电力谐波治理的几种方法
谐波治理措施
谐波治理措施
谐波治理措施是指为了控制或减轻电能系统中的谐波干扰和谐波问题,采取的一系列技术手段和措施。
下面列举几种常见的谐波治理措施:
1. 谐波滤波器:谐波滤波器是用于滤除电能系统中谐波成分的装置。
它们可以通过选择合适的滤波器参数,将谐波电流从系统中滤去,从而降低谐波干扰。
常见的谐波滤波器包括无源滤波器(谐波消除器)、有源滤波器、谐波滤波器组等。
2. 谐波控制变压器:谐波控制变压器是一种专门设计用于抑制谐波的变压器。
它的设计可以消除或减小电力系统中的谐波干扰,并保证电力质量。
3. 谐波抑制器:谐波抑制器是一种用于控制谐波干扰的装置。
它可以通过改变阻抗、相移、补偿等方式,来削弱或消除电力系统中谐波的影响。
4. 谐波限制器:谐波限制器是一种用于限制谐波电流流入电力系统的装置。
它可以通过控制谐波电流的大小和频率,来避免谐波电流对电力系统的损害。
5. 谐波控制技术:谐波控制技术是一种综合运用以上措施的技术手段。
它通过结合各种谐波治理措施,对电力系统中的谐波进行综合治理,以确保电力系统的正常运行和电力质量。
总之,谐波治理措施旨在降低谐波干扰,保证电力系统的正常
运行和电力质量。
在实际应用中,应根据具体情况选择合适的治理措施,并综合考虑成本、效果、可行性等因素,以达到最佳的谐波治理效果。
变频器谐波治理方案
变频器谐波治理方案变频器是现代电力传动系统中的核心,其优点包括高效率、低噪声、易于控制和维护。
然而,变频器也会产生谐波,这会给电力系统带来一些问题,如加剧电网电压畸变、损坏设备等。
因此,需要制定一些变频器谐波治理方案来解决这些问题。
第一种谐波治理方案是使用谐波滤波器。
这种方法是通过添加一个LC谐波滤波器来滤除变频器产生的谐波。
通过选用合适的谐波滤波器,可以有效地减少电网的谐波含量,从而达到谐波治理的目的。
然而,谐波滤波器的成本较高,其安装和调试也相对复杂,需要专业的工程师来完成。
第二种谐波治理方案是使用变频器自带的谐波控制技术。
现代变频器通常都具有谐波控制技术,可以通过自带的谐波控制回路来降低谐波含量。
这种方法不需要额外的滤波器,可以减少成本和安装难度。
但需要注意的是,这种方法只适用于小功率的变频器,对于大功率的变频器,谐波控制技术并不是非常有效。
第三种谐波治理方案是使用多电平变频器。
多电平变频器通过使用多级电路来减少谐波含量。
这种方法可以有效地降低谐波含量,并且具有较低的电磁干扰和噪声。
然而,多电平变频器的成本和体积都相对较大,需要更高的设计和维护技术。
第四种谐波治理方案是采用无谐波变频器。
无谐波变频器通过使用原理与多电平变频器相似的PWM调制技术来消除谐波。
这种方法可以有效地消除谐波含量,并且不需要使用谐波滤波器或谐波控制技术。
但需要注意的是,无谐波变频器通常成本较高。
综上所述,针对变频器产生的谐波问题,我们有多种谐波治理方案可供选择。
具体选用哪种方案需要根据不同的应用场合和需求综合考虑。
无论选择何种方法,都需要确保谐波含量在电网允许范围内,并且满足国家相关标准和法规的要求。
电力系统中谐波问题如何治理
电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。
那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。
简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。
这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。
谐波的产生原因是多种多样的。
其中,电力电子设备的广泛应用是主要原因之一。
例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。
此外,电弧炉、电焊机等非线性负载也会产生谐波。
那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。
例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。
另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。
同时,谐波还会对通信系统产生干扰,影响通信质量。
既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。
无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。
无源滤波器结构简单、成本较低,但存在一些局限性。
例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。
有源滤波则是一种较为先进的谐波治理技术。
它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。
有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。
除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。
在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。
电力系统谐波治理的四种方法
谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。
而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。
那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。
首先,我们讨论谐波的产生原因:近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。
电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。
