高考物理二轮复习 专项训练 物理速度选择器和回旋加速器含解析
高中物理速度选择器和回旋加速器专题训练答案及解析
高中物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6π-⨯ 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。
高中物理速度选择器和回旋加速器专项训练及答案及解析
高中物理速度选择器和回旋加速器专项训练及答案及解析一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos y qE a mθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
高考物理速度选择器和回旋加速器专项训练100(附答案)含解析
高考物理速度选择器和回旋加速器专项训练100(附答案)含解析一、速度选择器和回旋加速器1.如图为质谱仪的原理图。
电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。
一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?(3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1Uv B d = (3)12122()U m m x qB B d-∆=【解析】 【详解】(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:1UqvB qd= 解得:1U v B d=(3)两粒子均由洛伦兹力提供向心力22v qvB m R=可得:112m v R qB =,222m vR qB = 两粒子打在底片上的长度为半圆的直径,则:1222x R R ∆=-联立解得:12122()U m m x qB B d-∆=2.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。
高考物理速度选择器和回旋加速器专项训练100(附答案)及解析
高考物理速度选择器和回旋加速器专项训练100(附答案)及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R =由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v =若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r ='解得:20212v v += 故0102121v v v v -+≤≤=3.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
高考物理速度选择器和回旋加速器专题训练答案及解析
高考物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
求: (1)射出粒子的速率; (2)射出粒子的比荷;(3)MN 与挡板之间的最小距离。
【答案】(1)1U B d(2)22cos v B L α(3)(1sin )2cos L αα-【解析】 【详解】(1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:qυB 1=qUd解得υ=1UB d; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:由几何知识得:r =2cos Lα=2cos Lα粒子在磁场中做圆周运动,由牛顿第二定律得qυB 2=m2rυ,解得:q m =22cos v B L α(3)MN 与挡板之间的最小距离:d =r ﹣r sin α=(1sin )2cos L αα-答:(1)射出粒子的速率为1U B d;(2)射出粒子的比荷为22cos v B L α;(3)MN 与挡板之间的最小距离为(1sin )2cos L αα-。
高中物理速度选择器和回旋加速器试题(有答案和解析)含解析
(2)若同时存在电场和磁场,粒子的速度 v0 大小;
(3)现在,只加电场,当粒子从 P 点运动到 x=R0 平面(图中虚线所示)时,立即撤除电 场同时加上磁场,粒子继续运动,其轨迹与 x 轴交于 M 点。(不计重力)。粒子到达 x=R0 平面时速度 v 大小以及粒子到 x 轴的距离; (4)M 点的横坐标 xM。
击中屏上 a 点;若撤去磁场,离子流击中屏上 b 点,则 ab 间的距离是多少?.
【答案】(1)竖直向下; 2105 m / s (2)1.34m
【解析】 【详解】 (1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向 竖直向下; 由受力平衡得
qE qvB 离子流的速度
y2 0.4m
yab y1 y2 L 0.6 3-0.3 0.4 0.2 m =1.34m
4.如图,空间存在匀强电场和匀强磁场,电场方向为 y 轴正方向,磁场方向垂直于 xy 平 面(纸面)向外,电场 E 和磁场 B 都可以随意加上或撤除,重新加上的电场或磁场与撤除 前的一样。一带正电的粒子质量为 m、电荷量为 q 从 P(x=0,y=h)点以一定的速度平行于 x 轴正向入射。这时若只有磁场,粒子将做半径为 R0 的圆周运动;若同时存在电场和磁场, 粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径 R0 大小;
7.如图所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的 匀强磁场,电场强度和磁感应强度的大小分别为 E=2×106N/C 和 B1=0.1T,极板的长度
,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直
于纸面向外,圆形区域的圆心 O 位于平行金属极板的中线上,圆形区域的半径
高考物理速度选择器和回旋加速器专项训练及答案含解析
高考物理速度选择器和回旋加速器专项训练及答案含解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E mB L =(3)从dc 边距离d 3L 处射出磁场;3BL Eπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m == 得:2 q E m B L=(3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:2x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点2x L =处离开磁场,在磁场中运动的时间3BL t E =π.3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高考物理速度选择器和回旋加速器专项训练100(附答案)及解析
高考物理速度选择器和回旋加速器专项训练100(附答案)及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B 3,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6π-⨯ 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=⨯3.如图所示,有一对平行金属板,两板相距为0.05m 。
高考物理速度选择器和回旋加速器专项训练及答案及解析
