故粒子能从PQ 边界射出的区域长度与能从MN 边界射出的区域长度之比为32,故选C. 7.(多选)(2017·山东枣庄市一模)如图8所示,等腰直角三角形abc 的直角边长度为L ,该区域内存在方向垂直于纸面向外的匀强磁场,磁感应强度大小为B .三个相同的带电粒子从b 点沿bc 方向分别以速度v 1、v 2、v 3射入磁场,在磁场中运动的时间分别为t 1、t 2、t 3,且t 1∶t 2∶t 3=2∶2∶1.不计粒子的重力,下列说法正确的是( )图8A .三个速度的大小关系一定是v 1=v 2<v 3B .三个速度的大小关系可能是v 1<v 2<v 3C .粒子的比荷q m =π2Bt 1D .粒子的比荷q m =v 32B答案 BC解析 由洛伦兹力提供向心力可得半径公式:r =m vqB ,速度越大,半径越大,结合题意知速度为v 1、v 2的粒子偏转90°后从ab 边射出,但两者速度大小关系不定,速度为v 3的粒子偏转45°后从ac 边射出,则其运动轨迹半径比速度为v 1、v 2的粒子运动轨迹的半径都大,所以v 3大于v 1、v 2,故选项A 错误,B 正确;粒子在磁场中运动的时间t =α360°T =α360°×2πr v =α360°×2πm qB ,速度为v 1、v 2的粒子在磁场中的运动时间为t 1=t 2=T 4,从而求出粒子的比荷qm=π2Bt 1;由几何关系知速度为v 3的粒子运动轨迹的半径r 3=2L ,由半径公式求出比荷q m =2v 32BL,故C 正确,D 错误.知识方法链接 1.叠加场明确粒子受几个力,结合运动情况,分析各力方向.(1)电场与磁场叠加:常见模型有速度选择器、磁流体发电机、电磁流量计、霍尔效应等.(2)电场、磁场、重力场叠加:无约束带电体在叠加场做直线运动时必为匀速直线运动;做圆周运动时必为匀速圆周运动,重力与电场力平衡,洛伦兹力提供向心力. 2.组合场带电粒子依次经过各场,运动过程由各阶段不同性质的运动(圆周、类平抛、变速直线、匀速直线等)组合而成.(1)分别研究带电粒子在不同场区的运动.(2)分析与计算各阶段运动间的连接点的速度方向与大小是解题关键. (3)画出全过程运动示意图很重要. 3.交变场带电粒子进入周期性变化的电场或磁场,其运动随之做周期性变化.(1)分析清复合场一个周期内的粒子运动过程,找到粒子运动时间、位移、速度等的周期性变化规律. (2)画出运动过程的示意图,有助于分析.真题模拟精练8.(2017·全国卷Ⅰ·16)如图9所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )图9A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a答案 B解析 设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则 m b g =qE +q v B ②c 在纸面内向左做匀速直线运动,三力平衡,则 m c g +q v B =qE ③比较①②③式得:m b >m a >m c ,选项B 正确.9.(2017·全国卷Ⅲ·24)如图10所示,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在x ≥0 区域,磁感应强度的大小为B 0;x <0区域,磁感应强度的大小为λB 0(常数λ>1).一质量为m 、电荷量为q (q >0)的带电粒子以速度v 0从坐标原点O 沿x 轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x 轴正向时,求:(不计重力)图10(1)粒子运动的时间; (2)粒子与O 点间的距离. 答案 (1)πm B 0q (1+1λ) (2)2m v 0B 0q (1-1λ)解析 (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 20R 1①qλB 0v 0=m v 20R 2②粒子速度方向转过180°时,所需时间t 1为 t 1=πR 1v 0③ 粒子再转过180°时,所需时间t 2为 t 2=πR 2v 0④ 联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1λ)⑤ (2)由几何关系及①②式得,所求距离为 d =2(R 1-R 2)=2m v 0B 0q (1-1λ)10.如图11所示,坐标系xOy 在竖直平面内,x 轴沿水平方向.x >0的区域有垂直于坐标平面向外的匀强磁场,磁感应强度大小为B 1;第三象限同时存在着垂直于坐标平面向外的匀强磁场和竖直向上的匀强电场,磁感应强度大小为B 2,电场强度大小为E .x >0的区域固定一与x 轴成θ=30°角的绝缘细杆.