(完整版)(精华)指数函数经典题型练习题(不含答案),推荐文档
指数函数习题(经典 含答案 及详细解析)
指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。
(完整版)指数函数经典习题大全
指数函数习题新泰一中闫辉一、选择题1.下列函数中指数函数的个数是 ( ).①②③④A.0个 B.1个 C.2个 D.3个2.若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限3.已知,当其值域为时,的取值范围是()A. B.C. D.4.若,,下列不等式成立的是()A. B. C. D.5.已知且,,则是()A.奇函数 B.偶函数C.非奇非偶函数 D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是( ).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ).A.2400元 B.900元 C.300元 D.3600元二、填空题1.比较大小:(1);(2) ______ 1;(3) ______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________ .6.已知的定义域为 ,则的定义域为__________.7.当时, ,则的取值范围是__________.8.时,的图象过定点________ .9.若 ,则函数的图象一定不在第_____象限.10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知 ,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);(2).7.已知函数(且)(1)求的最小值;(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.参考答案:一、1.B 2.A 3.D 4.B 5.A 6.B 7.D 8.A 9.A 10.A二、1.(1)(2)(3)2. 3. 4.(0,1) 5.6. 7.8.恒过点(1,3) 9.四 10.11. 12. 13. 14.或三、1.解:除以外,将其余的数分为三类:(1)负数:(2)小于1的正数:,,(3)大于1的正数:,,在(2)中,;在(3)中,;综上可知说明:对几个数比较大小的具体方法是:(1)与0比,与1比,将所有数分成三类:,,,(2)在各类中两两比2.解:(1)要使由条件是,解之得(2)要使,必须分两种情况:当时,只要,解之得;当时,只要,解之得或说明:若是与比较大小,通常要分和两种情况考虑.3.4.解:为奇函数,,即,则,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:(1)两边同除可得,令,有,解之得或,即或,于是或(2)原方程化为,即,由求根公式可得到,故7.解:(1),当即时,有最小值为(2),解得当时,;当时,.8.当时, > ,当时, > .9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与1.37的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令 ,则原方程化为 解得 或 ,即 或 (舍去),习题二1. 求不等式2741(0x x aa a -->>,1)a ≠且中x 的取值范围.2. . 指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.3. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y +=D.()()()f x y f x f y +=+oyx14. 若11()()23x x <,则x 满足( )A.0x > B.0x < C.0x ≤D.0x ≥5. (1)已知12()3a a -+=,求33a a -+;(2)已知21xa=,求33x xx xa a a a--++; (3)已知31xa -+=,求2362a ax x ---+的值.6. 已知函数()xf x a =(0a >,1a ≠)在[]22-,上函数值总小于2,求实数a 的取值范围. 7 已知函数()xxf x a a -=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 8. 若关于x 的方程22210xx a a +++=g 有实根,试求a 的取值范围.9. 当0a >且1a ≠时,函数2()3x f x a-=-必过定点 .10. 设311x y a +=,22x y a -=其中0a >,且1a ≠.确定x 为何值时,有:(1)12y y =; (2)12y y >.11 当0a ≠时,函数y ax b =+和axy b =的图象是( )12. 函数()y f x =的图象与2xy =的图象关于x 轴对称,则()f x 的表达式为 . 13. 若函数()()()21021x F x f x x ⎛⎫=+≠ ⎪-⎝⎭g 是偶函数,且()f x 不恒等于0,则()f x 为( ) A.奇函数 B.偶函数C.可能是奇函数,也可能是偶函数 D.非奇非偶函数14. 已知函数()()2211xf xg x x =-=-,,构造函数()F x 定义如下:当()()f x g x ≥时,()()F x f x =;当()()f x g x <时,()()F x g x =-,那么()F x ( )A.有最大值1,无最小值 B.有最小值0,无最大值 C.有最小值1-,无最大值D.无最小值,也无最大值15. 当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是 .16. 已知函数()f x 满足对任意实数12x x <有()()12f x f x <且()()()1212f x x f x f x +=g 若写出一个满足这些条件的函数则这个函数可以写为 .习题三一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12:不用计算器计算48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.t/月20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BADDCCADAC二、填空题(4*7=28分)11.b a >; 12.100; 13.}24|{-<>x x x 或; 14.-1或2 15.(-2, 2) ; 16.]1,0( 17.①②⑤ 三、解答题:(10+10+12=32分) 18.解: (1)原式=11113312222111112222()()()(1)1718a a a a a a a a a aa a--------++==++=+=--。
指数函数经典例题(问题详解)[整理]
我们观察y=,y=,y=,y=图象特征,就可以得到x 2x ⎪⎭⎫ ⎝⎛21x 10x⎪⎭⎫⎝⎛101の图象和性质。