其次,我们讨论谐波的危害:电源污染会对用电设备造成严重危害,主要有:增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益:谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。
影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
引起电气自动装置误动作,甚至发生严重事故。
使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
造成灯光亮度的波动(闪变),影响工作效益。
导致供电系统功率损耗增加。
谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。
非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。
配电系统的谐波治理方案
配电系统的谐波治理方案配电系统的谐波治理方案随着现代电子设备的广泛应用,谐波问题在配电系统中变得越来越突出。
谐波是指频率是原电源频率的整数倍的电流或电压成分。
谐波会引起各种问题,如电网设备的过载、损坏和功率因数下降等。
因此,为了确保配电系统的正常运行,谐波治理显得尤为重要。
谐波治理方案的核心目标是减少谐波的发生和传播。
下面,我将介绍几种常用的谐波治理方案。
第一种方案是使用谐波滤波器。
谐波滤波器是一种能够从电网中消除谐波的设备。
它通过选择性地吸收或衰减特定频率的谐波,从而将谐波限制在可接受的范围内。
谐波滤波器通常由电容器、电感器和电阻器组成,可以根据谐波频率的不同来选择不同的滤波器。
第二种方案是使用谐波抑制器。
谐波抑制器是一种能够主动抑制谐波的设备。
它通过产生与谐波相位相反的电流或电压来抵消谐波。
谐波抑制器通常由晶闸管组成,可以根据谐波的类型和频率进行调节和控制。
第三种方案是通过改变设备的结构和设计来减少谐波的产生和传播。
例如,在配电变压器的设计中添加谐波抑制装置,可以有效地降低谐波的水平。
此外,还可以采用各种特殊的变压器和电容器等设备来减少谐波。
第四种方案是通过提高配电系统的功率因数来减少谐波。
功率因数是指有功功率与视在功率之比。
当功率因数接近于1时,谐波的水平通常较低。
因此,通过使用功率因数校正装置来提高功率因数,可以有效地降低谐波的水平。
综上所述,谐波治理是保证配电系统正常运行的重要环节。
通过使用谐波滤波器、谐波抑制器、改变设备结构和提高功率因数等方案,可以减少谐波的发生和传播。
这些方案的选择和应用应根据具体的配电系统需求和实际情况来确定。
通过有效的谐波治理方案,我们可以提高配电系统的可靠性和稳定性,确保电力供应的质量和效率。
目前常用的谐波治理的方法
谐波治理的方法目前常用的谐波治理的方法无外乎有二种,无源滤波和有源滤波。
下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。
1、无源谐波滤除装置无源滤波的主要结构是用电抗器与电容器串联起来,组成LC 串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。
其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。
现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。
虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。
由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。
由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。
因此,业主不得不要求滤波。
因而,其市场的前景可观,经济效益也就可观了。
2、有源谐波滤除装置有缘谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。
它主要是电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。
但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂的多,成本也就高得多。
其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。
对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波器,对滤波的含量,不必滤得太干净,只要不危害其他用电器也就可以了。
目前谐波治理方法常用的有:1、增大供电系统对谐波的承受能力:提高系统短路容量,采用较高电压等级供电;2、减小谐波发生量:增加整流装置的脉波数,增大换向电抗器、改善触发对称度;同类非线性负荷尽量集中供电,利用不同谐波源自身相位不同互相抵消;3、避免谐波放大和谐振:选择合适的电容器组参数或采用合适参数串联电抗器;(无源滤波方式)4、安装电力谐波滤波装置:包括上面的无源滤波设备,还有采用电力电子技术的有缘滤波设备。
常用的电力谐波治理的方法
目前常用的电力谐波治理的方法无外乎有三种,KYLB无源滤波装置、KYAPF 有源滤波装置、KYLB动态无功补偿装置。
下面就谈谈这三种方法的优缺点以及市场前景及其经济效益的分析。
1. KYLB无源滤波装置KYLB无源滤波装置的主要是用电抗器与电容器构成,KYLB无源滤波装置的成本较低,经济,简便,因此获得广泛应用。
KYLB无源滤波装置可以分为并联滤波器与串联滤波器。
1.1无源并联滤波器现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。
多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。
不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。
因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。