高考物理速度选择器和回旋加速器专项训练及答案及解析一、速度选择器和回旋加速器1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷qm=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
求: (1)粒子初速度v 0的大小;(2)圆形匀强磁场区域的磁感应强度B 2的大小;(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。
【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。
【解析】 【详解】(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡qv 0B 1=Eq带电粒子初速度v 0=5×104m/s(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力2002v qv B m r=轨迹如图所示:由几何关系,带电粒子做圆周运动的半径为40.8mtan 373R r R ===︒联立解得:B 2=0.02T(3)带电粒子在电场中做类平抛运动 水平方向0L v t =⋅竖直方向212y at =由牛顿第二定律qE ma =粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:由几何关系 ,利用三角形相似,有:22()22L y y Rd +=+解得1.144m d =,若想带电粒子不能飞入圆形磁场,应满足 1.144m d ≥。
(物理) 高考物理速度选择器和回旋加速器专项训练100(附答案)及解析
(物理) 高考物理速度选择器和回旋加速器专项训练100(附答案)及解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
高中物理速度选择器和回旋加速器压轴题二轮复习附答案解析
高中物理速度选择器和回旋加速器压轴题二轮复习附答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2222k qUh mU E d B d=+【解析】 【详解】 (1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)002121v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R =由洛伦兹力提供向心力有:211v qv B m r=解得:1021v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r ='解得:20212v v += 故010212122v v v v -+≤≤=3.PQ 和 MN 分别是完全正对的金属板,接入电动势为E 的电源,如图所示,板间电场可看作匀强电场,MN 之间距离为d ,其间存在着磁感应强度为B ,方向垂直纸面向里的匀强磁场。
速度选择器和回旋加速器练习题含答案及解析
(1)粒子在第二象限做类平抛运动,设初速度为v,
L=v1t
联立解得 ,则经过y轴上 的位置;
(2)
v2=at
可得
qv1B=qE
解得
(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,如图;
解得
最低点y坐标为
此时速度最大为vm=2v1+v1
解得
8.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E的匀强电场。金属板右下方以MN为上边界,PQ为下边界,MP为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d,MN与下极板等高,MP与金属板右端在同一竖直线。一个电荷量为q、质量为m的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。
带电粒子在P1和P2间运动,根据电场力与洛伦兹力平衡可得: 解得: ;
(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力: ;
已知 ,解得:
7.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y轴,并且在第一象限恰能做直线运动,不计粒子重力
联立以上各式解得,离子在电场E中运动到A点所需时间:
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
解得:
由几何知识可得
在电场中,x方向上离子做匀速直线运动,则
因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:
【点睛】
本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
高中物理速度选择器和回旋加速器习题二轮复习含答案
高中物理速度选择器和回旋加速器习题二轮复习含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=E B又因为E=U d所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S2.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E、磁感应强度为B的复合场区域.进入时氕与氘、氘与氚的间距均为d,射出复合场后进入y轴与MN之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN射出.虚线MN与PQ间为真空区域Ⅱ且PQ与MN平行.已知质子比荷为qm,不计重力.(1)求粒子做直线运动时的速度大小v;(2)求区域Ⅰ内磁场的磁感应强度B1;(3)若虚线PQ右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN上的一点,求该磁场的最小面积S和同时进入复合场的氕、氚运动到汇聚点的时间差△t.【答案】(1)EB(2)mEqdB(3)(2)BdEπθ+【解析】【分析】由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B1;分析可得氚粒子圆周运动直径为3r,求出磁场最小面积,在结合周期公式即可求得时间差.【详解】(1)粒子运动轨迹如图所示:由电场力与洛伦兹力平衡,有:Bqv=Eq解得:E vB =(2)由洛伦兹力提供向心力,有:2 1v qB v mr=由几何关系得:r=d解得:1mEBqdB=(3)分析可得氚粒子圆周运动直径为3r,磁场最小面积为:22 13222r r Sπ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭解得:S=πd2由题意得:B 2=2B 1由2rT vπ= 可得:2m T qB π=由轨迹可知:△t 1=(3T 1﹣T 1)2θπ, 其中112mT qB π= △t 2=12(3T 2﹣T 2)其中222m T qB π=解得:△t =△t 1+△t 2=()()122m dBqB Eθπθπ++=【点睛】本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.3.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。
【物理】 高考物理速度选择器和回旋加速器专项训练100(附答案)及解析
【物理】 高考物理速度选择器和回旋加速器专项训练100(附答案)及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值0E B ; (2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
