4 截面图形的几何性质

合集下载

北京科技大学材料力学C选择试题及答案

北京科技大学材料力学C选择试题及答案

材料力学试题及答案一、单项选择题1. 截面上的全应力的方向( )A 、平行于截面B 、垂直于截面C 、可以与截面任意夹角D 、与截面无关 2. 脆性材料的延伸率( )A 、小于5%B 、小于等于5%C 、大于5%D 、大于等于5%3. 如图所示简支梁,已知C 点转角为θ。

在其它条件不变的情况下,若将荷载F 减小一半,则C 点的转角为( ) A 、0.125θ B 、0.5θ C 、θ D 、2θ4.危险截面是()所在的截面。

A 、最大面积B 、最小面积C 、最大应力D 、最大内力 5. 图示单元体应力状态,沿x 方向的线应变εx 可表示为( ) A 、E yσ B 、)(1y x Eμσσ- C 、)(1x y E μσσ- D 、Gτ 6. 描述构件上一截面变形前后的夹角叫(A 、线位移B 、转角C 、线应变D 、角应变7. 塑性材料的名义屈服应力使用( )A 、σS 表示B 、σb 表示C 、σp 表示 D 、σ0.2表示 8.拉(压)杆应力公式A F N=σ的应用条件是()A 、应力在比例极限内B 、应力在屈服极限内C 、外力合力作用线必须沿着杆的轴线D 、杆件必须为矩形截面杆9.下列截面中,弯曲中心与其形心重合者是()A 、Z 字形型钢B 、槽钢C 、T 字形型钢D 、等边角钢10. 如图所示简支梁,已知C 点转角为θ。

在其它条件不变的情况下,若将杆长增加一倍,则C 点的转角为( )A 、2θB 、4θC 、8θD 、16θ二、填空题1. 用主应力表示的第四强度理论的相当应力是 。

2. 已知自由落体冲击问题的动荷系数K d ,对应静载荷问题的最大位移为Δjmax ,则冲击问题的最大位移可以表示为 。

3. 图示木榫联接。

横截面为正方形,边长为a ,联接处长度为2t 。

则木榫联接处受剪切面的名义切应力等于 。

4. 主平面上的切应力等于 。

5. 功的互等定理的表达式为 。

6.自由落体冲击问题的动荷系数为jd hK ∆++=211,其中h 表示 。

4 截面图形的几何性质

4 截面图形的几何性质
2
C
2 πd 4 2d 2 πd 2 2d πd 2 a 8 3π 8 128 3π
将 d = 80 mm,a = 100 mm 代入后得
I x2 3 467 10 4 mm 4
从而得图a所示截面对x轴的惯性矩:
I xC
2 πd 4 2d πd 2 2d πd I x 1284.3 平行移轴公式
然后再利用平行移轴公式求半圆形对x轴的惯性矩:
I x2 I x 2d πd 2 a 3π 8
I y 1 054 10 4 mm 4
21
4.3 平行移轴公式
(3) 求 惯性积 Ixy 由
I xy xy d A 可知,只要x
A
轴或y 轴为截面的对称轴,则由于 与该轴对称的任何两个面积元素 dA的惯性积 xydA 数值相等而正负 号相反,致使整个截面的惯性积必 定等于零。图a所示截面的x 轴和y 轴都是对称轴,当然 Ixy=0。
22
4.4 惯性矩和惯性积的转轴公式
图示任意形状的截面,其面积A以及对于坐标轴x,y的 惯性矩Ix,Iy和惯性积Ixy为已知,现在来求截面对于绕原点O 旋转a 角(以逆时针为正)后的坐标轴x1y1的惯性矩 I x1, I y1和 惯性积 I x y 。
1 1
23
4.4 惯性矩和惯性积的转轴公式
由图可见,截面上任一微面积dA在x,y和x1,y1两个坐标系中坐标 的关系为
13
4.3 平行移轴公式
因截面上的任一元素dA在x,y 坐标系内的坐标为 x xC b, 于是有
2 I x y 2 d A y C a d A yC d A 2 a yC d A a 2 d A A A A A A 2

