电力电缆截面选择

合集下载

电线及电缆截面的选择及计算

电线及电缆截面的选择及计算

低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过。

本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。

1低压导线截面的选择选择低压导线可用下式简单计算:S=PL/CΔU%(1)式中P——有功功率,kW;L——输送距离,m;C——电压损失系数。

系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V供电时,铜导线为14,铝导线为。

(1)确定ΔU%的建议。

根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。

即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。

就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。

因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。

(2)确定ΔU%的计算公式。

根据电压偏差计算公式,Δδ%=(U2-U n)/U n×100,可改写为:Δδ=(U1-ΔU-U n)/U n,整理后得:ΔU=U1-U n-Δδ.U n(2)对于三相四线制用(2)式:ΔU=400-380-(-×380)=,所以ΔU%=ΔU/U1×100=400×100=;对于单相220V,ΔU=230-220-(-×220)=32V,所以ΔU%=ΔU/U1×100=32/230×100=。

低压导线截面计算公式三相四线制:导线为铜线时,S st=PL/85×=×10-3mm2(3)导线为铝线时,S sl=PL/50×=×10-3mm2(4)对于单相220V:导线为铜线时,S dt=PL/14×=×10-3mm2(5)导线为铝线时,S dl=PL/×=×10-3mm2(6)式中下角标s、d、t、l分别表示三相、单相、铜、铝。

导线截面积的选择和电缆的铺设方法

导线截面积的选择和电缆的铺设方法

导线截面积的选择和电缆的铺设方法一导线截面积的选择输电线路导线截面积的选择对电网的技术经济性能有很大的影响,导线截面的选择首先满足最基本的技术要求,如不发生电晕,保证一定的机械强度,满足热稳定条件,电压损耗不超过容许值。

其次,还要考虑经济方面的问题,如截面的选择不应使功率损失过大,不应使投资过大以及降低有色金属的消耗等等。

因而导线截面积的选择不是一个孤立的问题,需要在设计时从各个方面去综合考虑,通过方案比较找出最优的方案。

1.1导线截面选择的技术条件选择导线的技术条件是指电晕放电,机械强度,发热温度及容许电压损耗等条件。

高压输电线路产生的电晕会引起电能损耗和无线电干扰,为了避免电晕的发生,导线的外径不能过小,根据理论分析及试验所得的结果,各级电压下的按电晕条件所规定的导线最小外径如下表所示:架空线路的导线在运行时要承受各种机械负载,如导线的自重,风压,冰重等,此外,还要有具有适应外界偶然负载的过载能力,这就要求导线截面不能过小,否则就难以保证应有的机械强度。

架空线路根据其重要程度一般可分为三个等级,通常35KV以上线路为I类线路,1~35KV 为II类线路,1KV以下为III类线路。

电流通过到现实,在导线上的电阻会缠身有功功率损耗,导线的有功功率损耗将转换为热能使导线的温度上升。

当损耗的热能与周围发散的热能相等时,温升达到稳定值。

在一定的容许条件下,各种型号的导线容许通过的电流时不同的。

总所周知,当线路上输送的功率一定时,导线截面积小则线路的电阻,电抗愈大,从而线路的电压损耗也愈大,电压损耗过大会给调压带来困难。

为了保证电压损耗在容许范围之内,通常可按容许电压损耗选择导线截面,这一点对地方电网尤为重要。

1.2导线截面积选择的经济条件为了节约投资降低线路的造价及折旧维修费用,导线截面应愈小愈好。

但当导线截面愈小时,在输送功率相同的条件下又会使电能损耗增大,从而增加发电厂的投资,燃料消耗以及整个系统的运行费用支出。

导线截面选择

导线截面选择

从配电变压器到用电负荷的线路有架空线路和电缆线路两种形式。

无论室内或室外的配电导线及电缆截面的选择方法是一样的。

10.3.1选择导线截面的原则:1.电力电缆缆芯截面选择的基本要求:(1)最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。

(2)最大短路电流作用时间产生的热效应,应满足热稳定条件。

(3)连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。

(4)较长距离的大电流回路或35kV以上高压电缆,当符合上述条件时,宜选择经济截面,可按“年费用支出最小”原则。

(5)铝芯电缆截面,不宜小于4mm2。

(6)水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。

导线截面的选择应同时满足机械强度、工作电流和允许电压降的要求。

其中导线承受最低的机械强度的要求是指诸如导线的自重、风、雪、冰封等而不致于断线;导线应能满足负载长时间通过正常工作最大电流的需要;及导线上的电压降应不超过规定的允许电压降。

一般公用电网电压降不得超过额定电压的5%。

电力电缆为何发生电压降,什么场合考虑电压降?电力电缆电压降是一个非常重要的问题不可忽视,在购买时一定要考虑压降问题,否则有可能发生不能正常启动现象。

发生这种现象我想大家都不想看到,既然都不想看到这种事情发生,在购买时考虑降压是必要的。

1.电力线路为何会产生“电压降”?英语中,“Voltage drop”就是电压降,“drop”是“往下拉”的意思。

电力线路的电压降是因为导体存在电阻。

正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的5%时一般是不会对线路的电力驱动产生后果的。

例如380V的线路,如果电压降为19V,也即电路电压不低于361V,就不会有很大的问题。

当然我们是希望这种压力降越小越好。

因为压力间本身是一种电力损耗,虽然是不可避免,但我们总希望压力降是处于一个可接受的范围内。

2.在哪些场合需要考虑电压降?一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。

电线截面选择

电线截面选择

一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。

一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。

<关键点>如:2.5mm2BVV铜导线安全载流量的推荐值2.5×8A/mm2=20A、4mm2BVV 铜导线安全载流量的推荐值4×8A/mm2=32A二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=<I/(5~8)>=0.125I~0.2I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A)三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种是电阻性负载,一种是电感性负载。

对于电阻性负载的计算公式:P=UI对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。

不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。

也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220×0.8=34(A)但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。