高考物理速度选择器和回旋加速器技巧(很有用)及练习题含解析
高考物理速度选择器和回旋加速器技巧(很有用)及练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
(物理)物理速度选择器和回旋加速器专项习题及答案解析及解析
(物理)物理速度选择器和回旋加速器专项习题及答案解析及解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
求: (1)带电粒子的速度大小v ; (2)带电粒子的质量m 。
【答案】(1)500m/s v =;(2)104.010kg m -=⨯【解析】 【分析】 【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有qEqvB解得带电粒子的速度大小100m/s 500m/s 0.2E v B === (2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有2v qvB m R=而粒子偏转90°,由几何关系可知0.5m R L ==联立可得带电粒子的质量6102100.20.5kg 4.010kg 500qBL m v --⨯⨯⨯===⨯2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+3.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:10212v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r ='解得:20212v v += 故010212122v v v v -+≤≤=4.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
高中物理速度选择器和回旋加速器专题训练答案及解析
高中物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
(物理)物理速度选择器和回旋加速器专项习题及答案解析
(物理)物理速度选择器和回旋加速器专项习题及答案解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
高中物理总复习--物理速度选择器和回旋加速器及解析
高中物理总复习--物理速度选择器和回旋加速器及解析一、速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 46036023t T -==o o2.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。
现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)求匀强磁场的磁感应强度的大小和方向;(2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α粒子的比荷q m; (3)若把匀强磁场撤去,α粒子的比荷qm不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。
速度选择器和回旋加速器练习及解析
速度选择器和回旋加速器练习及解析一、速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 3L 处,(2)34。
【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M 点飞出磁场,由几何关系:AM 222L R ⎛⎫- ⎪⎝⎭=32L 所以粒子离开的位置在AB 连线上距离A 点32L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan 12LL α==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan 3AMOAβ== 解得:60β︒= 所以偏转角之比:34αβ=。
2.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷qm. 【答案】(1)00U dB (2)0013U 【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0013U q m = 点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.3.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv 0d ;(2)m qBθ;(3)R=0tan2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv 0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=02rv π粒子在圆形磁场区域中运动的时间t=2θπT 解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan 2mv qBθ4.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E 的匀强电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理二轮复习 专项训练 物理速度选择器和回旋加速器含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv 0d ;(2)m qBθ;(3)R=0tan2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv 0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=2rv π 粒子在圆形磁场区域中运动的时间t=2θπTBq(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan2mvqBθ3.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eEB又因为E=Ud所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S4.如图,平行金属板的两极板之间的距离为d,电压为U。
两极板之间有一匀强磁场,磁感应强度大小为B0,方向与金属板面平行且垂直于纸面向里。
两极板上方一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里。
一带正电的粒子从A点以某一初速度沿平行于金属板面且垂直于磁场的方向射入两极板间,而后沿直径CD方向射入圆形磁场区域,并从边界上的F点射出。
已知粒子在圆形磁场区域运动过程中的速度偏转角23πθ=,不计粒子重力。
求:(1)粒子初速度v的大小;(2)粒子的比荷。
【答案】(1)v =oUB d(2)3oq Um=【解析】【详解】(1)粒子在平行金属板之间做匀速直线运动qvB0 = qE①U = Ed②由①②式得v =oUB d③(2)在圆形磁场区域,粒子做匀速圆周运动,由牛顿第二定律有2vqvB mr=④由几何关系有:tan2Rrθ=⑤ 由③④⑤式得:3o q Um =⑥5.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为qm的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为23mEqB ,带电粒子的重力不计。