截面的几何性质

截面的几何性质
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 10、在图示开口薄壁截面图形中,当( 保持为一对主轴。
y
B
)时,y-x轴始终
A. y轴不动,x轴平移;
B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
O
x
D. y、x同时平移。
B
1、在下列关于平面图形的结论中,( A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零;
)是错误的。
D.使静矩为零的轴必为对称轴。
2、在平面图形的几何性质中,( 可为零。 A.静矩和惯性矩; C.惯性矩和惯性积;
D
)的值可正、可负、也
B.极惯性矩和惯性矩; D.静矩和惯性积。
证毕
A2
例3 试确定图示梯形面积的形心位置,及其对底边的静矩。
解: 图形对底边的静矩 Sx A1 y1 A2 y2
y b C1x
1 2 1 h bh h ah 2 3 2 3
h2 a 2b 6
图形对某对坐标轴惯性积为零,这对坐标轴称为该图形的主惯性轴
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
若平面图形有两个对称轴,此二轴均为形心主轴; 若平面图形有一个对称轴,则该轴为一形心主轴, 另一形心主轴过形心, 且与 该轴垂直.
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
y
120 C2 C1(0,0) C2(-35,60)
及坐标如图(a)
x
x A
i
i
A

x1 A1 x 2 A2 A1 A2

截面几何性质(材料力学)

截面几何性质(材料力学)

§-4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
1.惯性矩和惯性积的转轴公式
y
bh3 Iz 12
C z
bh3 Iz' 12
h
b
y
注意: 1. 两个座标系的原点 必须重合; 2. 两轴惯性矩之和为常量
z
O
I y1 I
z1
I y I I p z
I z1 I y1
4)解法四 y1 I z I z1
I z0 I z0 1 I z0 2 I z0 3 I z0 4
A3 y
d 4
64
2 I y 2 I z0 3 I z0 3
d4
64 Iy
2
A2 z0
d
4
128
I z I z1 I z0 3 OC
d
2
d4 Iy 128 18
1) 极惯性矩、惯性矩和惯性积均与所取的坐标系有关, 2) 惯性积可正可负 3) 单位m4 或 mm4
y dA
4. 惯性半径
Iy iy A
Iz iz A
y
(单位m 或 mm)
O
z z

试计算图示矩形截面对于其对称轴x和y的惯性矩。
y dy
解: 取平行于x轴的狭长条, 则 dA=b dy
h
1 2

I zc I yc

2
4 I 2c zc 321104 mm4 y
I yc 0 I min
I zc I yc 2
1 2

I zc I yc

2
4 I 2c zc 57.4 104 mm 4 y

材料力学填空与判断题解

材料力学填空与判断题解

实用文档第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆。

( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。

(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

截面的几何性质面积矩惯性矩惯性积平行移轴

截面的几何性质面积矩惯性矩惯性积平行移轴

2
对于复杂形状,可以采用微元法或积分法计算其 惯性矩。
3
在工程实践中,常常使用软件或计算器进行惯性 矩的计算,以提高计算效率和精度。
04
CATALOGUE
惯性积
惯性积的定义
惯性积是截面的一种几何属性,用于描述截面的 形状和大小。
惯性积是一个标量,表示截面在某个方向上的投 影面积与该方向上单位长度的平方之比。
02
利用三维坐标系中的点坐标和 方向向量,通过向量的外积计 算得到截面的法向量和面积向 量,进而计算惯性积。
03
利用计算机图形学中的几何算 法,通过计算截面的顶点坐标 和法线向量,实现惯性积的精 确计算。
05
CATALOGUE
平行移轴
平行移轴的定义
一个方向上的直线,可以 是实线或虚线。
在三维空间中,与某一平 面相交的平面。
中性轴
通过截面形心并与形心轴垂直的轴线。
惯性矩的性质
01
惯性矩与截面的形状和大小有关,形状相同但尺寸不同的截面 具有不同的惯性矩。
02
惯性矩具有方向性,与中性轴的位置有关。
对于矩形、圆形、椭圆形等简单形状,其惯性矩可以通过公式
03
直接计算。
惯性矩的计算方法
1
对于简单形状,如矩形、圆形、椭圆形等,可以 直接使用公式计算其惯性矩。
截面的几何性质
目录
• 截面的定义与性质 • 面积矩 • 惯性矩 • 惯性积 • 平行移轴
01
CATALOGUE
截面的定义与性质
截面的定义
截面定义
截面是指通过一个平面与一个三维物 体相交,所形成的交线或交面。这个 平面可以是垂直的、倾斜的或与三维 物体表面平行。
截面的形状