所以,上面的计算应该改写成I=P×公用系数/Ucosф=6000×0.5/220×0.8=17(A)也就是说,这个家庭总的电流值为17A。

则总闸空气开关不能使用16A,应该用大于17A的。

估算口诀:二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。

由表53可以看出:倍数随截面的增大而减小。

电力电缆的选择

电力电缆的选择

电力电缆的选择电力电缆的选择包括:正确选择电缆的型号、电压等级和线芯截面等。

这对电缆投入使用后能否确保安全运行十分重要。

一、电缆的型号及电压等级的选择电力电缆的额定电压必须大于或等于其运行的网络额定电压;电缆的最高运行电压不得超过其额定电压的15%。

这就是电力电缆电压等级选择的两个原则。

对电缆型号的选择,应在满足电缆敷设场合技术要求的前提下,兼顾我国电缆工业发展的技术政策。

即:线芯以铝代铜、绝缘层以橡塑代油浸纸、金属护套以铝代铅以及在外护层上发展橡塑护套或组合护套等。

综合以上诸多因素,电力电缆选择的一般原则如下。

(1)对有剧烈震动的柴油机房、空压机房、锻工车间等处以及移动机械的供电,应选用铜芯电缆;对其他地点应首先考虑选用铝芯电缆。

(2)地下直埋电缆,一般应选用裸塑料护套电缆,当电缆需要穿过铁路、公路,跨越桥梁、隧道等有可能受到机械损伤的处所时,应选用具有钢带铠装的电缆,必要处还应采取穿管等防护措施。

(3)在大型调度中心、通信中心、微机站等重要部门室内、夹层或易燃易爆场所敷设的电力电缆,应选用难燃或阻燃电缆。

(4)在电缆线路不可避免地要穿过具有化学腐蚀、直流泄漏区域时,应选用塑料电缆或具有裸塑料护套的电缆。

(5)在需要承受拉力的沼泽地带、水中或竖直敷设的电缆,应选用整根的、能承受拉力的钢丝铠装电缆。

但通过小溪流时,可选用一般具有铠装及外护层的电缆。

(6)当整个电缆线路在其周围具有几种完全不同的介质条件时,电缆的型号应按其中最不利的条件选择。

二、电缆截面的选择电力电缆的截面,一般是按长期允许载流量选择电缆截面,然后对3kV以下的低压电缆校验其电压降,对3kV及以上的电缆校验其短路时的热稳定度。

对于较长的高压电缆供电线路,应按经济电流密度选择电缆截面。

1.根据电缆长期允许载流量选择电缆截面为了保证电缆的使用寿命,运行中的电缆导体温度不应超过其规定的长期允许工作温度。

根据这一原则,在选择电缆截面时,必须满足下列条件:式中Imax——通过电缆的最大持续负荷电流;I——指定条件下的长期允许载流量,见表1-4-9~表1-4-13;K——电缆长期允许载流量的总修正系数。

电缆截面选择计算书

电缆截面选择计算书

电缆截面选择计算书电缆截面选择计算书是电力工程中一项非常重要的计算任务,其基本目的是确定电缆所需的最佳截面积,以确保电缆安全可靠地传输所需的电能。

这项计算任务需要综合考虑电气负荷、传输距离、电压水平以及其它多种参数因素,因此需要进行比较精确的计算和分析。

本文将为读者介绍电缆截面选择计算书的基本概念、计算原理、应用范围及实际应用过程中需要注意的事项等方面的内容。

一、电缆截面选择计算书的基本概念电缆截面选择计算书通常是工程师或技术人员编制的针对具体电力工程项目的计算方案。

这个计算方案中包括了电缆所应承担的最大电流负荷,电缆的电学特性,电缆长度,电气系统的工作电压及功率因数等多个参数。

通过对这些参数进行详细分析和计算,能够得出针对该工程项目的最佳电缆截面配置方案。

针对电缆的截面选择计算工作,核心的计算公式主要包括:$$I_{th}=\frac{K\cdot n\cdot\eta}{D}\left(\frac{T_{ambient}+T_{cable}}{2}\right)^{\alpha}$$ $$S = \frac{\sqrt{3}K_2R_{con}}{\Delta U}$$其中$I_{th}$是电缆的最大允许电流负荷;$K$是电缆绝缘材料的物理常数;$n$是电缆绕组数目;$\eta$是电缆的绕组功率因数;$D$是电缆直径;$T_{ambient}$是环境温度;$T_{cable}$是电缆温度;$\alpha$是温度系数;$S$是电缆的最小截面面积;$K_2$是工程常数;$R_{con}$是电缆的电阻;$\Delta U$是电缆运行的电压降。

二、电缆截面选择计算书的应用范围电缆截面选择计算书主要适用于各种电力工程项目中需要采用电缆进行电力传输的情况。

比如,电缆在楼宇、电站、电力建设工程中应用广泛。

工程师可以根据这些电力工程项目需要,编制出不同的电缆截面选择计算书。

如果在电缆截面选择计算书应用过程中遇到问题,可以结合具体情况参考电缆生产厂家提供的技术手册,进一步明确计算过程,达到更加准确的结果。

电力电缆截面

电力电缆截面

3. 7 电力电缆截面3. 7. 1 电力电缆导体截面的选择,应符合下列规定:1 最大工作电流作用下的电缆导体温度,不得超过电缆使用寿命的允许值。

持续工作回路的电缆导体工作温度,应符合本规范附录A的规定。

2 最大短路电流和短路时间作用下的电缆导体温度,应符合本规范附录A的规定。

3 最大工作电流作用下连接回路的电压降,不得超过该回路允许值。

4 10kV及以下电力电缆截面除应符合上述1~3款的要求外,尚宜按电缆的初始投资与使用寿命期间的运行费用综合经济的原则选择。

10kV及以下电力电缆经济电流截面选用方法宜符合本规范附录B的规定。

5 多芯电力电缆导体最小截面,铜导体不宜小于2.5mm2,铝导体不宜小于4mm2。

6 敷设于水下的电缆,当需要导体承受拉力且较合理时,可按抗拉要求选择截面。

3. 7. 2 10kV及以下常用电缆按100%持续工作电流确定电缆导体允许最小截面,宜符合本规范附录C和附录D的规定,其载流量按照下列使用条件差异影响计入校正系数后的实际允许值应大于回路的工作电流。

