高一数学第一学期期中考试试卷3

合集下载

2024学年福建省厦门双十中学高一上学期期中数学试题及答案

2024学年福建省厦门双十中学高一上学期期中数学试题及答案

福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B= B. A B ⋂=∅C. A BD. B A2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 04. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )A. B.C. D.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20B. 21C. 22D. 237. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A a c b<< B. b c a << C. b a c << D. c b a<<8. 已知定义域为()0,∞+函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 否定是R x ∀∈,2220xx++>.的的B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f g x 为偶函数>”是“x y >”的必要条件10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A.114ab ≥ B.122a b+≥ C.2≥ D. 228a b +≥11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2ff a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 212. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.14. 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.16. 已知正数x ,y ,z 满足222321x y z ++=,则1zs xyz+=的最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.18. 已知函数()22(11)1xf x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 取值范围.20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R aa f x mx x a x m =++---∈,且12f a ⎛⎫=⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力的的22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?22. 已知函数()()9230xx mf x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.福建省厦门双十中学2023-2024学年第一学期期中考试高一数学(时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,0,3A =,{}2,3B =,则( )A. A B =B. A B ⋂=∅C. A BD. B A【答案】D 【解析】【详解】根据集合相等的概念,集合交集运算法则,集合包含关系等知识点直接判断求解.【分析】因为集合{}2,0,3A =,{}2,3B =,所以A B ≠,{}2,3A B ⋂=, B 是A 的真子集,所以A,B,C 错误,D 正确.故选:D2. 设,,R a b c ∈,且a b >,则下列结论正确的是( )A. 22a b > B.11a b< C. 22a b > D. 22ac bc >【答案】C 【解析】【分析】利用特殊值举反例排除即可得到答案.【详解】对于A ,若0,1a b ==-,则22<a b ,故A 错误;对于B ,若1,1a b ==-,则11a b>,故B 错误;对于C ,由于2x y =在R 上单调递增,所以a b >时,22a b >,故C 正确;对于D ,若0c =,则22ac bc =,故D 错误.故选:C3. 已知函数()()()2221f x x a x a =+-+-为奇函数,则a 的值是( )A. 1B. 2C. 1或2D. 0【答案】B 【解析】【分析】根据奇函数()00f =得到a 值再用定义法验证即可.【详解】因为函数()()()2221f x x a x a =+-+-为奇函数,定义域为(),-∞+∞,所以()()()0210f a a =--=,解得1a =或2a =,当1a =时,()()221f x xx =-,则()()()221f x x x f x -=--≠-,不满足题意;当2a =时,()()221f x x x =+,则()()()221f x x x f x -=-+=-,满足题意.所以a 的值是2.故选:B4. “2log 2x <”是“13x <<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念和对数函数相关概念求解即可.【详解】由22log 2log 4x <=,解得04<<x ,由“04<<x ”是“13x <<”的必要不充分条件,所以“2log 2x <”是“13x <<”的必要不充分条件.故选:B5. 在同一直角坐标系中,函数()(0),()log aa f x x x g x x =≥=的图像可能是( )的A. B.C. D.【答案】D 【解析】【分析】通过分析幂函数和对数函数的特征可得解.【详解】函数()0ay xx =≥,与()log 0a y x x =>,答案A 没有幂函数图像,答案B.()0ay x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C ()0ay xx =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D ()0ay xx =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D.【点睛】本题主要考查了幂函数和对数函数的图像特征,属于基础题.6. “学如逆水行舟,不进则退;心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.如果每天的“进步”率都是1%,那么一年后是36536511% 1.01+=();如果每天的“退步”率都是1%,那么一年后是36536511%0.99-=().一年后“进步”的是“退步”的3653653651.01 1.0114810.990.99=≈(倍.如果每天的“进步”率和“退步”率都是20%,那么大约经过( )天后“进步”的是“退步”的一万倍.(lg 20.3010,lg 30.4771≈≈)A. 20 B. 21C. 22D. 23【答案】D 【解析】【分析】根据题意可列出方程10000(10.2) 1.2x x ⨯-=,求解即可,【详解】设经过x 天“进步“的值是“退步”的值的10000倍,则10000(10.2) 1.2x x ⨯-=,即1.2(100000.8x=,1.20.8lg10000log 10000231.2lg3lg20.1761lg l 4443g 20.8x ∴====≈≈-,故选:D .7. 已知130.9a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则( )A. a c b <<B. b c a <<C. b a c <<D. c b a<<【答案】D 【解析】【分析】根据指数函数的单调性和对数运算法则计算即可.【详解】由题意得,3227311121log 9log 322233c ===⨯=;因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10.90.5111333⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,由于0.510.73⎛⎫=⎪⎝⎭,所以10.73b <<;因为0.9x y =在R 上单调递减,所以1130.90.90.9a ==.所以c b a <<.故选:D8. 已知定义域为()0,∞+的函数()f x 满足对于任意1x ,()20,x ∈+∞,12x x ≠,都有()()1221211x f x x f x x x ->-,且()32f =,则不等式()1f x x <-的解集为( )A. (),2-∞ B. ()0,2 C. ()0,3 D. ()2,3【答案】C 【解析】【分析】将()()1221211x f x x f x x x ->-变为()()2121110f x f x x x ++->,结合构造函数())1(),(0f x xg x x +=>,即可判断()g x 的单调性,由此将不等式()1f x x <-可化为()(3)g x g <,结合函数单调性,即可得答案.【详解】由题意知对于任意1x ,()20,x ∈+∞,12x x ≠,不妨设12x x <,则210x x ->,由()()1221211x f x x f x x x ->-得()()12212110x f x x f x x x -->-,即()()21122121110f x f x x x x x x x ⎡⎤++-⎢⎥⎣⎦>-,结合21120,0x x x x ->>得()()2121110f x f x x x ++->,即()()212111f x f x x x ++>,设())1(),(0f x xg x x +=>,则该函数在()0,∞+上单调递增,且()3(3)113f g =+=,则()1f x x <-即()11f x x+<,即()(3)g x g <,故03x <<,即不等式()1f x x <-的解集为()0,3,故选:C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的有( )A. 命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++>B. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件C. 奇函数()f x 和偶函数()g x 的定义域都是R ,则函数()()()=h x f gx 为偶函数>”是“x y >”的必要条件【答案】BC 【解析】【详解】根据含有一个量词命题的否定可判断A ;判断“0m <”和“关于x 的方程220x x m -+=有一正一负根”之间的逻辑关系可判断B ;根据函数奇偶性定义判断C ;判断>”和“x y >”的推出关系可的判断D.【分析】对于A ,命题p :0R x ∃∈,200220x x ++<,则命题p 的否定是R x ∀∈,2220x x ++≥,A 错误;对于B ,当0m <时,对于220x x m -+=有440m ∆=->,即方程有两个不等实根,设为12,x x ,则120x x m =<,即12,x x 一正一负;当220x x m -+=有一正一负根时,只需满足120x x <,即0m <,即“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,B 正确;对于C ,由题意知()h x 的定义域为R ,由()(),()()f x f x g x g x -=--=可得()()()(())()h x f g x f g x h x -=-==,即函数()()()=h x f g x 为偶函数,C 正确;对于D >0x y >≥,反之,当x y >,比如0x y >>故>”是“x y >”的充分条件,D 错误,故选:BC 10. 若0a >,0b >,且4a b +=,则下列不等式恒成立的( )A. 114ab ≥B. 122a b +≥C. 2≥D. 228a b +≥【答案】AD【解析】【分析】运用基本不等式和特殊值法判断各个选项即可.【详解】对于A 和C ,因为0a >,0b >,所以4a b +=≥2≤,当且仅当2a b ==时等号成立,故04ab ≤<,则114ab ≥,故A 正确,C 错误;对于B ,代入2a b ==,12131222a b +=+=<,故B 错误;对于D ,()22282a b a b++≥=,当且仅当2a b ==时等号成立,故D 正确.故选:AD11. 双曲余弦函数e e ch 2x xx -+=常出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程等,其图象如图.已知函数()2e e 122023x x f x x -+=+,则满足)()2f f a <+的整数a 的取值可以是( )A. -1B. 0C. 1D. 2【答案】BCD【解析】【分析】判断函数()2e e 122023x x f x x -+=+的奇偶性以及单调性,则由)()2f f a <+可得||2|a <+,将各选项中的数代入验证,即可得答案.【详解】由题意知()2e e 122023x x f x x -+=+的定义域为R ,()2e e 1()22)0(23x x f x f x x -+-==+-,即()f x 为偶函数,又0x >时,e 1x >,令e ,(1)x t t =>,且e x t =在(0,)+∞上单调递增,函数1y t t=+(1,)+∞上单调递增,故e e 2x xy -+=在(0,)+∞上单调递增,则()2e e 122023x x f x x -+=+在(0,)+∞上单调递增,在(,0)-∞上单调递减,故由)()2f f a <+得|||2|a <+,将各选项中的数代入验证,0,1,2适合,在故选:BCD12. 已知函数()f x 的定义域为[)0,∞+,当[]0,2x ∈时,()[](]242,0,142,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,当2x >,()()2f x mf x =-(m 为非零常数).则下列说法正确的是( )A. 当2m =时,()5.52f =B. 当12m =时,()y f x =的图象与曲线4log y x =的图象有3个交点C. 若对任意的[)12,0,x x ∈+∞,都有()()124f x f x -≤,则1m ≤D. 当01m <<,n +∈N 时,()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -【答案】BCD【解析】【分析】化简得到()()22f x f x +=,进而求得则()5.54f =,可判定A 错误;当12m =时,作出函数()y f x =的图象与曲线4log y x =的图象,结合图象,可判定B 正确;根据题意得出函数()f x 的值域对m 进行分类讨论,可判定C 正确;由()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数可判定D 正确.【详解】当2m =时,函数()()22f x f x =-可转化为()()22f x f x +=,则()()()()()5.5 3.522 3.521.524 1.5414f f f f =+==+==⨯=,所以A 错误;当12m =时,函数()y f x =的图象与曲线4log y x =的图象,如图所示,可得函数()y f x =的图象与曲线4log y x =的图象有3个交点,所以B 正确;对于C 中,依题意,max min ()()4f x f x -<,当[]0,2x ∈时,函数()f x 的值域为[]0,2;当1m >时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]0,2m ;若6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦, ;随着x 依次取值,值域将变成[0,)+∞,不符合题意,若1m <-时,若[]0,2x ∈时,可得函数()f x 的值域为[]0,2,若(2,4]x ∈时,函数()f x 的值域为[]2,0m ;max min ()()224f x f x m -³->,不符合题意,所以C 正确;对于D ,当[]0,2x ∈时,可得函数()f x 的值域为[]0,2,当(2,4]x ∈时,函数()f x 的值域为[]0,2m ;当6(4],x ∈时,函数()f x 的值域为20,2m ⎡⎤⎣⎦……,当(24],22x n n ∈--时,函数()f x 的值域为20,2n m-⎡⎤⎣⎦,当(22,2]x n n ∈-时,函数()f x 的值域为10,2n m -⎡⎤⎣⎦当(2,22]x n n ∈+时,函数()f x 的值域为0,2n m ⎡⎤⎣⎦,若01m <<,12222n n m m m -<<<<,由图象可知,()y f x =的图象与直线12n y m -=在区间[]0,2,(2,4],……,],(2242n n --上均有2个交点,在(22],2n n -上有一个交点,在(2,)n +∞上无交点,所以()y f x =的图象与直线12n y m -=在[]0,2n 内的交点个数是21n -,所以D 正确.故选:BCD.【点睛】本题解题关键是准确作出函数的图象,数形结合可得判断B ,D ,利用()()22f x f x +=迭代可判断A ,对于C ,分1m >和1m <-两种情况讨论可判断.三、填空题:本题共4小题,每小题5分,共20分.13. 若函数)311x fx +=-,则43f ⎛⎫= ⎪⎝⎭______.【答案】72-## 3.5-【解析】【分析】根据题意,令19x =,准确运算,即可求解.【详解】由函数)311x f x ++=-,令19x =,可得13479()1)13219f f +=+==--.故答案为:72-.14 已知集合{}22,1,0,1,2,{|ln(34)}A B x y x x =--==--,则A B = ______.【答案】{}2-【解析】【分析】根据不等式的解法和对数函数的性质,求得集合B ,结合集合并集的运算,即可求解.【详解】由不等式234(4)(1)0x x x x --=-+>,解得1x <-或>4x ,即{|1B x x =<-或4}x >,因为集合{}2,1,0,1,2A =--,所以{}2A B =-I .故答案为:{}2-.15. 求值:31114log 1032631190.027log 2811log 2-⎛⎫+-++= ⎪+⎝⎭______.【答案】8【解析】【分析】根据指对幂运算法则进行计算即可.【详解】由题意得,391log 10log 1029019==,1413181⎛⎫ =⎝=⎪⎭,3130.02710-==,66663311l 1og 2log 2log 2log 1log 2log 63+=+=+=+,所以原式110101833=+-+=.故答案为:816. 已知正数x ,y ,z 满足222321x y z ++=,则1z s xyz+=的最小值为______.【答案】【解析】【分析】先代换1z +,结合基本不等式求解可得答案..【详解】因为222321x y z ++=,所以()()22232111z z x y z +=-=-+;易知1z <,所以221132z zx y +=-+;所以()221321xyz z z x y s xyz ++==-,由()114z z -≤,当且仅当12z =时取等号,可得()22432s y x y x +≥=≥,当且仅当228323x y ==,即x y ==时,取到最小值.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当a =1时,求A B ⋂,A B ⋃;(2)设a >0,若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数a 的取值范围.【答案】(1){}|23A B x x =≤< ,{}|13A B x x ⋃=<≤;(2)12a <<.【解析】【分析】(1)化简集合A ,B ,再利用交集、并集的定义直接计算得解.(2)由“x ∈A ”是“x ∈B ”的必要不充分条件可得集合B A ,再利用集合的包含关系列出不等式组求解即得.【小问1详解】当a =1时,{}{}|(1)(30)|13A x x x x x -<=<-=<,{|()()}{|23}320B x x x x x =≤-≤≤=-,所以{}|23A B x x =≤< ,{}|13A B x x ⋃=<≤.【小问2详解】因为a >0,则{}|3A x a x a =<<,由(1)知,{|23}B x x =≤≤,因为“x ∈A ”是“x ∈B ”的必要不充分条件,于是得B A ,则有233a a <⎧⎨>⎩,解得12a <<,所以实数a 的取值范围是12a <<.18. 已知函数()22(11)1x f x x x =-<<-.(1)判断函数()f x 的奇偶性,并说明理由;(2)判断函数()f x 的单调性并证明.【答案】(1)()f x 是奇函数,理由见解析(2)()f x 在(1,1)-上单调递减,证明见解析【解析】【分析】(1)根据函数奇偶性定义进行判断证明;(2)根据函数单调性定义进行证明.【小问1详解】()f x 是奇函数,理由如下:函数()22(11)1x f x x x =-<<-,则定义域关于原点对称,因为()()221x f x f x x --==--,所以()f x 是奇函数;【小问2详解】任取1211x x -<<<,则22121211221222221212222222()()11(1)(1)x x x x x x x x f x f x x x x x --+-=-=---- 1221211221222212122()2()2(1)()(1)(1)(1)(1)x x x x x x x x x x x x x x -+-+-==----,因为1211x x -<<<,所以2212211210,0,10,10x x x x x x +>->-<-<,所以12())0(f x f x ->,所以()f x 在(1,1)-上单调递减.19. 已知函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,且()26f =.(1)求()0f ,判断函数()()2g x f x =-的奇偶性,并证明你的结论;(2)若对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,且当(]0,4x ∈时,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)()02f =,函数()()2g x f x =-是奇函数,证明见解析(2)(],0-∞【解析】【分析】(1)利用赋值法即可求得()02f =,利用奇函数定义和已知条件即可证明函数()()2g x f x =-奇偶性;(2)根据条件得到函数()f x 单调性,再结合题中条件将原不等式化简,将恒成立问题转化为最值问题进而求解.【小问1详解】因为函数()f x 满足()()()()2,f x y f x f y x y +=+-∈R ,所以令0y =,得到()()()20f x f x f =+-,所以()02f =;函数()()2g x f x =-定义域为(),-∞+∞,因为()()()()()()()422020g x g x f x f x f x f x f +-=+--=+---=-=⎡⎤⎣⎦,所以函数()()2g x f x =-奇函数【小问2详解】因为对任意x y ≠,都有()()()0f x f y x y -->⎡⎤⎣⎦成立,所以函数()f x 在(),-∞+∞单调递增,不等式()18f x f m x ⎛⎫+-≥ ⎪⎝⎭,即()126f x f m x ⎛⎫+--≥ ⎪⎝⎭,即()()122f x f m f x ⎛⎫+--≥⎪⎝⎭,即()12f x m f x ⎛⎫+-≥ ⎪⎝⎭,所以12x m x +-≥,所以12m x x≤+-对(]0,4x ∈恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时等号成立,所以min12220m x x ⎛⎫≤+-=-= ⎪⎝⎭,即实数m 的取值范围为(],0-∞20. 已知实数a 满足123a ≤,1log 32a ≤.(1)求实数a 的取值范围;(2)若1a >,()()()()ln 1ln 12R a a f x mx x a x m =++---∈,且12f a ⎛⎫= ⎪⎝⎭,求12f ⎛⎫- ⎪⎝⎭的值.【答案】(1)(0,1){9} 是(2)-13【解析】【分析】(1)根据指数幂的含义以及对数函数的单调性分别求得a 的取值范围,综合可得答案;(2)由题意确定a 的值,化简()f x ,由12f a ⎛⎫= ⎪⎝⎭可得919()9ln 322m =+-,再由911(9ln 222f m ⎛⎫-=-- -⎪⎝⎭,两式相加即可求得答案.【小问1详解】由123a ≤可得09a ≤≤,当01a <<时,由1log 32a ≤得12log 3log a a a ≤,则123,09a a ≤∴<≤,故01a <<;当1a >时,由1log 32a ≤得12log 3log a a a ≤,则123,9a a ≥∴≥,故9a ≥;综合可得实数a 的取值范围(0,1){9} ;【小问2详解】由题意知1a >,则9a =,则()()()99ln 19ln 12f x mx x x =++---,需满足11x -<<,则()919ln 21x f x mx x+=+--,故由12f a ⎛⎫= ⎪⎝⎭得919(9ln 322m =+-,则9119ln 3222f m ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,则1194,1322f f ⎛⎫⎛⎫-+=-∴-=- ⎪ ⎪⎝⎭⎝⎭.21. 杭州亚运会田径比赛 10月5日迎来收官,在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段. 现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为 130km /h v =的匀速运动,该阶段每千克体重消耗体力1112Q t v ∆=⨯(1t 表示该阶段所用时间),疲劳阶段由于体力消耗过大变为 223010v t =-的减速运动(2t 表示该阶段所用时间).疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力22222,1t v Q t ⨯∆=+已知该运动员初始体力为010000,Q kJ =不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)2t =时有最小值,最小值为5200kJ .【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()30,0130101,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060230,016012301016400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值()()min 16400kJ Q t Q ==;②疲劳阶段()48004001200(14)Q t t t t =++<≤,则有()480040012004005200kJ Q t t t =++≥+=,当且仅当48001200t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .22. 已知函数()()9230x x m f x m +=-⋅>.(1)当1m =时,求不等式()27f x ≤的解集;(2)若210x x >>且212x x m =,试比较()1f x 与()2f x 的大小关系;(3)令()()()g x f x f x =+-,若()y g x =在R 上的最小值为11-,求m 的值.【答案】(1)(,2]-∞;(2)()()12f x f x <;(3)1.【解析】【分析】(1)把1m =代入,结合一元二次不等式及指数函数单调性求解不等式即得.(2)利用差值比较法,结合基本不等式判断出两者的大小关系.(3)利用换元法化简()g x 的解析式,对3m 进行分类讨论,结合二次函数的性质求得m 的值.【小问1详解】当1m =时,函数123()92)633(x x x x f x +=-⋅-=⋅,不等式()27f x ≤化为2(3)63270x x -⋅-≤,即(33)(39)0x x +-≤,解得39x ≤,则2x ≤,所以不等式()27f x ≤的解集为(,2]-∞.【小问2详解】依题意,()()112212923923x x m x x mf x f x ++-⋅⋅-=-+()()()12121233332333x x x x x x m =+--⋅-()()1212333323x x x x m =-+-⋅,由210x x >>,得12330x x -<,又212x x m =,则123323x x m +>=>==⋅,因此()()120f x f x -<,所以()()12f x f x <.【小问3详解】令3x t =,0t >,则()()221323,9232mm x m x f x t t f x t t--=-⋅⋅-=-⋅=-⋅,于是()()()g x f x f x =+-2213232mmt t t t =-⋅⋅+-⋅2211()23(m t t t t =+-⋅⋅+211()23()2m t t t t =+-⋅⋅+-221(3)23m m t t=+---,而12t t+≥=,当且仅当1t t =,即1t =,0x =时取等号,当32m ≤,即3log 2m ≤时,则当12t t +=时,()y g x =取得最小值313443211,log 4m m -⋅-=-=,矛盾;当32m >,即3log 2m >时,则当13m t t+=时,()y g x =取得最小值22311m --=-,解得1m =,则1m =,所以m 的值是1.【点睛】思路点睛:含参数的二次函数在指定区间上的最值问题,按二次函数对称轴与区间的关系分类求解,再综合比较即可.。

