甘肃省白银市2017年中考数学真题试题(含答案)

合集下载

2017年甘肃白银数学中考试题及答案

2017年甘肃白银数学中考试题及答案

白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.二、填空题:本大题共8小题,每小题3分,共24分.11. 2(1)x - 12. > 13. 0 14. 5815. k ≤5且k ≠1 16. 154 17. 3π 18. 8(1分),6053(2分) 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)19.(4分)解:原式=312-+- 2分=12- 3分1-. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分 解1-x <2得:x >-1. 2分则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =. 4分21.(6分)解:如图,5分 (注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.)∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE =x , 1分在Rt △DEB 中,tan DE DBE BE ∠=, ∵∠DBC =65°, ∴tan 65DE x =o . 2分又∵∠DAC =45°,∴AE =DE .∴132tan 65x x +=o , 3分∴解得115.8x ≈, 4分∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分23.(6分)解:(1)画树状图:3分列表3分可见,两数和共有12种等可能性; 4分(2) 由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分 刘凯获胜的概率为31124=. 6分 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分) B DC A E24.(7分) 解:(1)m =70, 1分 n =0.2; 2分(2)频数分布直方图如图所示,3分(3) 80≤x <90; 5分(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人). 7分25.(7分) 解:(1)∵点P 在反比例函数的图象上,∴把点P (12,8)代入k y x=2可得:k 2=4, ∴反比例函数的表达式为4y x=, 1分 ∴Q (4,1) .把P (12,8),Q (4,1)分别代入1y k x b =+中,得 1118214k b k b ⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩,∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D. 5分∵P ′(12-,-8), ∴OD =12,P ′D =8, ∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A= 6分频数(人)频数分布直方图 成绩(分)∴sin ∠P ′AD P P D A ''=== ∴sin ∠P ′AO =. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD , 1分∴∠OBE =∠ODF ,又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ), 2分∴EO =FO ,∴四边形BEDF 是平行四边形; 4分(2)当四边形BEDF 是菱形时,设BE =x则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+,∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF ,=∴⋅=⨯=⋅菱形 6分15223BD EF ,EF ===∴⨯=∴=又Q 8分27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分 ∴由勾股定理可知:NB=,∴B(,2) 3分(2)连接MC ,NC 4分 ∵AN 是⊙M 的直径,∴∠ACN =90°,∴∠NCB =90°, 5分 在Rt △NCB 中,D 为NB 的中点,∴CD =12NB =ND , ∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分 解得:14a =-,32b =. ∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-.∵B (-2,0), C (8,0),∴BC =10.令0x =,解得:4y =,∴点A (0,4),OA =4,∵MN ∥AC , ∴810AM NC n AB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABC S BC OA =⋅=⨯⨯=V . 5分 1122222810ABN AMN ABN S BN OA n+n+S AM CN n ,S AB CB =⋅=⨯-===()4=()又V V V QM N B C A O∴2811(8)(2)(3)51055AMN ABN n S S n n n -==-+=--+V V . 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分(3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.= 8分∵AB ===,AC ===, ∴12AB AC,=9分 ∴14OM AC =. 10分。

2017年甘肃省定西市、白银市、武威市、平凉市中考数学试题

2017年甘肃省定西市、白银市、武威市、平凉市中考数学试题

定西市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯ B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3. 4的平方根是( )A . 16B . 2C . 2±D .4. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )A .B . C. D .5.下列计算正确的是 ( )A .224x x x +=B .824x x x ÷= C. 236x x x ⋅= D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( ) A . 115° B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC ∆的三条边长,化简a b c c+--(A .222a b c +- B .22a b + C. 2c D .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( ) A .()()32220570x x --= B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( ) A. B .C. D.二、填空题:本大题 共8小题,每小题4分,共11.分解因式:221x x -+=____________.12.0.5(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则 CD的长等于____________.(结果保留π) 18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19.()113tan3042π-⎛⎫+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC ∆的一条中位线EF (不写作法,保留作图痕迹). 22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得0045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:000sin650.91,cos650.42,tan65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题 ,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表: 频数频率分布表频数分布直方图根据所给信息,解答下列问题:(1)m =__________,n =______________; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的()1,8,4,2P Q m ⎛⎫⎪⎝⎭两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C . (1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.。