1 环境温度差异。

2 直埋敷设时土壤热阻系数差异。

3 电缆多根并列的影响。

4 户外架空敷设无遮阳时的日照影响。

3. 7. 3 除本规范第3.7.2条规定的情况外,电缆按100%持续工作电流确定电缆导体允许最小截面时,应经计算或测试验证,计算内容或参数选择应符合下列规定:1 含有高次谐波负荷的供电回路电缆或中频负荷回路使用的非同轴电缆,应计入集肤效应和邻近效应增大等附加发热的影响。

2 交叉互联接地的单芯高压电缆,单元系统中三个区段不等长时,应计入金属层的附加损耗发热的影响。

3 敷设于保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。

4 敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。

5 施加在电缆上的防火涂料、包带等覆盖层厚度大于1.5mm时,应计入其热阻影响。

输电导线截面的选择

输电导线截面的选择

输电导线截面的选择1.1 为了保证供电安全,可靠,经济合理和供电质量的要求,必须正确合理地选择输电导线的型号和截面。

根据所处的电压等级和使用环境要按以下原则确定:1.1.1.按长时允许电流选择导线的截面1.1.2.按允许电压损失选择导线的截面1.1.3.按经济电流密度选择导线的截面1.1.4.按机械强度选择导线的截面1.1.5.按短路时的热稳定条件选择导线的截面1.2 各种导线截面的选择条件1.2.1.高压架空导线因受自然条件的影响很大,机械强度必须满足要求,但散热条件好,允许温度高,可根据线路的长短和通过电流的大小,按允许电压损失和长时允许电流来选择。

1.2.2.高压电缆机械强度较高,但散热条件差,所以必须考虑短路时的热稳定性。

1.2.3.低压导线和电缆,对负荷电流大,线路长的干线,应按正常时的允许电压损失初选其截面。

对经常移动的橡套电缆,应按机械强度初选。

对负荷电流较大,但线路较短的按长时允许电流初选。

初选的电缆截面还应按其它条件校验。

总之,在选择导线时,应在诸多的选择条件中,确定一个有可能选择出最大截面的条件首先进行初选,再按其它条件校验,这样可使计算简便,避免返工。

由于计算导线截面载流量需要条件较多,算起来比较麻烦,在实际工作中很不实用,在要求不太高的场合,一般用图表法就能满足。

使用图表法需要注意系数的调整。

以下是在工作中采集常用的一些数据,供参考使用。

2.1 长时允许电流选择导线的截面2.1.1.导线的长时允许电流应不小于实际流过导线的最大长时工作电流。

架空裸绞线载流量环境温度变化时载流量的校正系数注:一般导线载流量都是按25度,要根据环境温度具体调整交联聚乙烯绝缘电缆最高允许工作温度90度环境温度25度矿用橡套软电缆载流量3.1 线路电压损失选择导线的截面送配电线路设计规程规定:电力网络中电压损失允许值,高压配电线路5﹪,低压配电线路4﹪。

380V架空线路单位负荷矩时电压损失百分数﹪/KW-KM导线型号功率因数0.7 0.75 0.8 0.85 0.9 0.96 1.0LJ-16 1.624 1.59 1.56 1.532 1.49 1.45 1.3725 1.13 1.097 1.064 1.034 1.0 0.965 0.88735 0.875 0.833 0.812 0.781 0.75 0.731 0.63750 0.671 0.64 0.611 0.582 0.551 0.517 0.44370 0.539 0.509 0.48 0.452 0.424 0.39 0.31895 0.45 0.42 0.392 0.365 0.337 0.304 0.235120 0.396 0.367 0.34 0.314 0.286 0.254 0.183150 0.349 0.321 0.295 0.269 0.242 0.211 0.145185 0.316 0.289 0.264 0.238 0.212 0.182 0.118 6KV架空线路单位负荷矩时电压损失百分数﹪/KW-KM导线型号功率因数0.8 0.85 0.9 0.95 0.98 1.00LJ-16 6.30 6.16 6.01 5.85 5.71 5.5025 4.35 4.21 4.07 3.90 3.77 3.5635 3.35 3.21 3.07 2.90 2.77 2.5650 2.57 2.43 2.29 2.13 1.99 1.7870 2.07 1.93 1.79 1.63 1.49 1.2695 1.74 1.60 1.46 1.29 1.16 0.95120 1.54 1.41 1.26 1.10 0.97 0.75150 1.38 1.24 1.10 0.93 0.80 0.58185 1.26 1.15 0.98 0.82 0.69 0.47 10KV架空线路单位负荷矩时电压损失百分数﹪/KW-KM导线型号功率因数0.8 0.85 0.9 0.95 0.98 1.0LJ-16 2.265 2.216 2.164 2.105 2.057 1.984 25 1.565 1.516 1.464 1.405 1.357 1.256 35 1.205 1.158 1.104 1.045 0.997 0.923 50 0.925 0.876 0.824 0.765 0.717 0.645 70 0.745 0.696 0.644 0.585 0.537 0.452120 0.556 0.506 0.454 0.395 0.347 0.276150 0.495 0.446 0.394 0.335 0.287 0.215185 0.455 0.406 0.354 0.295 0.247 0.178240 0.417 0.368 0.316 0.257 0.209 0.132110KV三相架空线路单位负荷矩时电压损失百分数(%/100MW·km)660V铜芯橡套软电缆每KW/KM负荷矩的电压损失﹪电缆芯线温度为65度380V铜芯橡套软电缆每KW/KM负荷矩的电压损失﹪功率因数电4 6 缆10截16 25面35 50积700.6 3.908 2.643 1.58 1.032 0.679 0.504 0.385 0.290.65 3.891 2.633 1.571 1.022 0.67 0.495 0.377 0.2820.7 3.88 2.623 1.561 1.013 0.661 0.486 0.368 0.2740.75 3.871 2.614 1.552 1.004 0.652 0.478 0.359 0.2660.8 3.862 2.605 1.544 0.996 0.644 0.47 0.353 0.2590.85 3.852 2.596 1.535 0.988 0.636 0.463 0.345 0.2510.9 3.843 2.587 1.527 0.979 0.628 0.455 0.337 0.245电缆芯线温度为65度660V铠装电缆每KW/KM负荷矩的电压损失﹪电缆芯线温度为65度380V铠装电缆每KW/KM负荷矩的电压损失﹪电缆芯线温度为65度4。