高一数学上学期期中考试试卷含答案(共3套)

高一数学上学期期中考试试卷含答案(共3套)

2019-2020学年度第一学期高一期中考试数学试卷考试时间:120分钟总分:150分第Ⅰ卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2﹣x﹣6<0},集合B={x|x﹣1>0},则(∁RA)∩B=()A.(1,3)B.(1,3] C.[3,+∞)D.(3,+∞)2.已知函数f(x)=(m2﹣m﹣1)是幂函数,且x∈(0,+∞)时,f(x)是递减的,则m 的值为()A.﹣1 B.2 C.﹣1或2 D.33.已知f(x)=loga(x+1)﹣1(a>0,a≠1),则此函数恒过定点是()A.(1,0)B.(0,1)C.(0,﹣1)D.(1,﹣1)4.函数f(2x+1)的图象可由f(2x﹣1)的图象经过怎样的变换得到()A.向左平移2个单位B.向右平移2个单位C.向左平移1个单位D.向右平移1个单位5.分段函数则满足f(x)=1的x值为()A.0B.3C.0或3D.6.下列各组函数中,表示相同函数的是()A.f(x)=x与g(x)=B.f(x)=|x|与g(x)=C.f(x)=与g(x)=•D.f(x)=x0与g(x)=17.已知,则()A.a<b<c B.a<c<b C.c<a<b D.c<b<a8.函数f(x)=log a|x+1|在(﹣1,0)上是增函数,则f(x)在(﹣∞,﹣1)上是()A.函数值由负到正且为增函数B.函数值恒为正且为减函数C.函数值由正到负且为减函数D.没有单调性9.已知函数f(x)=,则下列的图象错误的是()A.y=f(x﹣1)的图象B.y=f(﹣x)的图象C.y=|f(x)|的图象D.y=f(|x|)的图象10.函数y=lgx+x有零点的区间是()A.(1,2)B.()C.(2,3)D.(﹣∞,0)11.已知函数f(x)=在(﹣∞,+∞)上是增函数,则a的取值范围是()A.a>1 B.a<2 C.1<a<2 D.1<a≤212.已知函数f(x)=(x+1)2,若存在实数a,使得f(x+a)≤2x﹣4对任意的x∈[2,t]恒成立,则实数t的最大值为()A.10 B.8 C.6 D.4第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分,答案填在.....)....Ⅱ.卷答题卡上13.求函数y=的定义域.14.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣4x+1,写出分段函数f(x)的解析式.15.已知f(x)=,则函数y=f(f(x))+1的零点的个数是;16.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2﹣2x(x∈R)是单函数;②函数f(x)=是单函数;③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是(写出所有真命题的编号)三、解答题:(本大题共6小题,共70分。

浙江省宁波中学2024-2025学年高一上学期期中考试数学试卷(无答案)

浙江省宁波中学2024-2025学年高一上学期期中考试数学试卷(无答案)

宁波中学2024年度第一学期期中高一数学试卷(满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.命题“,”的否定为()A.,B.,C.,D.,3.已知,,,则()A. B. C. D.4.已知正实数,满足,则的最小值为()A. B.14 C.15 D.275.函数的图象大致为()A. B. C. D.6.设,“”是“方程在区间上有两个不等实根”的()条件.A.充分必要B.充分不必要C.必要不充分D.既不充分也不必要7.中国5G技术领先世界,其数学原理之一便是香农公式:,它表示:在受噪音干扰的信道中,最大信息传递速率取决于信道带宽、信道内信号的平均功率、信道内部的高斯噪声功率的大小,其中叫信噪比.按照香农公式,若不改变带宽,将信噪比从2000提升至10000,则大约增加了(){}1,2,4,7M={}4,6,7N=M N={}1,2,4,6,7{}1,2,6{}4,7{}2,4Nn∀∈22Zn n++∈Nn∀∈22Zn n++∉Nn∀∉22Zn n++∉Nn∃∈22Zn n++∈Nn∃∈22Zn n++∉0.23a=0.33b=0.22c=b a c>>a b c>>b c a>>a c b>>a b2a b+=312a b+2723()xxf xe=Rm∈12m<-22(3)40m x m x-++=(2,)+∞2log1SC WN⎛⎫=+⎪⎝⎭C W S NSNWSNC (lg20.3010)≈A. B. C. D.8.已知函数为上的奇函数,当时,,若函数满足且有8个不同的解,则实数的取值范围为( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,为实数,且,则下列不等式正确的是( )A. B. C. D.10.已知函数,则下列说法正确的是( )A.的值域为B.关于原点对称C.在上单调递增D.在上的最大值、最小值分别为、,则11.已知函数满足:对,,都有,且,则以下选项正硴的是( )A. B.C. D.三、填空题:本题共3小题,每小题5分,共15分.12.函数的定义域为______.13.定义(其中表示不小于的最小整数)为“向上取整函数”.例如,,.以下描述正确的是______.(请填写序号)①若,则②若,则③是上的奇函数④若在上单调递增14.已知,满足,则的最小值为______四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.求值(118%21%23%25%()f x R 0x ≥2()2f x x x =-()g x (),0()(),0f x xg x f x x ≥⎧=⎨-<⎩(())0g f x a -=a 1a <-10a -<<01a <<1a >a b c 0a b >>11a b <11a c b c <--ac bc >22a b c c >)()lg 1f x x =-+()f x R x∀(1)f x +()f x (1,)+∞()f x [1,1]x m m ∈-+M N 0M N +=()f x R y ∈()()()(1)(1)f x y f x f y f x f y -=+++(0)(2)f f ≠(0)0f =(1)0f =(1)(1)0f x f x ++-=(4)()f x f x +=3()log (31)f x x =+()f x x =⎡⎤⎢⎥x ⎡⎤⎢⎥x 1.11-=-⎡⎤⎢⎥2.13=⎡⎤⎢⎥44=⎡⎤⎢⎥()2024f x =(2023,2024]x ∈27120x x -+≤⎡⎤⎡⎤⎢⎥⎢⎥(2,4]x ∈()f x x =⎡⎤⎢⎥R ()f x R a b 2221a ab b +-=232a ab -1232ln 2024+-(2)16.已知集合,.(1)求;(2)若,求实数的取值范围.17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量(单位:千克)与使用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其他成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价为20元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当使用肥料为多少千克时,该水果树单株利润最大,最大利润是多少?18.已知函数为奇函数,(1)求的值;(2)判断的单调性,并用单调性定义加以证明;(3)求关于的不等式的解集.19.已知函数,,(1)若,求关于的方程的解;(2)若关于的方程有三个不同的正实数根,,且,(1)求的取值范围;(2)证明:.()()24525log 5log 0.2log 2log 0.5++{}121A x m x m =+≤≤-11288x B x-⎧⎫=≤≤⎨⎬⎩⎭B A B ⊆m W x ()2103,02()100100,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩11x 25x ()f x ()f x 4()2x x a f x -=a ()f x x ()22(4)0f x x f x ++-<3()f x x a a x=--+(R)a ∈1a =x ()1f x =x 2()f x a =1x 2x 3x 123x x x <<a 1333x x x >。

