《匀变速直线运动的位移与时间的关系》
2.3 匀变速直线运动的位移与时间的关系
2.3 匀变速直线运动的位移与时间的关系
2021.09.16
学习目标
1、能利用v-t图像得出匀变速直线运动的位移与时间关系式 = 0 +
1
2 ,进一步体会利用物理图像分析物体运动规律的研究方法。
2
2、能推导出匀变速直线运动的速度与位移关系式 2 − 02 = 2,体
(2)飞机在航母上降落时,需用阻拦索使飞机迅速停下来。若某次
飞机着舰时的速度为 80 m/s,飞机钩住阻拦索后经过 2.5 s 停下来。将这
段运动视为匀减速直线运动,此过程中飞机加速度的大小及滑行的距离各
是多少?
上面这种分析问题的方法具有一般意义,原则上对于处理
拓
展 任意形状的 v-t 图像都适用。对于图 所示的运动物体的位移,
1
2 ,是一个二次函数。
2
2、公式的适用条件:只适用于匀变速直线运动。
3、公式的矢量性:
0 、 、 均为矢量,应用公式解决问题时,应先选取正方
向。一般以0 的方向为正方向,若物体做匀加速运动,a取正值,
若物体做匀减速运动,则a取负值。
4、公式的特殊情况:
1 2
(1)如果v0=0,则x= at ,物体做初速度为0的匀加速直线运动。
刚好减为0。
【特别提醒】如果在所研究的问题中,已知量和未知
量都不涉及时间,利用这个公式求解,往往会更简便。
【例题2】动车铁轨旁两相邻里程碑之间的距离是1km。某同学乘坐
动车时,通过观察里程碑和车厢内电子屏上显示的动车速度来估算动车
减速进站时的加速度大小。当他身边的窗户经过某一里程碑时,屏幕显
示的动车速度是126km/h。动车又前进了 3 个里程碑时,速度变为 54
匀变速直线运动位移与时间的关系
位移公式
匀变速直线运动的位移公式为:s = v0t + 1/2at^2。其中, s 表示位移,v0 表示初速度,a 表示加速度,t 表示时间。
该公式描述了物体在匀变速直线运动中位移随时间变化的关 系。通过该公式可以计算出物体在任意时刻的位移。
3
2. 将纸带穿过打点计时器,固定在小车上。
实验器材和步骤
3. 平衡摩擦力:在长木板的一 端垫上木块,使小车在木板上能
匀速下滑。
4. 用细绳将小车与钩码连接, 跨过滑轮,调整滑轮高度使细绳
与木板平行。
5. 接通电源,释放小车,让小 车在钩码的牵引下做匀加速直线
运动。
实验器材和步骤
6. 打点计时器在纸带 上打下一系列点迹。
通过直线的斜率求得加速度。
s-t图像特点及应用
特点 匀变速直线运动的s-t图像是一条抛物线。
抛物线的开口方向表示速度的方向,向上为正,向下为负。
s-t图像特点及应用
• 抛物线的顶点表示运动的起始点。
s-t图像特点及应用
应用
通过计算抛物线与t轴围成的面积求得某段时间内的平 均速度。
通过图像直接读取某时刻的位移。 通过求导得到v-t图像,进而求得加速度。
加速度公式
匀变速直线运动的加速度公式为:a = (v - v0) / t。其中, a 表示加速度,v 表示末速度,v0 表示初速度,t 表示时 间。
该公式描述了物体在匀变速直线运动中加速度与速度变化 量及时间的关系。通过测量物体在不同时间点的速度,可 以计算出物体的加速度。
匀变速直线运动的位移与时间的关系公式
匀变速直线运动的位移与时间的关系公式
匀变速直线运动的位移与时间的关系公式可以由运动学公式推导得到,具体分为两种情况:
1. 匀速直线运动的位移与时间的关系公式:
位移 = 速度 ×时间
其中,位移表示物体在运动过程中从起点到终点的距离,速度表示物体的运动速度,时间表示运动的时间长度。
2. 变速直线运动的位移与时间的关系公式:
位移 = 初速度 ×时间 + 0.5 ×加速度 ×时间²