截面的几何性质截面的几何性质

截面的几何性质截面的几何性质

分别为图形对于z 轴和y 轴的静矩。
3
平面图形的静矩
S z = ∫A ydA
S y = ∫ A zd A
• 静矩与截面面积大小及坐标设置有关; • 静矩可正、可负、可为零; • 静矩的单位为m3或 mm3。
4
平面图形的形心Leabharlann • 平面图形的形心 — 平面图形几何形状的中心。 • 通过截面形心的坐标轴称为形心轴 。
设图形的形心C坐标为(zC , yC), 由均质等厚薄片重心坐标公式: A yC = ∫A ydA = S z
A z C = ∫ A zd A = S y Sy S yC = z , z C = A A
• 截面对形心轴的静矩必为零;反之,若截面对
某轴的静矩等于零,则该轴必为形心轴。
5
平面图形的静矩和形心
h 1 h * = b − y1 + y1 S z = A* yC 2 2 2 b 2 = ( h2 − 4 y1 ) 8
7
h 2

组合图形的静矩和形心位置 • 组合图形 — 由几个简单图形(如矩形、圆形
或三角形等规则图形)组成的图形。
zC =
8
∑ Ai zC i ∑ Ai
截面的几何性质 • 平面图形的静矩和形心 • 平面图形的惯性矩、惯性积和惯性半径 • 惯性矩和惯性积的平行移轴公式 • 惯性矩和惯性积的转轴公式 • 主惯性轴和主惯性矩
9
平面图形的极惯性矩和惯性矩 • 定义
I z = ∫A y 2dA
I y = ∫ A z 2 dA
• 组合图形对某一对正交轴的惯性积等于各组成
部分对同一对正交轴的惯性积之和。
I yz = ∑ ( I yz ) i

建筑力学第七章 截面的几何性质

建筑力学第七章 截面的几何性质

第七章平面图形的几何性质研究截面几何性质的意义从上章介绍的应力和变形的计算公式中可以看出,应力和变形不仅与杆的内力有关,而且与杆件截面的横截面面积A、极惯性矩I P、抗扭截面系数W P等一些几何量密切相关。

因此要研究构件的的承载能力或应力,就必须掌握截面几何性质的计算方法。

另一方面,掌握截面的几何性质的变化规律,就能灵活机动地为各种构件选取合理的截面形状和尺寸,使构件各部分的材料能够比较充分地发挥作用,尽可能地做到“物尽其用”,合理地解决好构件的安全与经济这一对矛盾。

第一节 静矩一、静距的概念Ay S z d d =Az S y d d =⎰⎰⎰⎰====AAy y AAz z Az S S A y S S d d d d zy d A yz静距是面积与它到轴的距离之积。

平面图形的静矩是对一定的坐标而言的,同一平面图形对不同的坐标轴,其静矩显然不同。

静矩的数值可能为正,可能为负,也可能等于零。

它常用单位是m 3或mm 3。

形心d A zyy zCx Cy ⎪⎪⎭⎪⎪⎬⎫⋅∆∑=⋅∆∑=A y A y Az A z C C ⎪⎪⎭⎪⎪⎬⎫==⎰⎰A ydA y A zdA z AC A C ⎪⎪⎭⎪⎪⎬⎫==A S y A S z z C y C ⎭⎬⎫⋅=⋅=C y C z z A S y A S 平面图形对z 轴(或y 轴)的静矩,等于该图形面积A 与其形心坐标y C (或z C )的乘积。

当坐标轴通过平面图形的形心时,其静矩为零;反之,若平面图形对某轴的静矩为零,则该轴必通过平面图形的形心。

如果平面图形具有对称轴,对称轴必然是平面图形的形心轴,故平面图形对其对称轴的静矩必等于零。

⎭⎬⎫⋅=⋅=C y C z z A S y A S二、组合图形的静矩根据平面图形静矩的定义,组合图形对z 轴(或y 轴)的静矩等于各简单图形对同一轴静矩的代数和,即⎪⎪⎭⎪⎪⎬⎫=+++==+++=∑∑==ni Ci i Cn n C C y ni Ci i Cn n C C z z A z A z A z A S y A y A y A y A S 1221112211 式中 y Ci 、z Ci 及A i 分别为各简单图形的形心坐标和面积;n 为组成组合图形的简单图形的个数。

材料力学填空与判断题解

材料力学填空与判断题解

第一章 绪论第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆。

( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。

(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

第7章-截面图形的几何性质(PDF)

第7章-截面图形的几何性质(PDF)

第7章 截面图形的几何性质教学提示:在对构件进行应力和强度等计算时,需要用到构件截面图形的几何性质,即与构件截面几何形状和尺寸有关的一些量,例如形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积等。