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。

2023-2024学年山东省名校考试联盟高一(上)期中数学试卷【答案版】

2023-2024学年山东省名校考试联盟高一(上)期中数学试卷【答案版】

2023-2024学年山东省名校考试联盟高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <0},B ={x |﹣x 2﹣x +2>0},则(∁R A )∩B =( ) A .{x |0<x <1}B .{x |0≤x <1}C .{x |﹣2<x <0}D .{x |1<x <2}2.若函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,则实数m =( ) A .2B .﹣1C .﹣1或2D .33.若函数f (x )的定义域为[﹣1,2],则函数y =2x+1的定义域为( )A .(−√3,2]B .[0,√3]C .(﹣1,2]D .(−1,√3]4.已知a ,b ,c 均为实数,则( ) A .若a >b ,则ac 2>bc 2B .若a <b <0,则b a>abC .若a >b 且1a>1b,则b <0<aD .若a <b ,则a 2<ab <b 25.已知命题p :∀x >0,√3−x >0,则命题p 的否定是( ) A .∀x >0,√3−x ≤0 B .∃x >0,3﹣x ≤0 C .∃x >0,√3−x ≤0D .∀x ≤0,√3−x ≤06.已知函数f(x)=x +√x +1,其定义域为M ,值域为N .则“x ∈M ”是“x ∈N ”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要7.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x ﹣a 2|+|x ﹣2a 2|﹣3a 2).若∀x ∈R ,f (x ﹣a )<f (x ),则实数a 的取值范围为( ) A .[−16,16]B .[0,16]C .[−13,13]D .(0,16)8.不等式x 2+2axy +4y 2≥0对于∀x ∈[2,3],∀y ∈[2,9]恒成立,则a 的取值范围是( ) A .[−2512,+∞) B .[﹣5,+∞) C .[−133,+∞) D .[﹣1,+∞)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,下列说法正确的是( )A .函数f (x )是减函数B .∀a ∈R ,f (a 2)>f (a ﹣1)C .若f (a ﹣4)>f (3a ),则a 的取值范围是(﹣2,+∞)D .在区间[1,2]上的最大值为010.已知a ,b 是两个正实数,满足a +b =1,则( ) A .√a +√b 的最小值为1 B .√a +√b 的最大值为√2C .a 2+b 2的最小值为12D .a 2+b 2的最大值为111.已知函数f (x )=ax 2﹣3x +4,若任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,则实数a 的值可以是( ) A .﹣1B .−12C .0D .1212.已知函数f (x )的定义域为R ,f (x ﹣1)为奇函数,f (3x ﹣2)为偶函数,则( ) A .f(13)=0B .f (1)=0C .f (4)=0D .f (3)=0三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (f (2))= .14.写出3x ﹣1>0的一个必要不充分条件是 . 15.关于x 的不等式11−x≥2x的解集为 .16.设函数f (x )的定义域为R ,满足f (x +1)=3f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥﹣1,则m 的取值范围是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x|x−2x+1≤0},集合B ={x |2m +3<x <m 2},m ∈R . (1)当m =﹣2时,求A ∪B ;(2)若A ∩B =B ,求实数m 的取值范围. 18.(12分)f(x)=1−x 21+x 2. (1)判断f (x )的奇偶性,并加以证明; (2)求f (x )的值域.19.(12分)命题p :关于x 的方程x 2+2ax +4a +5=0有两个不相等的正实根,命题q :a ∈(m ,7m +7), (1)若命题¬p 为真命题,求a 的取值范围; (2)若q 是p 的充分条件,求m 的取值范围.20.(12分)原定于2022年9月10日至25日在中国杭州举办的第19届亚洲运动会延期至2023年9月23日至10月8日在中国杭州举行,名称仍为杭州2022年第19届亚运会.杭州亚组委在亚奥理事会和中国奥委会的指导下,有关各方共同努力,为全世界人民呈现了一届“中国特色、浙江风采、杭州韵味、精彩纷呈”的体育文化盛会.运动会期间,杭州某互联网公司为保证直播信号的流畅,拟加大网络的研发投入.据了解,该公司原有员工200人,平均投入a(a>0)万元/人,现把该公司人员调整为两类:运营人员和服务人员,其中运营人员有x名,调整后运营人员的人均投入调整为a(m﹣4x%)万元/人,服务人员的人均投入增加2x%.(1)若使调整后服务人员的总投入不低于调整前的200人的总投入,则调整后的服务人员最多有多少人?(2)现在要求调整后服务人员的总投入始终不低于调整后运营人员的总投入,求m的最大值及此时运营人员的人数.21.(12分)已知函数f(x)=ax2﹣(a﹣1)x﹣2,a∈R.(1)设a>−12,解关于x不等式f(x)<ax;(2)设a>0,若当x∈[−12,+∞)时,f(x)的最小值为−94,求a的值.22.(12分)已知函数f(x)=√3x−2−34x+12.(1)判断f(x)在区间[2,+∞)上的单调性并证明;(2)令g(x)=f(x)+34x−12,对∀x1∈[2,+∞),∃x2∈[2,+∞),使得(g(x1))2+2−m≥m√3x1−2−f(x2)成立,求m的取值范围.2023-2024学年山东省名校考试联盟高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <0},B ={x |﹣x 2﹣x +2>0},则(∁R A )∩B =( ) A .{x |0<x <1}B .{x |0≤x <1}C .{x |﹣2<x <0}D .{x |1<x <2}解:因为A ={x |x <0},B ={x |﹣x 2﹣x +2>0}={x |﹣2<x <1}, 所以∁R A ={x |x ≥0},则(∁R A )∩B ={x |0≤x <1}. 故选:B .2.若函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,则实数m =( ) A .2B .﹣1C .﹣1或2D .3解:∵函数f (x )=(m 2﹣m ﹣1)x m 为幂函数,∴m 2﹣m ﹣1=1,求得m =﹣1或2, 故选:C .3.若函数f (x )的定义域为[﹣1,2],则函数y =f(x 2−1)√x+1的定义域为( ) A .(−√3,2]B .[0,√3]C .(﹣1,2]D .(−1,√3]解:函数f (x )的定义域为[﹣1,2], 则{−1≤x 2−1≤2x +1>0,解得−1<x ≤√3, 故所求函数的定义域为(﹣1,√3]. 故选:D .4.已知a ,b ,c 均为实数,则( ) A .若a >b ,则ac 2>bc 2B .若a <b <0,则b a>abC .若a >b 且1a>1b,则b <0<aD .若a <b ,则a 2<ab <b 2解:当c =0时,A 显然错误;若a <b <0,则a 2>b 2,即ab>ba ,B 错误;若a >b 且1a>1b,则1a−1b=b−a ab>0,所以ab <0,即a >0>b ,C 正确; a <b <0时,D 显然错误. 故选:C .5.已知命题p:∀x>0,√3−x>0,则命题p的否定是()A.∀x>0,√3−x≤0B.∃x>0,3﹣x≤0C.∃x>0,√3−x≤0D.∀x≤0,√3−x≤0解:根据题意,命题p:∀x>0,√3−x>0,即0<x<3,则命题p的否定为:∃x>0,有x≥3,即3﹣x≤0.故选:B.6.已知函数f(x)=x+√x+1,其定义域为M,值域为N.则“x∈M”是“x∈N”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要解:由题意知,x+1≥0,所以x≥﹣1,所以函数f(x)的定义域M=[﹣1,+∞),因为函数y=x和y=√x+1在定义域内均为增函数,所以f(x)在[﹣1,+∞)上单调递增,所以f(x)min=f(﹣1)=﹣1,即函数f(x)的值域N=[﹣1,+∞),因此“x∈M”是“x∈N”的充要条件.故选:C.7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=12(|x﹣a2|+|x﹣2a2|﹣3a2).若∀x∈R,f(x ﹣a)<f(x),则实数a的取值范围为()A.[−16,16]B.[0,16]C.[−13,13]D.(0,16)解:当x≥0时,f(x)=12(|x−a2|+|x−2a2|−3a2),∴当0≤x≤a2时,f(x)=12[−x+a2−(x−2a2)−3a2]=−x,当a2<x≤2a2时,f(x)=﹣a2,当x>2a2时,f(x)=x﹣3a2,由于函数f(x)是定义在R上的奇函数,即可画出f(x)在R上的图象,如图所示:当x>0时,f(x)的最小值为﹣a2,当x<0时,f(x)的最大值为a2,由于∀x∈R,f(x﹣1)≤f(x),故函数f(x﹣a)的图象不能在函数f(x)的图象的上方,即f(x)的图像向右平移a个单位后的图象总在f(x)图象下方,结合(图二)可得a﹣3a2>3a2,则0<6a<1,故a的取值范围为(0,16 ).故选:D.8.不等式x2+2axy+4y2≥0对于∀x∈[2,3],∀y∈[2,9]恒成立,则a的取值范围是()A.[−2512,+∞)B.[﹣5,+∞)C.[−133,+∞)D.[﹣1,+∞)解:不等式x2+2axy+4y2≥0对于∀x∈[2,3],∀y∈[2,9]恒成立,即a≥−x2+4y22xy=−12(xy+4yx)对于∀x∈[2,3],∀y∈[2,9]恒成立,令t=xy,则t∈[29,32],则a≥−12(t+4t)对于∀t∈[29,32]恒成立,由对勾函数的性质可知y=t+4t在[29,32]上单调递减,所以当t=32时,y取最小值为256,所以−12(t+4t)的最大值为−2512,所以a≥−2512,即a的取值范围是[−2512,+∞).故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,下列说法正确的是( )A .函数f (x )是减函数B .∀a ∈R ,f (a 2)>f (a ﹣1)C .若f (a ﹣4)>f (3a ),则a 的取值范围是(﹣2,+∞)D .在区间[1,2]上的最大值为0 解:函数f(x)={x 2−2x +1,x ≤1−x +1,x >1,对于A ,∵y =x 2﹣2x +1在(﹣∞,1]上单调递减,y =﹣x +1在(1,+∞)上单调递减, 且12﹣2×1+1=0,﹣1+1=0, ∴f (x )在R 上单调递减,A 正确;对于B ,∵a 2﹣(a ﹣1)=a 2﹣a +1=(a −12)2+34>0,∴a 2>a ﹣1,f (a 2)<f (a ﹣1),B 错误; 对于C ,若f (a ﹣4)>f (3a ),则a ﹣4<3a ,解得a >﹣2,C 正确; 对于D ,f (x )在区间[1,2]上单调递减,最大值为f (1)=0,D 正确. 故选:ACD .10.已知a ,b 是两个正实数,满足a +b =1,则( ) A .√a +√b 的最小值为1 B .√a +√b 的最大值为√2C .a 2+b 2的最小值为12D .a 2+b 2的最大值为1解:(√a +√b)2=a +b +2√ab =1+2√ab ,由于0<2√ab ≤a +b =1,所以1<(√a +√b)2≤2,当且仅当a =b =12时,等号成立. 即√a +√b 的最大值为√2,没有最小值,故A 错误,B 正确;因为a 2+b 2=(a +b )2﹣2ab ,且0<ab ≤(a+b)24=14,当且仅当a =b =12时,等号成立. 所以12≤a 2+b 2<1,即a 2+b 2的最小值为12,没有最大值,故C 正确,D 错误.故选:BC .11.已知函数f (x )=ax 2﹣3x +4,若任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,则实数a 的值可以是( ) A .﹣1B .−12C .0D .12解:任意x 1,x 2∈[﹣1,+∞),设x 1>x 2,则x 1﹣x 2>0,∵任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<−1,∴f (x 1)﹣f (x 2)<﹣(x 1﹣x 2), ∴f (x 1)+x 1<f (x 2)+x 2, 设g (x )=f (x )+x =ax 2﹣2x +4, 则g (x 1)<g (x 2),∴函数g (x )=ax 2﹣2x +4在[﹣1,+∞)上单调递减, 当a =0时,g (x )=﹣2x +4在R 上单调递减,符合题意, 当a ≠0时,则a <0且1a ≤−1,解得﹣1≤a ≤0,观察各个选项,实数a 的值可以是﹣1,−12,0. 故选:ABC .12.已知函数f (x )的定义域为R ,f (x ﹣1)为奇函数,f (3x ﹣2)为偶函数,则( ) A .f(13)=0B .f (1)=0C .f (4)=0D .f (3)=0解:因为f (x ﹣1)为奇函数, ∴f (x ﹣1)=﹣f (﹣x ﹣1), 所以f (x )关于(﹣1,0)对称, 因为f (3x ﹣2)为偶函数, ∴f (3x ﹣2)=f (﹣3x ﹣2), 所以f (x )关于x =﹣2对称, 所以f (x )周期为4, 所以f (﹣1)=f (3)=0, 因为f (x )关于(﹣1,0)对称, 所以f (x )+f (﹣2+x )=0,所以f (x )+f (﹣2﹣x )=f (x )+f (﹣2﹣x +4)=0, 即f (x )+f (2﹣x )=0,故得到f (x )关于(1,0)和(3,0)对称. 故选:BD .三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (f (2))= ﹣3 . 解:根据题意,函数f(x)={2x +1x ,x <0x 2−3x +1,x ≥0,则f (2)=4﹣6+1=﹣1,则f (f (2))=f (﹣1)=﹣2﹣1=﹣3. 故答案为:﹣3.14.写出3x ﹣1>0的一个必要不充分条件是 (0,+∞) . 解:由3x ﹣1>0,解得:x >13,故3x ﹣1>0的一个必要不充分条件可以是x >0. 故答案为:(0,+∞). 15.关于x 的不等式11−x≥2x的解集为 {x |x <0或23≤x <1} .解:由11−x≥2x可得11−x−2x=3x−2x(1−x)≥0,即{(3x −2)(x −1)x ≤0x(x −1)≠0,解得x <0或23≤x <1. 故答案为:{x |x <0或23≤x <1}.16.设函数f (x )的定义域为R ,满足f (x +1)=3f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m ],都有f (x )≥﹣1,则m 的取值范围是 (﹣∞,15−√56] . 解:因为f (x +1)=3f (x ),所以f (x )=3f (x ﹣1),即f (x )右移1个单位,图象变为原来的3倍, 当x ∈(0,1]时,f(x)=x(x −1)∈[−14,0],当x ∈(1,2]时,x ﹣1∈(0,1],f (x )=3f (x ﹣1)=(3x ﹣1)(x −2)∈[−34,0]; ∴x ∈(2,3]时,x ﹣1∈(1,2],f (x )=3f (x ﹣1)=9(x ﹣2)(x −3)∈[−94,0]; 令9(x ﹣2)(x ﹣3)=﹣1,解得x 1=15+√56,x 2=15−√56, 所以要使对任意x ∈(﹣∞,m ],都有f (x )≥﹣1, 则m ≤15−√56,即m 的取值范围是(﹣∞,15−√56]. 故答案为:(﹣∞,15−√56].四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A ={x|x−2x+1≤0},集合B ={x |2m +3<x <m 2},m ∈R . (1)当m =﹣2时,求A ∪B ;(2)若A ∩B =B ,求实数m 的取值范围. 解:(1)由题意得A ={x|x−2x+1≤0}={x |﹣1<x ≤2}, 当m =﹣2时,B ={x |﹣1<x <4}, 故A ∪B ={x |﹣1<x <4}; (2)若A ∩B =B ,则B ⊆A ,当B =∅时,2m +3≥m 2,解得﹣1≤m ≤3,当B ≠∅时,{2m +3<m 2m 2≤22m +3≥−1,解得−√2≤m <−1,综上,m 的范围为[−√2,3].18.(12分)f(x)=1−x 21+x 2.(1)判断f (x )的奇偶性,并加以证明; (2)求f (x )的值域. 解:(1)∵f(x)=1−x 21+x 2的定义域为R , 且f (﹣x )=1−(−x)21+(−x)2=1−x 21+x 2=f (x ), ∴f (x )为偶函数; (2)∵y =21+x 2∈(0,2], ∴f (x )=1−x 21+x 2=−1+21+x 2∈(﹣1,1],∴f (x )的值域为(﹣1,1].19.(12分)命题p :关于x 的方程x 2+2ax +4a +5=0有两个不相等的正实根,命题q :a ∈(m ,7m +7), (1)若命题¬p 为真命题,求a 的取值范围; (2)若q 是p 的充分条件,求m 的取值范围.解:若命题p 为真命题,则{Δ=4a 2−4(4a +5)>0x 1+x 2=−2a >0x 1x 2=4a +5>0,解得−54<a <−1.(1)若命题¬p 为真命题,则实数a 满足a ≤−54或a ≥﹣1,即a 的取值范围是(−∞,−54]∪[−1,+∞);(2)若q 是p 的充分条件,则(m ,7m +7)⊆(−54,−1),可得{m <7m +7m ≥−547m +7≤−1,解得−76<m ≤−87,即m 的取值范围是(−76,−87].20.(12分)原定于2022年9月10日至25日在中国杭州举办的第19届亚洲运动会延期至2023年9月23日至10月8日在中国杭州举行,名称仍为杭州2022年第19届亚运会.杭州亚组委在亚奥理事会和中国奥委会的指导下,有关各方共同努力,为全世界人民呈现了一届“中国特色、浙江风采、杭州韵味、精彩纷呈”的体育文化盛会.运动会期间,杭州某互联网公司为保证直播信号的流畅,拟加大网络的研发投入.据了解,该公司原有员工200人,平均投入a (a >0)万元/人,现把该公司人员调整为两类:运营人员和服务人员,其中运营人员有x 名,调整后运营人员的人均投入调整为a (m ﹣4x %)万元/人,服务人员的人均投入增加2x %.(1)若使调整后服务人员的总投入不低于调整前的200人的总投入,则调整后的服务人员最多有多少人?(2)现在要求调整后服务人员的总投入始终不低于调整后运营人员的总投入,求m 的最大值及此时运营人员的人数.解:(1)由题意可知,调整后的服务人员有(200﹣x )人,人均投入为(1+2x %)a 万元/人, 从而(200﹣x )(1+2x %)a ⩾200a ,解得0⩽x ⩽150, 调整后服务人员最多有200人;(2)由题意,得(200﹣x )(1+2x %)a ⩾(m ﹣4x %)ax ,得(200x −1)(1+x50)⩾m −x25, 整理得m ⩽200x +3+x50, 因为200x+3+x 50⩾2√200x⋅x 50+3=7,当且仅当200x=x50,即x =100时等号成立,所以m ⩽7,则m 的最大值为7,此时运营人员有100人.21.(12分)已知函数f (x )=ax 2﹣(a ﹣1)x ﹣2,a ∈R . (1)设a >−12,解关于x 不等式f (x )<ax ;(2)设a >0,若当x ∈[−12,+∞)时,f (x )的最小值为−94,求a 的值. 解:(1)因为f (x )<ax ⇔ax 2﹣(a ﹣1)x ﹣2<ax ⇔ax 2﹣(2a ﹣1)x ﹣2<0, 当a =0时,原不等式等价于x ﹣2<0,解得x <2;当a ≠0时,因为Δ=(2a ﹣1)2+8a =4a 2+4a +1=(2a +1)2, 因为a >−12,所以Δ=(2a +1)2>0,2a +1>0,令ax 2﹣(2a ﹣1)x ﹣2=0⇔(ax +1)(x ﹣2)=0(a ≠0),解得x 1=−1a,x 2=2,当−12<a <0时,−1a>2,所以不等式ax 2﹣(2a ﹣1)x ﹣2<0的解集为:(﹣∞,2)∪(−1a,+∞); 当a >0时,−1a<0<2,所以不等式ax 2﹣(2a ﹣1)x ﹣2<0的解集为:(−1a,2); 综上所述,当a =0时,f (x )<ax 的解集为:(﹣∞,2);当−12<a <0时,f (x )<ax 的解集为:(﹣∞,2)∪(−1a,+∞); 当a >0时,f (x )<ax 的解集为:(−1a ,2);(2)a >0,所以函数f (x )=ax 2﹣(a ﹣1)x ﹣2的开口向上,对称轴为x =a−12a =12−12a <12,当12−12a ≤−12,即0<a ≤12时,f (x )min =f (−12)=3a−104=−94,解得a =13∈(0,12],满足题意;当12−12a>−12,即a >12时,f (x )min =f (12−12a)=−a 2+6a+14a =−94,a 2﹣3a +1=0, 解得a =3−√52<12或a =3+√52>12, 所以a =3+√52, 综上所述,a =13或a =3+√52. 22.(12分)已知函数f(x)=√3x −2−34x +12. (1)判断 f (x )在区间[2,+∞)上的单调性并证明;(2)令g(x)=f(x)+34x −12,对∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得(g(x 1))2+2−m ≥m √3x 1−2−f(x 2)成立,求m 的取值范围.解:(1)f(x)=√3x −2−34x +12在[2,+∞) 上是单调递减, 证明:对任意x 1,x 2∈[2,+∞),且x 1<x 2,有f(x1)﹣f(x2)=(√3x1−2−34x1+12)−(√3x2−2−34x2+12)=12√1√2−34(x1−x2)=(x1−x2)(3√1√234 ),∵x2>x1≥2,∴√3x1−2+√3x2−2>4,3x1−2+3x2−2<34,3x1−2+3x2−2−34<0,由x1﹣x2<0,得f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在区间[2,+∞)上单调递减.(2)化简得∀x1∈[2,+∞),∃x2∈[2,+∞),3x1−2+2−m−m√3x1−2≥−f(x2)成立,由(1)知(﹣f(x))min=﹣f(2)=﹣1,∴3x1−2+2−m−m√3x1−2≥−1,∀x1∈[2,+∞),令√3x1−2=t≥2,∴t2+3﹣m(t+1)≥0,∴m≤t2+3t+1=t+1+4t+1−2,∴p(t)=t+1+4t+1−2在[2,+∞)单调递增,∴p(t)min=p(2)=7 3,∴m≤73,即m的取值范围是(﹣∞,73].。