从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。
因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。
1.2无源串联滤波器由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。
这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一个意思表示电感与电容串联,另一个意思表示串联在电路中使用。
在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。
电力谐波治理的几种方法
电力谐波治理的几种方法
随着现代化程度的不断提高,电力谐波问题日益突出,给电力系统的安全稳定运行带来了极大的威胁。
为此,电力谐波治理成为了电力系统建设和运行中必不可少的一项工作。
电力谐波的治理主要有以下几种方法:
1. 滤波器法
采用电力滤波器对电力谐波进行滤波处理,以减小其对电力系统的干扰。
常见的电力滤波器包括L-C滤波器、谐振滤波器和有源滤波器等。
滤波器法具有费用低、性能稳定等优点,适用于小功率电器的电力谐波治理。
2. 变压器法
采用特殊结构的变压器进行电力谐波治理,包括隔离变压器、耦合变压器等。
变压器法可以有效地降低电力谐波对电力系统的影响,但需要投入较大的资金,适用于大功率电器的电力谐波治理。
3. 电容器法
通过电容器的串联或并联方式,对电力谐波进行电容滤波处理。
电容器法具有构造简单、成本低等优点,适用于小功率电器的电力谐波治理。
4. 谐波抑制器法
采用谐波抑制器对电力谐波进行抑制处理。
常见的谐波抑制器包括谐波电流抑制器、谐波电压抑制器等。
谐波抑制器法具有能够有效抑制电力谐波、无需改变电路结构等优点,适用于各类电器的电力谐
波治理。
在电力谐波治理中,需要综合考虑电力系统的实际情况和治理成本,选择合适的治理方法,并采取科学有效的措施加以实施,以确保电力系统的安全稳定运行。
谐波的危害与治理
谐波的危害与治理谐波是指工业、农业及其他领域电器设备产生的不同频率的电流或电压的干扰信号。
谐波的产生对人类的健康和设备的正常运行产生了相当大的危害。
在以下的几个方面,我们将详细介绍谐波的危害性以及相应的治理方法。
首先,谐波对人类的健康造成了威胁。
在人体组织中,脑、肌肉、神经等都是通过电信号进行传递和控制的。
而谐波的存在会使得这些电信号被扭曲、失真甚至干扰,从而导致血液循环、神经传导、肌肉运动等功能受到影响。
长期暴露在谐波环境下,人们可能会出现头痛、疲劳、失眠、注意力不集中、神经衰弱等症状。
其次,谐波对电力系统的稳定性和设备的正常运行产生了影响。
谐波信号会加大电网中的负荷,降低系统的功率因数,导致电网负荷不均衡、频率偏移等问题。
同时,谐波还会增加电力设备的损耗,缩短使用寿命,引发电力设备故障和事故。
特别是对于高精度的仪器设备和敏感的电子设备来说,谐波的存在会严重影响其正常运行和测量结果的准确性。
另外,谐波还会影响到公共环境和通信系统。
在城市中,电网中的谐波信号可能会通过建筑物和地下管道传播到附近的电子设备或通信系统中,导致通信信号的干扰和传输中断。
在无线通信领域,谐波会引起频谱污染,减少频谱资源的利用效率。
针对谐波的治理,有以下几个主要方法:1.滤波器:通过引入滤波器来削弱或消除谐波信号。
滤波器可以根据谐波的频率特性进行设计,将谐波信号从电力系统中分离出来,保证电力系统的正常运行。
2.接地:正确接地可以有效降低谐波信号的存在。
接地系统的设计和维护需要严格按照相关标准进行,确保接地电阻的有效连接和在线监测,减少谐波的传播。
3.变压器改进:采用带低谐波的高效变压器,可以有效削弱变压器内部的谐波产生和传播。
例如,采用三脉动焊接变压器可以避免谐波的产生和增强Transformer(SVPWM)技术等。
4.现代电气设备:使用具有谐波抑制功能的现代电气设备,可以降低谐波产生和传播的风险。
例如,使用高效节能的电子节能灯、电力电容器、有源滤波器等。
电力系统谐波治理的四种方法
电力系统谐波治理的四种方法电力系统中的谐波是指电网中除基波(50Hz或60Hz)外的各种频率的非线性电流和电压分量。
谐波会导致电网中设备的性能下降,甚至造成设备的故障。
因此,为了保证电力系统的正常运行和设备的安全使用,需要进行谐波治理。
下面介绍电力系统谐波治理的四种方法。
第一种方法是滤波器的应用。
滤波器是一种电子器件,可以通过选择性地通过或阻断特定频率的信号来消除谐波。
根据谐波的频率,可以选择合适的滤波器类型,例如LC滤波器、有源滤波器等。
滤波器通常与设备的电源连接,以便将谐波电流或电压从电网中衰减到可接受的水平。
第二种方法是降低谐波源的发生。
谐波是由非线性负载引起的,例如变频器、电弧炉等。
降低谐波源的发生可以通过选择低谐波的设备、改进设备的运行方式或采取适当的谐波抑制措施来实现。
例如,在选择变频器时,可以考虑具有低谐波输出的变频器,或者通过安装谐波抑制器来补偿谐波。
第三种方法是采用谐波干扰限制技术。
谐波可以通过电力系统中的传输线、变压器等元件传播到其他设备中,造成干扰。
因此,为了减少谐波的传播和干扰,可以采用一些限制技术,如使用低谐波设计的变压器、采用合适的线路参数等。
第四种方法是谐波监测和分析技术的应用。
谐波的监测和分析是谐波治理的重要步骤。
通过采集电网中的谐波数据,并利用相关的分析软件进行谐波分析,可以了解电网中的谐波水平和谐波源的特征,为谐波治理提供科学的依据和措施。
总之,电力系统谐波治理是保证电力系统正常运行和设备安全使用的重要措施。
通过滤波器的应用、降低谐波源的发生、采用谐波干扰限制技术和谐波监测分析技术的应用,可以有效地控制和消除电力系统中的谐波,提高电网的质量和可靠性。
治理谐波的方法
治理谐波的方法
以下是 9 条关于治理谐波的方法:
1. 采用滤波器呀!就像给电流戴上了一个精致的“口罩”,把谐波这个“捣蛋鬼”给过滤掉。
比如说在工厂的电力系统里装上滤波器,就能有效减少谐波的影响啦。
2. 改善电力系统的设计嘞,这可是从根源上解决问题呀!就如同建房子要先打好牢固的地基一样。
你想想,如果一开始设计就很合理,那谐波出现的几率不就大大降低了嘛!