本章的主要内容就是讨论这些几何性质的定义和计算。

教学要求:通过本章学习,要求理解形心、静矩、惯性矩、极惯性矩、惯性积和主惯性矩的概念,会用平行移轴公式计算组合截面对形心轴的惯性矩、主惯性矩等。

受力构件的承载能力,不仅与材料性能和加载方式有关,而且与构件截面的几何形状和尺寸有关。

当研究构件的强度、刚度和稳定性问题时,都要涉及到一些与截面形状和尺寸有关的几何量。

这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积、主惯性矩等,统称为“截面图形的几何性质”。

研究这些几何性质时,完全不需考虑研究对象的物理和力学因素,只作为纯几何问题处理。

7.1 静矩与形心考察如图7.1所示任意截面几何图形。

在其上取面积微元d A ,设该微元在Oyz 坐标系中的坐标为(y 、z )。

定义下列积分d y AS z A =∫, d z AS y A =∫(7.1)图7.1分别为截面图形对y 轴和z 轴的静矩(或称为面积矩)。

其量纲为长度的三次方。

常用单位是3m 或3mm 。

由于均质等厚薄板的重心与薄板截面图形的形心有相同的坐标(C y 、C z ),而薄板的重心坐标由式(2.24)给出,即d d AAzCy V y A S y V AA ===∫∫d d y AAC z Vz A S z VAA===∫∫第7章 截面图形的几何性质·91··91·所以,形心坐标为d Az Cy A Sy AA==∫, d y ACz A S z AA==∫ (7.2a)或y C S A z =⋅,z C S A y =⋅(7.2b)由式(7.2)可知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即若0C y =,则0z S =,或若0C z =,则0y S =;反之,若图形对某一坐标轴的静矩等于零,则该坐标轴必然通过图形的形心。

材料力学第四章截面的几何性质

材料力学第四章截面的几何性质
确定截面的剪切中心
在材料力学中,剪切中心是剪切应力作用下截面 发生剪切变形的点。通过计算截面的形心,可以 近似确定剪切中心的位置。
确定截面的质心
质心是截面质量的中心点,通过计算截面的形心, 可以近似确定质心的位置,这对于动力学分析和 稳定性分析非常重要。
03 主轴和主惯性矩
主轴的定义与计算
主轴
截面上的各点处到截面形心距离最大的方向。
预测物体的变形和破坏
通过分析截面的几何性质,可以预测 物体在不同受力条件下的变形和破坏 行为,为工程实践提供指导。
02 截面的面积和形心
截面面积的定义与计算
截面面积的定义
截面面积是指通过截面边界轮廓 线围成的区域面积。
截面面积的计算
可以通过测量截面轮廓线的长度 ,然后使用公式计算面积。对于 不规则形状,可以使用微元法或 积分法计算。
截面几何性质的应用前景
随着科技的发展和工程需求的提高,截面几何性质在材料力学中的重要性将更加凸 显,其在航空航天、交通运输、建筑等领域的应用将更加广泛。
随着新型材料的不断涌现,截面几何性质的研究将有助于深入了解这些材料的力学 行为,为新型材料的优化和应用提供理论支持。
随着数值模拟和计算机技术的发展,截面几何性质的研究将更加精确和深入,有助 于提高工程结构的分析和设计水平。
在实际工程中,主轴和主惯性矩也是 进行有限元分析时的重要输入参数, 用于模拟结构的力学行为并优化设计。
在结构设计时,根据主轴和主惯性矩 可以合理地选择材料的类型和截面的 形状,以提高结构的刚度和稳定性。
04 极惯性矩和惯性积
极惯性矩的定义与计算
极惯性矩
截面对任意直径的极惯性矩等于截面 面积与该直径的平方的乘积。
截面是确定物体受力分布和变形程度 的关键因素,通过研究截面的几何性 质,可以深入了解物体的力学性能, 为工程设计和安全评估提供依据。

《材料力学》习题集

《材料力学》习题集

《材料力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、材料力学的研究对象是A、板B、壳C、实体D、杆件2、由于什么假设,可以将微元体的研究结果用于整个构件。