)10(≠>a a 且a>10<a<1图象与の大小关系是_____.()x f b ()x f c 分析:先求の值再比较大小,要注意の取值是否在同一单调区间b c 且x x b c 且内. 解:∵,(1)(1)f x f x +=- ∴函数の对称轴是.()f x 1x = 故,又,∴.2b =(0)3f =3c = ∴函数在上递减,在上递增.()f x (]1-且∞[)1+且∞ 若,则,∴;0x ≥321x x≥≥(3)(2)x x f f ≥ 若,则,∴.0x <321x x <<(3)(2)x x f f > 综上可得,即.(3)(2)x x f f ≥()()x x f c f b ≥ 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知,则x の取值范围是___________.2321(25)(25)x x a a a a -++>++ 分析:利用指数函数の单调性求解,注意底数の取值范围. 解:∵,2225(1)441a a a ++=++>≥ ∴函数在上是增函数,2(25)x y a a =++()-+且∞∞ ∴,解得.∴x の取值范围是.31x x >-14x >14⎛⎫+ ⎪⎝⎭且∞ 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论.3.求定义域及值域问题 例3 求函数の定义域和值域.216x y -=- 解:由题意可得,即,2160x --≥261x -≤ ∴,故. ∴函数の定义域是.20x -≤2x ≤()f x (]2-且∞ 令,则,26x t -=1y t =- 又∵,∴. ∴,即.2x ≤20x -≤2061x -<≤01t <≤ ∴,即.011t -<≤01y <≤ ∴函数の值域是.[)01且 评注:利用指数函数の单调性求值域时,要注意定义域对它の影响. 4.最值问题 例4 函数在区间上有最大值14,则a の值221(01)x x y a a a a =+->≠且[11]-且是_______. 分析:令可将问题转化成二次函数の最值问题,需注意换元后の取x t a =t 值范围. 解:令,则,函数可化为,其对称轴为x t a =0t >221x x y a a =+-2(1)2y t =+-.1t =- ∴当时,∵,1a >[]11x ∈-且 ∴,即.1xa a a ≤≤1t a a≤≤ ∴当时,.t a =2max (1)214y a =+-= 解得或(舍去);3a =5a =- 当时,∵,01a <<[]11x ∈-且 ∴,即,1xa a a ≤≤1a t a≤≤ ∴ 时,,1t a =2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 解得或(舍去),∴a の值是3或.13a =15a =-13 评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程.223380x x +--= 解:原方程可化为,令,上述方程可化为29(3)80390x x ⨯-⨯-=3(0)x t t =>,解得或(舍去),∴,∴,经检验原方程の298090t t --=9t =19t =-39x =2x =解是.2x = 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题 例6 为了得到函数の图象,可以把函数の图象( ).935x y =⨯+3x y = A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度 D .向右平移2个单位长度,再向下平移5个单位长度 分析:注意先将函数转化为,再利用图象の平移规律935x y =⨯+235x t +=+进行判断. 解:∵,∴把函数の图象向左平移2个单位长度,293535x x y +=⨯+=+3x y =再向上平移5个单位长度,可得到函数の图象,故选(C ).935x y =⨯+ 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等.习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较 与; (4)若 ,且 ,比较a 与b ; (5)若 ,且 ,比较a 与b . 解:(1)由,故 ,此时函数为减函数.由,故 . (2)由,故.又,故.从而. (3)由 ,因,故 .又 ,故 .从而 . (4)应有.因若 ,则 .又,故,这样.又因,故 .从而 ,这与已知 矛盾. (5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知矛盾. 小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线分别是指数函数 ,和与1の大小关系是( 分析:首先可以根据指数函数单调性,在轴右侧令 ,由小到大依次为 ,故应选 .、设,求函数の最大值和最小值. 分析:注意到,设,利用闭区间上二次函数の值域の求法,可求得函数の最值. 解:设,由知, ,函数成为,轴,故函数最小值为,因端点较对称轴远,故函数の最大值为已知函数(且 (1)求)若,求の取值范围.),当即时,有最小值为),解得 当时,; 当时,2若函数是奇函数,求.解:为奇函数, 即, 则,11即x=0时,y max=2已知,求函数解:由得,即,解之得于是,即,故所求函数の值域为在〔1,+∞)上是减函数。
指数函数习题(经典 含答案 及详细解析)
指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。
指数函数经典例题和课后习题
.指数函数及其基本性质指数函数的定义一般地,函数()10≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域是R .问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,xa 无意义)(3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .指数函数的图像及性质函数值的分布情况如下:指数函数平移问题(引导学生作图理解)用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略),⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .f (x )的图象向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.指数函数·经典例题解析(重在解题方法)【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3及时演练求下列函数的定义域与值域 (1)412-=x y ; (2)||2()3x y =;(3)1241++=+x xy ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是[ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .及时演练指数函数① ② 满足不等式 ,则它们的图象是 ( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()()解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).及时演练(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】已知函数f(x)=a -12x+1,若f(x)为奇函数,则a =________. 【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数, ∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x), 即a -12-x+1=12x +1-a ,解得a =12.【答案】 12【例6】解求函数=的单调区间及值域.