甘肃省白银市中考数学试题含答案

甘肃省白银市中考数学试题含答案

甘肃省白银市中考数学试题含答案Modified by JACK on the afternoon of December 26, 2020白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为()A.4⨯ D.63.9310⨯0.393103.9310⨯ C.639.310⨯ B.53. 4的平方根是()±A. 16 B. 2 C.2± D.24. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.5.下列计算正确的是()A .224x x x +=B .824x x x ÷= C. 236x x x = D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2c D .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯-C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-= 10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm 二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上 11.分解因式:221x x -+=____________. 12. 估计512-与的大小关系:512-(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于____________.(结果保留π) 18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()101123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC ∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得0045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米(结果精确到1米,参考数据:000sin 650.91,cos 650.42,tan 65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题 ,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率5060x≤<106070x≤<307080x≤<40 n8090x≤<m90100x≤≤50频数分布直方图根据所给信息,解答下列问题:(1)m=__________,n=______________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.已知一次函数1y k x b=+与反比例函数2kyx=的图象交于第一象限内的()1,8,4,2P Q m⎛⎫⎪⎝⎭两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(1)x - 12. > 13. 0 14. 58 15. k ≤5且k ≠116.154 17. 3π18. 8(1分),6053(2分)三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)19.(4分)解:原式=323312- 2分 =23312- 3分=31-. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =. 4分 21.(6分)解:如图,5分(注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE =x , 1分在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°,∴tan65DE x =. 2分又∵∠DAC =45°,∴AE =DE .∴132tan65x x +=, 3分 ∴解得115.8x ≈, 4分∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:BDCAE 3456 7 8 9 6 7 8 9 6 7 8 9 9 10 11 12 10 11 12 13 11 12 13 14开始3分列表6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 143分可见,两数和共有12种等可能性; 4分(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分n=; 2分(2)频数分布直方图如图所示,频数(人)频数分布直方图甲乙3分(3) 80≤x <90; 5分 (4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×=750(人). 7分25.(7分) 解:(1)∵点P 在反比例函数的图象上,∴把点P (12,8)代入k y x =2可得:k 2=4, ∴反比例函数的表达式为4y x=, 1分∴Q (4,1) .把P (12,8),Q (4,1)分别代入1y k x b =+中,得1118214k bk b⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩, ∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D. 5分∵P ′(12-,-8), ∴OD =12,P ′D =8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A 2289,D DA P +=' 6分 ∴sin ∠P ′AD 88989P P D A ''=== ∴sin ∠P ′AO 889=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD , 1分 ∴∠OBE =∠ODF ,成绩又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ), 2分 ∴EO =FO ,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE =x 则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF,=∴⋅=⨯=⋅菱形 6分152233BD AB EF ,EF ==∴⨯=∴=又27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分∴由勾股定理可知:NB =∴B (,2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,M NBCxA Oy ∴∠NCB =90°, 5分 在Rt △NCB 中,D 为NB 的中点, ∴CD =12NB =ND ,∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分 28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分解得:14a =-,32b =.∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABCSBC OA =⋅=⨯⨯=. 5分 xy CDM D O MB AN D AN1122222810ABNAMN ABN S BN OA n+n+S AM CN n,S AB CB =⋅=⨯-===()4=()又∴2811(8)(2)(3)51055AMNABNnSS n n n -==-+=--+. 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.= 8分∵AB ==AC ==∴12AB AC,= 9分∴14OM AC =. 10分。

甘肃省白银市中考数学试卷(A卷)

甘肃省白银市中考数学试卷(A卷)

甘肃省白银市中考数学试卷(A卷)姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2017七上·大石桥期中) 下列各式中正确的是()A . -5-(-3)=-8B . +6-(-5)=1C . -7- =0D . +5-(+6)=-12. (2分)海南省2010年第六次人口普查数据显示,2010年11月1日零时.全省总人口为8671518人.数据8671518用科学记数法(保留三个有效数字)表示应是()A . 8.7×106B . 8.7×107C . 8.67×106D . 8.67×1073. (2分)下列四个立体图形中,左视图为矩形的是()A . ①③B . ①④C . ②③D . ③④4. (2分) (2016九上·海南期末) 如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A . 65°B . 25°C . 35°D . 45°5. (2分) (2017八上·东城期末) 分式方程 =1的解是()A . 1B . 2C . 3D . 46. (2分)用计算器计算124× ,按键的顺序为()A . 12xy4×1ab/c1ab/c5=B . 124xy×1ab/c1ab/c5=C . 12x24×1ab/c1ab/c5=D . 124x2×1ab/c1ab/c5=7. (2分)菱形具有而矩形不具有性质是()A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分且相等8. (2分)(2018·河源模拟) 如图,小强自制了一个小孔成像装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛与纸筒的距离应该为()A . 60cmB . 65cmC . 70cmD . 75cm9. (2分)下列一元二次方程中,两根之和为2的是()A . x2+2x+1=0B . 2x2-x-1=0C . x2+2x-3=0D . x2-2x-5=0二、填空题 (共5题;共5分)10. (1分) (2019七上·扬中期末) 单项式的次数是________.11. (1分)观察下面分解因式的过程:x2+3x+2=(x+1)(x+2),3=1+2,2=1×2;x2+5x+6=(x+2)(x+3),5=2+3,6=2×3;请你按发现的分解因式的方法分解x2+6x+5=________.12. (1分)如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD=________度.13. (1分) (2016九上·衢江月考) 投掷2个骰子,得到的两个点数都是质数的概率是________14. (1分)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…通过观察,用你所发现的规律确定22017的个位数字是________三、解答题 (共7题;共61分)15. (5分) (2019八上·庆元期末) 解不等式:3x>2(x-1)+216. (5分) (2016八上·怀柔期末) 如图,点C,D在线段BF上,AB∥DE,AB=DF,∠A=∠F,求证:BC=DE.17. (11分)(2017·安顺模拟) 为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<358第3组35≤x<4016第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.18. (5分)(2018·秀洲模拟) 购物广场内甲、乙两家商店对A,B两种商品均有优惠促销活动;甲商店的促销方案是:A商品打八折,B商品打七五折;乙商店的促销方案是:购买一件A商品,赠送一件B商品,多买多送。

2017年各地中考真题-2017年甘肃省白银市中考数学试卷 (2)

2017年各地中考真题-2017年甘肃省白银市中考数学试卷 (2)

2017年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A 出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C (8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm 的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k 的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2017个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC 的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S=BN•OA=(n+2)×4=2(n+2),△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年甘肃省中考数学试卷-答案

2017年甘肃省中考数学试卷-答案

【考点】函数的图象和性质 二、填空题
11.【答案】 x 12
【解析】因式分解: x2 2x 1 (x 1)2 。
【考点】因式分解
12.【答案】>
【 解 析 】 实数 大 小 的比较 ; 5 1 0.5 5 1 1 5 2 , 因 为 5 2 , 所 以 5 2 0 , 所 以
| a b c | | c a b | a b c c a b 0 ,故选 D。
【提示】去绝对值符号的法则为
|
a
|
a,a a,
0 a
0