一穿在细杆上的带电小球a 沿细杆匀速滑下,从N 点恰能沿圆周轨道运动到x 轴上的Q 点,且速度方向垂直于x 轴.已知Q 点到坐标原点O 的距离为32l ,重力加速度为g ,B 1=7E 110πgl,B 2=E 5π6gl.空气阻力忽略不计,求:图11(1)带电小球a 的电性及其比荷qm;(2)带电小球a 与绝缘细杆的动摩擦因数μ;(3)当带电小球a 刚离开N 点时,从y 轴正半轴距原点O 为h =20πl3的P 点(图中未画出)以某一初速度平抛一个不带电的绝缘小球b ,b 球刚好运动到x 轴与向上运动的a 球相碰,则b 球的初速度为多大? 答案 (1)正电g E (2)34(3)147gl160π解析 (1)由带电小球在第三象限内做匀速圆周运动可得:带电小球带正电 且mg =qE ,解得:q m =gE(2)带电小球从N 点运动到Q 点的过程中,有:q v B 2=m v 2R由几何关系有:R +R sin θ=32l ,联立解得:v =5πgl6带电小球在杆上匀速下滑,由平衡条件有:mg sin θ=μ(q v B 1-mg cos θ) 解得:μ=34(3)带电小球在第三象限内做匀速圆周运动的周期: T =2πR v =24πl5g带电小球第一次在第二象限竖直上下运动的总时间为:t 0=2vg =10πl3g绝缘小球b 平抛运动至x 轴上的时间为: t =2h g=210πl3g两球相碰有:t =T 3+n (t 0+T2)联立解得:n =1设绝缘小球b 平抛的初速度为v 0, 则:72l =v 0t ,解得:v 0=147gl160π11. (2017·广东揭阳市第一次模拟)如图12所示,虚线L 1、L 2将平面分为四个区域,L 2的左侧有一匀强电场,场强大小为E ,方向与L 1平行,L 2的右侧为匀强磁场,方向垂直纸面向外.在图中L 1上到L 2的距离为d 的A 点有一粒子源,可以发射质量为m ,电荷量为+q 的粒子,粒子的初速度方向与L 2平行,不计粒子的重力.图12(1)若从A 点射出的粒子恰好从距离L 1为2d 的B 点进入磁场,求该粒子进入磁场时的速度大小和方向;(2)在磁场区域放置绝缘挡板BD ,挡板与L 1交于C 点,已知OC =OB ,BC =2CD .粒子与挡板BD 碰撞前后粒子平行于挡板的分速度不变,垂直于挡板的分速度大小不变,方向反向.当磁感应强度在B 1≤B ≤B 2取值时,恰好所有取值都能使由B 点进入磁场的粒子不与挡板的CD 段碰撞,并能从L 2上的OB 段射出磁场,求B 1、B 2的值,并求出粒子离开磁场的位置到O 点的最远距离.(不考虑粒子再次进入磁场的情况,也不考虑B 1≤B ≤B 2以外的取值) 答案 见解析解析 (1)粒子在电场中做类平抛运动2d =v A t d =12at 2 qE =ma设粒子射入磁场时沿L 1方向的分速度为v 1,v 1=at射入磁场的速度v =v 2A +v 21该速度与L 2夹角的正切值tan θ=v 1v A解得v =2qEdm,θ=45° (2)粒子在磁场运动时q v B =m v 2r ,r =m vqB粒子不与挡板的CD 段碰撞,并能从L 2上的OB 段射出 磁场的临界情况有两个:(a)粒子在C 点与挡板2个侧面碰撞2次后恰好从O 点射出磁场,如图甲;(b)粒子与挡板碰撞1次后恰好从D 点绕过挡板,再与挡板碰一次,然后从P 点射出磁场,如图乙. 由几何关系,对图甲,2r =22d 对图乙,4r =32d得粒子在磁场的运动半径满足324d ≤r ≤2d解得2mE qd ≤B ≤432mEqd则B 1=2mE qd ,B 2=432mEqd粒子离开磁场的位置到O 点的最远距离为图乙中的OP ,由几何关系得OP =2d -2r =d2专题规范练题组1 高考真题体验1.(2016·全国卷Ⅰ·15)现代质谱仪可用来分析比质子重很多的离子,其示意图如图1所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )图1A .11B .12C .121D .144 答案 D解析 根据动能定理得,qU =12m v 2,即v =2qUm① 离子在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律,有q v B =m v2R得R =m v qB②①②两式联立得:m =qB 2R 22U一价正离子电荷量与质子电荷量相等,同一加速电场U 相同,同一出口离开磁场则R 相同,所以m ∝B 2,磁感应强度增加到原来的12倍,则离子质量是质子质量的144倍,D 正确,A 、B 、C 错误.2.