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷

江西省南昌市江西师范大学附属中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知集合{}{}220,1||A x x B x x =+>=>,则A B = ()A .{}|21x x -<<B .{}|1x x >C .{|21x x -<<-或}1x >D .{|1x x <-或}1x >2.已知集合{}{}1,1,2,41,2,4,16M N =-=,.给出下列四个对应法则:①1y x=;②1y x =+;③y x =;④2y x =.请由函数定义判断,其中能构成从M 到N 的函数的是()A .①③B .①②C .③④D .②④3.已知函数()f x 在[)0,+∞上单调递减,则对实数120,0x x >>,“12x x >”是“()()12f x f x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()233xx f x =-的大致图象是()A .B .C .D .5.若函数()y f x =为奇函数,则它的图象必经过点()A .()0,0B .()(),a f a --C .()(),a f a -D .()(),a f a ---6.已知函数11(0,1)x y a a a -=+>≠的图像恒过定点A ,且点A 在直线(,0)y mx n m n =+>上,则11m n+的最小值为()A .4B .1C .2D .327.设()f x 是定义在R 上的奇函数、对任意()12,0,x x ∈+∞,且12x x ≠,都有()()2121f x f x x x ->-且(1)0f =、则不等式()0xf x >的解集为()A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,0)(1,)-∞⋃+∞D .(,1)(1,)-∞-+∞ 8.已知函数()2,123,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(0a >且1a ≠),若函数()f x 的值域为R ,则实数a 的取值范围是()A .20,3⎛⎤⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .[)2,+∞D .[)3,+∞二、多选题9.下列说法正确的是()A .命题“0x ∀>,都有e 1x x >+的否定是“0x ∃>,使得e 1≤+x xB .若0a b >>,则11a ab b+>+C .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数D .函数()y f x =的定义域为[]2,3,则函数()21y f x =-的定义域为3,22⎡⎤⎢⎥⎣⎦10.已知函数()e 1e 1x x f x -=+,则下列结论正确的是()A .函数()f x 的定义域为RB .函数()f x 的值域为()1,1-C .()()0f x f x +-=D .函数()f x 为减函数11.已知函数()f x 的定义域为R ,其图象关于()1,2中心对称.若()()424f x f x x --=-,则()A .()()4214f x f x -+-=B .()()244f f +=C .()12y f x =+-为奇函数D .()22y f x x =++为偶函数三、填空题12()1132081π3274⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭13.已知幂函数()()215m f x m m x -=+-在0,+∞上单调递减,则m =.14.将()22xx af x =-的图象向右平移2个单位后得曲线1C ,将函数=的图象向下平移2个单位后得曲线2C ,1C 与2C 关于x 轴对称.若()()()f x F x g x a=+的最小值为m 且2m >+则实数a 的取值范围为四、解答题15.已知集合U 为实数集,{5A x x =≤-或}8x ≥,{}121B x a x a =-≤≤+.(1)若5a =,求()U A B ⋂ð;(2)设命题p :x A ∈;命题q :x B ∈,若命题p 是命题q 的必要不充分条件,求实数a 的取值范围.16.已知函数()()3211f x x ax b x =++-+是定义在R 上的奇函数.(1)求a ,b 的值;(2)解不等式()3279333x x x xf >+-⨯+.17.已知定义域为R 的奇函数()21212x x f x =-+(1)判断函数()f x 的单调性,并用定义加以证明;(2)若对任意的[]1,2x ∈,不等式()()²²40f x mx f x -++>成立,求实数m 的取值范围.18.已知0a >且1a ≠,函数()4,02,0x a x x h x x -⎧≥=⎨<⎩,满足()()11h a h a -=-,设()x p x a -=.(1)若()()()231p x f x p x +=+,[)0,x ∞∈+,求函数()f x 的最小值;(2)函数()()()231p x f x p x +=+,()21g x x b x =-+-,若对[]11,1x ∀∈-,都存在[)20,x ∈+∞,使得()()21f x g x =,求b 的取值范围.19.对于定义在区间[],a b 上的函数f (x ),若()(){}[]()|,f P x max f t a t x x a b =≤≤∈.(1)已知()()[]121,2,0,1xf xg x x x ⎛⎫==∈ ⎪⎝⎭试写出()f P x 、()g P x 的表达式;(2)设0a >且1a ≠,函数()()2131,12x xf x a a a x ⎡⎤=+-⨯-∈⎢⎥⎣⎦,,如果()f P x 与()f x 恰好为同一函数,求a 的取值范围;(3)若()(){}[]()min ,f Q x f t a t x x a b =≤≤∈存在最小正整数k ,使得()()()f f P x Q x k x a -≤-对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的"k 阶收缩函数",已知1b >,函数()4f x x x=+是[]1,b 上的“3阶收缩函数”,求b 的取值范围.。

2023-2024学年北京西城区十五中高一(上)期中数学试题及答案

2023-2024学年北京西城区十五中高一(上)期中数学试题及答案

北京十五中高一数学期中考试试卷2023.11本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡和答题纸上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{}1M =,{}123N =,,,那么下列结论正确的是D(A )M N =∅ (B )M N ∈(C )N M ⊆(D )M N⊆2.若方程组22ax y x by +=⎧⎨+=⎩的解集为(){}2,1,则B(A )0,0a b ==(B )1,02a b ==(C )10,2a b ==(D )11,22a b ==3.已知命题p :x R ∃∈,使得220x x +<”,则p ⌝为C (A ),x ∃∈R 使得220x x +≥(B ),x ∃∈R 使得220x x +>(C ),x ∀∈R 都有220x x +≥(D ),x ∀∈R 都有220x x +<4.下列命题为真命题的是B(A )若,则(B )若,则(C )若,则(D )若,则5.函数3()25f x x x =+-的零点所在的一个区间是D (A)(2,1)--(B)(1,0)-(C)(0,1)(D)(1,2)6.设,则“”是“”的A(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件7.已知偶函数()f x 的定义域为R ,当[)0,+x ∈∞时,()f x 是增函数,()2f -,()f π,()3f -的大小关系是B(A )()()()32f f f π->>(B )()()()32f f f π>->-(C )()()()32f ff π->>-(D )()()()23ff f π>->-8.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为D(A )(10)(1)-+∞ ,,(B )(1)(01)-∞- ,,(C )(1)(1)-∞-+∞ ,,(D )(10)(01)- ,,9.设函数266,0()34,0x x x f x x x ⎧-+=⎨+<⎩≥,若互不相等的实数1x ,2x ,3x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是A(A )11,63⎛⎫⎪⎝⎭(B )11,63⎛⎤ ⎥⎝⎦(C )2026,33⎛⎫ ⎪⎝⎭(D )2026,33⎛⎤ ⎥⎝⎦10.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是C (A )①③(B )①④(C )②③(D )②④第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数12y x =+-的定义域是________.【答案】{|02x x x ≥≠且}12.若1x >,则函数2()2f x xx =+的最小值为________【答案】2213.已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(2)(2)f g +=_______.【答案】-314.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在(),-∞+∞上满足若12,x x ≠则()()21210f x f x x x ->-求实数a 的取值范围_______.【答案】[]3,2--15.已知函数()11f x x =--,给出下列四个结论:(1)()f x 的定义域为[)(]1,00,1- (2)()f x 的值域为()1,1-(3)()f x 在定义域内是增函数(4)()f x 的图象关于原点对称其中所有正确结论的序号是【答案】(1)(2)(4)三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(14分)已知全集U =R ,集合{|(2)0}P x x x =-≥,{|3}=<<+M x a x a .(Ⅰ)化简集合P ,并求集合U P ð;(Ⅱ)若1=a ,求集合 P M ;(Ⅲ)若U P M ⊆ð,求实数a 的取值范围.(Ⅰ)解:因为全集U =R ,集合{|(2)0}P x x x =-≥,{|20}P x x x =≥≤或所以{|(2)0}U P x x x =-<ð,即集合{|02}U P x x =<<ð.(Ⅱ)1,{|14}a M x x ==<<P M = [2,4)(Ⅲ)解:因为U P M ⊆ð,所以0,32,≤⎧⎨+≥⎩a a 解得0,1.≤⎧⎨≥-⎩a a 所以[1,0]∈-a .17.(13分)解下列关于x 的不等式.(I )2112x x +>-;(II )22650x ax a -+≤(a R ∈).解:(Ⅰ)()(),32,-∞-+∞ (Ⅱ)22650x ax a -+≤即()(5)0x a x a --≤,则12,5x a x a ==当0a >时,不等式的解集为:[],5a a ;当0a =时,不等式的解集为:{}0;当0a <时,不等式的解集为:[]5,a a .18.(15分)已知函数2()1x f x x =-.(Ⅰ)求(2)f ;(Ⅱ)判断函数()f x 在区间(1,1)-上的单调性,并用函数单调性的定义证明;(Ⅲ)证明()f x 是奇函数.解:(Ⅰ)2(2)3f =…………………(Ⅱ)证明:函数()f x 的定义域为{|1}D x x =≠±.关于原点对称。