令=-+,则=是关于的减函数,而=--+y u x 5x 6y u u x 5xx 25x 622()()3434u+在∈∞,上是减函数,在∈,∞上是增函数.∴函数=的单调增区间是∞,,单调减区间是,∞.-+6x x y x 25x 6(][)()(][)-+-+5252345252又∵=-+=≥,函数=,在∈,∞上是减函数,所以函数=的值域是,.-+u x 5x 6y u y 2x 25x 6()()[)()(]x u ----+5214143414340108324及时演练【例7】解求函数=+≥的单调区间及它的最大值.=,令=,∵≥,∴<≤,又∵=是∈,+∞上的减函数,函数=y 1(x 0) y u x 00u 1u x 0)y ()()[()]()[()]()()[()141212121121234121212222x x x x x x x u --+=-+-+-3401212121212121412在∈,上为减函数,在,上是增函数.但由<≤得≥,由≤≤,得≤≤,∴函数=+单调增区间是,+∞,单调减区间,u 1)0x 110x 1y 11)[01](][()()()()[x x x x当x =0时,函数y 有最大值为1.【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212 备选例题1.比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故.从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因,且,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.,2.已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 3. 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.4. 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象的平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+ 的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.5. 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
(完整word版)指数函数题型总结-孟-推荐文档
指数函数题型总结:题型一. 比较大小例1:已知函数满足, 且, 则与的大小关系是_____.小练: 1.比较下列各组数的大小:(1)若/ , 比较/ 与/ ;(2)若/ , 比较/ 与/ ;(3)若/ , 比较/ 与/ ;(4)若/ , 且/ , 比较a 与b ;(5)若/ , 且/ , 比较a 与b .2.曲线/ 分别是指数函数/ ,/ 和/ 的图象,则/ 与1的大小关系是 ( ).(题型二. 求解有关指数不等式例2 已知, 则x 的取值范围是___________.小练3: 5、设, 解关于的不等式.题型三. 求定义域及值域问题例3 求函数的定义域和值域.小练4: 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.小练5.若函数的定义域为R, 则实数的取值范围 .题型四. 最值问题例4 函数在区间上有最大值14, 则a 的值是_______.小练6.若函数, 求函数的最大值和最小值.小练7、已知函数在区间[-1,1]上的最大值是14, 求a 的值.题型五. 解指数方程例5 解方程.题型六. 图像及图象变换例6 为了得到函数的图象, 可以把函数的图象( ).A. 向左平移9个单位长度, 再向上平移5个单位长度B. 向右平移9个单位长度, 再向下平移5个单位长度C. 向左平移2个单位长度, 再向上平移5个单位长度D. 向右平移2个单位长度, 再向下平移5个单位长度小练8、若函数的图像经过第一、三、四象限, 则一定有( )A. B C. D.小练9、方程2|x|+x=2的实根的个数为_______________.小练10、函数在R 上是减函数, 则的取值范围是( )A. B. C. D.小练11、当时, 函数的值总是大于1, 则的取值范围是_____________题型七、定点问题例7、函数)10(33≠>+=-a a a y x 且的图象恒过定点____________.题型八、函数的奇偶性问题小练12.如果函数在区间上是偶函数, 则=_________A 、小练13.函数是( )奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数小练14、若函数是奇函数, 则=_________题型九、单调性问题小练14.函数的单调增区间为_____________.小练15.函数在区间上的最大值比最小值大, 则=__________.小练16.函数在区间上是增函数, 则实数的取值范围是 ( )A.[6,+....B...C....D.题型十、指数函数性质综合问题例8(1)已知是奇函数, 求常数m 的值;(2)画出函数的图象, 并利用图象回答:k 为何值时, 方程|3X-1|=k 无解? 有一解? 有两解?小练17、 求函数y =23231+-⎪⎭⎫⎝⎛x x 的单调区间.小练18、 已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.小练19、定义在R 上的奇函数有最小正周期为2, 且时,(1)求在[-1, 1]上的解析式;(2)判断在(0, 1)上的单调性;(3)当为何值时, 方程=在上有实数解.小练20、 函数y =a |x |(a>1)的图像是( )答案:例1: 解: ∵, ∴函数的对称轴是. 故, 又, ∴.∴函数在上递减, 在上递增. 若, 则, ∴;若, 则, ∴. 综上可得, 即.小练1: 解: (1)由/ , 故/ , 此时函数/ 为减函数. 由/ , 故/ .(2)由/ , 故/ . 又/ , 故/ . 从而/ .(3)由/ , 因/ , 故/ . 又/ , 故/ . 从而/ .(4)应有/ . 因若/ , 则/ . 又/ , 故/ , 这样/ . 又因/ , 故/ . 从而/ , 这与已知/ 矛盾.(5)应有/ .因若/ , 则/ .又/ , 故/ , 这样有/ .又因/ , 且/ , 故/ .从而/ , 这与已知/ 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2、首先可以根据指数函数单调性,确定,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 例2: 解: ∵, ∴函数在上是增函数,∴, 解得. ∴x 的取值范围是. :小练4解:(1)∵x -3≠0, ∴y =2的定义域为{x |x ∈R 且x ≠3}.又∵≠0, ∴2≠1,∴y =231 x 的值域为{y |y>0且y ≠1}. (2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.例3解: 由题意可得, 即, ∴, 故. ∴函数的定义域是.令, 则, 又∵, ∴. ∴, 即.∴, 即. ∴函数的值域是.例4: 解: 令, 则, 函数可化为, 其对称轴为.∴当时, ∵, ∴, 即. ∴当时, .解得或(舍去);当时, ∵, ∴, 即,∴ 时, , 解得或(舍去), ∴a 的值是3或.小练7解: , 换元为, 对称轴为.当, , 即x=1时取最大值, 解得 a=3 (a= -5舍去)例5 解: 原方程可化为, 令, 上述方程可化为, 解得或(舍去), ∴, ∴, 经检验原方程的解是.例6解:∵, ∴把函数的图象向左平移2个单位长度, 再向上平移5个单位长度, 可得到函数的图象, 故选(C ). 例8、解: (1)常数m=1(2)当k<0时, 直线y=k 与函数的图象无交点,即方程无解;当k=0或k1时, 直线y=k 与函数的图象有唯一的交点, 所以方程有一解;当0<k<1时, 直线y=k 与函数的图象有两个不同交点, 所以方程有两解。