其中,初速度表示运动开始时的速度,加速度表示运动过程中的加速度。
这个公式描述了的位移与时间的关系可以用来计算变速直线运动下物体在不同时间点的位置。
注意,这个公式的适用条件是运动过程中加速度是一个常量。
另外还有一种特殊情况,匀变速直线运动中,如果物体的位移与时间的关系符合二次函数的形式,可以使用二次函数公式来描述位移与时间的关系。
例如:位移 = a ×时间² + b ×时间 + c,其中a、b和c是常数。
高中物理必修一《匀变速直线运动的位移与时间的关系》(适用于学生自学、家长指导、知识点分析)
匀变速直线运动的位移与时间的关系[知识点]匀速直线运动的位移:匀速直线运动的位移为vt,其中v为恒定速度,t为运动时间。
匀变速直线运动的位移:匀变速直线运动的位移为v0t+(1/2)at2,其中v0为初速度,t为运动时间,a为加速度。
图像表示位移:纵轴为位移,横轴为时间,位移-时间图像。
[知识点分析]一、匀速直线运动的位移匀速直线运动的位移计算相对简单,但理解如何获得计算公式,理解速度-时间图像中速度线段和横纵坐标围成的面积为位移。
举例:汽车以恒定速度7.3m/s直线行驶在公路,请问行驶20秒后汽车的位移是多少?思路:分析是何种运动在运用该运动的相关公式。
分析过程:汽车速度恒定且直线运动,则是匀速直线运动,匀速直线运动的位移为vt,则7.3m/s*20s=146m二、匀变速直线运动的位移匀变速直线运动的位移和匀速直线运动位移一样,在图形方面都是速度-时间图像中速度线段和横纵坐标围成的面积,匀变速直线运动围成的图形是梯形,在理解梯形面积为位移时,运用将梯形分割成很多小梯形,然后每个小梯形用很接近小梯形的长方形近似代替,则可以理解梯形面积为匀变速直线运动的位移。
一般懂得运用匀变速直线运动的公式计算相关物理量。
举例:汽车从静止状态直线以6.4m/s加速5s后,稳定行驶,请问汽车从静止到稳定行驶前的位移是多少?思路:先分析物体是何种运动以及已知物理量,再考虑用相关公式计算问题。
分析过程:汽车从静止直线恒定数值加速,即可知物体是匀变速直线运动。
已知物理量有:初速度0m/s,运动时间5s,加速度6.4m/s2,需要计算的是位移,相关公式可想到x=v0t+(1/2)at2,计算位移为:0m/s * 5s + (1/2)* 6.4m/s2* 5s * 5s = 80m三、图像表示位移速度-时间图像展现速度和时间信息,横轴为时间,纵轴为速度,斜率为速度;同样展现位移和时间的信息,可以建立横轴为时间,纵轴为位移的坐标轴。
匀变速直线运动的位移与时间的关系
匀变速直线运动的位移与时间的关系【考点归纳】(1)匀变速直线运动的位移与时间的关系式:x=v0t+at2。
(2)公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示。
②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即=.结合公式x=vt和v=v t+at可导出位移公式:x=v0t+at2(3)匀变速直线运动中的平均速度在匀变速直线运动中,对于某一段时间t,其中间时刻的瞬时速度v t/2=v0+a×t=,该段时间的末速度v=v t+at,由平均速度的定义式和匀变速直线运动的位移公式整理加工可得===v0+at====v t/2。
即有:==v t/2。
所以在匀变速直线运动中,某一段时间内的平均速度等于该段时间内中间时刻的瞬时速度,又等于这段时间内初速度和末速度的算术平均值。
(4)匀变速直线运动推论公式:任意两个连续相等时间间隔T内,位移之差是常数,即△x=x2﹣x1=aT2.拓展:△x MN=x M﹣x N=(M﹣N)aT2。
推导:如图所示,x1、x2为连续相等的时间T内的位移,加速度为a。