3. 对谐波源进行隔离呀!好比把捣乱的孩子单独隔离开,不让它去影响其他小伙伴。
像一些容易产生大量谐波的设备,单独给它们安排个小空间,不就好多了吗?
4. 利用无功补偿装置哟!这就像是给电力系统吃了一颗“补品”,让它更有活力去对抗谐波。
比如在变电站里用上无功补偿装置,对治理谐波超有用的。
5. 动态无功补偿技术了解一下嘛!它就像一个灵活的“小卫士”,能随时根据谐波的情况进行调整呢。
我们小区的配电室不就用了这技术,效果那叫一个棒啊!
6. 加强监测和管理呀,要时刻盯着谐波这个家伙!这就跟家长看着孩子写作业一样,只要盯着,它就不敢乱来。
工厂里安排专人监测,一有异常立马处理。
7. 优化用电设备的运行方式呗!就像是让运动员调整跑步的姿势,能发挥出更好的效果。
某些设备合理安排运行时间和方式,谐波可能就不会那么猖狂啦!
8. 采用谐波抑制电抗器呀,它可是谐波的“克星”呢!变电站里那些电抗器就是专门对付它的呀,效果超明显的。
9. 提高员工对谐波的认识和重视程度呀!这就好像给大家敲响警钟一样。
如果每个人都知道谐波的危害,那防治起来不就更有力量了嘛!
总之,治理谐波要多管齐下,各种方法综合运用,才能把这个“小麻烦”彻底解决掉呀!。
谐波治理的基本方法
目前谐波治理的基本方法有以下三种,在治理过程中又可以采用变电所集中治理和非线性用电设备处分散治理两种方法。
按谁污染谁治理的原则,应该在非线性用电设备处分散治理。
但对于电脑,彩电,节能灯等民用设备,则只能进行集中治理。
1、减少非线性用电设备与电源间的电气距离。
也就是减少系统阻抗,换句话说就是提高供电电压等级。
例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的35kV母线上测得谐波分量仍接近或稍超国家标准。
但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅4km左右,用5回35kV专线供电,使35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划相协调。
2、谐波的隔离。
非线性用电设备产生的谐波,它不仅直接影响到本级电网,而且经过变压器后,还会影响到上几级电网。
如何把这些非线性用电设备产生的谐波不影响或少影响其他几级电网,这也是谐波治理的一个基本方法。
这一方法在电网中广泛采用,发电机发出的电能经过Y/△、Y0/△、Y0/Y等接线组别的变压器,把发电机产生的三次、九次等零序分量的谐波与上级电网隔离开来,因此在110kV以上高压电网上,三、九次谐波分量很小,几乎是零。
而10kV由于大多数配变为Y/Y0接线,35kV也有少量Y/Y0接线的直配变,因此在10kV和35kV系统中三、九次谐波分量会比高压电网大。
为了减少低压对10kV电网的影响,我局现在10kV配电系统中推广使用了D,yn11接线组别的配电变压器,有效的减少了三、九次谐波的影响。
3、安装滤波器。
目前对变电所侧和用户侧谐波治理的方法,多采用安装滤波器来减少谐波分量。
配电网谐波的产生和治理
配电网谐波的产生和治理配电网谐波问题是电力系统运行中的重要问题之一,其产生主要是由于非线性负载设备(如电子设备、控制器等)在工作时对电力系统所产生的非线性负载电流所致。
谐波电流会对电力系统造成很大的影响,如增加导线的损耗和发热、使电机转矩降低、影响电线通讯,甚至损坏电气设备等。
因此,为了保证电力系统的安全、稳定和经济运行,必须对谐波进行治理。
谐波产生的根本原因是非线性负载的存在。
非线性负载设备的电阻、电感和电容之间的交互作用会导致谐波电流的产生。
谐波电流会引起电流和电压的波形失真,导致电力系统频率变化,进而破坏电力系统的稳定性及其正常运行。
为了解决谐波问题,目前主要有以下几种治理方法:1.滤波器治理法此方法主要是采用谐波滤波器或其他滤波器装置来消除谐波电流,使得电力系统中的电压和电流波形变得更加纯净。
一般情况下,谐波滤波器分为无源型和有源型两种。
无源型谐波滤波器系列分为低通、中通和高通滤波器等,可以抑制电力系统中的谐波电流。
有源型谐波滤波器可以根据控制策略主动地向电网注入谐波电流,以抵消非线性负载设备所产生的谐波电流,从而有效地降低谐波水平。
此方法主要是采用特制变压器来消除谐波电流。
例如,增强高阻抗变压器可以有效地消除电力系统中的谐波电流,因为其具有较高的阻抗值和适宜的数值。
3.实施控制策略此方法主要是采用某些电力电子装置来控制谐波电流。
例如,采用PWM变频器可以控制驱动电动机所需的电压和频率,从而控制谐波电流的发生。
可以采用降低负载功率、改变谐波源的位置、增加谐波滤波器等控制策略,也可以利用电力电子装置控制谐波电流的波形,以有效地降低谐波水平。