A、连续性假设B、均匀性假设C、各向同性假设D、小变形假设3、小变形假设指的是A、构件的变形很小B、构件没有变形是刚性的C、构件的变形可以忽略不计D、构件的变形比其几何尺寸小得多4、材料安全正常地的工作时允许承受的最大应力值是A、比例极限B、屈服极限C、强度极限D、[σ]5、长度、横截面和轴力相同的钢拉杆和铝拉杆的关系是两者的A、轴力和应力相同B、允许荷载相同C、纵向线应变相同D、伸长量相同第二题、多项选择题(每题2分,5道题共10分)1、各向同性假设是指材料在各个方向A、弹性模量具有相同的值B、变形相同C、具有相同的强度D、应力相同E、应力和变形的关系是相同2、下列材料可以认为是各向同性的是A、钢材B、浇注质量很好的混凝土C、木材D、塑料E、竹材3、下列哪些变形属于基本变形?A、轴向拉伸B、轴向压缩C、扭转D、偏心压缩E、剪切4、杆件的几何特征是A、长度远远大于截面的宽度B、长度远远大于截面的高度C、杆件三个方向的尺寸几乎一样大D、后度远远小于表面尺寸E、细长的构件5、下列哪些因素与材料的力学性质有关?A、构件的强度B、构件的刚度C、构件的稳定性D、静定构件的内力E、静定构件的反力第三题、判断题(每题1分,5道题共5分)1、同时受有多个外力作用的而引起的变形叫组合变形。

2、构件的刚度是指构件抵抗变形的能力。

3、杆件的轴线使其横截面形心的连线。

4、混凝土不能作为各向同性材料。

5、自然界中有一类物体,当外力解除后不留下任何残余变形,这类物体称为理想弹性体。

《材料力学》第02章在线测试第一题、单项选择题(每题1分,5道题共5分)1、拉压杆的受力特点是外力的合力作用线与杆的轴线A、平行B、相交C、垂直D、重合2、轴向压杆的变形特点是A、轴向伸长横向收缩B、轴向伸长横向伸长C、轴向收缩横向收缩D、轴向收缩横向伸长3、工程上常把延伸率大于多少的材料成为塑性材料?A、10%B、15%C、3%D、5%4、两根长度、容重相同的悬挂杆横截面面积分别为A2和A1,设N1、N2、σ1、σ2分别为两杆中的最大轴力和应力,则A、N1=N2、σ1=σ2B、N1≠N2、σ1=σ2C、N1=N2、σ1≠σ2D、N1≠N2、σ1≠σ25、一圆截面直杆,两端受的拉力相同,若将长度增大一倍其他条件不变,则下列结论错误的是A、轴力不变B、应力不变C、应变不变D、伸长量不变第二题、多项选择题(每题2分,5道题共10分)1、下列结果正确的是A、1MPa=1000000PaB、1MPa=1000000N/m2C、1MPa=1N/mm2D、1MPa=1N/m2E、1MPa=1000000N/mm22、低碳钢的拉伸图有哪四个阶段?A、弹性阶段B、比例阶段C、屈服阶段D、强化阶段E、颈缩阶段3、材料的极限应力是A、低碳钢是屈服极限B、其他塑性材料是名义屈服极限C、脆性材料是强度极限D、低碳钢是比例极限E、低碳钢是强度极限4、衡量材料强度的两个重要的指标是A、屈服极限B、强度极限C、比例极限D、弹性极限E、最大应力5、若两等直杆的横截面面积相同、长度不相同、两端受到的拉力相同,材料相同,那么两者A、轴力相同B、应力相同C、纵向线应变相同D、伸长量相同E、抗拉刚度相同第三题、判断题(每题1分,5道题共5分)1、应力分两种,即正应力和剪应力。

《工程力学》课件第6章 截面图形的几何性质

《工程力学》课件第6章 截面图形的几何性质

Ip
r2dA A
D 2
r2
2
rdr
D4
0
32
Ip Iy Iz
Iy
பைடு நூலகம்
Iz
Ip 2
D4
64
四、组合截面的惯性矩与惯性积
z
I
例如工字型截面 A AI AII AIII
II
y
III
Iy
z 2 dA
A
z2dA z2dA z2dA
AI
AII
AIII
m
I yI I yII I yIII I yi
包括:形心、静矩、极惯性矩、惯性矩、惯性半径、惯 性积、主轴和形心主轴、主矩和形心主矩等
6.1 静矩和形心
一、静矩
截面对z轴的静矩
z
Sz
ydA
A
截面对y轴的静矩
y
dA
A
z
Sy
zdA
A
o
单位: m3
y
静矩的数值可大于零、等于零或小于零。
二、形心
如图所示均质薄板,重心与形心C重合,
由静力学可知形心坐标在yoz:
何关系, y R sin , dy R cosd ,
dA 2R cosdy 2R2 cos2 d
Sz
A
(2)形心
ydA yC
2 0
Sz A
R sin 2R2 cos2 d
2 R3 3
4R
1 R2 3
zC
2 3
0
R3
2
三、组合截面的静矩和形心 z
D d
y
整个图形对某一轴的静矩等于各个分图形对同一轴的静矩之和。
z1
y1 z