【命题方向】例1:对基本公式的理解汽车在平直的公路上以30m/s的速度行驶,当汽车遇到交通事故时就以7.5m/s2的加速度刹车,刹车2s内和6s内的位移之比()A.1:1B.5:9C.5:8D.3:4分析:求出汽车刹车到停止所需的时间,汽车刹车停止后不再运动,然后根据位移时间公式求出2s内和6s内的位移。
解:汽车刹车到停止所需的时间>2s所以刹车2s内的位移=45m。
t0<6s,所以刹车在6s内的位移等于在4s内的位移。
=60m。
所以刹车2s内和6s内的位移之比为3:4.故D正确,A、B、C错误。
高中物理必修一-匀变速直线运动位移与时间的关系
匀变速直线运动位移与时间的关系知识集结知识元匀变速直线运动的位移与时间的关系知识讲解匀变速直线运动的位移与时间的关系式:x=v0t+at2.公式的推导①利用微积分思想进行推导:在匀变速直线运动中,虽然速度时刻变化,但只要时间足够小,速度的变化就非常小,在这段时间内近似应用我们熟悉的匀速运动的公式计算位移,其误差也非常小,如图所示.②利用公式推导:匀变速直线运动中,速度是均匀改变的,它在时间t内的平均速度就等于时间t内的初速度v0和末速度v的平均值,即.结合公式x=vt和v=v0+at可导出位移公式:x=v0t+ at2例题精讲匀变速直线运动的位移与时间的关系例1.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m例2.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2例3.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为()A.B.2C.2D.4当堂练习单选题练习1.一个物体在水平直线上做匀加速直线运动,初速度为3m/s,经过4s它的位移为24m,则这个物体运动的加速度等于()A.1.5m/s2B.2m/s2C.4m/s2D.0.75m/s2练习2.小球以某一较大初速度冲上一足够长光滑斜面,加速度大小为5m/s2则小球在沿斜面上滑过程中最后一秒的位移是()A.2.0m B.2.5m C.3.0m D.3.5m练习3.“蛟龙号”是我国首台自主研制的作业型深海载人潜水器,它是目前世界上下潜能力最强的潜水器.假设某次海试活动中,“蛟龙号”完成海底任务后竖直上浮,从上浮速度为v时开始计时,此后“蛟龙号”匀减速上浮,经过时间t上浮到海面,速度恰好减为零,则“蛟龙号”在t0(t0<t)时刻距离海平面的深度为()A.B.C.D.练习4.一个物体由静止开始做匀加速直线运动,第1s内的位移是1m,物体在第3s内的位移是()A.2m B.3m C.5m D.8m练习5.为了测定某轿车在平直路上启动阶段的加速度(轿车启动时的运动可近似看成是匀加速直线运动),某人拍摄一张在同一底片上多次曝光的照片,如图所示,如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度为()A.1m/s2B.2.25m/s2C.3m/s2D.4.25m/s2练习6.2015年9月2日,“抗战专列”在武汉地铁4号线亮相,引得乘车市民纷纷点赞.若该地铁列车先从甲站开始做初速度为零、加速度大小为a的匀加速直线运动,通过位移L后,立即做加速度大小也为a的匀减速直线运动,恰好到乙站停下.则列车从甲站到乙站所用时间为A.B.2C.2D.4。
匀变速直线运动的位移与时间的关系
新知导入
对于运动问题,人们不仅 关注物体运动的速度随时 间变化的规律,而且还希 望知道物体运动的位移随 时间变化的规律。 今天,我们就来重点探究匀变速直线运动的位 移与时间有怎样的关系?