4.优化配电网络此方法主要是对电力系统的布局和设计进行优化调整,以减少谐波电流的产生。
例如,采用低谐波负载设备、减少非线性负载设备、缩短负载以及配电线路的长度等,将可以有效地降低谐波电流和谐波水平。
总之,谐波治理是电力系统运行的重要问题,需要采取多种手段来降低谐波水平。
电力系统中的功率谐波问题如何治理
电力系统中的功率谐波问题如何治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,功率谐波问题却成为了影响电力系统性能的一个不容忽视的因素。
功率谐波不仅会降低电力设备的效率和寿命,还可能引发电力系统故障,甚至对整个电网的安全稳定运行构成威胁。
因此,有效地治理电力系统中的功率谐波问题具有重要的现实意义。
一、功率谐波的产生要治理功率谐波问题,首先需要了解它的产生原因。
功率谐波主要源于电力系统中的非线性负载。
常见的非线性负载包括整流器、变频器、电弧炉、荧光灯等。
这些设备在工作时,其电流和电压的波形不再是标准的正弦波,而是包含了各种高次谐波成分。
以整流器为例,当交流电源通过整流器转换为直流电源时,由于二极管的单向导通特性,电流在导通期间会迅速上升,而在截止期间则几乎为零,从而导致电流波形发生严重畸变,产生大量谐波。
变频器在调节电机转速时,通过改变电源的频率和电压来实现。
但在这个过程中,由于电力电子器件的频繁开关动作,也会引入谐波成分。
电弧炉在炼钢过程中,由于电弧的不稳定燃烧,电流和电压的变化随机性很大,产生的谐波也非常复杂。
二、功率谐波的危害功率谐波对电力系统的危害是多方面的。
首先,它会增加电力设备的损耗。
谐波电流在电力线路和变压器中流动时,会产生额外的电阻损耗和涡流损耗,导致设备发热增加,降低其效率和使用寿命。
其次,谐波会影响电力测量的准确性。
电能表等测量设备通常是按照标准正弦波进行设计和校准的,如果电流和电压中存在谐波,将导致测量结果出现误差,影响电力计费的公正性。
再者,谐波还可能引发电力系统的谐振。
当谐波频率与电力系统中的固有频率相匹配时,会产生谐振现象,导致电压和电流急剧增大,可能损坏电力设备甚至引发停电事故。
此外,谐波还会对通信系统造成干扰,影响通信质量。
三、功率谐波的治理方法针对功率谐波问题,可以采取多种治理方法,以下是一些常见的措施:1、优化电力设备设计在电力设备的设计阶段,充分考虑谐波的影响,采用合适的电路结构和控制策略,减少谐波的产生。
谐波治理方法
谐波治理方法
谐波治理的方法主要有以下几种:
1. 降低谐波源的产生:这是谐波治理的主要任务。
通过合理选择电力设备,尽可能选择低谐波的设备,可以降低谐波源的产生。
此外,采用谐波滤波器、有源滤波器等谐波抑制装置,可以将谐波源产生的谐波电流减少。
2. 优化负载结构:减少非线性负载的使用,也可以减少谐波的产生。
3. 增加滤波器:在可能产生谐波的设备或系统中增加滤波器,可以有效地滤除谐波,提高电源的品质。
4. 改善供电环境:通过改善供电环境,可以降低谐波对电力系统的影响。
例如,尽可能避免在电力系统附近使用大功率的电子设备,或者对电力系统进行隔离,以减少谐波的干扰。
5. 引入无功补偿装置:无功补偿装置可以对系统进行无功补偿,提高系统的功率因数,从而降低谐波对系统的影响。
以上是谐波治理的一些方法,根据不同的应用场景和实际情况,可以采取不同的方法进行治理。
目前常用的谐波治理的方法
目前常用的谐波治理的方法
首先,振动源消除法是通过改变设备的电气参数或结构参数,来抑制
或消除设备产生的谐波。
例如,通过改变幅值或相位,或者通过增加阻尼
来减少振动源产生的谐波。
其次,谐波滤波法是通过在电网中增加谐波滤波器来消除谐波。
谐波
滤波器通常由串联的电感和并联的电容组成,可以选择性地过滤掉特定频
率的谐波。
再次,变压器抗谐波处理法是通过在变压器的次级侧或高压侧增加谐
波处理设备,例如谐波滤波器或谐波消除器,来抑制或消除谐波。
另外,有源谐波抑制法是通过在电网中增加有源谐波抑制装置来消除
谐波。
有源谐波抑制装置可以根据实时的谐波电流信息,发出与谐波电流
相反相位的电流,从而相消谐波。
此外,谐波电流注入法是通过在电网中注入一个与谐波相同频率但反
相的电流,从而抵消谐波电流。
还有一种方法是谐波发生器消除法,即通过在电网上增加一个与谐波
相同频率但反相的谐波发生器,来抵消谐波。
最后,无功滤波器抑制法是通过在电网中增加无功滤波器来抑制谐波。
无功滤波器可以通过控制电流的幅值和相位来抑制谐波。
总结起来,目前常用的谐波治理方法包括振动源消除法、谐波滤波法、变压器抗谐波处理法、有源谐波抑制法、谐波电流注入法、谐波发生器消
除法以及无功滤波器抑制法等。
这些方法可以根据具体情况选择合适的方