(完整版)指数函数经典习题大全
指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。
(精华)指数函数经典题型练习题(不含答案)
本节知识点1、(一般的,如果nx a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)◆55n n n ⎧=⎪⎨=-⎪⎩正数的次方根是正数当是奇数时,负数的次方根是负数◆20,n a n n ⎧>⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根◆ 0的任何次方根都是0,2◆n a =当◆,0,0a a n a a a ≥⎧==⎨-≤⎩当3、 分数指数幂◆**0,,,1)1(0,,,1)mnm nm n a a m n N n a a a m n N n a -⎧=>∈>⎪⎪⎨=>∈>⎪⎪⎩正分数指数幂的意义且当为正数时,负分数指数幂的意义且 ◆ 00⎧⎨⎩0的正分数指数幂等于当a 为时,0的负分数指数幂无意义4、 有理指数幂运算性质①(0,,)r s r sa a a a r s Q +=>∈ ②()(0,,)r s rs a a a r s Q =>∈③()(0,0,)rr r ab a b a b r Q =>>∈5、 指数函数的概念一般的,函数(0,1)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .6、指数函数xy a =在底数1a >及01a <<这两种情况下的图象和性质:指数与指数函数试题归纳精编(一)指数1、化简[32)5(-]43的结果为 ( )A .5B .5C .-5D .-52、将322-化为分数指数幂的形式为( ) A .212- B .312- C .212-- D .652-3、化简4216132332)b (a b b a ab ⋅⋅(a, b 为正数)的结果是( )A .a bB .abC .ba D .a 2b4、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭5、13256)71(027.0143231+-+-----=__________.6、321132132)(----÷ab b a bab a =__________.7、21203271037(2)0.1(2)392748π-++-+—=__________。
指数函数习题(经典 含答案 及详细解析)
指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。
指数函数练习题
指数函数练习题一、简介指数函数是数学中的一种常见函数,其表达式为:y=y y其中,y为底数,y为指数,y为函数值。
指数函数在自然科学、工程技术以及金融经济等领域都有广泛的应用。
在本文档中,将给出一些指数函数的练习题,旨在帮助读者更好地理解指数函数以及其应用。
二、练习题1. 指数函数的图像绘制试绘制以下指数函数的图像,并回答相应问题:a)y=2yb)y=0.5yc)y=3yd)y=y y问题:a)当y为何值时,函数y=2y的值等于1?b)当y逐渐增大时,函数y=0.5y的值会趋近于哪个数?c)当y逐渐增大时,函数y=3y的值会趋近于正无穷大还是负无穷大?d)函数y=y y的图像是否通过点(0,1)?2. 指数函数的性质以下函数是指数函数的一种特殊形式,观察其性质并回答相关问题:a)y=2−yb)$y = \\left(\\frac{1}{3}\\right)^{-x}$问题:a)函数y=2−y的图像是否关于y轴对称?b)函数 $y = \\left(\\frac{1}{3}\\right)^{-x}$ 的值是否在区间(0,1)内?c)当y逐渐增大时,函数 $y =\\left(\\frac{1}{3}\\right)^{-x}$ 的值会趋近于正无穷大还是负无穷大?3. 指数函数的应用指数函数在许多实际问题中都有重要应用,下面是一些应用题:a)在投资中,如果每年的投资回报率为20%,那么在t 年后,投资额会增长到多少倍?b)某种放射性物质的衰变速率是原来的 80%(即每小时减少 20%),经过多少小时后,剩余量将降至原来的10%?c)假设某种细菌每小时增长 50%,如果初始细菌数量为 100 个,经过多少小时后,细菌数量将达到 1000 个?请根据所学知识,解答以上问题。
三、答案与解析1. 指数函数的图像绘制a)y=2yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = 2 ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 2^x') plt.grid(True)plt.show()b)y=0.5yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = (0.5) ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 0.5^x') plt.grid(True)plt.show()c)y=3yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = 3 ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 3^x')plt.grid(True)plt.show()d)y=y yimport matplotlib.pyplot as pltimport numpy as npx = np.linspace(-5, 5, 100)y = np.exp(x)plt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = e^x')plt.grid(True)plt.show()问题:a)函数y=2y的值等于1时,y=0。
指数函数习题及答案(经典)
指数函数习题一、选择题1.定义运算a ⊗b =⎩⎨⎧a a ≤b b a >b,则函数f (x )=1⊗2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x --+11.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
指数函数经典例题和课后习题