电缆截面选择规则

电缆截面选择规则

电缆、电线等截面选择的原则:电缆、电线等截面选择,应考虑的因素很多,如多根在空中并列敷设,直埋地下并列敷设,穿管敷设、架空敷设,环境温度变化等,都对它们的允许载流量有影响,但主要的应遵循经济电流密度,线路电压降,导线机械强度等原则选取导线。

1)经济电流密度原则电缆、电线的额定长期连续负荷允许载流量不应小于用电负荷的最大计算电流,能保证其工作在允许温升范围之内,如果电缆、电线的截面选小了,允许载流量小于负荷电流,温升将超过允许值,加速绝缘老化,使线间绝缘程度降低,威胁用电安全;反之电缆、电线的截面选大了,将加大工程成本,造成材料资金的浪费。

①首先确定计算容量单相负荷主要指照明和单相用电设备,计算容量是把所有额定容量加在一起乘以同时使用系数Ke,一般可取0.6Pj=P总*Ke单相负荷采用三相电源供电时,应将所有单相符合均匀分配到各相,如分配不平衡时,以最大负荷相功率乘以3进行计算。

长期工作设备,如水泵等,其计算容量包所有额定容量加在一起乘以同时使用系数Ke,一般可取0.7Pj=P总*Ke反复时工作制设备,如焊机等,其视在容量Se和负荷持续率Zce。

计算容量时应进行换算,换算至负荷持续率为100%时的有功功率,在乘以利用系数Ke,一般可取0.45,功率因数COSφ;一般取0.45。

(Pj/ Se总*COSφ*Ke)2= Zce②在确定计算电流单相电流计算:I=P/Ue* COSφ式中Ue为额定电压,考虑各方面因素,单相负荷每千瓦估算为4.5A。

三相电流计算:I=P/3Ue* COSφ式中Ue为线电压,考虑各方面因素,三相负荷每千瓦估算为2A。

③确定导线截面按照计算电流敷设方式和使用条件查“500V铜芯绝缘导线长期连续符合允许载流量表”,“500V铝芯绝缘导线长期连续符合允许载流量表”等表确定电缆电线截面。

2)线路电压原则电压计算公式:ΔU=Ue-Ui式中Ue为额定电压,Ui为设备端电压线路电压降原则选择电缆电线截面积公式:S=Pj*L/C*ΔU%式中S导线截面,单位mm2;Pj为计算容量,单位kW; L为线路长度,单位m;C为材料内部系数,铜取77,铝取46.3;ΔU%为电压损耗百分比,一般取5%。

导线和电缆截面的选择

导线和电缆截面的选择
详细描述
在特殊环境(如高温、低温、强磁场、腐蚀性环境等)中,用电线路截面的选择需要考 虑特殊环境的特殊要求,如耐高温、耐低温、抗电磁干扰、耐腐蚀等性能,以确保线路
的正常运行和安全性。
06
总结与展望
导线电缆截面选择的重要性
1 2 3
确保电力传输的稳定性和可靠性
合适的导线电缆截面能够保证电流的稳定传输, 降低线路损耗,避免过载和短路等故障。
节约能源和资源
选择合适的导线电缆截面可以减少能源的浪费, 同时也有助于减少对原材料的依赖,促进可持续 发展。
提高经济效益
合理的导线电缆截面选择可以降低线路建设和维 护成本,提高电力系统的整体经济效益。
未来发展趋势和研究方向
新型材料的应用
随着科技的发展,新型导电材料如碳纤维、石墨烯等将逐 渐应用于导线电缆的生产,提高导线的导电性能和机械强 度。
智能化和数字化技术的应用
未来导线电缆截面的选择将更加依赖于智能化和数字化技 术,如通过大数据和人工智能技术对导线电缆的性能进行 预测和优化。
环境友好型设计
随着环保意识的提高,导线电缆的设计将更加注重环保和 可持续发展,如采用可回收材料、降低线路损耗等措施。
THANKS
感谢观看
导线和电缆截面的选择
• 引言 • 导线和电缆的基本知识 • 导线和电缆截面的选择原则 • 导线和电缆截面选择的计算方法 • 实际应用案例分析 • 总结与展望
01
引言
主题简介
01
导线和电缆截面选择是一个涉及 电气工程的重要问题,它关乎到 电力传输的效率、安全和经济性 。
02
导线和电缆截面的大小决定了电 流传输的能力,选择合适的截面 是确保电气系统正常运行的关键 。

电力电缆截面的选择

电力电缆截面的选择

电力电缆截面的选择电力电缆截面1 电力电缆缆芯截面选择的基本要求。

1.1 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。

持续工作回路的缆芯工作温度,应符合附录A的规定。

1.2 最大短路电流作用时间产生的热效应,应满足热稳定条件。

对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。

1.3 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。

1.4 较长距离的大电流回路或35kV以上高压电缆,当符合上述条款时,宜选择经济截面,可按“年费用支出最小”原则。

1.5 铝芯电缆截面,不宜小于4。

1.6 水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。

2 对10kV及以下常用电缆按持续工作电流确定允许最小缆芯截面时,宜满足附录B电缆允许持续载流量(建议性基础值)、以及由附录C按下列使用条件差异影响计入校正系数所确定的允许载流量。