材料力学填空与判断题解总括

材料力学填空与判断题解总括

F122-题132-题第 2 章 轴向拉伸与压缩二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

2-9 铸铁试件的压缩破坏和(切)应力有关。

2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。

三、选择题2-11 应用拉压正应力公式AN =σ的条件是( B )(A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。

2-12 图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) (A )平动;(B )转动;(C )不动;(D )平动加转动。

2-13 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。

2-14 图示三杆结构,欲使杆3的内力减小,应该( B )DC BA ζε(A )增大杆3的横截面积; (B )减小杆3的横截面积; (C )减小杆1的横截面积; (D )减小杆2的横截面积。

2-15 图示有缺陷的脆性材料拉杆中,应力集中最严重的是杆( D )二、填空题3-6 圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

3-7 铸铁圆杆发生扭转破坏的破断线如图所示,试画出圆杆所受外力偶的方向。

3-8 画出圆杆扭转时,两种截面的切应力分布图。

3-9 在计算圆柱形密围螺旋弹簧簧丝切应力时,考虑到(剪力引起的切应力及簧丝曲率的影响 ),而加以校正系数。

3-10 开口薄壁杆扭转时,截面上最大切应力发生在(最厚的矩形长边 )处;闭口薄壁杆扭转时,截面上最大切应力发生在( 最小厚度)处.TTF 123题24 F FF FFFF F(A )(B ) (C )(D )第3章 扭转三,选择题3-11阶梯圆轴的最大切应力发生在( D ) (A) 扭矩最大的截面; (B)直径最小的截面; (C) 单位长度扭转角最大的截面; (D)不能确定.3-12 空心圆轴的外径为 D ,内径为 d ,D d /=α。

41-截面的几何参数解析

41-截面的几何参数解析

yC
i1 2
Ai
i1
0 2 7 0 1 0 3 5 0 1 0 3 1 5 0 1 0 3
将组合图形分解为若干简单图形,并确定组合图形的形心位 置。
以形心为坐标原点,设Oyz坐标系,y、z 轴 一般与简单图 形的形心主轴平行。确定简 单图形对自身形心轴的惯性矩,利 用移轴 定理(必要时用转轴定理)确定各个简单 图形对y、z轴 的惯性矩和惯性积,相加(空洞时则减)后便得到整个图形的 Iy、Iz 和Iyz。
A
例1:试求匀质槽形钢板的
形心。
y
A
y
y
解:由对称性可知 xc 0
o
A 1 A 2 1 3 0 0 3c 02 m 0y1=y2=15cm
A3102020c0m 2 y35cm
3
yc
i1
3
A
i y ci Ai
3001522005=12.5cm 3002200
i1
30cm
10cm x
(2)负面积法 解:由对称性可知
❖3、截面对形心轴的静矩为零
❖4、若截面对某轴的静矩为零,则该轴必为形心轴
例3 求图示阴影部分的面积对y轴的静矩。
h
2
a
y
h 2
b
解: S y
b(ha) 2
(
h 2
2
a)
a
b h2
a2
2 4
§4.2 惯性矩、极惯性矩、惯性积
一、极惯性矩:是面积对极点的二次矩。
y
I
2dA
A
——图形对 O 点的极惯性矩
I I b2A
y1
yc
I I a2A
z1
zc

截面的几何性质课件

截面的几何性质课件
截面的几何性质课件
目录
• 截面的基本概念 • 截面的形状分类 • 截面的力学性质 • 截面的设计原则 • 截面的优化设计 • 截面的实验研究 • 截面的工程实例
01
截面的基本概念
截面的定义
二维图形
截面是指用一个平面去截一个三 维图形(如长方体、正方体、球 体等),得到的二维图形。
几何形状
根据所用的平面和三维图形的相 对位置不同,截面可以是圆、椭 圆、矩形、三角形等不同的几何 形状。
01
进行实验
按照实验方案进行实验操作,并详细记录实验数据。
02
数据清洗与预处理
对采集到的实验数据进行清洗和预处理,以消除异常值和缺失值,确保
数据质量。
03
数据转换与统计分析
对预处理后的数据进行转换和统计分析,以挖掘截面几何性质的特征和
规律。
结果评估与应用
结果评估
根据统计分析结果,对截面几何性质的特征和规律进行评估 ,验证实验设计的合理性和结果的可靠性。
截面的形状、尺寸、材料、截面系数等。
计算公式
最大剪力 = 截面系数 x 剪力系数 x 跨度 x 集中荷载。
截面的抗扭强度
定义
截面的抗扭强度是指截面在承受扭矩作用下的最大抗扭能力。
影响因素
截面的形状、尺寸、材料、截面系数等。
计算公式
最大扭矩 = 截面系数 x 扭矩系数 x 跨度 x 集中荷载。
04
截面的设计原则
安全性原则
确保截面结构强度
在设计截面时,需要考虑结构强度和 稳定性,以避免在承载重量或受到外 力作用时发生变形或损坏。
保障截面安全使用
设计时应考虑到使用者的安全,避免 出现尖锐边角或易滑倒的表面,确保 使用过程中不会发生意外伤害。