法来抑制或消除谐波,以确保电网的稳定运行。
电压型谐波源治理
电压型谐波源治理电压型谐波源治理是一种重要的电力工程技术,用于减少电力系统中的谐波污染。
谐波是电力系统中普遍存在的一种电压或电流波动,它会对电力设备造成损坏,影响电力系统的稳定运行。
因此,对于谐波的治理是非常必要的。
电压型谐波源治理的方法有很多种,其中较为常见的包括:使用谐波滤波器、增加电容器、改变电源变压器等。
这些方法都是通过改变电压源的特性来减少谐波波动。
谐波滤波器是一种常用的谐波源治理设备,它可以通过滤波的方式减少谐波的干扰。
谐波滤波器可以根据谐波的频率进行选择,将谐波波动滤除,从而保证电力设备正常运行。
另一种常见的方法是增加电容器,这可以通过改变电路的电容来减少谐波污染。
电容器可以吸收谐波电流,从而减少谐波的影响。
这种方法特别适用于一些大型电力设备,如电动机等。
改变电源变压器也是一种有效的谐波源治理方法。
通过改变变压器的参数,如变比、电容等,可以减少谐波的干扰。
这种方法通常适用于一些小型电力设备。
需要注意的是,电压型谐波源治理需要根据实际情况选择合适的方法。
不同的电力设备对谐波的敏感程度不同,因此需要根据实际情况进行治理。
此外,还需要注意谐波源治理后的电力设备的运行情况,以确保电力系统的稳定运行。
电压型谐波源治理是一项重要的电力工程技术,可以有效减少电力系统中的谐波污染。
通过使用谐波滤波器、增加电容器、改变电源变压器等方法,可以有效降低谐波的影响,保证电力设备的正常运行。
电压型谐波源治理需要根据实际情况选择合适的方法,并注意谐波源治理后的电力设备的运行情况。
这些措施对于保障电力系统的稳定运行具有重要意义。
谐波的危害与治理
谐波的危害与治理谐波是电气设备运行中不可避免出现的问题之一,其危害主要体现在设备损坏、能耗增加和工作效率下降等方面。
为了有效治理谐波,可以采取多种措施,包括谐波过滤器的应用、降低非线性负载、改进供电系统等方法。
本文将详细描述谐波的危害及治理方法。
谐波是电流或电压波形中频率是基波频率整数倍的成分。
当电力系统中存在谐波时,会带来以下危害:1. 电力设备的损坏:谐波会引起电力设备的过热、电容器的老化、电动机转矩波动、继电器误动等问题。
长此以往,会导致设备寿命的缩短,增加维护成本。
2. 能源浪费:谐波会导致电能的损失和能耗的增加。
电网中谐波电流的存在会导致额外的功率损耗,增加用户电费开支。
3. 工作效率下降:谐波会导致电力系统的电流和电压波形失真,使电力设备的工作效率下降。
例如,电机的转矩波动会降低效率,造成额外的能源浪费。
针对谐波问题,可以采取以下治理措施:1. 谐波过滤器的应用:谐波过滤器是一种能够降低电力系统谐波水平的设备,其原理是通过控制谐波电流的流向和大小来达到滤波效果。
可以根据实际需要选择合适的谐波过滤器类型,如有源谐波过滤器、无源谐波过滤器等,并在关键位置进行安装和配置。
2. 降低非线性负载:非线性负载是谐波产生的主要原因之一,如电力电子器件、变频器等。
通过控制这些非线性负载的使用,例如合理选择负载电压和电流的容量、增加电感元件等措施,可以减少非线性负载引起的谐波。
3. 改进供电系统:对供电系统进行改进也是治理谐波的重要方法。
例如,加装谐波补偿设备,通过补偿谐波电流来降低谐波水平;重新设计电力系统的接地系统,减小系统电容;提高系统电压等方法都可以有效地改进供电系统,从而减少谐波。
4. 加强维护管理:定期对电力设备进行巡检和维护,及时处理设备异常情况,可以减少谐波对设备的损坏。
此外,还可以加强对设备的监测和数据分析,及时发现谐波问题的存在,采取相应措施进行处理。
综上所述,谐波的危害主要包括电力设备损坏、能耗增加和工作效率下降等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力谐波治理的几种方法目前常用的电力谐波治理的方法无外乎有三种,无源滤波、有源滤波、无功补偿。
下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。
6.1、无源谐波滤除装置无源滤波器的主要是用电抗器与电容器构成,无源滤波装置的成本较低,经济,简便,因此获得广泛应用。
无源滤波器可以分为并联滤波器与串联滤波器。
6.1.1、无源并联滤波器现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。
多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。
不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。