新知讲解
一、匀速直线运动的位移 1、匀速直线运动的位移与时间的关系:x=vt,它 的v-t图象是平行于t轴的一条直线。
新知讲解
对后一过程,末速度 v=0,初速度 vM = 15 m/s。
由 v2 = vM2 + 2ax2 ,有
动车进站的加速度大小为 0.167 m/s2 ,方向 与动车运动方向相反;还要行驶 674 m才能停下 来。
知识拓展
匀变速直线运动的重要推论
1.平均速度 在匀变速直线运动中,对于某一段时间t,其 中间时刻的瞬时速度vt=v0+a× t=v0+ at, 该段时间的末速度v=v0+at,由平均速度的 定义式和匀变速直线运动的位移公式整理加 工可得。
新知讲解
分析:由于把动车进站过程视为匀减速 直线运动,因此可以应用匀变速直线运动的 速度与位移关系式计算动车的加速度。本题 加速度方向跟速度方向相反,因此需要建立 一维坐标系来处理相关物理量的正负号。
新知讲解
解: 沿动车运动方向为正方向建立一维坐标系。把 动车通过3000m 的运动称为前一过程,之后到停下 来称为后一过程。 设在前一过程中的末位置为 M 点。初速度 v0 =126 km/h=35 m/s,末速度vM=54 km/h=15 m/s,位移 x1 = 3000m。 对前一过程,根据匀变速直线运动的速度与位移的 关系式,有
V0 0
由图可知梯形的面积:S梯形=(V0+V
即位移:x
1 2
(v0
匀变速直线运动位移与时间的关系
)
【解析】
子弹运动的逆过程可看成初速度为零、末速度为 v 的匀加速
直线运动,子弹通过连续相等位移的时间之比为 1∶( 2-1)∶( 3- 2).则 子弹实际运动通过连续相等位移的时间之比为 t1∶t2∶t3= ( 3- 2)∶( 2 - 1)∶1,故 D 正确. 1 由 x= at2 知,子弹运动的逆过程由右向左穿过第 1 块、前 2 块、前 3 块 2 的时间之比 t1∶t2∶t3=1∶ 2∶ 3,再根据 v=at 知,子弹由右向左依次“穿 出”3 个木块的速度之比为 1∶ 2∶ 3.则子弹实际运动依次穿入每个木块时 的速度之比 v1∶v2∶v 3= 3∶ 2∶1,故 B 正确.
1 2 由位移公式: x v0t at 2
又由速度公式: 可得:
2
v=v0+at
2 0
v v 2ax
对公式vt2-v0=2ax的理解与应用 1.该公式仅适用于匀变速直线运动. 2.公式中四个矢量v0、vt、a、x要规定统一的正方 向. 3.当v0=0时,公式简化为vt2=2ax;当vt=0时,公 式简化为-v02=2ax. 4.在分析和解决不需要知道运动时间的问题时,使 用vt2-v02=2ax往往会使问题变得简单、方便.
起第1个T内,第2个T内,第3个T内……的位移之比为
xⅠ∶xⅡ∶xⅢ∶……=1∶3∶5∶……,所以,所求位移之
比为1∶(3+5)∶(7+9+11)∶……=13∶23∶33∶……,D
对.
【答案】 D
4.如右图所示,在水平面上固定着三个完全相同的木
高中物理必修一《匀变速直线运动的位移与时间的关系》
由上图可知匀变速直线运动, 运用“无限分割、 逐步逼近”的微分思想可得: 匀变速直线运动的位移也对应着 v-t 图线和时间轴所包围的图形“面积”. 速度 1 图线和时间轴所包围的梯形“面积”为 S= (OC+AB)×OA 与之对应的物体的位 2 1 移 x= (v0+v)t. 2
1.
如右图所示为一列火车出站后做匀加速直线运动的v-t图象.请用 “图象面积法”求出这列火车在8 s内的位移.
【解析】 v-t图线与时间轴所围面积S=1/2(上底+下底)×高
=1/2×(10+20)×8=120,此面积对应于列车8 s内的位移,故该列 车在8 s内的位移是120 m.
【答案】 120 m
1 2 二、对位移公式 x=v0+ at 的理解及应用 2 1 2 1.公式 x=v0t+ at 为矢量式,其中的 x、v0、a 都是矢量,应用时必须选 2 取统一的正方向,一般选取初速度 v0 的方向为正方向. 若物体做加速直线运 动 若物体做匀减速直线运 动 若位移的计算结果为正 值 若位移的计算结果为负 值 a 与 v0 同向,a 取正值
2
【答案】 (1)1 m/s2
(2)45 m
● 教材资料分析 〔做一做〕 位移与时间的关系也可以用图象表示,这种图象叫做位移—时间图象, 即 x-t 图象.运用初中数学中学到的一次函数和二次函数知识,你能画出 1 2 匀变速直线运动 x=v0t+ at 的 x-t 图象的草图吗? 2 如果一位同学问:“我们研究的是直线运动,为什么画出来的 x-t 图 象不是直线?”你应该怎样向他解释?