(2016·全国卷Ⅱ·18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图2所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()图2A.ω3BB.ω2BC.ωBD.2ωB 答案 A解析 画出粒子的运动轨迹如图所示,由洛伦兹力提供向心力得,q v B =m v 2r ,又T =2πr v ,联立得T =2πm qB由几何知识可得,轨迹的圆心角为θ=π6,在磁场中运动时间t =θ2πT ,粒子运动和圆筒运动具有等时性,则θ2πT =π2ω,解得q m =ω3B,故选项A 正确.3.(2016·全国卷Ⅲ·18)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图3所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )图3A.m v 2qBB.3m v qBC.2m v qBD.4m v qB 答案 D解析 带电粒子在磁场中做圆周运动的轨道半径为r =m vqB.轨迹与ON 相切,画出粒子的运动轨迹如图所示,由于AD =2r sin 30°=r ,故△AO ′D 为等边三角形,∠O ′DA =60°,而∠MON =30°,则∠OCD =90°,故CO ′D 为一直线,OD =CDsin 30°=2CD =4r =4m vqB ,故D 正确.4.(2014·新课标Ⅰ卷·16)如图4所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )图4A .2 B. 2 C .1 D.22答案 D解析 设带电粒子在P 点时初速度为v 1,从Q 点穿过铝板后速度为v 2,则E k1=12m v 21,E k2=12m v 22,由题意可知E k1=2E k2,即12m v 21=m v 22,则v 1v 2=21.由洛伦兹力提供向心力,即q v B =m v 2R ,得R =m v qB ,由题意可知R 1R 2=21,所以B 1B 2=v 1R 2v 2R 1=22,故选项D 正确. 5.(2013·新课标Ⅰ卷·18)如图5所示,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )图5A.qBR 2mB.qBR mC.3qBR 2mD.2qBR m 答案 B解析 如图所示,粒子做圆周运动的圆心O 2必在过入射点垂直于入射速度方向的直线EF 上,由于粒子射入、射出磁场时运动方向间的夹角为60°,故圆弧ENM 对应圆心角为60°,所以△EMO 2为等边三角形.由于O 1D =R 2,所以∠EO 1D =60°,△O 1ME 为等边三角形,所以可得到粒子做圆周运动的半径EO 2=O 1E =R ,由q v B =m v 2R ,得v=qBRm,B 正确.6.(2015·全国卷Ⅰ·24)如图6所示,一长为10 cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘.金属棒通过开关与一电动势为12 V 的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm ,重力加速度大小取10 m/s 2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.图6答案 竖直向下 0.01 kg解析 金属棒通电后,闭合回路电流I =E R =12 V 2 Ω=6 A导体棒受到的安培力大小为F =BIL =0.06 N由左手定则可判断知金属棒受到的安培力方向竖直向下 由平衡条件知:开关闭合前:2kx =mg 开关闭合后:2k (x +Δx )=mg +F 代入数值解得m =0.01 kg题组2 各省市真模拟选7.(多选)(2017·江西上饶市一模)某同学自制一电流表,其原理如图7所示,质量为m 的均匀细金属杆MN 与一竖直悬挂的绝缘轻弹簧相连,弹簧的劲度系数为k ,在矩形区域abcd 内有匀强磁场,磁感应强度大小为B ,方向垂直纸面向外.MN 的右端连接一绝缘轻指针,可指示出标尺上的刻度.MN 的长度大于ab ,当MN 中没有电流通过且处于静止时,MN 与矩形区域的ab 边重合,且指针指在标尺的零刻度;当MN 中有电流时,指针示数可表示电流强度.MN 始终在纸面内且保持水平,重力加速度为g .以下说法正确的是( )图7A .当电流表的示数为零时,弹簧的伸长量为Δx =mg kB .为使电流表正常工作,金属杆中电流的方向应从N 指向MC .