【考点】三角形的三边关系,去绝对值法则 9.【答案】A
【解析】将图中的道路平移,则易得剩余的空地可以看作是一个长为 32 2xm ,宽为 20 xm 的矩形,
则由函数图象经过点(2, 4
2
),( 4 , 0) 得
4 2 2k b 0 4k b
解得
k 2
2, ,所以函数解析式为
b 8 2 ,
y 2 2x 8 2 ,所以当 x 2.5 时, y 2 2 2.5 8 2 3 2 ,故选 B。
为 60 Байду номын сангаас1 = 。 180 3
【考点】直角三角形,弧长公式
18.【答案】8
6053 【解析】观察题中的图形易得第 n 个图形中有 n 个梯形,则其周长为 5n 2(n 1) 3n 2 ,所以第 2 个图形
的周长为 3 2 2 8 ,第 2017 个图形的周长为 3 2017 2 6053 。
1 / 10
【考点】平行线的性质
7.【答案】A
【解析】因为一次函数的图象经过第一、三象限,所以 k 0 ,又因为其图象过第一、二象限,所以 b 0 ,

甘肃省白银市2017年中考数学真题试题(含答案)

甘肃省白银市2017年中考数学真题试题(含答案)

白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯ B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3. 4的平方根是( )A . 16B . 2C . 2±D . 2±4. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )A .B . C. D .5.下列计算正确的是 ( )A .224x x x += B .824x x x ÷= C. 236x x x = D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b << 8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm 二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上 11.分解因式:221x x -+=____________.12. 估计512-与0.5的大小关系:512-___________0.5(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于____________.(结果保留π)18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()11123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得0045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:000sin650.91,cos650.42,tan65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率x≤<10 0.055060x≤<30 0.156070≤<40 nx7080≤<m0.358090xx≤≤50 0.2590100频数分布直方图根据所给信息,解答下列问题:(1)m =__________,n =______________; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的()1,8,4,2P Q m ⎛⎫⎪⎝⎭两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长. 27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分.11. 2(1)x - 12. > 13. 0 14. 5815. k ≤5且k ≠116.154 17. 3π18. 8(1分),6053(2分) 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分) 19.(4分)解:原式=323312- 2分 =23312- 3分 31. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分∴该不等式组的最大整数解为3x =. 4分 21.(6分)解:如图,5分 (注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE=x , 1分在Rt△DEB 中,tan DEDBE BE∠=, ∵∠DBC=65°,∴tan 65DE x =o . 2分 又∵∠DAC=45°, ∴AE=DE .∴132tan65x x +=o , 3分 ∴解得115.8x ≈, 4分 ∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:BDCAE3456 7 8 9 6 7 8 9 6 7 8 9开始3分列表6 7 89 3 9 10 11 12 4 10 11 12 13 5111213143分可见,两数和共有12种等可能性; 4分(2) 由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分 刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分 n=0.2; 2分 (2)频数分布直方图如图所示,频数(人)频数分布直方图甲乙3分(3) 80≤x <90; 5分(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人). 7分25.(7分) 解:(1)∵点P 在反比例函数的图象上,∴把点P(12,8)代入k y x =2可得:k 2=4, ∴反比例函数的表达式为4y x=, 1分 ∴Q (4,1) .把P (12,8),Q (4,1)分别代入1y k x b =+中,得 1118214k b k b ⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩,∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分 (3)过点P ′作P ′D⊥x 轴,垂足为D. 5分∵P′(12-,-8), ∴OD=12,P′D=8, ∵点A 在29y x =-+的图象上,∴点A (92,0),即OA=92, ∴DA=5, ∴P ′A= 2289,D DA P +=' 6分∴sin ∠P ′AD 889,89P P D A ''=== ∴sin ∠P ′AO 88989=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,成绩(分)∴A B∥D C ,OB=OD , 1分∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA ), 2分∴EO=FO,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE=x则 DE=x ,6AE x =-,在Rt△A DE 中,222DE AD AE =+,∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF ,=∴⋅=⨯=⋅菱形 6分 22226421315221323413BD AB AD ,EF ,EF .=+=+=∴⨯⋅=∴=又Q 8分 27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴A N=4, 1分 ∵∠AB N =30°,∠A N B=90°,∴AB=2A N=8,2分 ∴由勾股定理可知:NB=43,∴B(43,2) 3分 (2)连接MC ,NC 4分 ∵A N 是⊙M 的直径,M N B C x A O y ∴∠AC N =90°,∴∠N CB=90°, 5分在Rt△NCB 中,D 为NB 的中点,∴CD=12NB=ND , ∴∠CND =∠NCD , 6分 ∵MC=M N , ∴∠MCN =∠M NC . ∵∠M NC +∠CN D=90°,∴∠MC N +∠NCD =90°, 7分即MC⊥CD.∴直线CD 是⊙M 的切线. 8分28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分 解得:14a =-,32b =. ∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-.∵B (-2,0), C (8,0),∴BC=10.令0x =,解得:4y =,∴点A (0,4),OA=4,∵MN∥AC ,∴810AM NC n AB BC -==. 4分 ∵O A=4,BC=10,x y CD MO B NA∴114102022ABC S BC OA =⋅=⨯⨯=V . 5分 1122222810ABN AMNABN S BN OA n+n+S AM CN n ,S AB CB =⋅=⨯-===()4=()又V V V Q ∴2811(8)(2)(3)51055AMN ABN nS S n n n -==-+=--+V V .6分 ∴当n=3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.= 8分∵AB =,AC , ∴12AB AC,= 9分 ∴14OM AC =. 10分白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案 B B C D D C A D A B三、填空题:本大题共8小题,每小题3分,共24分.11. 2(1)x - 12. > 13. 0 14. 5815. k ≤5且k ≠1 16.154 17. 3π 18. 8(1分),6053(2分) 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)19.(4分) 解:原式=323312-⨯+- 2分 =23312-+- 3分=31-. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分 解1-x <2得:x >-1. 2分则不等式组的解集是:-1<x ≤3. 3分∴该不等式组的最大整数解为3x =. 4分21.(6分)解:如图,5分(注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.)∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE=x , 1分在Rt△DEB 中,tan DEDBE BE∠=, ∵∠DBC=65°,∴tan 65DE x =o . 2分 又∵∠DAC=45°, ∴AE=DE .∴132tan65x x +=o , 3分 ∴解得115.8x ≈, 4分 ∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:3分列表6 7 8 9 3 9 10 11 12 4 10 11 12 13 5111213143分可见,两数和共有12种等可能性; 4分BDCAE甲乙 3456 7 8 9 6 7 8 9 6 7 8 99 10 11 12 10 11 12 13 11 12 13 14甲乙 和 开始(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分 n=0.2; 2分(2)频数分布直方图如图所示,3分(3) 80≤x<90; 5分(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人). 7分25.(7分) 解:(1)∵点P在反比例函数的图象上,∴把点P(12,8)代入kyx=2可得:k2=4,∴反比例函数的表达式为4yx=, 1分∴Q (4,1) .把P(12,8),Q (4,1)分别代入1y k x b=+中,得频数(人)频数分布直方图成绩(分)1118214k bk b⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩,∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D⊥x 轴,垂足为D. 5分∵P′(12-,-8), ∴OD=12,P′D=8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA=92, ∴DA=5, ∴P ′A= 2289,D DA P +=' 6分 ∴sin ∠P ′AD 889,89P P D A ''=== ∴sin ∠P ′AO 88989=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B∥D C ,OB=OD , 1分 ∴∠OBE=∠ODF, 又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA ), 2分 ∴EO=FO,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE=x 则 DE=x ,6AE x =-,在Rt△A DE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =,135214332BEDF S BE AD =BD EF ,=∴⋅=⨯=⋅菱形 6分 222264213152213234133BD AB AD ,EF ,EF .=+=+=∴⨯⋅=∴=又Q 8分 27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴A N=4, 1分 ∵∠AB N =30°,∠A N B=90°,∴AB=2A N=8, 2分 ∴由勾股定理可知:NB=43,∴B(43,2) 3分 (2)连接MC ,NC 4分 ∵A N 是⊙M 的直径, ∴∠AC N =90°,∴∠N CB=90°, 5分 在Rt△NCB 中,D 为NB 的中点, ∴CD=12NB=ND , ∴∠CND =∠NCD , 6分 ∵MC=M N , ∴∠MCN =∠M NC . ∵∠M NC +∠CN D=90°,∴∠MC N +∠NCD =90°, 7分 即MC⊥CD.∴直线CD 是⊙M 的切线. 8分 28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,xy CDM OBN AMNB CxA Oy得:424064840a b a b -+=⎧⎨++=⎩, 1分解得:14a =-,32b =. ∴该二次函数的表达式为213442y x x =-++. 3分(2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC=10.令0x =,解得:4y =, ∴点A (0,4),OA=4, ∵MN∥AC , ∴810AM NC nAB BC -==. 4分 ∵O A=4,BC=10, ∴114102022ABC S BC OA =⋅=⨯⨯=V . 5分 1122222810ABN AMN ABN S BN OA n+n+S AM CN n ,S AB CB =⋅=⨯-===()4=()又V V V Q∴2811(8)(2)(3)51055AMN ABN n S S n n n -==-+=--+V V . 6分 ∴当n=3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.=8分 ∵2241625AB OB OA ++=,22641645AC OC OA ++,∴12AB AC,= 9分∴14OM AC=. 10分。

甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2017年中考数学真题试题(含解析)

甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2017年中考数学真题试题(含解析)

考点:三角形三边关系.
9.如图,某小区计划在一块长为 32m,宽为 20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植 草坪,使草坪的面积为 570m .若设道路的宽为 xm,则下面所列方程正确的是(
2

A. (32-2x) (20-x)=570
B.32x+2×20x=32×20-570
2
【答案】作图见解析
考点:作图—复杂作图 ;三角形中位线定理. 22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践 活动中,小林在南滨河路上的 A,B 两点处,利用测角仪分别对北岸的一观景亭 D 进行了测量.如图,测得 ∠DAC=45°,∠DBC=65°.若 AB=132 米,求观景亭 D 到南滨河路 AC 的距离约为多少米?(结果精确到 1 米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
【答案】观景亭 D 到南滨河路 AC 的距离约为 248 米.
又∵∠DAC=45°, ∴AE=DE. ∴132+x=xtan65°, ∴解得 x≈115.8,
∴DE≈248(米) . ∴观景亭 D 到南滨河路 AC 的距离约为 248 米.
考点:解直角三角形的应用 23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分 成面积相等的几个扇形,并在每个扇形区域内标上数字) .游戏规则如下:两人分别同时转运甲、乙转盘, 转盘停止后,若指针所指区域内两数和小于 12,则李燕获胜;若指针所指区域内两数和等于 12,则为平局; 若指针所指区域内两数和大于 12 ,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内 为止) . (1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.