【解析】 子弹运动的逆过程可看成初速度为零、末速度为 v 的匀加 速直线运动,子弹通过连续相等位移的时间之比为 1∶( 2-1)∶( 3- 2).则子弹实际运动通过连续相等位移的时间之比为 t1∶t2∶t3=( 3- 2)∶( 2-1)∶1,故 D 正确. 1 由 x= at2 知,子弹运动的逆过程由右向左穿过第 1 块、前 2 块、前 3 2 块的时间之比 t1∶t2∶t3=1∶ 2∶ 3,再根据 v=at 知,子弹由右向左依 次“穿出”3 个木块的速度之比为 1∶ 2∶ 3.则子弹实际运动依次穿入 每个木块时的速度之比 v1∶v2∶v3= 3∶ 2∶1,故 B 正确.
匀变速直线运动的位移与时间关系
匀变速直线运动的位移与时间关系一、匀变速直线运动的概念匀变速直线运动是指物体在直线上做运动时,其速度随时间的变化规律不同,即速度并非恒定,而是随着时间的推移而发生变化。
二、匀变速直线运动的位移公式在匀变速直线运动中,物体在某一时刻的位移与它在该时刻前所经过的路程有关。
因此可以通过路程和速度来求得物体在任意时刻的位移。
设物体在t1时刻的位置为S1,在t2时刻的位置为S2,则该物体在时间Δt内所经过的路程为:ΔS = S2 - S1根据定义可知,平均速度Vavg等于位移ΔS与时间Δt之比:Vavg = ΔS/Δt根据匀变速直线运动中平均速度与瞬时速度相等这一性质,可以得到物体在t1时刻瞬时速度v1和在t2时刻瞬时速度v2之间的关系:vavg = (v1 + v2)/2将上式代入平均速度公式中可得:ΔS = (v1 + v2)/2 × Δt进一步化简可得到匀变速直线运动中的位移公式:S2 - S1 = (v1 + v2)/2 × Δt三、匀变速直线运动中的时间与位移关系根据上述位移公式,可以得到匀变速直线运动中时间与位移之间的关系。
当物体在t1时刻的位置为S1,在t2时刻的位置为S2时,它在这段时间内所经过的路程ΔS等于它在这段时间内的平均速度乘以这段时间,即:ΔS = Vavg × Δt将平均速度公式代入上式中可得:ΔS = (v1 + v2)/2 × Δt因此,匀变速直线运动中物体在任意时刻的位移与它在该时刻前所经过的路程有关,而路程又与物体在该段时间内所处的平均速度和时间有关。
因此,在已知物体在某一时刻的瞬时速度和该段时间内加速度不变情况下,可以通过上述位移公式来计算物体在任意时刻的位移。
四、匀变速直线运动中瞬时速度与加速度之间的关系根据牛顿第二定律F=ma和力学基本公式v = at + v0(其中v0为初速度),可以得到匀变速直线运动中瞬时速度与加速度之间的关系。
匀变速直线运动的位移与时间的关系
匀变速直线运动的位移与时间的关系【知识整合】1.匀变速直线运动的位移公式 根据平均速度的定义式,做任何变速运动的位移都可以表示为t v x =,则匀变速直线运动的位移公式为2001()/22t s vt v v t v t at ==+=+ (1)位移公式说明匀变速直线运动的位移与时间是二次函数关系,式中的0v 是初速度,时间t 应是物体实际运动的时间。
(2)在取初速度0v 方向为正方向的前提下,匀加速度直线运动a 取正值,匀减速直线运动a 取负值;计算的结果0s >,说明位移的方向与初速度的方向相同;0s <说明位移的方向与初速度的方向相反。
(3)对于初速度为零(00v =)的匀变速直线运动,位移公式为211122s v t at == 即位移s 与时间t 的二次方成正比。
(4)速度—时间图像下的面积表示位移的大小,且t 轴上方的面积表示正位移,t 轴下方的面积表示负位移。
2.逆向转换法将末速度为 0的匀减速直线运动转化初速度为0的匀加速直线运动,进行计算【典例分析】例1某做直线运动的质点的位移随时间变化的关系式为242,x t t x =+与t 的单位分别是m 和s ,则质点的初速度和加速度分别是( )A .4/m s 和22/m sB .0和42/m sC .4/m s 和42/m sD .4/m s 和0例2一辆汽车在笔直的公路上做匀变速直线运动,该公路每隔15m 安置一个路标,如图1所示,汽车通过AB 两相邻路标用了2s ,通过BC两路标用了3s ,求汽车通过A 、B 、C 三个路标时的速度。
例3以18/m s 的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度大小为62/m s ,求:(1)汽车在2s 内通过的距离;(2)汽车在6s 内通过的距离。
图1例4有一个做匀变速直线运动的质点,它在两段连续相等时间内通过的位移分别是24m 和64m ,连续相等的时间为4s ,求质点的初速度和加速度的大小。
高中物理必修一第二章第3节《匀变速直线运动的位移与时间的关系》
56.25m
即刹车后10s离刹车点56.25m.