高一数学上学期期中考试试卷含答案(共5套,新课标版)

高一数学上学期期中考试试卷含答案(共5套,新课标版)

高一第一学期数学期中考试试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{}1,2M =,{}3,4N =,则()UM N =( )A.{}5B.{}1,2C.{}3,4D.{}1,2,3,42.函数y = ) A.[)1,+∞B.[]0,2C.()0,+∞D.[)0,+∞3.点()sin913,cos913A ︒︒位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.若实数a ,b 满足2a b +=,则33a b +的最小值是( )A.18B.6C.D.5.已知0a b >>,则“0m >”是“m m a b >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件6.函数()22log 4y x =-的单调增区间是( ) A.()0,+∞B.()2,+∞C.(),0-∞D.(),2-∞-7.教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气,按照国家标准,教室内空气中二氧化碳日平均最高容许浓度应小于等于0.1%,经测定,刚下课时,某班教室空气中含有0.2%的二氧化碳,若开窗通风后教室内二氧化碳的浓度为%y ,且y 随时间t (单位:分钟)的变化规律可以用函数100.05()-=+∈ty eR λλ描述,则该教室内的二氧化碳浓度达到国家标准至少需要的时间为( )(参考数据ln20.7,ln3 1.1≈≈)A .7分钟B .9分钟C .11分钟D .14分钟 8.设0.3log 0.2a =,3log 2b =,0.30.6c =,则( ) A.c b a >>B.b c a >>C.a c b >>D.a b c >>二、多项选择题(共4小题,各题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).9.下列说法正确的是( )A .如果α是第一象限的角,则α-是第四象限的角B .如果α,β是第一象限的角,且αβ<则sin sin αβ<C .若圆心角为3π的扇形的弧长为π,则该扇形面积为23πD .若圆心角为23π的扇形的弦长为83π10.若角α的终边上有一点()(),20P a a a ≠,则2sin cos αα-的值可以是( )A .BC .D 11.下列结论正确的是( )A.“0x ∃<,2310x x -+≥”的否定是“0x ∀<,2310x x -+<”B.函数()f x 在(],0-∞单调递增,在()0,+∞单调递增,则()f x 在R 上是增函数C.函数()f x 是R 上的增函数,若()()()()1212f x f x f x f x +≥-+-成立,则120x x +≥D.函数()f x 定义域为R ,且对,a b R ∀∈,()()()f a b f a f b +=+恒成立,则()f x 为奇函数12.函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩恰有2个零点的充分条件是( )A.(]1,2B.()3,+∞C.1,12⎛⎫⎪⎝⎭D.10,2⎛⎤ ⎥⎝⎦三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()222x x f x x a -=⋅-是奇函数,则a =________________.14.在平面直角坐标系中,若角α的终边经过点4π4πsin ,cos 33P ⎛⎫ ⎪⎝⎭,则()cos πα+=_________.15.若cos cos 7x π=,则x 的取值组成的集合为_____________________..16.设函数()()213,1,2, 1.xax a x a x f x x ⎧-++<=⎨≥⎩的最小值为2,则实数a 的取值范围是____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,且OA OB ⊥. (1)求()()sin cos 23cos sin 2ππαβππβα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值;(2)若点A 的横坐标为35,求2sin cos αβ的值.18.(本小题满分12分)已知集合{}23=<->或A x x x ,{}123,=-≤≤+∈B x m x m m R . (1)若2=m ,求A B 和()R A B ;(2)若=∅A B ,求实数m 的取值范围.19.(本小题满分12分)已知函数()2=-mf x x x ,且112⎛⎫=- ⎪⎝⎭f . (1)求m 的值;(2)判定()f x 的奇偶性,并给予证明;(3)判断()f x 在(0,)+∞上的单调性,并给予证明.20.(本小题满分12分)已知2()3=+-f x x x a .(1)若()0<f x 的解集为{}4-<<x x b ,求实数a ,b 的值; (2)解关于x 的不等式()2>+f x ax a .21.(本小题满分12分)市场上有一种新型的强力洗衣液,特点是去污速度快,已知每投放(14,)≤≤∈a a a R 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为()=⋅y a f x ,其中161(04)8()15(410)2⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩x xf x x x ,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(2)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,问能否使接下来的4分钟内持续有效去污?说明理由.22.(本小题满分12分)已知函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x=. (1)求a ,b 的值(2)若不等式()22log 2log 0f x k x -⋅≥在[]2,4x ∈上有解,求实数k 的取值范围;(3)若()2213021xx f k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.8.C 【解析】依题意可知0=t 时,0.2=y ,即0.050.2,0.15+==λλ,所以100.050.15=+t y e ,由100.050.150.1=+≤t y e ,得1013≤t e ,两边取以e 为底的对数得1ln ln3 1.1,11103-≤=-≈-≥t t ,所以至少需要11分钟,故选:C . 二、多项选择题(共4小题,每小题均有两个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).三、填空题:本题共4小题,每小题5分,共20分. 13.1 14.15. {|2,}7k k Z πααπ=±∈16.[1,)+∞四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)∵2πβα=+,∴sin sin cos 2πβαα⎛⎫=+= ⎪⎝⎭,cos cos sin 2πβαα⎛⎫=+=- ⎪⎝⎭, ∴()()sin cos sin sin sin cos 213cos cos sin cos cos sin 2ππαβαβααπαβααπβα⎛⎫++ ⎪⎝⎭==-=-⎛⎫-+ ⎪⎝⎭. .........................5分(2)∵点A 的横坐标为35,∴3cos 5α=,4sin 5α, 4cos cos sin 25πβαα⎛⎫=+=-=- ⎪⎝⎭,∴44322sin cos 25525αβ⎛⎫=⨯⨯-=- ⎪⎝⎭. ........................ 10分18.【解析】(1)若2=m ,则{}17=≤≤B x x ,......................... 1分 所以{}21=<-≥或AB x x x , ......................... 3分因为{}23=-≤≤RA x x ,所以(){}13=≤≤R AB x x . ......................... 6分(2)因为=∅A B ,当=∅B 时,123->+m m ,解得4<-m ,满足≠∅AB ; ......................... 8分当≠∅B 时,12312233-≤+⎧⎪-≥-⎨⎪+≤⎩m m m m ,解得10-≤≤m , ......................... 11分综上所述:实数m 的取值范围是4<-m 或10-≤≤m . ......................... 12分19.(1)因为11112112222⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m mf ,所以1=-m ; ......................... 3分(2)由(1)可得1()2=-f x x x,因为()f x 的定义域为{}0≠x x , 又111()222()⎛⎫⎛⎫-=---=-+=--=- ⎪ ⎪⎝⎭⎝⎭f x x x x f x x x x ,所以()f x 是奇函数; ......................... 7分 (3)函数()f x 在(0,)+∞上为增函数,理由如下: 任取120>>x x , 则()()()()()1212121212121212122111222-+⎛⎫--=---=-+= ⎪⎝⎭x x x x x xf x f x x x x x x x x x x x ....................10分 因为120>>x x ,所以12120,0->>x x x x ,所以()()12>f x f x ,所以()f x 在(0,)+∞上为单调增函数. ......................... 12分 20.【详解】(1)因为()0>f x 的解集为{}4-<<x x b ,所以4=-x 为方程()0=f x 的根,所以2(4)3(4)0-+⨯--=a ,解得4=a . ......................... 3分 所以由2()340=+-<f x x x ,解得{}41-<<x x ,所以1=b . ......................... 6分 (2)()2>+f x ax a 等价于2(3)30+-->x a x a ,整理得:(3)()0+->x x a . ...................... 7分当3>-a 时,解不等式得3<-x 或>x a ; 当3=-a 时,解得3≠-x ;当3<-a 时,解得<x a 或3>-x ; ......................... 11分综上,当3>-a 时,不等式的解集为(,3)(,)-∞-+∞a ;当3=-a 时,不等式的解集为{}3≠-x x ; 当3<-a 时,不等式的解集为(,)(3,)-∞-+∞a . 12分21.【解析】(1)因为4=a ,所以644,048202,410⎧-≤≤⎪=-⎨⎪-<≤⎩x y x x x . ......................... 1分则当04x ≤≤时,由64448-≥-x,解得0≥x ,所以此时04x ≤≤. ......................... 4分 当410<≤x 时,由2024-≥x ,解得8≤x ,所以此时48<≤x . ......................... 5分 综上,得08≤≤x ,若一次投放4个单位的洗衣液,则有效去污时间可达8分钟. ........................ 6分(2)假设要使接下来的4分钟内持续有效去污,则: 当610≤≤x时,11616251(14)4428(6)14⎡⎤⎛⎫=⨯-+-=-+--≥-- ⎪⎢⎥---⎝⎭⎣⎦a y x a x a a x x ....... 8分当且仅当14-=x 时等号取到.(因为14≤≤a ,所以[6,10]∈x 能取到) 所以y有最小值4--a.令44--≥a ,解得244-≤≤a , ......................... 10分所以a的最小值为24 1.42-≈<.即要使得接下来的4分钟内持续有效去污,6分钟后至少需要再投放1.4个单位的洗衣液.所以,若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,能使接下来的4分钟内持续有效去污. ......................... 12分22. (1)由题意2()(1)1g x a x b a =-++-,又0a >,∴()g x 在[2,3]上单调递增,∴(2)4411(3)9614g a a b g a a b =-++=⎧⎨=-++=⎩,解得10a b =⎧⎨=⎩. ......................... 3分(2)由(1)2()21g x x x =-+,()1()2g x f x x x x==+-, [2,4]x ∈时,2log [1,2]x ∈,令2log t x =,则()20f t kt -≥在[1,2]上有解,......................... 4分1()2220f t kt t kt t -=+--≥,∵[1,2]t ∈,∴22121211k t t t ⎛⎫≤+-=- ⎪⎝⎭, [1,2]t ∈,则11,12t ⎡⎤∈⎢⎥⎣⎦,∴211t ⎛⎫- ⎪⎝⎭的最大值为14, ......................... 6分 ∴124k ≤,即18k ≤. ∴k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦. ......................... 7分(3)原方程化为221(32)21(21)0x x k k --+-++=,令21xt =-,则(0,)t ∈+∞,2(32)(21)0t k t k -+++=有两个实数解12,t t ,作出函数21xt =-的图象,如图 ......................... 9分原方程有三个不同的实数解,则101t <<,21t >,或101t <<,21t =,记2()(32)(21)0h t t k t k =-+++=, ......................... 10分则210(1)0k h k +>⎧⎨=-<⎩,解得0k >,或210(1)032012k h k k ⎧⎪+>⎪=-=⎨⎪+⎪<<⎩,无解. 综上k 的取值范围是(0,)+∞. ......................... 12分高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