甘肃省白银市 定西市 酒泉市 庆阳市中考数学试卷 含答案解析版

甘肃省白银市 定西市 酒泉市 庆阳市中考数学试卷 含答案解析版

2017年甘肃省白银市、定西市、酒泉市、庆阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.×104 B.×105 C.×106 D.×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2?x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动秒时,PQ 的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1= .12.(3分)估计与的大小关系是:.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.第14题图第16题图第17题图15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈,cos65°≈,tan65°≈)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 1060≤x<70 3070≤x<80 40 n80≤x<90 m90≤x≤100 50根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省白银市、定西市、酒泉市、庆阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017?凉州区)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017?白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.×104B.×105C.×106D.×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017?白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017?白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017?白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2?x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017?白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017?白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k >0,b>0时图象在一、二、三象限.8.(3分)(2017?白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017?白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017?白银)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017?白银)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017?白银)估计与的大小关系是:>.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣=﹣=,∵﹣2>0,∴>0.答:>.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017?白银)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0 .【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017?凉州区)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017?白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1 .【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017?白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017?白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017?凉州区)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8 ,第2017个图形的周长为6053 .【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017?白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017?白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017?白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF (不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017?白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈,cos65°≈,tan65°≈)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017?凉州区)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:甲乙 6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 14可见,两数和共有12种等可能性;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017?白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 1060≤x<70 3070≤x<80 40 n80≤x<90 m90≤x≤100 50根据所给信息,解答下列问题:(1)m= 70 ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷=200,则m=200×=70,n=40÷200=,故答案为:70,;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017?白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017?凉州区)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017?白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017?凉州区)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC 的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN?OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB 为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年白银、定西、平凉、酒泉、临夏州、张掖、庆阳市中考数学试卷

2017年白银、定西、平凉、酒泉、临夏州、张掖、庆阳市中考数学试卷

2017年武威市凉州区中考数学试卷一、选择题(共10小题;共50分)1. 下面四个手机应用图标中,属于中心对称图形的是 A. B.C. D.2. 据报道,2016年10月17日7时30分28秒,神舟十一号截人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 A. 39.3×104B. 3.93×105C. 3.93×106D. 0.393×1063. 4的平方根是 A. 16B. 2C. ±2D. ±24. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 A. B.C. D.5. 下列计算正确的是 A. x2+x2=x4B. x8÷x2=x4C. x2⋅x3=x6D. −x2−x2=06. 将一把直尺与一块三角板如图放置,若∠1=45∘,则∠2为 A. 115∘B. 120∘C. 135∘D. 145∘7. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得 A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<08. 已知a,b,c是△ABC的三条边长,化简∣a+b−c∣−∣c−a−b∣的结果为 A. 2a+2b−2cB. 2a+2bC. 2cD. 09. 如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是 A. 32−2x20−x=570B. 32x+2×20x=32×20−570C. 32−x20−x=32×20−570D. 32x+2×20x−2x2=57010. 如图①,在边长为4的正方形ABCD中,点P以每秒2 cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y cm与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是 A. 2 2 cmB. 3 2 cmC. 4 2 cmD. 5 2 cm二、填空题(共8小题;共40分)11. 分解因式:x2−2x+1=.12. 估计5−12与0.5的大小关系:5−20.5.(填“>”或“=”或“<”)13. 如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14. 如图,△ABC内接于⊙O,若∠OAB=32∘,则∠C=∘.15. 若关于x的一元二次方程k−1x2+4x+1=0有实数根,则k的取值范围是.16. 如图,一张三角形纸片ABC,∠C=90∘,AC=8 cm,BC=6 cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17. 如图,在△ABC中,∠ACB=90∘,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则CD的长等于.(结果保留π)18. 下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(共10小题;共130分)19. 计算:12−3tan30∘+π−40−12−1.20. 解不等式组12x−1≤1,1−x<2,并写出该不等式组的最大整数解.21. 如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22. 美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45∘,∠DBC=65∘.若AB=132米,求观景亭D到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65∘≈0.91,cos65∘≈0.42,tan65∘≈2.14)23. 在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.24. 中华文明,源远流长;中华汉字,寓意深广,为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩 x 取整数,总分 100 分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:频数频率分布表:成绩x 分 频数 人 频率50≤x <60100.0560≤x <70300.1570≤x <8040n 80≤x <90m 0.3590≤x ≤100500.25(1)m = ,n = ; (2)补全频数分布直方图;(3)这 200 名学生成绩的中位数会落在 分数段;(4)若成绩在 90 分以上(包括 90 分)为“优”等,请你估计该校参加本次比赛的 3000 名学生中成绩是“优”等的约有多少人?25. 已知一次函数 y =k 1x +b 与反比例函数 y =k 2x的图象交于第一象限内的 P 12,8 ,Q 4,m 两点,与 x 轴交于 A 点.(1)分别求出这两个函数的表达式; (2)写出点 P 关于原点的对称点 Pʹ 的坐标; (3)求 ∠PʹAO 的正弦值.26. 如图,矩形 ABCD 中,AB =6,BC =4,过对角线 BD 中点 O 的直线分别交 AB ,CD 边于点 E ,F .(1)求证:四边形 BEDF 是平行四边形; (2)当四边形 BEDF 是菱形时,求 EF 的 长.27. 如图,AN 是 ⊙M 的直径,NB ∥x 轴,AB 交 ⊙M 于点 C .(1)若点A0,6,N0,2,∠ABN=30∘,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28. 如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B−2,0,点C8,0,与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.答案第一部分1. B2. B3. C4. D5. D6. C7. A8. D9. A 10. B第二部分11. x−1212. >13. 014. 5815. k≤5且k≠116. 15417. π318. 8;6053第三部分19.12−3tan30∘+π−40−12−1=23−3×33+1−2=3−1.20. 解12x−1≤1得:x≤3.解1−x<2得:x>−1.则不等式组的解集是:−1<x≤3.∴该不等式组的最大整数解为x=3.21. 如图,∴线段EF即为所求.22. 过点D作DE⊥AC,垂足为E,设BE=x米,在Rt△DEB中,tan∠DBE=DEBE,∵∠DBC=65∘,∴DE=x tan65∘.又∵∠DAC=45∘,∴AE=DE,∴132+x=x tan65∘,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.23. (1)画树状图:可见,两数和共有12种等可能性;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为612=12;刘凯获胜的概率为312=14.24. (1)70;0.2(2)频数分布直方图如图所示,(3)80≤x<90(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).25. (1)因为点P在反比例函数的图象上,所以把点P12,8代入y=k2x可得:k2=4,所以反比例函数的表达式为y=4x,所以Q4,1.把P12,8,Q4,1分别代入y=k1x+b中,得8=12k1+b,1=4k1+b,解得k1=−2,b=9,所以一次函数的表达式为y=−2x+9.(2)Pʹ −12,−8.(3)过点Pʹ作PʹD⊥x轴,垂足为D.因为Pʹ −12,−8,所以OD=12,PʹD=8,因为点A在y=−2x+9的图象上,所以点A92,0,即OA=92,所以DA=5,所以PʹA= PʹD2+DA2=89,所以sin∠PʹAD=PʹDPʹA =89=88989,所以sin∠PʹAO=88989.26. (1)因为四边形ABCD是平行四边形,O是BD的中点,所以AB∥DC,OB=OD,所以∠OBE=∠ODF,又因为在△BOE和△DOF中∠BOE=∠DOF,BO=DO,∠OBE=∠ODF,所以△BOE≌△ODF ASA,所以EO=FO,所以四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,设BE=x则DE=x,AE=6−x,在Rt△ADE中,DE2=AD2+AE2,所以x2=42+6−x2,所以x=133,所以S菱形BEDF =BE⋅AD=133×4=523=12BD⋅EF,又因为BD= AB2+AD2=62+42=213,所以12×213⋅EF=523,所以EF=4133.27. (1)∵A的坐标为0,6,N0,2,∴AN=4,∵∠ABN=30∘,∠ANB=90∘,∴AB=2AN=8,∴由勾股定理可知:NB=43,∴B 43,2.(2)连接MC,NC,∵AN是⊙M的直径,∴∠ACN=90∘,∴∠NCB=90∘,在Rt△NCB中,D为NB的中点,∴CD=12NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC.∵∠MNC+∠CND=90∘,∴∠MCN+∠NCD=90∘,即MC⊥CD.∴直线CD是⊙M的切线.28. (1)将点B,点C的坐标分别代入y=ax2+bx+4,得:4a−2b+4=0, 64a+8b+4=0,解得a=−14,b=32,∴该二次函数的表达式为y=−14x2+32x+4.(2)设点N的坐标为n,0−2<n<8,则BN=n+2,CN=8−n,∵B−2,0,C8,0,∴BC=10.令x=0,解得:y=4,∴点A0,4,OA=4,∵MN∥AC,∴AMAB =NCBC=8−n10.∵OA=4,BC=10,∴S△ABC=12BC⋅OA=12×4×10=20.S△ABN=12BN⋅OA=12n+2×4=2n+2.又∵S△AM NS△ABN=AMAB=CNCB=8−n10.∴S△AMN=8−n10S△ABN=158−n n+2=−15n−32+5.∴当n=3时,即N3,0时,△AMN的面积最大.(3)当N3,0时,N为BC边中点.∴M为AB边中点,∴OM=12AB.∵AB= OB2+OA2=4+16=25,AC= OC2+OA2=64+16=45,∴AB=12AC,∴OM=14AC.第11页(共11页)。