劲度系数k 减小,此电流表量程会更小D .磁感应强度B 减小,此电流表量程会更小 答案 AC解析 当电流表示数为零时,有:mg =k Δx ,解得,Δx =mgk ,故A 选项正确;根据左手定则,为使电流表正常工作,金属杆中电流的方向应从M 指向N ,故B 选项错误;设电流表满偏时,通过金属杆MN 的电流为I m ,则有:BI m L ab +mg =k (L ad +Δx ),解得,I m =kL adBL ab,由上式可知,劲度系数k 减小,此电流表量程会更小,故C 选项正确;由C 选项计算结果可知磁感应强度B 减小,此电流表量程会更大,故D 选项错误.8.(多选)(2017·湖南衡阳市第一次联考)如图8所示,在直角三角形ABC 内充满垂直纸面向外的匀强磁场(图中未画出),AB 边长度为d ,∠B =π6.现垂直AB 边射入一群质量均为m 、电荷量均为q 、速度大小均为v 的带正电粒子,已知垂直AC 边射出的粒子在磁场中运动的时间为t 0,而运动时间最长的粒子在磁场中的运动时间为43t 0(不计重力).则下列判断中正确的是( )图8A .粒子在磁场中做匀速圆周运动的周期为4t 0B .该匀强磁场的磁感应强度大小为πm2qt 0C .粒子在磁场中运动的轨道半径为25d答案 ABC9.(多选)(2017·河北省衡水中学七调)如图9所示是一个半径为R 的竖直圆形磁场区域,磁感应强度大小为B ,磁感应强度方向垂直纸面向内.有一个粒子源在圆上的A 点不停地发射出速率相同的带正电的粒子,带电粒子的质量均为m ,运动的半径为r ,在磁场中的轨迹所对应的圆心角为α.以下说法正确的是( )图9A .若r =2R ,则粒子在磁场中运动的最长时间为πm 6qBB .若r =2R ,粒子沿着与半径方向成45°角斜向下射入磁场,则有关系tan α2=22+17成立C .若r =R ,粒子沿着磁场的半径方向射入,则粒子在磁场中的运动时间为πm3qBD .若r =R ,粒子沿着与半径方向成60°角斜向下射入磁场,则圆心角α为150° 答案 BD解析 若r =2R ,粒子在磁场中运动时间最长时,磁场区域的直径是轨迹的一条弦,作出轨迹如图甲,因为r =2R ,圆心角θ=60°,粒子在磁场中运动的最长时间 t max =60°360°T =16·2πm qB =πm 3qB,故A 错误.若r =2R ,粒子沿着与半径方向成45°角斜向下射入磁场,如图乙,根据几何关系,有tan α2=22R r -22R =22R 2R -22R=22+17,故B 正确;若r =R ,粒子沿着磁场的半径方向射入,粒子运动轨迹如图丙所示,圆心角为90°,粒子在磁场中运动的时间t =90°360°T =14·2πm qB =πm2qB ,故C 错误;若r =R ,粒子沿着与半径方向成60°角斜向下射入磁场,轨迹如图丁所示,图中轨迹圆心与磁场圆心以及入射点和出射点构成菱形,圆心角为150°,故D 正确.10.(多选)(2017·哈尔滨师大等三校联合模拟)如图10所示,竖直边界MN 右侧存在水平方向的匀强电场和垂直纸面向里的匀强磁场,带电的小球从a 点进入右侧复合场区域后恰做直线运动,则以下说法正确的是( )图10A .电场方向水平向右B .小球一定带正电C .小球在复合场区内做匀速直线运动D .小球在复合场区内运动过程中,重力势能的变化量与电势能的变化量相同 答案 BC11.(2017·福建厦门市模拟)如图11所示,在xOy 平面内,0<x <2L 的区域内有一方向竖直向上的匀强电场,2L <x <3L 的区域内有一方向竖直向下的匀强电场,两电场强度大小相等,x >3L 的区域内有一方向垂直于xOy 平面向外的匀强磁场,某时刻,一带正电的粒子从坐标原点沿x 轴正方向以初速度v 0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇,两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电荷量大小相等,求:图11(1)正、负粒子的质量之比m 1∶m 2; (2)两粒子相遇的位置P 点的坐标; (3)两粒子先后进入电场的时间差.答案 (1)3∶1 (2)(6.5L ,-73L 3) (3)73πL 6v 0解析 (1)设粒子进入磁场时速度方向与电场和磁场边界的夹角为θ.v y =v 0tan θ①记t =Lv 0,则粒子在第一个电场运动的时间为2t ,在第二个电场运动的时间为t 则:v y =a ×2t -at ②qE =ma ③由①②③得:m =qEt v 0tan θ,所以m 1m 2=tan 60°tan 30°=31。