(1)环境温度差异。

(2)直埋敷设时土壤热阻系数差异。

(3)电缆多根并列的影响。

(4)户外架空敷设无遮阳时的日照影响。

3 不属于本规范第2条规定的其他情况下,电缆按持续工作电流确定允许最小缆芯截面时,应经计算或测试验证,且计算内容或参数选择应符合下列规定:(1)中频供电回路使用非同轴电缆,应计入非工频情况下集肤效应和邻近效应增大损耗发热的影响。

(2)单芯高压电缆以交叉互联接地当单元系统中三个区段不等长时,应计入金属护层的附加损耗发热影响。

(3)敷设于塑料保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。

(4)敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。

(5)施加在电缆上的防火涂料、包带等覆盖层厚度大于1.50mm时,应计入其热阻影响。

(6)沟内电缆埋砂且无经常性水份补充时,应按砂质情况选取大于2.0℃·m/W 的热阻系数计入对电缆热阻增大的影响。

电缆截面选用

电缆截面选用

电缆截面选用
摘要:
1.电缆截面的概念
2.电缆截面的选用原则
3.电缆截面的计算方法
4.电缆截面的选择对电力系统的影响
5.结论
正文:
一、电缆截面的概念
电缆截面是指电缆在垂直于轴线的平面上的面积,通常用平方毫米(mm)表示。

电缆截面是电缆的一个重要参数,直接影响电缆的性能和应用范围。

二、电缆截面的选用原则
1.满足负载电流需求:电缆截面的选用应满足电力系统正常运行时负载电流的需求,以保证电缆在正常运行时不会因为电流过大而产生过热现象。

2.考虑线路长度:电缆截面的选用应考虑线路长度,长距离传输时,由于线路电阻和电感的影响,电缆截面应适当加大以降低线损。

3.考虑环境温度:环境温度对电缆的载流量有影响,温度较高时,电缆截面应适当加大以提高电缆的散热能力。

4.考虑电缆敷设方式:电缆敷设方式不同,对电缆截面的要求也不同。

如直埋敷设和架空敷设的电缆,由于散热条件不同,电缆截面应作相应调整。

三、电缆截面的计算方法
1.根据负载电流和线路长度,查表或计算得出电缆截面。

2.参照设计规范和标准,结合工程实际情况,进行电缆截面的选择。

四、电缆截面的选择对电力系统的影响
1.电缆截面过大,会增加电缆的成本和线路的敷设难度,同时可能造成铜资源的浪费。

2.电缆截面过小,会导致电缆过热、线损增大、降低电缆的使用寿命,甚至可能引发火灾等安全隐患。

电缆截面选用

电缆截面选用

电缆截面选用摘要:一、电缆截面的概念与重要性1.电缆截面的定义2.电缆截面对系统性能的影响二、电缆截面的选用原则1.电流负荷能力2.散热性能3.安装环境与敷设方式4.成本与可靠性三、电缆截面的选择实例分析1.低压电缆截面选择2.中压电缆截面选择3.高压电缆截面选择四、我国电缆截面选用的相关规定与标准1.电缆截面选用的国家标准2.电缆截面选用与验收的注意事项正文:一、电缆截面的概念与重要性电缆截面,是指电缆导体的横截面积。

在电力系统中,电缆截面的选用对于保证电力系统的安全、稳定运行具有至关重要的作用。

合适的电缆截面可以降低线损、提高系统运行效率,同时还能保证电缆的使用寿命与安全性能。

二、电缆截面的选用原则1.电流负荷能力:电缆截面应根据所承受的电流负荷来选择,以保证电缆在正常运行时不会过载。

过载会使电缆温度升高,影响电缆的使用寿命与安全性能。

2.散热性能:电缆截面应考虑散热性能,以降低线损。

对于电流较大的电缆,选用较大截面的导体有利于散热,从而减少线损。

3.安装环境与敷设方式:电缆截面的选择应考虑安装环境与敷设方式,如直埋、架空、隧道等。

不同的敷设方式对电缆的散热条件、抗拉强度等要求不同,因此需要选用合适的电缆截面。

4.成本与可靠性:在满足前述性能要求的前提下,应尽量选择成本较低、可靠性较高的电缆截面。

三、电缆截面的选择实例分析1.低压电缆截面选择:低压电缆主要用于配电系统,其截面选择应根据用电设备的功率、电流以及敷设方式等因素确定。

一般可参照相关设计规范或采用经验公式进行计算。

2.中压电缆截面选择:中压电缆主要用于城市配电网、工矿企业等领域,其截面选择需综合考虑电流负荷、敷设方式、线路长度等因素,以确保系统运行的安全与稳定。

3.高压电缆截面选择:高压电缆主要用于长距离输电,其截面选择需要充分考虑线路条件、输电容量、系统稳定性等因素,以确保输电过程的安全、高效。

四、我国电缆截面选用的相关规定与标准1.电缆截面选用的国家标准:我国在电缆截面选用方面有严格的标准规定,如GB/T 12706.1-2008《额定电压1kV~35kV 交联聚乙烯绝缘电力电缆》等。

电缆截面的选择方法及计算示例

电缆截面的选择方法及计算示例

电缆截面的选择方法及计算示例1按长期允许载流量选择电缆截面为了保证电缆的使用寿命,运行中的导体电缆温度应不超过规定的长期允许工作温度:聚氯乙烯绝缘电缆为70C,交联聚乙烯绝缘电缆为90C。

根据这一原则,在选择电缆截面时,必须满足下列条件:I max W I 0 K式中:I max ---------- 通过的最大连续负荷载流量(A);I o ――指定条件下的长期允许载流量(A),见附表1;K ――长期允许载流量修正系数,见附表2.举例:某工厂主变压器容量S为12000KVA若以直埋35KV交联电缆供电,试问应选择多大电缆截面(土壤温度最高30C,土壤热阻系数)解:按下列计算电缆线路应通过的电流值I= S = 12000 =198 (A) v3U <3 35查附表1-12得:铜芯交联电缆10KV3X 95mm,最大连续负荷载流量为220A 25C。