截面·平面图形几何性质.pdf

截面·平面图形几何性质.pdf

∫ ∫ Sy =
zdA =
h z i b (h − z) i dz = bh2
0h
6
zc
=
Sy A
=
bh2 / 6 bh / 2
= h/3
【例 4.2】 求图 4.3 所示半圆截面的静矩 Sy,Sz 及形心 C 位置。已知圆的半径为 R。
【解】(1)求静矩。由于 y 轴为对称轴,故有
Sy = 0
取平行于 z 轴的狭长条作为微面积 dA,则有 dA = 2R cosθ dy
i =1
Iz,2 + Iz,3
=
BH 3 12

2
×
⎧⎪ ⎨
⎡⎣(
B
⎪⎩

d ) / 2⎤⎦ h3
12
⎫⎪ ⎬ ⎪⎭
=
1 12
⎡⎣BH 3
−(B

d ) h3 ⎤⎦

【例 4.7】 试计算图 4.10 中矩形和圆形对过形心的 y 轴、z 轴的惯性半径。
图 4.9 例 4.6 图
图 4.10 例 4.7 图
yc
=
Sz A
=
2 R3 3 1 πR2
=
4R 3π

zc
=
0
2
·81·
材料力学
4.1.2 组合图形的形心和静矩
在工程实际中,许多杆件的截面图形由若干个简单的基本几何图形(如矩形、圆形、 三角形等)组成,这种截面称为组合截面。由式(4.2)得到分块积分原理,即整个平面 图形对某一轴的静矩应等于其所有基本几何图形对该轴静矩的代数和。因此由式(4.3a) 可得
3
∑∑ yc
=
Ai yci
i =1 3

材料力学填空及判断题解

材料力学填空及判断题解
C 两对轴都是主惯性轴; D 两对轴都不是主惯性轴
4-15直角三角形如图所示,A点为斜边的中点,则(D)为图形的一对主惯性轴。
A y1,z1B y1,z2
C y2,z1D y2,z2
第 5 章 弯曲力
一、是非题
5-1 两梁的跨度、承受荷载及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( )
7-11 如图所示受均布载荷q作用的超静定梁,当跨度l增加一倍而其他条件不变时,跨度中点C的挠度是原来的( 16 )倍。
三、选择题
6-13 如图所示两铸铁梁,材料相同,承受相同的荷载F。则当F增大时,破坏的情况是( C )
(A)同时破坏; (B)(a)梁先坏; (C)(b)梁先坏。
6-14 为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。若矩形截面梁的弯矩图如图所示,则梁钢筋(图中虚线所示)配置最合理的是(D)。
6-15 如图所示,拉压弹性模量不等的材料制成矩形截面弯曲梁,如果 ,则中性轴应该从对称轴(B)。
3-2 杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。( × )
3-3 薄壁圆管和空心圆管的扭转切应力公式完全一样。( × )
3-4 圆杆扭转变形实质上是剪切变形。( √ )
3-5 非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“,根据(切应力互等定理),其纵向截面上也存在切应力。
6-11 非对称的薄壁截面梁承受横向力时,若要求梁只产生平面弯曲而不发生扭转,则横向力作用的条件是(D)
(A) 作用面与形心主惯性平面重合;(B)作用面与形心主惯性平面平行;
(C)通过弯曲中心的任意平面;(D)通过弯曲中心,平行于主惯性平面。
6-12 如图所示铸铁梁,根据正应力强度,采用( C )图的截面形状较合理。