(1)求下极板上 N 、P 两点间的距离;(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。
【答案】(1)23mE x qB=(2)'4'7q q m m = 【解析】 【分析】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,根据几何关系求解圆周运动的半径,然后根据2''m v q vB R= 求解比荷。
【详解】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,qE qvB =粒子过 MN 时的速度大小 E v B=仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动, 沿电场方向:22322mE qE t qB m=垂直于电场方向:x vt =由以上各式计算得出下极板上N 、 P 两点间的距离3mEx =(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,设经过 P 点的粒子的比荷为''q m ,其做匀速圆周运动的半径为 R , 由几何关系得:22223()2mE R x R qB =+-解得 274mER qB =又 2''m v q vB R=得比荷'4'7q q m m=6.(1)获得阴极射线,一般采用的办法是加热灯丝,使其达到一定温度后溅射出电子,然后通过一定的电压加速.已知电子质量为m ,带电量为e ,加速电压为U ,若溅射出的电子初速度为0,试求加速之后的阴极射线流的速度大小v .(2)实际问题中灯丝溅射出的电子初速度不为0,且速度大小满足某种分布,所以经过同一电压加速后的电子速度大小就不完全相同.但可以利用电场和磁场对电子的共同作用来筛选出科学研究所需要的特定速度的电子.设计如图所示的装置,上下极板接电源的正负极,虚线为中轴线,在装置右侧设置一个挡板,并在与中轴线相交处开设一个小孔,允许电子通过.调节极板区域内电场和磁场的强弱和方向,使特定速度的电子沿轴线穿过.请在图中画出满足条件的匀强磁场和匀强电场的方向.(3)为了确定从上述速度选择装置射出的阴极射线的速度,可采用如图所示的电偏转装置(截面图).右侧放置一块绝缘荧光板,电子打在荧光板上发光,从而知道阴极射线所打的位置.现使荧光板紧靠平行极板右侧,并将其处于两板间的长度六等分,端点和等分点分别用a 、b 、c 、……表示.偏转电极连接一个闭合电路,将滑线变阻器也六等分,端点和等分点分别用A 、B 、C 、……表示.已知电子所带电量e = 1.6×10-19C ,取电子质量m = 9.0×10-31kg ,板间距和板长均为L ,电源电动势E = 120V .实验中发现,当滑线变阻器的滑片滑到A 点时,阴极射线恰好沿中轴线垂直打到d 点;当滑片滑到D 点时,观察到荧光屏上f 点发光.忽略电源内阻、所有导线电阻、电子重力以及电子间的相互作用.请通过以上信息计算从速度选择装置射出的阴极射线的速度大小v0.【答案】(1)2eUm(2)如图所示:(3)6410m/s⨯【解析】(1)根据动能定理可以得到:212Ue mv=,则:2eUvm=;(2)当电子受到洛伦兹力和电场力相等时,即qvB Eq=,即EvB=,满足这个条件的电子才能通过,如图所示:(3)设当滑片滑到D点时两极板间电压为U,EU602V==由电子在电场中的偏转运动得:211()32eU LLmL v=则:63E410/4ev m sm==⨯.点睛:本题主要考查带电粒子在电场中的加速、速度选择器以及带电粒子在电场中的偏转问题,但是本题以信息题的形式出现,令人耳目一新的感觉,但是难度不大,是一道好题,对学生分析问题能起到良好的作用.7.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d ,三金属板上小孔O 1、O 2、O 3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场E 1,Ⅱ、Ⅲ间有水平向左电场强度为E 2的匀强电场及垂直于纸面向里磁感应强度为B 2的匀强磁场.一质子由金属板I 上端O 1点静止释放,经电场E 1加速,经过O 2进入E 2、B 2的复合场中,最终从Ⅲ的下端O 3射出,已知质子带电量为e ,质量为m .则A .O 3处出射时粒子速度为222E v B = B .Ⅰ、Ⅱ两板间电压2122mE U eB =C .粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1D .把质子换成α粒子,则α粒子也能从O 3射出 【答案】AB 【解析】 【详解】A .经过O 2点进入E 2、B 2的复合场中,最终沿直线从Ⅲ的下端O 3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据qE 2=B 2qv解得:v=22E B故A 正确;B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=12mv 2,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么Ⅰ、Ⅱ两板间电压U 1=2222 2mE eB 故B 正确;C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有d =102vt +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误; D .若将质子换成α粒子,根据qU 1=12mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.8.如图所示,两竖直金属板间电压为U 1,两水平金属板的间距为d .竖直金属板a 上有一质量为m 、电荷量为q 的微粒(重力不计)从静止经电场加速后,从另一竖直金属板上的小孔水平进入两水平金属板间并继续沿直线运动.水平金属板内的匀强磁场及其右侧宽度一定、高度足够高的匀强磁场方向都垂直纸面向里,磁感应强度大小均为B ,求:(1)微粒刚进入水平金属板间时的速度大小v 0; (2)两水平金属板间的电压;(3)为使微粒不从磁场右边界射出,右侧磁场的最小宽度D . 【答案】(1)102qU v m =12qU U m = (3)12qU m D Bq m=【解析】 【分析】(1)粒子在电场中加速,根据动能定理可求得微粒进入平行金属板间的速度大小; (2)根据粒子在平行板间做直线运动可知,电场力与洛伦兹力大小相等,列式可求得电压大小;(3)粒子在磁场中做匀速圆周运动,根据几何关系可知半径与D 之间的关系,再由洛伦兹充当向心力可求得最小宽度. 【详解】(1)在加速电场中,由动能定理,得 qU 1=12mv 02,解得v 0=12qU m. (2)在水平金属板间时,微粒做直线运动,则 Bqv 0=qU d, 解得U =Bd12qU m(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D ,则Bqv 0=m 20v r且r =D ,解得D =12qU m Bq m【点睛】题考查带电粒子在电场和磁场中的运动,要注意明确带电粒子在磁场中运动时注意几何关系的应用,明确向心力公式的应用;而带电粒子在电场中的运动要注意根据功能关系以及运动的合成和分解规律求解.9.回旋加速器原理如图所示,D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在交流电源上,位于D 1圆心处的离子源A 能不断产生正离子,它们在两盒之间被电场加速,当正离子被加速到最大动能E k 后,再设法将其引出。