课堂小结
➢ 匀加速直线运动位移与时间关系:
x
v0t
1 2
at
2
➢ 匀加速直线运动速度与位移关系:
v2 v02 2ax
无末速度 无时间
➢ 回忆:匀加速直线运动速度与时间关系:
v v0 at
无位移
10 15
匀变速直线运动的位 移仍可用图线与坐标 轴所围的面积表示。
t/s
梯形的面积就代表做匀变速直线运动物体
在0时刻(此时速度为v0)到 t时刻(此时速 度为v)这段时间的位移。
二、匀变速直线运动的位移与时间的关系
由图可知:梯形OABC的面积
S (OC AB)OA 2
代入各物理量得:
x
1 2
二、速度与位移的关系
v
v0
at
t
v
v0 a
x
v0t
1 2
at
2
v0 v
a
v0
a 2
v
v0 a2
2
v2 v02 2a
v 2 v02 2ax
例、在一事故现场,交警测量一汽车刹车后滑行的位移为32m,
已知汽车的加速度大小为4m/s2,若此路段限速为36km/h,则该
汽车是否超速?
a=-4m/s2
6个矩形对应6 个 但时速间度相不等等,的v/m·s-1
匀速运动。5 4
3 2 1
05
分割
10 15
v/m·s-1
5 4 3 2 1 t/s 0 5
把运动过程分割的再 细,小矩形的面积就 越接近物体的位移。
10 15 t/s
从v-t图象探究匀变速直线运动的位移
物理匀变速直线运动的位移和时间的关系
物理匀变速直线运动的位移和时间的关系物理中的匀变速直线运动是指物体在相等时间内位移的增量是逐渐增加的运动。
在这种运动中,位移与时间之间存在着一定的关系。
我们来了解一下匀变速直线运动的基本概念。
匀变速直线运动是指物体在相等时间间隔内,其位移的增量是逐渐增加的运动。
这意味着物体在单位时间内的位移是不断增加的,即速度在变化。
而这种变化是有规律可循的。
在匀变速直线运动中,位移与时间之间的关系可以通过速度来描述。
速度是指物体在单位时间内位移的增量,可以用公式v = Δx/Δt来表示,其中v表示速度,Δx表示位移的增量,Δt表示时间的增量。
根据速度的定义,我们可以得出位移与时间的关系。
假设物体的初始位移为x0,初始时间为t0,位移的增量为Δx,时间的增量为Δt,那么根据速度的定义,我们可以得到以下关系:v = Δx/Δt将上述公式稍作变形,可以得到:Δx = v * Δt这个公式表明,位移的增量等于速度乘以时间的增量。
也就是说,位移的增量与时间的增量成正比,且比例系数为速度。
进一步地,我们可以将上述公式进行积分,得到位移与时间之间的具体关系。
假设物体的初始位移为x0,初始时间为t0,位移为x,时间为t,速度为v,则有:x - x0 = ∫(v dt)这个公式表示,位移与时间之间的关系可以通过速度的积分来描述。
通过对速度关于时间的积分,我们可以得到位移与时间之间的具体关系。
匀变速直线运动的位移与时间之间存在着一定的关系。
位移的增量等于速度乘以时间的增量,而位移与时间之间的具体关系可以通过速度的积分来描述。
这些关系可以帮助我们更好地理解和分析匀变速直线运动的特性和规律。
希望本文对您有所帮助,谢谢阅读!。
匀变速直线运动的位移与时间的关系
匀变速直线运动的位移与时间的关系本讲要点:1、知道匀速直线运动的位移与时间的关系, 通过近似推导位移公式的过程,体验微元法的特点和技巧,能把瞬时速度的求法与此比较;2、理解匀变速直线运动的位移与时间的关系及其应用;3、理解v-t图象中图线与t轴所夹的面积表示物体在这段时间内运动的位移. 同步课堂:一、匀变速直线运动的平均速度V=v0+v/2注意:此公式仅适用于匀变速直线运动二、位移与时间的关系式X=V0t+at2/2说明:以V0为正方向,特体做匀加速运动,a与V0同向,a取正,物体做匀减速运动,a与V0反向,a取负。