截面图形的几何性质-材料力学

截面图形的几何性质-材料力学

yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A
3.惯性矩
4.惯性积
I zy zydA
A
15
5.平行移轴公式
I z I zC a 2 A 2 I y I yC b A I xy I zC yC abA
16
例 试计算图示T型截面的形心位置。
60
将截面分为I、II两个矩形,建立 如图所示坐标系。 各矩形的面积和形心坐标如下:
y
C
yC
z C zC C z
A A 20mm 60mm=1200mm2 yC 50mm yC 10mm

y 20
于是:
yC
Ay A
i
i Ci

A yC A yC A A
y
I yz yzdA
A
dA
(1)惯性积与轴有关,可正可负可 为零。
(2)若 y , z 轴有一为图形的对称轴, 则 Iyz = 0。
y
性质

O
z
z
12
平行移轴公式 1.平行移轴公式 移轴定理:图形对于 互相平行轴的惯性矩 之间的关系
I x I xC a 2 A I y I yC b2 A
空心圆形: D d
h
z
z y
d 4
64
4
z
y
bh3 Iz 12 hb3 Iy 12
y
Iz Iy Ip

Iy Iz
D 4 d 4
64
D 4
64
d
(1 4 )
32
32
Ip
D 4
dD
11
(1 4 )
4.2 惯性矩与惯性积
2.惯性积
整个截面对于z、y两坐标轴的 惯性积
13
4.3 平行移轴公式
2.组合截面的惯性矩
组合截面对某轴的惯性矩,等于它的各组成部分对同一 轴的惯性矩的代数和
d2
y2
O x y1
y b
14
d1
h
小结
1.静矩
2.形心
S z ydA , S y zdA
A A
Sy Sz yC , zC A A
I z y 2 dA, I y z 2 dA
z dz
I z y dA
2 A
同理
h 2 h 2
bh3 by 2dy 12
h
y
解:取平行于z轴的狭长条作为面积元素, 则 dA bdy
O
dy
z
I y z 2dA
A
b 2 b 2
b3 h hz 2dz 12
b
Hale Waihona Puke 104.2 惯性矩与惯性积
矩形: b
圆形: d
截面图形的几何性质
1
截面图形的几何性质
1 截面的静矩与形心
2 惯性矩与惯性积
3 平行移轴公式
2
4.1 截面的静矩与形心
1.静矩 任意平面图形 A,建立 yz 坐标系
y
平面图形的形心C(yc,zc)
C
y
dA
图形对 y 轴的静矩
S y zdA
A
yC
O
zC z
z
图形对 z 轴的静矩
S z ydA
A
静矩的单位:m3,cm3,mm3
3
4.1 截面的静矩与形心
2.形心
——图形几何形状的中心
yC
ydA
A
A
Sz zC A ,
zdA
A
A

Sy A
静矩可用面积与形心坐标的乘积表示。
4
4.1 截面的静矩与形心
静矩的性质
(1)静矩与轴有关,可正可负可为零。 (2)若yC,zC坐标轴过形心,则有
S yC 0
S zC 0
(3)组合图形静矩可分块计算求代数和
S z S z1 S z 2 A1 yC1 A2 yC 2
(4)求形心
S z A1 yC1 A2 yC 2 yC A A
A1 zC1 A2 zC 2 zC A A Sy
5
4.1 截面的静矩与形心
y
d
dA 2π d
πd 4 2 2 I P dA (2π d ) A 32 由于圆截面对任意方向的直径轴都是对称的, 故
d 2 0

O
z
I y Iz
d
所以
I P πd 4 I y Iz 2 64
9
4.2 惯性矩与惯性积
例2 试计算图示矩形截面对于其对称轴(即形心轴)z和y 的惯性矩Iz和Iy。 y
1200mm2 10mm+1200mm2 50mm 30mm 2 2 1200mm 1200mm 6
60
20
解:zC=0,只需计算yC
z
yC
C
惯性矩与惯性积
1.惯性矩
图形对 y,z 轴的 轴惯性矩
y
dA
I y z dA
2 A

y
I z y 2 dA
A
O
z
z
惯性矩的单位:m4,cm4,mm4
7
4.2 惯性矩与惯性积
图形对原点的 极惯性矩
I p 2dA ( y 2 z 2 )dA I z I y
A A
y
图形对z轴和y轴 惯性半径
dA
iz
IZ A
iy
Iy A

y
O
z
z
8
4.2 惯性矩与惯性积
例1 试计算图示圆形截面对O点的极惯性矩IP和对于其形心 轴(即直径轴)的惯性矩Iy和Iz。 解:建立如图所示坐标系,取图示微元dA,
相关文档
最新文档