由于敷设土壤温度最高为30C,应进行温度修正。

查附表2-2得修正系数为.1修=220 (A)X =211 (A)通过土壤温度的修正后该电缆的连续负荷载流量虽只有211 (A),仍能满足电缆线路198 (A)的要求。

2按经济电流密度选择电缆截面国际电工委员会标准IEC287-3-2/1995提出了电缆尺寸即导体截面经济最佳化的观点:电缆导体截面的选择,不仅要考虑电缆线路的初始成本,而且要同时考虑电缆在寿命期间的电能损耗成本。

因此要从经济电流密度来选择电缆截面。

(1)经济电流密度计算式:j_ f A= ,F 20 B [1+ 20( m 20)] 1000(2)电缆经济电流截面计算式:S j=I ma J式中:J――经济电流密度(A/mm );S j ――经济电流截面(mm );B= (1+Yp+YS (1+入i+入2),可取平均值;P 20 ------------------ 20°C时电缆导体电阻率mr l/m)铜芯为x 10-9,,铝芯为31 x 10-9,计算时可分别取和31。

电缆截面的计算

电缆截面的计算

1、电缆截面选择电力电缆平均每公里、每平方毫米的电阻为18欧姆,电力电缆上的电压降不得超过5%,即不得超过10V。

可根据公式:10≥(P/U)*2*18*L/S其中:S表示电力电缆的横截面积,P表示外场子设备的功率,U表示电压,L表示距离。

2、设备用电估算根据国家电缆生产标准,电缆的电阻率应为:18Ω/Km·mm2。

使用VV22-2×Xmm2电缆Km回路阻抗为:2×18/X设备的动态功耗为YW,工作电流为Y/220本设计中车辆监测器距收费站最远距离为ZKm,因此设备回路压降为:(Y/220)×Z×(2×18/X )回路压降小于5%,满足设备使用要求3、工程上常用的估算公式:KW×距离/360=截面积电工必须要掌握的----电缆截面估算#1先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。

电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。

一般有公式可供计算。

由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。

2.口诀低压380/220伏系统每千瓦的电流,安。

千瓦、电流,如何计算?电力加倍,电热加半。

①单相千瓦,4.5安。

②单相380,电流两安半。

③3.说明口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数。

对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。

①这两句口诀中,电力专指电动机。

在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。

这电流也称电动机的额定电流。

【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。

【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。

电热是指用电阻加热的电阻炉等。

三相380伏的电热设备,每千瓦的电流为1.5安。

电力电缆截面选择

电力电缆截面选择

电力电缆截面的选择电力电缆截面1 电力电缆缆芯截面选择的基本要求。

1.1 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。

持续工作回路的缆芯工作温度,应符合附录A的规定。

1.2 最大短路电流作用时间产生的热效应,应满足热稳定条件。

对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。

1.3 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。

1.4 较长距离的大电流回路或35kV以上高压电缆,当符合上述条款时,宜选择经济截面,可按“年费用支出最小”原则。

1.5 铝芯电缆截面,不宜小于4。

1.6 水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。

2 对10kV及以下常用电缆按持续工作电流确定允许最小缆芯截面时,宜满足附录B电缆允许持续载流量(建议性基础值)、以及由附录C按下列使用条件差异影响计入校正系数所确定的允许载流量。

(1)环境温度差异。

(2)直埋敷设时土壤热阻系数差异。

(3)电缆多根并列的影响。

(4)户外架空敷设无遮阳时的日照影响。

3 不属于本规范第2条规定的其他情况下,电缆按持续工作电流确定允许最小缆芯截面时,应经计算或测试验证,且计算内容或参数选择应符合下列规定:(1)中频供电回路使用非同轴电缆,应计入非工频情况下集肤效应和邻近效应增大损耗发热的影响。

(2)单芯高压电缆以交叉互联接地当单元系统中三个区段不等长时,应计入金属护层的附加损耗发热影响。

(3)敷设于塑料保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。

(4)敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。

(5)施加在电缆上的防火涂料、包带等覆盖层厚度大于1.50mm时,应计入其热阻影响。

(6)沟内电缆埋砂且无经常性水份补充时,应按砂质情况选取大于2.0℃·m/W 的热阻系数计入对电缆热阻增大的影响。

电力电缆截面

电力电缆截面

电力电缆截面3. 7电力电缆截面3. 7. 1电力电缆导体截面的选择,应符合下列规定:1最大工作电流作用下的电缆导体温度,不得超过电缆使用寿命的允许值。

持续工作回路的电缆导体工作温度,应符合本规范附录A的规定。

2最大短路电流和短路时间作用下的电缆导体温度,应符合本规范附录A的规定。

3最大工作电流作用下连接回路的电压降,不得超过该回路允许值。

4 10kV及以下电力电缆截面除应符合上述1〜3 款的要求外,尚宜按电缆的初始投资与使用寿命期间的运行费用综合经济的原则选择。

10kV及以下电力电缆经济电流截面选用方法宜符合本规范附录B的规定。

5多芯电力电缆导体最小截面,铜导体不宜小于2.5mm2,铝导体不宜小于4mm 2。

6敷设于水下的电缆,当需要导体承受拉力且较合理时,可按抗拉要求选择截面。

3. 7. 2 10kV及以下常用电缆按100 %持续工作电流确定电缆导体允许最小截面,宜符合本规范附录C和附录D的规定,其载流量按照下列使用条件差异影响计入校正系数后的实际允许值应大于回路的工作电流。

1环境温度差异。

2直埋敷设时土壤热阻系数差异。

3电缆多根并列的影响。

4户外架空敷设无遮阳时的日照影响。

3. 7. 3除本规范第3.7.2条规定的情况外,电缆按100 %持续工作电流确定电缆导体允许最小截面时,应经计算或测试验证,计算内容或参数选择应符合下列规定:1含有高次谐波负荷的供电回路电缆或中频负荷回路使用的非同轴电缆,应计入集肤效应和邻近效应增大等附加发热的影响。