(完整版)2017年甘肃省中考数学试卷含答案

(完整版)2017年甘肃省中考数学试卷含答案

数学试卷 第1页(共18页)数学试卷 第2页(共18页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .2C .2±D .2±4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是 ( )A .22cmB .32cmC .42cmD .52cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共18页)11.分解因式:221x x-+=.12.估计512-与0.5的大小关系:512-0.5(填“>”或“=”或“<”).13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式201520172016m n c++的值为.14.如图,ABC△内接于O,若32OAB=∠,则C=∠.15.若关于x的一元二次方程2(1)410k x x-++=有实数根,则k的取值范围是.16.如图,一张三角形纸片ABC,90C=∠,8cmAC=,6cmBC=.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.如图,在ABC△中,90,1,2ACB AC AB===∠,以点A为圆心、AC的长为半径画弧,交AB边于点D,则CD的长等于(结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分4分)计算:11123tan30(π4)2-⎛⎫-+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212xx⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC△,请用圆规和直尺作出ABC△的一条中位线EF(不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得4565DAC DBC==∠,∠.若132AB=米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷第3页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表 成绩x (分)频数(人) 频率5060x ≤<10 0.056070x ≤< 30 0.15 7080x ≤< 40n 8090x ≤< m0.35 90100x ≤≤500.25根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B。

2017年甘肃省白银市中考数学试卷(含答案解析版)

2017年甘肃省白银市中考数学试卷(含答案解析版)

2017年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1= .12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤100 50 0.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【考点】JA:平行线的性质;IL:余角和补角.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k >0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【考点】AC:由实际问题抽象出一元二次方程.【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1= (x﹣1)2.【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【考点】2A:实数大小比较.【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0 .【考点】33:代数式求值.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= 58 °.【考点】M5:圆周角定理.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1 .【考点】AA:根的判别式.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【考点】PB:翻折变换(折叠问题).【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【考点】MN:弧长的计算;KO:含30度角的直角三角形.【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8 ,第2017个图形的周长为6053 .【考点】38:规律型:图形的变化类.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;73:二次根式的性质与化简;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF (不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【考点】T8:解直角三角形的应用.【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【考点】X6:列表法与树状图法.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:甲乙 6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 14可见,两数和共有12种等可能性;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤100 50 0.25根据所给信息,解答下列问题:(1)m= 70 ,n= 0.2 ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【考点】G8:反比例函数与一次函数的交点问题;KQ:勾股定理;T7:解直角三角形.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L8:菱形的性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【考点】MD:切线的判定;D5:坐标与图形性质.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【考点】HF:二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB 和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC 的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN•OA=(n+2)×4=2(n+2),∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB 为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年甘肃省中考数学试卷(含详细答案)