指数函数及其基本性质指数函数得定义一般地,函数()10≠>=a a a y x且叫做指数函数,其中x 就是自变量,函数得定义域就是R 、问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2=-=x a 则在实数范围内相应得函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,xa 无意义)(3)若 a=1又会怎么样?(1x 无论x 取何值,它总就是1,对它没有研究得必要、) 师:为了避免上述各种情况得发生,所以规定0>a 且 1≠a 、指数函数得图像及性质函数值得分布情况如下:指数函数平移问题(引导学生作图理解)用计算机作出得图像,并在同一坐标系下作出下列函数得图象,并指出它们与指数函数y =x 2得图象得关系(作图略),⑴y =12+x 与y =22+x 、 ⑵y =12-x 与y =22-x 、f (x )得图象向左平移a 个单位得到f (x +a )得图象; 向右平移a 个单位得到f (x -a )得图象; 向上平移a 个单位得到f (x )+a 得图象; 向下平移a 个单位得到f (x )-a 得图象、指数函数·经典例题解析(重在解题方法)【例1】求下列函数得定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域就是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3及时演练求下列函数得定义域与值域 (1)412-=x y ; (2)||2()3x y =;(3)1241++=+x xy ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 得图像如图2.6-2所示,则a 、b 、c 、d 、1之间得大小关系就是[ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .及时演练 指数函数①②满足不等式,则它们得图象就是 ( )、【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4、54、1________3、73、6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()()解 (3)借助数4、53、6打桥,利用指数函数得单调性,4、54、1>4、53、6,作函数y 1=4、5x ,y 2=3、7x 得图像如图2.6-3,取x =3、6,得4、53、6>3、73、6∴ 4、54、1>3、73、6.说明 如何比较两个幂得大小:若不同底先化为同底得幂,再利用指数函数得单调性进行比较,如例2中得(1).若就是两个不同底且指数也不同得幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中得(2).其二构造一个新得幂作桥梁,这个新得幂具有与4、54、1同底与3、73、6同指数得特点,即为4、53、6(或3、74、1),如例2中得(3). 及时演练(1)1、72、5与 1、73( 2 )0.10.8-与0.20.8-( 3 )1、70、3 与 0、93、1(4)5.31.2与7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,a a a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________、 【解析】 解法1:∵f(x)得定义域为R ,又∵f(x)为奇函数, ∴f(0)=0,即a -120+1=0、∴a =12、解法2:∵f(x)为奇函数,∴f(-x)=-f(x), 即a -12-x+1=12x +1-a ,解得a =12、【答案】 12【例6】解求函数=的单调区间及值域.令=-+,则=是关于的减函数,而=--+y u x 5x 6y u u x 5xx 25x 622()()3434u+在∈∞,上是减函数,在∈,∞上是增函数.∴函数=的单调增区间是∞,,单调减区间是,∞.-+6x x y x 25x 6(][)()(][)-+-+5252345252又∵=-+=≥,函数=,在∈,∞上是减函数,所以函数=的值域是,.-+u x 5x 6y u y 2x 25x 6()()[)()(]x u ----+5214143414340108324及时演练【例7】解求函数=+≥的单调区间及它的最大值.=,令=,∵≥,∴<≤,又∵=是∈,+∞上的减函数,函数=y 1(x 0) y u x 00u 1u x 0)y ()()[()]()[()]()()[()141212121121234121212222x x x x x x x u --+=-+-+-3401212121212121412在∈,上为减函数,在,上是增函数.但由<≤得≥,由≤≤,得≤≤,∴函数=+单调增区间是,+∞,单调减区间,u 1)0x 110x 1y 11)[01](][()()()()[x x x x当x =0时,函数y 有最大值为1.【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)得奇偶性; (2)求f(x)得值域;(3)证明f(x)在区间(-∞,+∞)上就是增函数. 解 (1)定义域就是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)得值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212 备选例题1.比较下列各组数得大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故.从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数得单调性、奇偶性、图象来求解.,2、已知2321(25)(25)x x a a a a -++>++,则x 得取值范围就是___________. 分析:利用指数函数得单调性求解,注意底数得取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上就是增函数, ∴31x x >-,解得14x >.∴x 得取值范围就是14⎛⎫+ ⎪⎝⎭,∞. 3、 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程得解就是2x =. 评注:解指数方程通常就是通过换元转化成二次方程求解,要注意验根.4、 为了得到函数935x y =⨯+得图象,可以把函数3x y =得图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象得平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =得图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+ 得图象,故选(C ).评注:用函数图象解决问题就是中学数学得重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数得图象,并掌握图象得变化规律,比如:平移、伸缩、对称等.5、 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x得最大值与最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
(完整word版)指数函数复习专题(含详细解析)
第讲指数函数时间:年月日刘老师学生签名:一、兴趣导入二、学前测试1.在区间上为增函数的是( B )A . B. C. D.2.函数是单调函数时,的取值范围( A )A. B . C . D.3.如果偶函数在具有最大值,那么该函数在有( A )A.最大值 B .最小值 C .没有最大值 D.没有最小值4.函数,是( B )A.偶函数 B .奇函数 C.不具有奇偶函数 D .与有关5.函数在和都是增函数,若,且那么( D )A. B. C. D .无法确定6.函数在区间是增函数,则的递增区间是( B )A. B. C. D.12三、方法培养☆专题1:指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。