2交叉互联接地的单芯高压电缆,单元系统中三个区段不等长时,应计入金属层的附加损耗发热的影响。

3敷设于保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。

4敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。

5施加在电缆上的防火涂料、包带等覆盖层厚度大于1.5mm时,应计入其热阻影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电缆截面的选择电力电缆截面1 电力电缆缆芯截面选择的基本要求。

1.1 最大工作电流作用下的缆芯温度,不得超过按电缆使用寿命确定的允许值。

持续工作回路的缆芯工作温度,应符合附录A的规定。

1.2 最大短路电流作用时间产生的热效应,应满足热稳定条件。

对非熔断器保护的回路,满足热稳定条件可按短路电流作用下缆芯温度不超过附录A所列允许值。

1.3 连接回路在最大工作电流作用下的电压降,不得超过该回路允许值。

1.4 较长距离的大电流回路或35kV以上高压电缆,当符合上述条款时,宜选择经济截面,可按“年费用支出最小”原则。

1.5 铝芯电缆截面,不宜小于4。

1.6 水下电缆敷设当需缆芯承受拉力且较合理时,可按抗拉要求选用截面。

2 对10kV及以下常用电缆按持续工作电流确定允许最小缆芯截面时,宜满足附录B电缆允许持续载流量(建议性基础值)、以及由附录C按下列使用条件差异影响计入校正系数所确定的允许载流量。

(1)环境温度差异。

(2)直埋敷设时土壤热阻系数差异。

(3)电缆多根并列的影响。

(4)户外架空敷设无遮阳时的日照影响。

3 不属于本规范第2条规定的其他情况下,电缆按持续工作电流确定允许最小缆芯截面时,应经计算或测试验证,且计算内容或参数选择应符合下列规定:(1)中频供电回路使用非同轴电缆,应计入非工频情况下集肤效应和邻近效应增大损耗发热的影响。

(2)单芯高压电缆以交叉互联接地当单元系统中三个区段不等长时,应计入金属护层的附加损耗发热影响。

(3)敷设于塑料保护管中的电缆,应计入热阻影响;排管中不同孔位的电缆还应分别计入互热因素的影响。

(4)敷设于封闭、半封闭或透气式耐火槽盒中的电缆,应计入包含该型材质及其盒体厚度、尺寸等因素对热阻增大的影响。

(5)施加在电缆上的防火涂料、包带等覆盖层厚度大于1.50mm时,应计入其热阻影响。

(6)沟内电缆埋砂且无经常性水份补充时,应按砂质情况选取大于2.0℃·m/W 的热阻系数计入对电缆热阻增大的影响。

4 缆芯工作温度大于70℃的电缆,计算持续允许载流量时,尚应符合下列规定:(1)数量较多的该类电缆敷设于未装机械通风的隧道、竖井时,应计入对环境温升的影响。

(2)电缆直埋敷设在干燥或潮湿土壤中,除实施换土处理等能避免水份迁移的情况外,土壤热阻系数宜选取不小于2.0℃·m/W。

5 确定电缆持续允许载流量的环境温度,应按使用地区的气象温度多年平均值,并计入实际环境的温升影响。

宜符合表5的规定:电缆持续允许载流量的环境温度确定(℃)表5注:当*属于本规范第4条(1)项的情况时,不能直接采取仅加5℃。

6 电缆通过不同散热条件区段时的缆芯截面选择,应符合下列规定:6.1 回路总长未超过电缆制造长度的情况:(1)重要回路全长宜按其中散热较差区段条件选择同一截面。

(2)水下电缆敷设有机械强度要求需增大截面时,回路全长可选择同一截面。

(3)非重要回路,可对大于10m区段散热条件按段选择截面,但每回路不宜多于三种规格。

6.2 回路总长超过电缆制造长度的情况,宜按区段选择相应合适的缆芯截面。

7 对非熔断器保护回路,按满足短路热稳定条件确定允许缆芯最小截面时,可按附录D的规定计算。

8 选择短路计算条件应符合下列规定:(1)计算用系统接线,应采取正常运行方式,且宜按工程建成后5年以上规划发展考虑。

(2)短路点应选取在通过电缆回路最大短路电流可能发生处。

(3)宜按三相短路计算。

(4)短路电流作用时间,应取保护切除时间与断路器全分闸时间之和。

对电动机等直馈线,应采取主保护时间;其他情况,宜按后备保护计。

9 1kV以下电源中性点直接接地时三相四线制系统的电缆中性线截面,不得小于按线路最大不平衡电流持续工作所需最小截面;对有谐波电流影响的回路,还应同时满足所要求截面,且符合下列规定:(1)以气体放电灯为主要负荷的回路,中性线截面不宜小于相芯线截面。

(2)除(1)项规定的情况外,中性线截面可不小于50%的相芯线截面。

10 1kV以下电源中性点直接接地时配置保护接地线、中性线或保护接地中性线系统的电缆芯线截面选择要求。

10.1 中性线、保护接地中性线的截面,应符合本规范第9条的规定;保护接地中性线截面,尚应按缆芯材质分别符合下列规定:(1)铜芯,不小于10mm2。

(2)铝芯,不小于16mm2。

10.2 保护地线的截面,应满足回路保护电器可靠动作的要求,且应符合表10的规定。

按热稳定要求的保护地线允许最小截面(mm2)表1011 交流供电回路由多根电缆并联组成时,宜采用相同截面。

12 电力电缆金属屏蔽层的有效截面,应满足在可能的暂态电流作用下温升值不超过绝缘与外护层的短路容许最高温度平均值。

摘要:电力线路导线截面选择的原则仅按满足设计运行条件考虑,似不够全面。

本文在常规选择导线截面方法的基础上提出,电缆最佳截面应是使初投资和整个电缆经济寿命中的损耗费用之和达到最少的截面。

文中介绍的方法适用于各种电力线路。

关键词:电力线路导线截面选择1 概述以往在选择配电电缆时,通常都根据敷设条件确定电缆型号,再按发热条件选择电缆截面,最后选出符合其载流量要求,并满足电压损失及热稳定要求的电缆截面。