因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。
从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。
因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。
6.1.2、无源串联滤波器由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。
这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一个意思表示电感与电容串联,另一个意思表示串联在电路中使用。
在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。
串联滤波器对于谐振点频率的电流具有极低的阻抗,对于偏离谐振点频率的电流,则阻抗增大,偏离的越多,阻抗越大。
对于比谐振点频率高的电流成分,电感的阻抗为主,对于比谐振点频率低的电流成分,电容的阻抗为主。
由于谐波成分通常比基波频率高,因此滤除谐波的工作主要由电感完成,电容的作用是抵消电感对工频基波的阻抗。
由于滤除谐波的作用主要由电感完成,因此电感量越大滤除谐波的效果越好。
但是电感量越大则价格越高,损耗越大,因此从成本及损耗上去考虑问题则希望电感量越小越好。
当电感的基波感抗小于负荷等效基波阻抗的50%时,不能实现良好的滤波效果(负荷等效基波阻抗就是负荷相电压有效值与相电流有效值的比值)。
因此电感的基波感抗必须大于负荷等效基波阻抗的50%。
对于电容器的选择与电感的选择情况不同,电感的匝数可以随意设计,而电容器的耐压只有固定的若干等级,不能随意设计。
比如在低压配电系统中,就只有耐压230V与400V的电力电容器可供选择。
由于电容器串联在电路中,电容器中的电流即为负荷电流,当电容器的实际工作电压等于其额定电压时,电容器中流过的电流等于电容器的额定电流,电容器得到充分的利用,因此,当电容器的实际工作电压等于其额定电压时,电容器的成本最低。
实际的串联滤波器成本主要由电感与电容器的成本构成。
串联谐振的电感与电容对基波的阻抗相等并且电流相同,因此电感与电容的基波工作电压相同。
前面已经说明,当电容器的实际工作电压等于其额定电压时,电容器的成本最低,因此电感的实际工作电压应该等于电容器的额定电压。
电容器的额定电压等级大都与电网电压相当,如果电感的实际工作电压等于电容器的额定电压,相当于电感阻抗与负荷阻抗相当,可以取得最好的性能价格比。
在这个基础上,如果提高电感的感抗,虽然滤波效果可以提高但提高不多,电感的成本增加,电容器需要串联,成本急剧增加,性能价格比下降,因此电感的基波感抗大于负荷等效基波阻抗的200%没有实际意义,如果降低电感的感抗,则滤波效果下降,电感的成本降低,电容器的容量增加因此成本增加,性能价格比也下降。
为了获得足够的可靠性,电感与电容器的实际工作电压应略低于电容器的额定电压。
当谐波电流由外网窜入而影响内网负荷设备的正常运行时,在电源与负荷设备之间接入串联滤波器就可以阻挡谐波保证负荷设备的正常运行。
当谐波由内网设备产生而影响系统时,产生谐波的设备即为谐波源,在谐波源与电源之间接入串联滤波器就可以使谐波源产生的谐波电流大幅度减小。
这里需要注意:串联滤波器使谐波源自身产生的谐波电流减小,相当于使污染源产生的污染减小,是治本的手段。
而并联滤波器并不能减小谐波源产生的谐波,而是为谐波电流提供一个低阻抗的通道,避免谐波电流污染系统,相当于先污染再治理的方式,是治标的手段。
不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流。
当串联滤波器连接在电源与谐波源之间时,谐波源的输入电压波形会发生严重畸变,正时这种电压波形的畸变使得谐波源的电流接近正弦波。
这种输入电压波形畸变可能会影响谐波源控制电路的正常运行,如果出现控制电路不能正常运行的情况,应该将控制电路的电源改接至串联滤波器的前端。
6.2、有源谐波滤除装置有源谐波滤除装置是在无源滤波装置的基础上发展起来的。
6.2.1、有源滤波装置的优点有源滤波装置能做到适时补偿,且不增加电网的容性元件,滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。
6.2.2、有源滤波装置的缺点有源滤波装置由于受到电力电子元件耐压,额定电流的发展限制,瞬间电流有时极大,有源滤波装置解决不了瞬间电流稍大电器电子元件就坏问题,且成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。