例1指出下列函数那些是指数函数:(1)4x y =(2)x y 4=(3)4xy -= (4))4(-=xy (5)π=y x(6)x y 24=(7)xxy =(8))1,21(()12≠>=-a a y a x解析:利用指数函数的定义解决这类问题。
解:(1),(5),(8)为指数函数变式练习11函数2(33)x y a a a =-+⋅是指数函数,则有()A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:105432)(0625.0833416--+++π; 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0。
062 5)41+1-21=(25)2×21+(23)313⨯+(0。
5)414⨯+21=25+23+0。
5+21 =5;☆专题2:指数函数的图像与性质一般地,指数函数y=a x在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >1 0<a <1 图象3性质 ①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1 ④在R 上是减函数,当x <0时,y>1;当x >0时,0<y <1在同一坐标系中作出y=2x和y=(21)x 两个函数的图象,如图2—1-2-3。
指数函数经典例题和课后习题
指数函数及其基本性质指数函数的定义一般地,函数()10≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域是R .问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,xa 无意义)(3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .指数函数的图像及性质 函数值的分布情况如下:指数函数平移问题(引导学生作图理解)用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x2的图象的关系(作图略),⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .f (x )的图象向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.指数函数·经典例题解析(重在解题方法)【例1】求下列函数的定义域与值域:解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, 及时演练求下列函数的定义域与值域 (1)412-=x y ; (2)||2()3x y =;(3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是[ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .及时演练指数函数①②满足不等式,则它们的图象是 ( ).【例3】比较大小: (3)4.54.1________3.73.6解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).及时演练(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例5】已知函数f(x)=a -12x+1,若f(x)为奇函数,则a =________. 【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数, ∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x), 即a -12-x+1=12x +1-a ,解得a =12.【答案】 12及时演练当x =0时,函数y 有最大值为1.(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R . ∴函数f(x)为奇函数. 即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)备选例题1.比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故.从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.,2.已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 3. 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 4. 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象的平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+ 的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.5. 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
指数函数练习题(包含详细答案)
1.给出下列结论: ②n a n =|a |(n >1,n ∈N *,n 为偶数);④若2x =16,3y =127,则x +y =7.其中正确的是( )A .①②B .②③C .③④D .②④答案 B解析 ∵2x =16,∴x =4,∵3y =127,∴y =-3.∴x +y =4+(-3)=1,故④错.2.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)答案 C3.函数f (x )=3-x -1的定义域、值域是( )A .定义域是R ,值域是RB .定义域是R ,值域是(0,+∞)C .定义域是R ,值域是(-1,+∞)D .以上都不对答案 C解析 f (x )=(13)x -1,∵(13)x >0,∴f (x )>-1.4.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 答案 D解析 y 1=21.8,y 2=21.44,y 3=21.5,∵y =2x 在定义域内为增函数,∴y 1>y 3>y 2.5.函数f (x )=a x -b 的图像如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 答案 D6.(2014·成都二诊)若函数f (x )=(a +1e x -1)cos x 是奇函数,则常数a 的值等于( ) A .-1B .1C .-12D.12 答案 D7.(2014·山东师大附中)集合A ={(x ,y )|y =a },集合B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个子集,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .R 答案 B8.函数f (x )=3·4x -2x 在x ∈[0,+∞)上的最小值是( )A .-112B .0C .2D .10 答案 C解析 设t =2x ,∵x ∈[0,+∞),∴t ≥1.∵y =3t 2-t (t ≥1)的最小值为2,∴函数f (x )的最小值为2.9.已知函数f (x )=⎩⎨⎧x -1,x >0,2-|x |+1,x ≤0.若关于x 的方程f (x )+2x -k =0有且只有两个不同的实根,则实数k 的取值范围为( )A .(-1,2]B .(-∞,1]∪(2,+∞)C .(0,1]D .