若考虑经济效益,则电缆最佳截面应是使初投资和整个电缆经济寿命中的损耗费用之和达到最少的截面。

从这一点考虑选择电缆截面时,约需在按发热条件选出的截面基础上,再人为地加大4~5级截面,称此截面为最佳截面。

由于加大了电缆截面,提高了载流能力,使电缆的使用寿命得以延长;由于截面增大,线路电阻降低,使线路压降减少,从而大大提高了供电质量,电能损耗降低,使运行费用降低,这样,可保证在整个电缆经济寿命中总费用最低。

下面将用总拥有费用法来论证,电缆最佳截面应是在按常规方法选出的截面基础上,再加大4~5级。

以一陶器烘干器为例,其三相功率为70kW,供电电压为400V,电流为101A,线路长度为100m。

2 按发热条件选择电缆截面根据敷设要求选用YJLV型,1kV三芯电力电缆,穿管直埋敷设,按发热条件选出的电缆截面S为25mm2,此截面所允许的截流量为125A。

3 按总拥有费用法选择电缆截面总拥有费用法是国际上通用的,进行各种方案经济效益比较的方法。

将所比较方案的现在投资及此方案将来的费用都以现时的价值表示,将方案未来费用乘以现值系数Q即可求得,计算后选取总拥有费用最低。

总拥有费用C=设备初投资+PV值PV值称为现值PV值=Q×年电能损耗费本例设备初投资包括电缆价格加上敷设综合造价。

各种截面的电力电缆,长度为100m时的初投资见表1。

表1 各种截面电力电缆的初投资电缆截面电缆单价(元/m)电缆价格(元)敷设备综合造价(×105元)初投资C257.757750.1616775359.17917 0.16 16917 50 10.64 1064 0.19 20064 70 12.45 1245 0.19 20245 95 14.77 14770.192304712020.220200.222402015025.1425140.2527541电缆初投资C=电缆单价×电缆长度+敷设综合造价。

总拥有费用:功率损耗P=3I2r0l×10-3(kW),此处I=101A,l=0.1km。

年电能损耗A=Pτ(kWh),此处τ为年最大负荷损耗小时数,取τ=4500h。

年电能损耗费Cf=A×电能电价(元),取东北工业电能电价(0.398元/kWh)。

PV值(现值)=Q×Cf(元),Q(现值系数)求法:Q={1-〔(1+a)/(1+i)〕n}/(i-a)式中i——年利率,i=7%;a——年通货膨胀率,a=0;n——使用年限,n=20年。

代入Q式得Q={1-〔1/(1+0.07)〕20}/0.07=10.59配电电缆的最佳经济截面S为120mm2,其总拥有费用最低。

随着电价的上涨,配电电缆的最佳截面将会变得更大。

配电电缆截面的经济性选择分析来源:中国论文下载中心 [ 06-02-28 14:32:00 ] 作者:佚名编辑:studa9ngns摘要:本文通过偿还年限回收方法对配电电缆截面的经济性选择进行分析,以求得出最理想的截面选择方法,即通过经济技术比较来找出最佳经济效益的选择方案。

关键词:电缆截面经济性分析选择电气设计中选择配电电缆时,通常是根据敷设条件确定电缆型号,然后再根据常用数据选出适合其载流量要求并满足电压损失及热稳定要求的电缆截面。

用这种方法选出的截面,技术上是可靠的,工程投资也最低。

但是,这种选择结果是否合理呢?我们知道,配电线路存在着电阻,它消耗浪费的电能是不可忽视的。

为了节约电能,减少电路电能损耗,可以考虑适当加大线路截面,而加大截面势必造成工程初投资的提高,下面我将通过偿还年限回收方法对这个问题进行论述,以求得出最理想的截面选择方法,即通过经济技术比较来找出最佳经济效益的选择方案。

1.1 偿还年限经济技术分析法对工程经济效益的分析方法有很多种,如:(1)偿还年限法;(2)等年度费用法;(3)现值比较法等。

偿还年限法是直接比较两个技术上可行的方案在多长时间内可以通过其年运行费的节省,将多支出的投资收回来,它的目的就是找出最佳方案。

如果方案1的投资F1低于方案2的投资F2,而方案1的年运行费Y1高于方案2的年运行费Y2。

这时就要正确权衡投资和年运行费两个方面的因素,即应计算选择投资高的方案的偿还年限N。

N=(F2-F1)/(Y1-Y2)年(3)如果年值较小,如只有二、三年,则显然初投资高的方案经济。

若N值较大,如十年左右,那就偿还年限太长,投资长期积压,初投资高的方案就不经济了。

因此,偿还年限法的关键在于合理地确定标准的偿还年限NH。

一般我国的电力设计通常取5-6年。

在方案比较时,把计算的偿还年限N与标准偿还年限NH作比较,若N=NH,则认为两个方案均可;若N<NH,则认为投资高的方案优于投资低的方案,若N>NH,则相反。

1.2 利用偿还年限法选择电缆截面现以380V动力配电电缆为例,取一些典型情况进行计算(实例见附录图纸《商铺导线选择计算书》)。

设回路负荷P1、P2、P3、P4、P5的线路长度都为100m,计算电流(即线路长期通过的最大负荷电流)分别为7.5A、50A、100A、150A、210A,根据敷设要求,选用YJV电力电缆沿桥架敷设。

第一步:查阅相关资料,按常规方法,即按发热条件选择电缆截面,并校验电压损失,其初选结果如表4所示。

为了简化计算,此表中数据是取功率因数0.8时计算得出的,实际上一般情况下用电设备的功率因数都低于0.8。

所以,实际的电压损失与计算值各有不同,但基本不影响对于截面的选择。

电缆参数初选结果表4上表中电缆截面是按发热条件选取的,所选截面均满足电压损失小于5%的要求。

相关文档
最新文档