对单台的有源滤波装置而言,成本极高,用户接受不了,一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以了。
6.2.3、有源滤波装置的原理有源滤波装置主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。
6.2.4、有源滤波装置的适用场合有源滤波器主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。
6.3、无功补偿人们对有功功率的理解非常容易,而要深刻认识无功功率却并不是轻而易举的。
在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无获得公认的无功功率定义。
但是,对无功功率这一概念的重要性,对无功补偿重要性的认识,却是一致的。
无功补偿应包含对基波无功功率补偿和对谐波无功功率的补偿。
6.3.1、谐波和无功功率的产生在工业和生活用电负载中,阻感负载占有很大的比例。
异步电动机、变压器、荧光灯等都是典型的阻感负载。
异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。
电力系统中的电抗器和架空线等也消耗一些无功功率。
阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。
电力电子装置等非线性装置也要消耗无功功率,特别是各种相控装置。
如相控整流器、相控交流功率调整电路和周波变流器,在工作时基波电流滞后于电网电压,要消耗大量的无功功率。
另外,这些装置也会产生大量的谐波电流,谐波源都是要消耗无功功率的。
二极管整流电路的基波电流相位和电网电压相位大致相同,所以基本不消耗基波无功功率。
但是它也产生大量的谐波电流,因此也消耗一定的无功功率。
近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。
在各种电力电子装置中,整流装置所占的比例最大。
目前,常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。
带阻感负载的整流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。
直流侧采用电容滤波的二极管整流电路也是严惩的谐波污染源。
这种电路输入电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。
但其输入电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。
另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输入侧产生大量的谐波电流。
6.3.2、无功补偿概述无功功率对供电系统和负荷的运行都是十分重要的。
电力系统网络元件的阻抗主要是电感性的。
因此,粗略地说,为了输送有功功率,就要求送电端和受电端的电压有一相位差,这在相当宽的范围内可以实现;而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。
不仅大多数网络元件消耗无功功率,大多数负载也需要消耗无功功率。
网络元件和负载所需要的无功功率必须从网络中某个地方获得。
显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。
合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。
6.3.3、无功功率的影响 6.3.3.1、无功功率的增加,会导致电流增大和视在功率增加,从而使发电机、变压器及其他电气设备容量和导线容量增加。
同时,电力用户的起动及控制设备、测量仪表的尺寸和规格也要加大。
6.3.3.2、无功功率的增加,使总电流增大,因而使设备及线路的损耗增加,这是显而易见的。
6.3.3.3、使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。
6.3.4、无功补偿的作用无功补偿的作用主要有以下几点:6.3.4.1、提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。
6.3.4.2、稳定受电端及电网的电压,提高供电质量。
在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输电系统的稳定性,提高输电能力。
6.3.4.3、在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。