江苏省连云港2023-2024学年高一上学期期中考试 数学含解析

江苏省连云港2023-2024学年高一上学期期中考试 数学含解析

2023—2024学年第一学期期中考试高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“x ∃∈R ,2210x x ++≤”的否定为()A .x ∃∉R ,2210x x ++> B.x ∃∈R ,2210x x ++>C.x ∀∉R ,2210x x ++> D.x ∀∈R ,2210x x ++>2.若集合{0,1,2}A =,{1,2,3,4}B =,则A B ⋃=()A.{0,1,2,3,4}B.{0,1,2}C.{1,2}D.{1,2,3,4}3.函数22812y x x =++的最小值为()A.10 B.9 C.8D.74.下列函数中,既是奇函数又在其定义域上为增函数的是()A.3y x= B.1y x =- C.y = D.y x =5.已知)4x =,则x =()A.2- B.0 C.2 D.46.设()()322f x x a x x =-+-+是定义在R 上的奇函数,则()f a =()A.4- B.5- C.6- D.7-7.当(1,2)x ∈时,不等式240x x m ++<恒成立,则m 的取值范围是()A.5m ≤-B.m 12≤-C.8m <- D.5m <-8.定义域为R 的函数()f x 满足()()33f x f x -=+,且当213x x >>时,()()()()12120f x f x x x ->-恒成立,设()225a f x x =-+,52b f ⎛⎫=⎪⎝⎭,()24c f x =+,则()A.c a b >> B.c b a >> C.a c b>> D.b c a >>二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设U 为全集,若A B A ⋃=,则()A.A B = B.B A ⊆ C.A B B= D.U U A B ⊆痧10.若0x >,0y >,则下列各式中,恒等的是()A.lg lg lg()x y x y +=+B.lg lg lg x x y y=-C.22lg (lg )x x = D.313lg lg2y x =-11.已知关于x 的不等式20ax bx c ++>的解集为{|3x x <-或4}x >,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭D.0a b c ++>12.已知函数()f x 的定义域为R ,对任意实数x ,y 满足:()()()12f x y f x f y +=++,且102f ⎛⎫= ⎪⎝⎭,当0x >时,()(0)f x f >,给出以下结论,正确的是()A.()102f =-B.()312f -=-C.()f x 为R 上的减函数D.()12f x +为奇函数三、填空题:本题共4小题,每小题5分,共20分.13.已知2(1)2f x x x -=-,则函数(1)f -=__________.14.a<0是||0a >的__________条件(从“充分条件、必要条件、充要条件、既不充分又不必要条件”中选填).15.设0a >,0b >,且1a b +=,则41a b+的最小值是__________.16.若集合{}210x mx mx m +++≥=R ,则实数m 的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记函数()f x =+的定义域为集合M ,函数2()23g x x x =-+的值域为集合N ,求:(1)求M ,N ;(2)求M N ⋃,()M N R I ð.18.计算:(1)2ln 33e 25(0.125)-++,(2)2lg 25lg 2lg 50(lg 2)++.19.设全集U =R ,集合A ={x |1≤x ≤5},集合B ={x |2-a ≤x ≤1+2a },其中a ∈R .(1)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围;(2)若“x ∈A ”是“x ∈B ”的必要条件,求a 的取值范围.20.已知a ,b 均为正实数.(1)证明:2a b +≤;(2)若Rt ABC △的两条直角边分别为a ,b ,斜边2c =,求Rt ABC △周长l 的最大值.21.如图所示,某学校的教学楼前有一块矩形空地ABCD ,其长为36米,宽为24米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为a 米与b 米均不小于3米,要求“转角处(图中矩形AEFG )”的面积为12平方米.(1)试用a 表示草坪的面积()S a ,并指出a 的取值范围;(2)如何设计人行道的宽度a ,b 才能使草坪的面积最大?并求出草坪的最大面积.22.已知定义在R 上的奇函数()21ax b f x x -=+过原点,且1225f ⎛⎫-=- ⎪⎝⎭.(1)求实数,a b 的值;(2)判断()f x 在()1,1-上的单调性并用定义证明;(3)画出()f x 在R 上的图像.2023—2024学年第一学期期中考试高一数学试卷一、选择题:本题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“x ∃∈R ,2210x x ++≤”的否定为()A.x ∃∉R ,2210x x ++> B.x ∃∈R ,2210x x ++>C.x ∀∉R ,2210x x ++> D.x ∀∈R ,2210x x ++>【答案】D【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“x ∃∈R ,2210x x ++≤”是存在量词命题,所以其否定是全称量词命题,即为x ∀∈R ,2210x x ++>,故选:D2.若集合{0,1,2}A =,{1,2,3,4}B =,则A B ⋃=()A.{0,1,2,3,4}B.{0,1,2}C.{1,2}D.{1,2,3,4}【答案】A【解析】【分析】根据并集的含义【详解】根据并集的定义得{0,1,2,3,4}A B ⋃=,故选:A.3.函数22812y x x =++的最小值为()A.10B.9C.8D.7【答案】B【解析】【分析】根据函数形式,结合基本不等式求解函数最小值即可.【详解】函数22812y x x =++中,0x ≠ ,由基本不等式可得2281219y x x =+++≥=当且仅当2282x x =时,即x =时取等号,所以函数的最小值为9.故选:B.4.下列函数中,既是奇函数又在其定义域上为增函数的是()A.3y x= B.1y x =- C.y = D.y x =【答案】A【解析】【分析】根据奇函数的定义及性质可以得出答案.【详解】首先定义域必须关于0对称,C 错;y x =不是奇函数,D 错;在定义域内不是增函数,B 错;故选:A.5.已知)4x =,则x =()A.2- B.0 C.2 D.4【答案】C【解析】【分析】对数式化为指数式,再由指数的运算法则求解.【详解】由)4x =得42x =,即22x x =,又0x >且1x ≠,所以2x =,故选:C .6.设()()322f x x a x x =-+-+是定义在R 上的奇函数,则()f a =()A.4- B.5- C.6- D.7-【答案】C【解析】【分析】由题意有()()()11220f f a +-=-=,从而可得2a =,进一步可以算出()3f x x x =-+,()6f a =-.【详解】由题意()()322f x x a x x =-+-+是定义在R 上的奇函数,则由奇函数的性质可得()()()()111211210f f a a +-=-+-+++--=,解得2a =,所以()3f x x x =-+,从而()()32226f a f ==-+=-.故选:C.7.当(1,2)x ∈时,不等式240x x m ++<恒成立,则m 的取值范围是()A.5m ≤- B.m 12≤- C.8m <- D.5m <-【答案】B【解析】【分析】分离参数,求出右边的范围即可得到答案.【详解】由题意得24m x x <--对(1,2)x ∈恒成立,设()()22424f x x x x =--=-++,则()f x 在()1,2上单调递减,则()()212f x f >=-,所以m 12≤-,故选:B.8.定义域为R 的函数()f x 满足()()33f x f x -=+,且当213x x >>时,()()()()12120f x f x x x ->-恒成立,设()225a f x x =-+,52b f ⎛⎫=⎪⎝⎭,()24c f x =+,则()A.c a b>> B.c b a >> C.a c b>> D.b c a >>【答案】C【解析】【分析】根据函数的对称性和单调性比较大小即可求解.【详解】因为定义域为R 的函数()f x 满足()()33f x f x -=+,所以函数()f x 的图象关于3x =对称,所以2752b f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,又因为当213x x >>时,()()()()12120f x f x x x ->-,所以函数()f x 在()3,+∞单调递增,则在(),3-∞单调递减,因为22221325(4)1()024x x x x x x -+-+=-+=-+>,所以22725432x x x -+>+>>,所以()()2272542f x x f x f ⎛⎫-+>+>⎪⎝⎭,即a c b >>,故选:C ,二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设U 为全集,若A B A ⋃=,则()A.A B= B.B A ⊆ C.A B B = D.U U A B ⊆痧【答案】BCD【解析】【分析】根据包含关系结合集合间的运算求解.【详解】因为A B A ⋃=,等价于B A ⊆,等价于A B B = 和U U A B ⊆痧,故A 错误,BCD 正确;故选:BCD.10.若0x >,0y >,则下列各式中,恒等的是()A.lg lg lg()x y x y +=+ B.lg lg lg x x y y=-C.22lg (lg )x x = D.313lg lg2y x =-【答案】BD【解析】【分析】根据对数运算法则和性质即可判断.【详解】对于A :lg lg lg()x y xy +=,故选项A 不正确;对于B ,根据对数的运算法则得lg lg lg x x y y=-,故B 正确;对于C :2lg 2lg x x =,故选项B 不正确;对于D :133321l g lg g l l l lg 3l g2y y x y x =---==,故选项D 正确;故选:BD .11.已知关于x 的不等式20ax bx c ++>的解集为{|3x x <-或4}x >,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭D.0a b c ++>【答案】AC【解析】【分析】根据不等式20ax bx c ++>的解集为{|3x x <-或4}x >,可得0a >,且3-和4是20ax bx c ++=的两个根,进而可判断选项.【详解】由题意可知0a >且3-和4是20ax bx c ++=的两个根,故34b a -+=-,34c a-⨯=,得=-b a ,12c a =-,A 选项:由0a >可判断A 正确;B 选项:由0bx c +>得120ax a -->得12x <-,故B 错误;C 选项:由20cx bx a -+<得2120ax ax a -++<,得21210x x -->,得14x <-或13x >,故C 正确;D 选项:12120a b c a a a a ++=--=-<,故D 错误,故选:AC12.已知函数()f x 的定义域为R ,对任意实数x ,y 满足:()()()12f x y f x f y +=++,且102f ⎛⎫= ⎪⎝⎭,当0x >时,()(0)f x f >,给出以下结论,正确的是()A.()102f =-B.()312f -=-C.()f x 为R 上的减函数D.()12f x +为奇函数【答案】ABD【解析】【分析】利用抽象函数的关系式,令0x y ==判断A 的正误;令12x =,12y =-,判断B 的正误;当0x >时,()(0)f x f >,再令122,x x x y x =-=,结合单调性的定义判断C 的正误;令y x =-判断D 的正误.【详解】因为()()()12f x y f x f y +=++,则令0x y ==,可得()()()100002f f f +=++,即()()10202f f =+,解得()102f =-,故A 正确;令12x =,12y =-,可得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111222f ⎛⎫-=-+ ⎪⎝⎭,解得112⎛⎫-=- ⎪⎝⎭f ,再令12x y ==-,可得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()1311122f -=-+-+=-,故B 正确;因为0x >,所以()0f x >,令122,x x x y x =-=,不妨设12x x >,可得()()()112212f x f x x f x =-++,即()()()121212f x f x f x x -=-+,因为12x x >,则120x x ->,则()1212f x x ->-,可得()()()1212102f x f x f x x -=-+>,即()()12f x f x >,所以()f x 为R 上的增函数,故C 错误;令y x =-,可得()()()12f x x f x f x -=+-+,即()()()11022f f x f x =+-+=-,整理得()()11022f x f x ⎡⎤⎡⎤++-+=⎢⎥⎢⎥⎣⎦⎣⎦,所以()12f x +为奇函数,故D 正确.故选:ABD .【点睛】关键点点睛:利用抽象函数的定义通过赋值法,并结合函数单调性、奇偶性的定义才是解题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.已知2(1)2f x x x -=-,则函数(1)f -=__________.【答案】0【解析】【分析】直接赋值代入即可.【详解】令2x =得2(1)2220f -=-⨯=,故答案为:0.14.a<0是||0a >的__________条件(从“充分条件、必要条件、充要条件、既不充分又不必要条件”中选填).【答案】充分条件【解析】【分析】解出绝对值不等式,再根据充分条件的判定即可.【详解】||0a >,解得0a >或a<0,则a<0是||0a >的充分条件,故答案为:充分条件.15.设0a >,0b >,且1a b +=,则41a b +的最小值是__________.【答案】9【解析】【分析】根据题意利用基本不等式运算求解.【详解】因为0a >,0b >,且1a b +=,则()41414559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即223a b ==时,等号成立,所以41a b +的最小值是9.故答案为:9.16.若集合{}210x mx mx m +++≥=R ,则实数m 的取值范围为__________.【答案】[)0,∞+【解析】【分析】根据题意可知:210mx mx m +++³对任意的x ∈R 恒成立,分0m =和0m ≠两种情况,结合二次函数以及∆判别式分析求解.【详解】由题意可知:210mx mx m +++³对任意的x ∈R 恒成立,若0m =,则10≥,符合题意;若0m ≠,则()20410m m m m >⎧⎨-+≤⎩,解得0m >;综上所述:实数m 的取值范围为[)0,∞+.故答案为:[)0,∞+.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记函数()f x =+的定义域为集合M ,函数2()23g x x x =-+的值域为集合N ,求:(1)求M ,N ;(2)求M N ⋃,()M N R I ð.【答案】(1)[]1,3M =-,[)2,=+∞N (2)[)1,M N -⋃=+∞,()[)1,2=-I M N R ð【解析】【分析】(1)根据根式的定义求()f x 的定义域M ,根据二次函数求()g x 的值域N ;(2)根据集合间的运算求解.【小问1详解】对于函数()f x =3010x x -≥⎧⎨+≥⎩,解得13x -≤≤,所以[]1,3M =-,对于()22()23122=-+=-+≥g x x x x ,当且仅当1x =时,等号成立,所以[)2,=+∞N .【小问2详解】由(1)可得:[)1,M N -⋃=+∞,(),2=-∞N R ð,所以()[)1,2=-I M N R ð.18.计算:(1)2ln 33e 25(0.125)-++,(2)2lg 25lg 2lg 50(lg 2)++.【答案】(1)11(2)2【解析】【分析】(1)根据指数幂和对数的运算法则计算即可;(2)根据对数的运算法则计算.【小问1详解】原式322325113421232log 5-⎡==⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢++⎥⎦=+⎣.【小问2详解】原式()()()222lg5lg21lg5lg22lg5lg2lg2lg5lg2=+⋅++=++⋅+()2lg5lg2lg2lg5lg2=+++()2lg5lg22=+=.19.设全集U =R ,集合A ={x |1≤x ≤5},集合B ={x |2-a ≤x ≤1+2a },其中a ∈R .(1)若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围;(2)若“x ∈A ”是“x ∈B ”的必要条件,求a 的取值范围.【答案】(1)[)2,∞+(2)(],1-∞【解析】【分析】(1)由“x A ∈”是“x B ∈”的充分条件,可得A B ⊆,从而可得关于a 的不等式组,解不等式组可得答案;(2)“x A ∈”是“x B ∈”的必要条件,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可【小问1详解】由题意得到A =[1,5],由“x ∈A ”是“x ∈B ”的充分条件可得A ⊆B ,则21125a a -≤⎧⎨+≥⎩,解得2a ≥,故实数a 的取值范围是[)2,∞+.【小问2详解】由“x ∈A ”是“x ∈B ”的必要条件可得B ⊆A ,当B =∅时,2-a >1+2a ,即a <13时,满足题意,当B ≠∅时,即a ≥13时,则12125a a ≤-⎧⎨+≤⎩,解得13≤a ≤1.综上a ≤1,故实数a 的取值范围是(],1-∞.20.已知a ,b 均为正实数.(1)证明:2a b +≤;(2)若Rt ABC △的两条直角边分别为a ,b ,斜边2c =,求Rt ABC △周长l 的最大值.【答案】(1)证明见解析(2)2.【解析】【分析】(1)利用作差法,结合不等式的性质即可得证;(2)利用(1)中的结论和三角形性质即可得出结果.【小问1详解】因为2222()0224a b a b a b ++--⎛⎫-=≤ ⎪⎝⎭,则22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时取“=”.又,a b 为正实数,所以2a b +≤.【小问2详解】由题意,得2224a b c +==.由(1)的结论,a b +≤=,当a b ==“=”.所以直角ABC 周长l 的最大值为2+.21.如图所示,某学校的教学楼前有一块矩形空地ABCD ,其长为36米,宽为24米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为a 米与b 米均不小于3米,要求“转角处(图中矩形AEFG )”的面积为12平方米.(1)试用a 表示草坪的面积()S a ,并指出a 的取值范围;(2)如何设计人行道的宽度a ,b 才能使草坪的面积最大?并求出草坪的最大面积.【答案】(1)()()34948888S a a a a ⎛⎫=-++⎪⎝≤⎭≤ (2)当人行道的宽度3,4a b ==才能使草坪的面积最大,且草坪的最大面积为600.【解析】【分析】(1)根据题意列出表达式即可;(2)利用基本不等式求解即可.【小问1详解】由条件知1212,ab b a =∴=,因为3,3b a ≥≥,所以1234b a a =≥⇒≤,所以34a ≤≤,所以()()()()129362243622448888S a a b a a a a ⎛⎫⎛⎫=--=--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()()34948888S a a a a ⎛⎫=-++⎪⎝≤⎭≤.【小问2详解】由(1)()94888848888600S a a a ⎛⎫=-++≤-⨯=⎪⎝⎭,当且仅当93a a a=⇒=时取等号,即3,4a b ==时,()S a 的最大值为600.所以当人行道的宽度3,4a b ==才能使草坪的面积最大,且草坪的最大面积为600.22.已知定义在R 上的奇函数()21ax b f x x -=+过原点,且1225f ⎛⎫-=- ⎪⎝⎭.(1)求实数,a b 的值;(2)判断()f x 在()1,1-上的单调性并用定义证明;(3)画出()f x 在R 上的图像.【答案】(1)()21xf x x =+(2)函数()f x 在()1,1-上是增函数,证明见解析(3)图像见解析【解析】【分析】(1)根据题意,由()00f =可求得b ,再将点的坐标代入即可求得a ;(2)根据题意,由函数单调性的定义证明即可;(3)根据题意,直接绘制函数图像.【小问1详解】定义在(1,1)-上的奇函数()21ax b f x x -=+,则()00f =,即0b -=,解得0b =,又1225f ⎛⎫-=- ⎪⎝⎭,即1221514a -=-+,解得1a =,()21x f x x ∴=+,经检验符合题意.【小问2详解】函数()f x 在()1,1-上是增函数,证明如下:任取()12,1,1x x ∈-且12x x <,则()()()()221212112212222212121111x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()12121212122222121211111x x x x x x x x x x x x x x -+---==++++,因为1211x x -<<<,则120x x -<,1211x x -<<,故()()120f x f x -<,即()()12f x f x <,因此函数()f x 在()1,1-上是增函数.【小问3详解】。