[1,+∞) 答案 A解析 在同一坐标系中作出y =f (x )和y =-2x +k 的图像,数形结合即可.10.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变化时,函数b =g (a )的图像可以是( ) 答案 B解析 函数y =2|x |的图像如图.当a =-4时,0≤b ≤4;当b =4时,-4≤a ≤0.11.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 答案 (-2,-1)∪(1,2)解析 函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则0<a 2-1<1,解得1<a <2或-2<a <-1.12.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.答案 2解析 ∵y =a x 在[0,1]上为单调函数,∴a 0+a 1=3,∴a =2.13.(2014·沧州七校联考)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.答案 [2,+∞)解析 f (1)=a 2=19,a =13,f (x )=⎩⎪⎨⎪⎧ (13)2x -4,x ≥2,(13)4-2x , x <2.∴单调递减区间为[2,+∞).14.若0<a <1,0<b <1,且,则x 的取值范围是________.答案 (3,4)解析 log b (x -3)>0,∴0<x -3<1,∴3<x <4.15.若函数y =2-x +1+m 的图像不经过第一象限,则m 的取值范围是______.答案 m ≤-216.是否存在实数a ,使函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值是14?答案 a =3或a =13解析 令t =a x ,则y =t 2+2t -1.(1)当a >1时,∵x ∈[-1,1],∴a x ∈[1a ,a ],即t ∈[1a ,a ].∴y =t 2+2t -1=(t +1)2-2在[1a ,a ]上是增函数(对称轴t =-1<1a ).∴当t =a 时,y max =(a +1)2-2=14.∴a =3或a =-5.∵a >1,∴a =3.(2)当0<a <1时,t ∈[a ,1a]. ∵y =(t +1)2-2在[a ,1a ]上是增函数, ∴y max =(1a +1)2-2=14.∴a =13或a =-15.∵0<a <1,∴a =13.综上,a =3或a =13.17.(2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中a ,b 满足a ·b ≠0.(1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围.答案 (1)a >0,b >0时,f (x )增函数;a <0,b <0时,f (x )减函数(2)a <0,b >0时,x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;a >0,b <0时,x <log 1.5⎝ ⎛⎭⎪⎫-a 2b 解析 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,∴f (x 1)-f (x 2)<0,∴函数f (x )在R 上是增函数.当a <0,b <0时,同理,函数f (x )在R 上是减函数.(2)f (x +1)-f (x )=a ·2x +2b ·3x >0.当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ; 当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .18.已知函数f (x )=-2x2x +1. (1)用定义证明函数f (x )在(-∞,+∞)上为减函数;(2)若x ∈[1,2],求函数f (x )的值域;(3)若g (x )=a 2+f (x ),且当x ∈[1,2]时g (x )≥0恒成立,求实数a 的取值范围.答案 (1)略 (2)[-45,-23] (3)a ≥85(2)∵f (x )在(-∞,+∞)上为减函数,∴f (x )的值域为[-45,-23].(3)当x ∈[1,2]时,g (x )∈[a 2-45,a 2-23].∵g (x )≥0在x ∈[1,2]上恒成立,∴a 2-45≥0,∴a ≥85.。
指数函数练习题
指数函数练习题1.指数函数的基本概念指数函数是数学中一类重要的函数,常用于描述指数增长或指数衰减的情况。
其一般形式为:$y = a \cdot b^x$,其中 $a$ 和$b$ 是常数,$b。
0$ 且 $b \neq 1$。
指数函数的特点包括:当 $b。
1$ 时,函数呈指数增长趋势;当 $0 < b < 1$ 时,函数呈指数衰减趋势;当 $b = 1$ 时,函数退化为常数函数。
2.指数函数的求解与应用指数函数的求解主要涉及确定常数 $a$ 和 $b$ 的值,以及利用函数的性质进行计算。
示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。
示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。
解答:将 $x = 2$ 代入函数表达式中,得到 $y = 3 \cdot 2^2 = 12$。
因此,当 $x = 2$ 时,函数值为 12.示例2.某车辆的初始价格为 10 万元,每年贬值 5%,求经过 5 年后车辆的价格。
示例2.某车辆的初始价格为 10 万元,每年贬值5%,求经过 5 年后车辆的价格。
解答:设经过 $x$ 年后车辆的价格为 $y$,则满足指数衰减的函数关系为 $y = 10 \times (1-0.05)^x$。
代入 $x = 5$,得到 $y = 10 \times (1-0.05)^5 \approx 7.788$ 万元。
因此,经过 5 年后车辆的价格约为 7.788 万元。
指数函数在实际生活中有广泛的应用,例如金融领域的复利计算、生物学中的指数增长模型、电子电路中的放大器响应曲线等。
3.指数函数的练习题练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在$x = 2$ 处的斜率为 1,求函数的表达式。
练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在 $x = 2$ 处的斜率为 1,求函数的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
5、 0.027 3
( 1)2
3
256 4
31
1=__________.
7
2
6、
a3 b
1
a 23 b
( a 1 b
b 1
2
)3
=__________.
a
7、
(2
7
)
1 2
0.12
(2
10
—
)
2 3
3
0
37
=__________。
9
27
48
8、
(a
2 3
b
1 2
)(3a
1 2
b
1 3
(4)单调递增
(4)
指数与指数函数试题归纳精编
(一)指数
3
1、化简[ 3 (5)2 ] 4 的结果为 (
)
A.5
B. 5
C.- 5
D.-5
2、将 3 2 2 化为分数指数幂的形式为(
)
1
A. 2 2
1
B. 23
1
C. 2 2
5
D. 2 6
3 ab2 a 3b 2
3、化简
1 1 (a, b 为正数)的结果是( )
【例】1.已知 a 0, 且a 1,讨论 f x a x2 3x2 的单调性.