特例:假设V0为零,那么X=at2/2三、位移和速度的关系v2-v02=2ax特例:假设V0为零,那么v2 =2ax二、重点难点:1、理解匀变速直线运动位移公式(a) (b) (c)1、用许多小段的匀速运动来模拟匀变速直线运动运动的时间分得越强,很小段的匀速运动越多,速度跳跃的幅度越小,这种模拟的运动更接近均匀变化的变速运动,同时,众多的小矩形面积之和更接近梯形的面积。
当运动的时间分得非常非常细,相邻匀速运动之间的跳跃中高度非常非常小,很多很多的小矩形面积就能准确地代表特体的位移,这时“很多很多〞小矩形顶端的“锯齿形〞就看不出来了,这时小矩形合在一起就成了一个梯形。
2、匀变速直线运动的位移——图象和t轴所围的梯形的面积v/(ms-1)t/sx =12(V 0+V t )·t(1) ——位移方程从(1)式可知,由x =v ·t ,02tV V v (2) 匀变速直线运动平均速度公式又由V =V 0+at(3) ——速度方程 x =V 0t +12at 2(4) ——位移方程又由(3)、(4)消去t ,V 2-V 02=2ax(5) ——位移和速度关系方程上述(1)、(3)、(4)、(5)四个方程均为矢量方程,每个方程均牵涉到四个物理量,在每个方程中,当知道其它三个量时,就可以求出第4个物理量,不过由于四个方程均可由其它两个方程导出,所以在一个过程中仅能解出两个未知数。
高一物理必修一匀变速直线运动的位移与时间的关系
高一物理必修一匀变速直线运动的位移与时间的关系在高一物理的课堂上,匀变速直线运动就像是一场刺激的旅程,咱们要在这个运动中寻找位移和时间的关系。
想象一下,骑着自行车在公园里飞驰,刚开始你可能慢慢发力,后来车速越来越快,那种感觉就像是飞一样,简直太爽了!这时候,位移和时间就成了你最好的朋友。
位移就像是你骑车到达目的地的里程碑,而时间则是你从出发到抵达的那个不知不觉的过程。
你看,慢慢的、快快的,时间在变化,位移也在变化,这两者就像是相辅相成的,缺一不可。
先说说匀变速运动。
这个名字听起来好像很严肃,但其实它就是在说:在一段时间里,速度是变化的,变化的方式是均匀的。
比如说,你在街上骑车,刚开始你慢慢加速,可能前面有个小伙伴在追,你不想被他超越,于是就拼命踩踏板,速度渐渐变快。
这个过程就是匀变速运动。
位移与时间的关系,就像你追赶朋友的比赛,时间越长,位移也越大!而且这段距离不是简单的直线,而是随着时间的推进,位移会越来越多,就像是滚雪球一样,越滚越大。
让我们来聊聊公式。
别紧张,这个公式可不难!位移s等于初速度u加上加速度a 乘以时间t的一半再乘以时间t的平方。
哎呀,听起来复杂,但其实一想就明白。
想象一下,初速度就是你起步的速度,加速度是你骑车时逐渐加速的感觉,时间就是你从出发到现在的那段时光。
将这些因素结合起来,就能知道你在这段时间里跑了多远。
咱们生活中的许多事情都可以用这个公式来解释,比如你去超市购物的时间,越买越多,最终的消费就跟你逛的时间成正比。
说到这里,大家可能会想:“那我怎么才能快点到达目的地呢?”嗯,这就得看你如何利用加速度了。
如果你能有效地加速,那你就能迅速拉开与朋友的距离,成为骑车小达人!这就像你在生活中努力追赶自己的目标一样,时不时加把劲,搞得自己越来越快。
不过,要注意哦,速度不是越快越好,有时候慢慢来也许会更稳妥,关键是找到那个平衡点。
在学习这个概念的时候,可以做个有趣的实验。
找个空旷的地方,拿上个计时器,跟朋友比比谁骑得快,看看自己在不同时间段内的位移变化。