高一第一学期期中考试数学试卷含答案(共5套)

高一第一学期期中考试数学试卷含答案(共5套)

2019~2020学年度第一学期期中考试高一数学试卷本试卷分第Ⅰ卷(1—2页,选择题)和第Ⅱ卷(3—8页,非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,有且只有一项符合题目要求。

1、已知集合A=,那么A、0B、1C、D、02、下列各式错误..的是A、B、C、D、lg1.63、下列函数中,与函数y=有相同值域的是A、=lnB、C、=||D、=4、下列函数中,既是奇函数又是减函数的为A、y=+1B、y=C、y=D、y=ln||5、下列四组中,与表示同一函数的是A、f=,gB、f=, gC、f=,gD、f=,g6、函数y=+1(a>0且a≠1)的图象必经过点A、(0,1)B、(2,2)C、(1,1)D、(2,0)7、设函数f =,则满足f=4的的值是A 、或16B 、2或16C、2D、168、函数f =的单调递增区间是A 、B 、C 、D 、9、已知集合A={1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为A、{2}B、{2}C、{2,2}D、{2,0,2}10、如果幂函数f =的图象经过点,则f的值等于A 、B 、C、2D、1611、已知函数f =(其中a),若f的图象如右图所示,则函数g =的图象是yx O-11Oyx11xyO1xyO1xyOA B C D12、已知f 是偶函数,且在上是增函数,若f ,则x 的取值范围是A 、(),e +∞B 、1,e e ⎛⎫ ⎪⎝⎭C 、()10,,e e ⎛⎫+∞ ⎪⎝⎭D 、()1,,e e e ⎛⎫+∞ ⎪⎝⎭Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。

把答案填写在题中横线上。

13、集合{1,2,3}的真子集共有 个.14、函数y=的定义域为 .15、若=5,=2,则2a +b= .16、函数f是R 上的奇函数,且当x >0时,函数的解析式为f .则函数的f 解析式f =.三、解答题:本大题共6小题,共70分。

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023~2024学年第一学期期中高一数学试题(答案在最后)2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}- D.{1,0,1,2,3,4}-2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.28.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c->- D.b c ba c a+>+10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12D.有最大值11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减D.函数()41y f x =+为偶函数第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.14.函数()f x =的定义域为______.15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.山东省2023~2024学年第一学期期中高一数学试题2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}-D.{1,0,1,2,3,4}-【答案】B 【解析】【分析】求()()A B A B ð得解.【详解】解:图中阴影部分所表示的集合为()(){1,1,3,4}A B A B =- ð.故选:B2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤【答案】B 【解析】【分析】由全称命题的否定:将任意改为存在并否定原结论,即可写出原命题的否定.【详解】由全称命题的否定为特称命题,∴原命题的否定为:存在2000,10x R x x ∈++≤.故选:B3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.【答案】C 【解析】【分析】根据函数的定义,依次分析选项中的图象,结合定义域值域的范围即可得答案.【详解】对于A ,其对应函数的值域不是{}01N y y =≤≤,A 错误;对于B ,图象中存在一部分与x 轴垂直,即此时x 对应的y 值不唯一,该图象不是函数的图象,B 错误;对于C ,其对应函数的定义域为{|01}M x x = ,值域是{|01}N y y = ,C 正确;对于D ,图象不满足一个x 对应唯一的y ,该图象不是函数的图象,D 错误;故选:C .4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分必要条件的定义判断.【详解】12x >时12x <成立,12x <时如112x =-<,则=1x -12<,因此只能是充分不必要条件,故选:A .5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-【答案】C 【解析】【分析】根据给定条件,令213x +=求出x 即可计算作答.【详解】函数()22132f x x +=+,令213x +=,得1x =,所以()233125f =⨯+=.故选:C6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-【答案】D 【解析】【分析】先求出()f x 定义域,在利用二次函数单调性判断出结果.【详解】函数()f x =的定义域需要满足2320x x +-≥,解得()f x 定义域为[]13,-,因为232y x x =+-在[]11-,上单调递增,所以()f x =在[]11-,上单调递增,故选:D .7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.2【答案】B 【解析】【分析】对a 进行分类讨论,分别确定1a -与12a +的范围,代入相应的函数解析式,再利用()()112f a f a -=+即可求解.【详解】当0a >时,有11a -<,121a +>,又因为()()112f a f a -=+,所以()()21122a a a a -+=-+-,解得:1a =-,又0a >,所以1a =-舍去;当a<0时,有11a ->,121a +<,又因为()()112f a f a -=+,所以()()21212a a a a ++=---,解得:12a =-.故选:B.8.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1【答案】A 【解析】【分析】依题意知2y ax bx c =++的值域为[]0,1,则方程20ax bx c ++=的两根为0x =或1,可得0c =,a b =-,从而确定当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,进而解得4a =-.【详解】依题意,2y ax bx c =++的值域为[]0,1,且20ax bx c ++≥的解集为[]0,1,故函数的开口向下,a<0,则方程20ax bx c ++=的两根为0x =或1,则0c =,0122b a +-=,即a b =-,则222124a y ax bx c ax ax a x ⎛⎫=++=-=-- ⎪⎝⎭,当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,即14a-=,解得:4a =-.故选:A.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c ->- D.b c ba c a+>+【答案】AB 【解析】【分析】对于AB ,可利用不等式的性质直接判断;对于CD ,可赋值判断.【详解】对于A ,因为0a b >>,所以11a b <,又因为0c >,所以c c a b>,故A 正确;对于B ,因为0a b c >>>,则有20c >,所以22ac bc >,故B 正确;对于C ,因为0a b c >>>,若2a =,1b =,1c =-,则211a b -=-=,()112b c -=--=,此时a b b c -<-,故C 错误;对于D ,因为0a b c >>>,若2a =,1b =,1c =-,则11021b c a c +-==+-,12b a =,此时b c b a c a +<+,故D 错误.故选:AB.10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12 D.有最大值【答案】ACD 【解析】【分析】利用基本不等式求出各选项中代数式的最值,由此可判断各选项的正误.【详解】设正实数a 、b 满足1a b +=.对于A 122a b +=,当且仅当12a b ==时,等号成立,A 选项正确;对于B 选项,由基本不等式可得()111113322322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭()()111122=222322322a b a b a b a b a b a b a b a b ++⎛⎫⎛⎫++++=+⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,B 选项错误;对于C 选项,()()()222222122222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,C 选项正确;对于D 选项,()222a b a b =+++=≤,当且仅当22a b ==时,等号成立,D 选项正确.故选:ACD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞【答案】BD 【解析】【分析】根据给定条件,探讨函数的对称性及单调性,再逐项判断即得答案.【详解】由()2f x +为奇函数,得()2(2)f x f x -+=-+,即(4)()0f x f x -+=,因此()f x 的图象关于点()2,0对称,由任意[)12,2,x x ∈+∞,12x x ≠,()()()1212[]0f x f x x x -->恒成立,得函数()f x 在[)2,+∞上单调递增,于是()f x 在R 上单调递增,B 正确;显然(2)(2)0f f -<=,即()f x 的图象关于点()2,0-不对称,A 错误;对C ,由(4)()0f x f x -+=,得()()44f x f x +-≠,C 错误;对D ,由于()f x 在R 上单调递增,()()0(2)f x f x f <⇔<,则2x <,即不等式()0f x <的解集为(),2-∞,D 正确.故选:BD12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减 D.函数()41y f x =+为偶函数【答案】BCD 【解析】【分析】令2214x x -+≤求出不等式的解,即可求出()4f x 的解析式,即可判断A 、B 、C ,再求出()41y f x =+的解析式,画出图象,即可判断D.【详解】根据题意,由2214x x -+≤,解得13x -≤≤,∴()2421,134,14,3x x x f x x x ⎧-+-≤≤⎪=<-⎨⎪>⎩,所以()24222211f =-⨯+=,故A 错误;当13x -≤≤时()()224211f x x x x =-+=-,且()4f x 在[]1,1-上单调递减,在[]1,3上单调递增,()401f =,()()44431f f -==,所以()404f x ≤≤,即()4f x 的值域为[]0,4,故B 、C 正确;因为()24,2214,24,2x x y f x x x ⎧-≤≤⎪=+=<-⎨⎪>⎩,则()41y f x =+的图象如下所示:由图可知()41y f x =+的图象关于y 轴对称,所以函数()41y f x =+为偶函数,故D 正确;故选:BCD第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.【答案】1或3##3或1【解析】【分析】根据题意得到25m +=,245m +=,解方程再验证得到答案.【详解】{}21,2,4m M m +=+,5M ∈,当25m +=时,3m =,此时{}1,9,13M =,满足条件;当245m +=时,1m =±,1m =-时,不满足互异性,排除;1m=时,{}1,3,5M =,满足条件.综上所述:1m =或3m =.故答案为:1或3.14.函数()f x =的定义域为______.【答案】1,12⎛⎤- ⎥⎝⎦【解析】【分析】根据偶次方根的被开方数非负且分母不为零得到不等式组,解得即可.【详解】对于函数()f x =,则1021210xx x -⎧≥⎪+⎨⎪+≠⎩等价于()()1210210x x x ⎧-+≥⎨+≠⎩,解得112x -<≤,所以函数()f x =的定义域为1,12⎛⎤- ⎥⎝⎦.故答案为:1,12⎛⎤-⎥⎝⎦15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.【答案】[]1,4【解析】【分析】根据分段函数单调性的定义,解不等式求实数a 的取值范围.【详解】函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则44(1)32(5)21250a a a a a -++≥--⎧⎪+≥⎨⎪-<⎩,解得14a ≤≤,所以实数a 的取值范围为[]1,4.故答案为:[]1,4.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.【答案】(2,0)(2,)-+∞ 【解析】【分析】令()()F x xf x =,可得函数利()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数且在(0,)+∞上单调递增,原不等式等价于()80F x x->,分析可得答案.【详解】令()()F x xf x =,由()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,可得()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数,由对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()2211210x f x x f x x x ->-,可得()()F x xf x =在(0,)+∞上单调递增,由(2)4f =,可得(2)8F =,所以()F x 在(,0)-∞上单调递减,且(2)8F -=,不等式8()0f x x ->,即为()80xf x x ->,即()80F x x->,可得0()8x F x >⎧⎨>⎩或0()8x F x <⎧⎨<⎩,即02x x >⎧⎨>⎩或020x x <⎧⎨-<<⎩解得2x >或20x -<<.故答案为:(2,0)(2,)-+∞ .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.【答案】(1){}|45A B x x =<<I (2)(]4∞-,【解析】【分析】(1)代入m 求集合B ,根据交集的定义即可得解;(2)A B B = ,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.【小问1详解】解:若3m =,则{}45B x x =<<,又{}27A xx =-≤≤∣,所以{}|45A B x x =<<I ;【小问2详解】解:因为A B B = ,所以B A ⊆,当B =∅时,则211m m -≤+,解得2m ≤,此时B A ⊆,符合题意,当B ≠∅时,则12112217m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得24m <≤,综上所述4m ≤,所以若A B B = ,m 的取值范围为(]4∞-,.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.【答案】(1)()4f x x =(2)13,22⎛⎫-⎪⎝⎭【解析】【分析】(1)幂函数()()215m f x m m x+=--,有251m m --=,再由函数在()0,∞+上单调递增,解出m 的值,得函数()f x 的解析式;(2)由函数的奇偶性和单调性解不等式.【小问1详解】()()215m f x m m x +=--为幂函数,则有251m m --=,解得3m =或2m =-,3m =时,()4f x x =,在()0,∞+上单调递增,符合题意;2m =-时,()1f x x -=,在()0,∞+上单调递减,不合题意;所以()4f x x =.【小问2详解】()4f x x =,函数定义域为R ,()()()44f x x x f x -=-==,函数为偶函数,在(),0∞-上单调递减,在()0,∞+上单调递增,若()()122f a f -<,有2122a -<-<,解得1322a -<<,所以实数a 的取值范围为13,22⎛⎫- ⎪⎝⎭.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.【答案】(1)()22f x x x=+(2)单调递增,证明见解析.【解析】【分析】(1)依题意可得1a b +=-,3a b -=,解方程即可得函数解析式;(2)利用函数单调性的定义法判断即可.【小问1详解】因为()11f -=-,()13f =,所以1a b +=-,3a b -=,解得:1a =,2b =-,所以函数()f x 解析式为:()22f x x x=+.【小问2详解】函数()f x 在区间()1,+∞上单调递增,证明如下:由(1)知()22f x x x=+,取任意1x 、()21,x ∈+∞,令12x x <,则()()()22121212121212222f x f x x x x x x x x x x x ⎛⎫-=+--=-+- ⎪⋅⎝⎭因为12x x <,所以120x x -<,又211x x >>,则122x x +>,121x x ⋅>,所以12101x x <<⋅,则12202x x <<⋅,所以1222x x ->-⋅,即121220x x x x +->⋅,所以()()120f x f x -<,即函数()f x 在区间()1,+∞上单调递增.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.【答案】(1)顾客购得的黄金是大于10g ,理由见详解(2)三次黄金质量总和要最小,则左臂长和右臂长之比2λ=,理由见详解【解析】【分析】(1)设天平的左臂长为a ,右臂长b ,则a b ¹,售货员先将5g 的砝码放在左盘,将黄金x g 放在右盘使之平衡;然后又将5g 的砝码放入右盘,将另一黄金y g 放在左盘使之平衡,则顾客实际所得黄金为x y +(g)利用杠杆原理和基本不等式的性质即可得出结论.(2)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,加上前两次利用基本不等式进行分析即可.【小问1详解】由于天平两臂不等长,设天平左臂长为a ,右臂长为b ,且a b ¹,先称得黄金为x g,后称得黄金为y g,则5,5bx a ay b ==,则55,a b x y b a ==,所以555210a b x y b a +=+≥⨯=当且仅当a bb a=,即a b =时取等号,由a b ¹,所以10x y +>顾客购得的黄金是大于10g【小问2详解】由(1)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,则此时有5a bm =,此时有5am b=,所以三次黄金质量总和为:55525()52a b a a b x y m b a b b a ++=++=+≥⨯=当且仅当2a b b a =,即2a b b λ=⇒==所以三次黄金质量总和要最小,则左臂长和右臂长之比22λ=.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.【答案】(1){}5A m m =>(2)5002a a a ⎧⎫<<≤⎨⎩⎭或【解析】【分析】(1)分析可知24m x x >-在[]13,x ∈-时恒成立,利用二次函数的基本性质可求得实数m 的取值集合A ;(2)分析可知A B ⊆,分a<0、0a >两种情况讨论,求出集合B ,结合A B ⊆可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:由[]1,3x ∀∈-,都有不等式240x x m --<成立,得240x x m --<在[]13,x ∈-时恒成立,所以()2max4m x x>-,因为二次函数24y x x =-在[]1,2-上单调递减,在[]2,3上单调递增,且()21145x y=-=-+=,233433x y ==-⨯=-,所以,当[]13,x ∈-时,max 5y =,5m ∴>,所以,{}5A m m =>.【小问2详解】解:由22320x ax a -+≥可得()()20x a x a --≥.①当0a <时,可得{2B x x a =≤或}x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则5a ≤,此时,0a <;②当0a >时,可得{B x x a =≤或}2x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则25a ≤,解得52a ≤,此时502a <≤.综上所述,实数a 的取值范围是5002a a a ⎧⎫<<≤⎨⎩⎭或.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.【答案】(1)22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩(2)5,3⎛⎫-∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的定义和0x ≥时()f x 的解析式,即可得出0x <时的解析式,进而得出答案;(2)由()f x 的单调性和奇偶性解不等式,通过参变分离、换元法、构造函数求单调性,求得函数的最值,可求实数t 的范围.【小问1详解】函数()f x 是定义域在R 上的奇函数,1a =,当0x ≥时,2()f x x x =-+.当0x <时,有0x ->,22()()()f x f x x x x x =--=---=+.所以22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩.【小问2详解】因奇函数在关于原点对称的区间上有相同的单调性,由2()f x x ax =-+在[)0,∞+上单调递减,故函数()f x 为单调递减函数,由()221240t f mt mf m m⎛⎫-+->⎪⎝⎭,可得()2221124t t f mt mf f m m m m ⎛⎫⎛⎫->--=- ⎪ ⎪⎝⎭⎝⎭,故22124t mt m m m -<-,即221124m t m m m ⎛⎫+<+ ⎪⎝⎭,又注意到22211424m m m m ⎛⎫+=+- ⎪⎝⎭,结合[)1,m ∈+∞,知120m m +>,得:14(21(2)t m m m m<+-+.令1()2=+g x x x,其中[)1,x ∞∈+,任取121x x ≤<,故2112121212121212111()()222()()2x x g x g x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因121x x ≤<,则120x x -<,121x x >,12120->x x ,故12121()20x x x x ⎛⎫--< ⎪⎝⎭,即12()()<g x g x ,所以()g x 在[)1,+∞上单调递增,得()()13g x g ≥=.又令12m n m +=,则14(21(2)t m m m m <+-+转化为4t n n <-,其中3n ≥.要使式子成立,需t 小于4n n-的最小值.又注意到函数y x =与函数4y x=-均在[)3,+∞上单调递增,则函数4y x x=-在[)3,+∞上单调递增.故445333n n -≥-=,得53t <,则t 的范围为5,3⎛⎫-∞ ⎪⎝⎭.。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