2.求下列函数的单调区间.
(1) y a x2 2x3 ;
n 1) n 1)
an
0的正分数指数幂等于0 当a为0时,0的负分数指数幂无意义
4、 有理指数幂运算性质
① aras ars (a 0, r, s Q) ② (ar )s ars (a 0, r, s Q)
③ (ab)r arbr (a 0, b 0, r Q)
5、 指数函数的概念
(二)指数函数
题型一:与指数有关的复合函数的定义域和值域
1、 含指数函数的复合函数的定义域
(1) 由于指数函数 y a x a 0, 且a 1的定义域是 R ,所以函数 y a f x 的定 且a 1的定义域,关键是找出 t a x 的值域哪些部分 y f t 的定义域中.
a
0 的任何次方根都是 0 ,记作 n 0
2、 n an 的讨论
当n是奇数时,n an a
当n是偶数时,n
an
a
a, a a,
0 a
0
3、 分数指数幂
m
当a为正数时,正分数指数幂的意义且a
n
m
n
负分数指数幂的意义且a n
am
1
m
(a 0, m, n N *, (a 0, m, n N *,
一般的,函数 y ax (a 0, 且a 1) 叫做指数函数,其中 x 是自变量,函数的定义域是 R .
6、指数函数 y ax 在底数 a 1 及 0 a 1这两种情况下的图象和性质:
a 1
0 a 1
图 象
(1)定义域: R 性 (2)值域: (0, ) 质 (3)过点 ,即 x 0 时 y 1
题型三:指数函数的最值问题
解题思路:指数函数在定义域 R 上是单调函数,因此在 R 的某一闭区间子集上也是单调函数,因此在区间的两
个端点处分别取到最大值和最小值.需要注意的是,当底数未知时,要对底数分情况讨论.
【例】函数 f x a x a 0, a 1在 1, 2上的最大值比最小值大 a ,求 a 的值.
2
题型四:与指数函数有关复合函数的单调性(同增异减)
1、研究形如 y a f x a 0, 且a 1的函数的单调性时,有如下结论: (1)当 a 1 时,函数 y a f x 的单调性与 f x的单调性相同; (2)当 0 a 1 时,函数 y a f x 的单调性与 f x的单调性相反.
体的范围列指数不等式,得出 a x 的具体范围),然后再 t 0,上,求 y f t 的值域即可.
【例】求下列函数的定义域和值域.
1
(1) y 0.4 x1 ;
(2) y 3 5x1 ;
(3) y 1 a x .
题型二:利用指数函数的单调性解指数不等式
解题步骤:(1)利用指数函数的单调性解不等式,首先要将不等式两端都凑成底数相同的指数式.
2、 含指数函数的复合函数的值域
(1) 在求形如 y a f x a 0, 且a 1的函数值域时,先求得 f x的值域(即 t f x中 t 的范围),再根
据 y at 的单调性列出指数不等式,得出 at 的范围,即 y a f x 的值域.
(2) 在求形如 y f a x a 0, 且a 1的函数值域时,易知 a x 0 (或根据 y f a x 对 x 限定的更加具
本节知识点
1、 根式 n a (一般的,如果 xn a ,那么 x 叫做 a 的 n 次方根,其中 n 1,且n N * .)
当n是奇数时,正数的n次方根是正数如 负数的n次方根是负数如
3 32 5 5 32 5
当n是偶数时,正数的n次方根有个2 ,且互为相反数如:则次a方根0, 为n 负数没有偶次方根
(2) a f x
a g x
f f
x x
g x g x
, ,
a 0
1 a
1
【例】(1)解不等式 1 3x1 2 ; 2
(2)已知 a x2 3x1 a x6 a 0, a 1 ,求 x 的取值范围.
例 2.比较大小
1
1
(1)23与4 5
(2)()1 与2 2-1 2
(3)4. 53.6与3.64.5
2、研究形如 y a x a 0, 且a 1的函数的单调性时,有如下结论: (1)当 a 1 时,函数 y a x 的单调性与 y t 的单调性相同; (2)当 0 a 1 时,函数 y a x 的单调性与 y t 的单调性相反.
注意:做此类题时,一定要考虑复合函数的定义域.
)
(
1
a
1 6
b
5 6
)
=__________。
3
9、(3)2( )3(6 )(2)2
4
3 4
16
1 2
4
2
80.25
2005 0 =__________。
49
1
10、若 x 2
1
x 2
3 ,求
3
x2 x2
3
x 2 3 x 2 2 的值。
1
11、已知 a2
1
a2
=3,求(1)
a
a1 ; (2) a2 a2 ;
3 b (a 6 b 2 )4
b
A.
a
B.ab
a
C.
b
D.a2b
1 1 1 1 1
4、化简 1 2 32 1 2 16 1 2 8 1 2 4 1 2 2 ,结果是(
)
A、
1 2
1
1
2 32
1
1 1
B、 1 2 32
1
C、1 2 32
D、
1 2
1
1
2 32