泰州中学2023-2024学年高一上学期期中考试数学试卷(原卷版)

泰州中学2023-2024学年高一上学期期中考试数学试卷(原卷版)

14. 幂函数 f x m2 m 1 x2m1 在 0, 上为减函数,则实数 m 的值为__________.
15. 已知函数 f x 是定义在 R 上的奇函数,当 x 0 时, f x x2 2x 1,则 f 1 ______.
ax 2, x 2
16.
命题 P :
f
x 2ax2
D. x 3 x 5
1
D.
4
A. f x x0 与 g x 1
B. f x x2 与 g x x3
x
C. f x x 1 x 1 与 g x x 1 x 1
D. f x x 2 与 g x (x 2)2
5. 已知 x x1 4 ,则 x2 x2 等于( )
20. 已知函数 f x 是定义在 R 上的偶函数,且当 x 0 时, f x x2 2x ,
第 3 页/共 4 页
(1)现已画出函数 f x 在 y 轴左侧的图象,请将函数 f x 的图象补充完整,并写出函数 f x x R 的
解析式和单调减区间;
(2)若函数 g x f x 4ax 3 x 1, 2,求函数 g x 的最大值.
是一个无理数),则 a,b, c 的大小关系为( )
A. a b c
B. a c b
C. c a b
D. c b a
二,多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合
题目要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分.
(2)求当 2023 年产量为多少千件时,该企业所获得的利润最大?最大利润是多少?
22. 对于函数 f x ,若在定义域内存在实数 x0 ,且 x0 0 ,满足 f x0 f x0 ,则称 f x 为“弱偶 函数”.若在定义域内存在实数 x0 ,满足 f x0 f x0 ,则称 f x 为“弱奇函数”. (1)判断函数 f x ex 1 是否为“弱奇函数”或“弱偶函数”;(直接写出结论)

湖南省长沙市第一中学2023-2024学年高一上学期期中考试数学试题

湖南省长沙市第一中学2023-2024学年高一上学期期中考试数学试题

量 L ,其中 k 表示记忆率.心理学家测定某学生在10min 内能够记忆 50 个单词,则该学
生在 30m50
B.128
C.122
D.61
7.已知函数 f x 的定义域为 R ,满足 f x 1 f 1 x ,当 x1, x2 1, ,且 x1 x2
17.已知幂函数 f x 2m2 m 2 xm1 在定义域内单调递增.
(1)求 f x 的解析式;
(2)求关于 x 的不等式 f x 1 f x2 2x 3 的解集.
18.设 a
R
,函数
f
x
2x 2x
a a

a
0 ).
(1)若函数 y f x 是奇函数,求 a 的值;
(2)已知 f1 x 3x , f2 x 9x , F x 为 f1 x , f2 x 的亲子函数,亲子指标为
2m
2,
m
,是否存在实数
m,使函数
F
x

x
0,
log
3
15 4
上的最小值为
5
,若存
在,求实数 m 的值,若不存在,说明理由.
试卷第 4页,共 4页
21.已知二次函数 f x x2 2ax 2 .
(1)若 x 0,2 ,使等式 f 2x 0 成立,求实数 a 的取值范围.
(2)解关于 x 的不等式 a 1 x2 x f x (其中 a R ).
22.对于函数 f1 x , f2 x ,如果存在一对实数 a,b,使得 f x af1 x bf 2 x ,那
log2
32
4
log2
3
4
2
log2
1 3
D.

广东省深圳大学附属实验中学2023-2024学年高一上学期期中考试数学试卷

广东省深圳大学附属实验中学2023-2024学年高一上学期期中考试数学试卷

深大实验2023-2024学年度第一学期
高一期中考试(数学)试卷
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息.
2.请将答案正确填写在答题卡上.
第I卷(选择题)
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多
第II卷(非选择题)
三、填空题:本题共4小题,每小题5分,共20分.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
21.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3AB =米,2AD =米.
(1)设DN 的长为()0x x >米,试用x 表示矩形AMPN 的面积;
(2)当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值.
22.函数()f x 对任意实数,x y 恒有()()()f x f y f x y =+-,且当0x >时,()0f x <.(1)判断()f x 的奇偶性;
(2)求证:()f x 是R 上的减函数;
(3)若R a ∈,解关于x 的不等式()()()
()22
2f ax f x f x f ax ++<-.
参考答案:
7.C
【分析】利用一次函数与二次函数的单调性,结合分段函数的性质得到关于从而得解.
【详解】因为函数()f x ⎧=⎨⎩
大小,注意分类讨论思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第一学期期中考试试卷3
时间:120分钟 分值:120分
各位同学:读书改变命运,细节决定成败。

希望你认真审题,仔细答题;
祝你考出好成绩!
一,选择题:(每题4分,共48分) 1,已知集合M={y ∣y <6 ,y ∈N },N={2, 3, 6}则M ∩N= A .{2,3,6} B .{1,2,3,4,5} C .{2,3} D .{0,1,2,3,4,5,6} 2,已知集合A={y ∣y= log
3
x, x >1},B={y ∣y =(31)
x
, x >1},则A ∩B=
A .{y ∣0<y<31}
B .{y ∣y >0}
C .Φ
D .R 3,函数y=2x x 2-的定义域是
A .(-∞,0 )
B .( 0, 2 ]
C .[0,2]
D .[ -2, 0 ] 4,以下四组函数中,表示同一个函数的是 A .y= log a
x 2和y=2 log a x B .y=x 和y= log a a x
C .y=x+1与y=1
x 1
x 2-- D .y=x -1与y=1x 2x 2+-
5,函数y = log
3
(x -1)
A .在(0, +∞)上是增函数
B .在(0, +∞)上是减函数
C .在(1, +∞)上是增函数
D .在(1, +∞)上是减函数 6.计算log 2(49
×32)的值是
A . 23
B .14
C .86
D .90
7,已知函数f(x)= 2mx+4若在[-2, 1]上存在x 0,使f(x 0)=0,则实数m 的取值范围为 A .[-25,4] B .(-∞,-2 ] U [1,+∞) C . [-1,2] D . [-2,1] 8,函数f(x)=lnx + 2x -6的零点必定位于的区间是 A .(1,2) B .(2,3) C .(3,4) D .(4,5) 9,函数y=
2
x 1
2+的值域为
A .R
B .{y ∣y ≥ 21}
C .{y ∣y ≤21}
D .{y ∣0< y ≤21}
姓名: 班级: 考号:
10,已知log a 54<1,则a 的取值范围是 A . 0<a <4 B .a <54 C .54 <a <1 D .0<a <54或a >1
11,已知函数 f(x)=(31)
1
x -在区间 [-2,-1]上的最大值是
A .1
B .9
C .27
D .31 12,幂函数 f(x)=x n
的图象一定不经过
A . 第一象限
B .第二象限
C . 第三象限
D .第四象限 请把选择题的答案填在下面的方格内(填在其它地方不得分)
13,某树林现有木材30000立方米,如果每年增长5%,经过x 年,树林中有木材 y 立方米,那么x 与y 的函数关系式为 14,函数f(x)= log
3
(2x -x 2
)的单调递增区间是
15,函数f(x)= log a (x -2)-1(a>0且a ≠1)的图象恒过定点为 16,计算:log 25 •log 57•log 716= ;17.若5x
=a ,5y
=b ,则5
y
2x 3-=
18.长为4,宽为3的矩形,当长增加x ,且宽减少2
x
时面积最大,此时x= ,面积S= 19.计算:
3
38 )(-+66
23 ) (--(
32-)2

20. 已知幂函数y=f(x+2)是偶函数,则符合条件的一个函数f(x)的
解析式为 (只需写出一个符合条件的函数解析式) 三、解答题:(共40分) 21.计算(或求值):(10分,每小题5分) (1)23×35.1×6
12 (2)已知log 2[log 3(log 4x)] =0,求x 的值
22,已知A={x∣X2-ax+a2-19=0}, B={x∣x2-5x+6=0}, C={x∣x2+2x -8=0},若A∩B=B∩C,求a的值。

(7分)
23.设0≤x≤2,求函数y=4x-3 • 2x+ 5 的最大值和最小值。

(7分)
24.当k为何值时,关于x的一元二次方程k x2+k2x+k-3=0的两根满足x1<1<x2.(7分)
25,通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间。

讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想状态,随后学习的注意力开始分散。

分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x 表示提出和讲授概念的时间(单位:分钟),可有以下公式:
f(x)=⎪⎩

⎨⎧≤<+≤<≤<++-30)x (16 1073x -16)x (10 5910)
x (0 43x 6.2x 1.02
(1)开讲后多少分钟,学生的接受能力最强(即f(x)最大)?能维持多长时间? (2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
(3)有一道数学难题,需要55的接受能力以及13分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道数学难题?(9分,每小题3分)。

相关文档
最新文档