2017年甘肃省中考数学试卷(含详细答案)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前甘肃省2017年初中毕业、高中招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个手机应用图标中,属于中心对称图形的是( )ABCD2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天空二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为 ( )A .439.310⨯B .53.9310⨯ C .63.9310⨯ D .60.39310⨯ 3.4的平方根是( ) A .16B .C .2±D .4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是 ( )ABCD5.下列计算正确的是( )A .224x x x +=B .824x x x ÷=C .236x x x =D .22()0x x --=6.将一把直尺与一块三角板如图放置,若145=∠,则2∠为( ) A .115 B .120 C .135 D .1457.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得 ( ) A .0,0k b >> B .0,0k b >< C .0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC △的三条边长,化简||||a b c c a b +----的结果为( )A .222a b c +-B .22a b +C .2cD .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为m x ,则下面所列方程正确的是( )A .(322)(20)570x x --=B .322203220570x x +⨯=⨯-C .(32)(20)3220570x x --=⨯-D .2322202570x x x +⨯-=10.如图1,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ BD ∥,PQ 与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是()A .B .C .D .cm第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)11.分解因式:221x x -+= . 12.0.50.5(填“>”或“=”或“<”). 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .14.如图,ABC △内接于O ,若32OAB =∠,则C =∠.15.若关于x 的一元二次方程2(1)410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,90C =∠,8cm AC =,6cm BC =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC △中,90,1,2ACB AC AB ===∠,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于 (结果保留π).18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .三、解答题(本大题共10小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分4分)113tan30(π4)2-⎛⎫+-- ⎪⎝⎭.20.(本小题满分4分)解不等式组1(1)1212x x ⎧-⎪⎨⎪-⎩≤,<,并写出该不等式组的最大整数解.21.(本小题满分6分)如图,已知ABC △,请用圆规和直尺作出ABC △的一条中位线EF (不写作法,保留作图痕迹).22.(本小题满分6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得4565DAC DBC ==∠,∠.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin650.91cos650.42tan65 2.14≈,≈,≈23.(本小题满分6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题: (1)m = ,n = ; (2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(本小题满分7分)已知一次函数1y k x b =+与反比例函数2k y x =的图象交于第一象限内的1,82P ⎛⎫ ⎪⎝⎭,(4,)Q m 两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)写出点P 关于原点的对称点P '的坐标; (3)求P AO '∠的正弦值.26.(本小题满分8分)如图,矩形ABCD 中,6AB =,4BC =,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.27.(本小题满分8分)如图,AN 是M 的直径,NB x ∥轴,AB 交M 于点C . (1)若点(0,6),(0,2),30A N ABN =∠,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.(本小题满分10分)如图,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)B -,点(8,0)C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作NM AC ∥,交AB 于点M ,当AMN △面积最大时,求N 点的坐标;(3)连接OM ,在(2)的结论下,求OM 与AC 的数量关系.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)甘肃省2017年初中毕业、高中招生考试数学答案解析一、选择题 1.【答案】B【解析】绕某点旋转180°后能与原图重合的图形为中心对称图形,观察各选项,只有B 选项符合,故选B 。

甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2017年中考数学真题试题(含解析)

甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2017年中考数学真题试题(含解析)

甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市2017年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.【答案】B.【解析】试题解析:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选B.考点:中心对称图形.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.3.4的平方根是()A.16 B.2 C.±2 D【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.4.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.【答案】D.考点:简单组合体的三视图.5.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0【答案】D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°【答案】C.考点:平行线的性质;余角和补角.7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】A【解析】试题解析:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.考点:一次函数图象与系数的关系.8.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.0【答案】D考点:三角形三边关系.9.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570 B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570 D.32x+2×20x-2x2=570【答案】A.【解析】试题解析:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选A.考点:由实际问题抽象出一元二次方程.10.如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【答案】B.考点:动点函数图象问题.二、填空题:本大题共8小题,每小题3分,共24分.11.分解因式:x2-2x+1= .【答案】(x-1)2.【解析】试题解析:x2-2x+1=(x-1)2.考点:因式分解-运用公式法.12与0.5 0.5.(填“>”、“=”、“<”)【答案】>【解析】1-,2>0,∴22>0.考点:实数大小比较.13.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为【答案】0考点:代数式求值.14.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C= °.【答案】58°.【解析】试题解析:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.考点:圆周角定理.15.若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是【答案】k≤5且k≠1.考点:根的判别式.16.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.【答案】154cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:,由折叠得:AG=BG=12AB=12×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴AC BC AG GH=, ∴865GH =, ∴GH=154cm . 考点:翻折变换17.如图,在△ABC 中,∠ACB=90°,AC=1,AB=2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则弧CD 的长等于 .(结果保留π)【答案】3π.考点:弧长的计算;含30度角的直角三角形.18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 ,第2017个图形的周长为 .【答案】6053.【解析】试题解析:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053考点:图形的变化规律.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.193tan30°+(π-4)0-(12)-1.1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.20.解不等式组()111212x x <-≤-⎧⎪⎨⎪⎩,并写出该不等式组的最大整数解.【答案】﹣1<x ≤3.x=3.【解析】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 试题解析:解12(x-1)≤1得:x ≤3, 解1﹣x <2得:x >﹣1,则不等式组的解集是:﹣1<x ≤3.∴该不等式组的最大整数解为x=3.考点:一元一次不等式组的整数解;解一元一次不等式组.21.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【答案】作图见解析考点:作图—复杂作图;三角形中位线定理.22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】观景亭D到南滨河路AC的距离约为248米.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.考点:解直角三角形的应用23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转运甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【答案】(1)共有12种等可能性;(2)12;14试题解析:(1)根据题意列表如下:可见,两数和共有12种等可能性;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61= 122;刘凯获胜的概率为31= 124考点:列表法与树状图法.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【答案】(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x <90, ∴这200名学生成绩的中位数会落在80≤x <90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人). 考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数. 25.已知一次函数y=k 1x+b 与反比例函数y=2k x 的图象交于第一象限内的P (12,8),Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P'的坐标; (3)求∠P'AO 的正弦值.【答案】(1) 反比例函数的表达式为y=4x,一次函数的表达式为y=﹣2x+9;(2) (-12,﹣8);(3) 89.【解析】试题分析:(1)根据P (12,8),可得反比例函数解析式,根据P (12,8),Q (4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P 关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x 轴,垂足为D ,构造直角三角形,依据P'D 以及AP'的长,即可得到∠P'AO 的正弦值.把P (12,8),Q (4,1)分别代入y=k 1x+b 中, 得1118=214k b k b ⎧+⎪⎨⎪=+⎩, 解得129k b ⎧=-⎨=⎩,∴一次函数的表达式为y=﹣2x+9; (2)点P 关于原点的对称点P'的坐标为(-12,﹣8); (3)过点P′作P′D⊥x 轴,垂足为D . ∵P′(-12,﹣8), ∴OD=12,P′D=8, ∵点A 在y=﹣2x+9的图象上, ∴点A (92,0),即OA=92, ∴DA=5,∴P′A =∴sin ∠P′AD=889P DP A'==',∴sin ∠P′AO=.考点:反比例函数与一次函数的交点问题;勾股定理;解直角三角形.26.如图,矩形ABCD 中,AB=6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F . (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析.(2)3.试题解析:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF , 在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△BOE ≌△DOF (ASA ), ∴EO=FO ,∴四边形BEDF 是平行四边形;∵=,∴OB=12∵BD ⊥EF , ∴3=, ∴. 考点:矩形的性质;平行四边形的判定与性质;菱形的性质. 27.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B(2).(2)证明见解析.(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=12NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.28.如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN 面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【答案】(1)y=﹣14x2+32x+4;(2)N(3,0);(3)OM=14AC.【解析】试题分析:(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得AMAB,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N 点坐标可求得M 点为AB 的中点,由直角三角形的性质可得OM=12AB ,在Rt △AOB 和Rt △AOC 中,可分别求得AB 和AC 的长,可求得AB 与AC 的关系,从而可得到OM 和AC 的数量关系. 试题解析:(1)将点B ,点C 的坐标分别代入y=ax 2+bx+4可得424064840a b a b ⎧-+=⎨++=⎩, 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的表达式为y=﹣14x 2+32x+4;∵MN ∥AC , ∴810AM NC nAB BC -== ∴810AMN ABNS AM nSAB -==, ∴38n11(8)(2)(n 3)51055AMNABNSS n n -==-+=--+ ∵﹣15<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;考点:二次函数综合题.。

2017年各地中考试卷-2017年甘肃省白银市中考数学试卷

2017年各地中考试卷-2017年甘肃省白银市中考数学试卷

2017年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2017年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2017•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2017•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2017•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2017•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2017•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2017•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2017•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2017•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2017•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2017•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2017•白银)如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2017•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2017•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2017•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2017•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2017个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2017个图形的周长为2+3×2017=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2017•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2017•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2017•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2017•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2017•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2017•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2017•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2017•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,=BN•OA=(n+2)×4=2(n+2),∴S△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴把点 P( 1 ,8) 代入 y k2 可得:k2=4,
2
x
∴反比例函数的表达式为 y 4 , x
∴Q (4,1) .
把 P ( 1 ,8),Q 2
(4,1)分别代入 y k1x b 中,得
8
1 2
k1
b

1 4k1 b
解得 bk192 ,
∴一次函数的表达式为 y 2x 9 ;
(2)P′( 1 , 8) 2
动,到点 C 停止.过点 P 作 PQ / /BD, PQ 与边 AD (或边 CD )交于点 Q, PQ 的长度 y cm 与点 P 的运
动时间 x (秒)的函数图象如图②所示.当点 P 运动 2.5 秒时, PQ 的长是( )
5
A. 2 2cm
B. 3 2cm C. 4 2cm
D. 5 2cm
∴线段 EF 即为所求作.
6分
22.(6 分) 解:过点 D 作 DE⊥AC,垂足为 E,设 BE=x,
在 Rt△DEB 中, tan DBE DE , BE
∵∠DBC=65°,
∴ DE x tan 65o .
2分
D
又∵∠DAC=45°,
∴AE=DE.
∴132 x x tan 65o ,
3分
(1)求证:四边形 BEDF 是平行四边形; (2)当四边形 BEDF 就菱形时,求 EF 的长. 27.如图, AN 是 M 的直径, NB / / x 轴, AB 交 M 于点 C .
5
(1)若点 A0,6, N 0, 2,ABN 300 ,求点 B 的坐标;
(2)若 D 为线段 NB 的中点,求证:直线 CD 是 M 的切线.
2分
3
=2 3 3 12
3分
= 3 1.
4分
5
20.(4 分)
解:解 1 (x 1) ≤1 得:x≤3,
1分
2
解 1 x<2 得:x> 1.
2分
则不等式组的解集是: 1<x≤3.
3分
∴该不等式组的最大整数解为 x 3 .
4分
21.(6 分)
解:如图,
5分 (注:作出一条线段的垂直平分线得 2 分,作出两条得 4 分,连接 EF 得 1 分.)
22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活
动中,小林在南滨河路上的 A, B 两点处,利用测角仪分别对北岸的一观景亭 D 进行了测量.如图,测得 DAC 450,DBC 650 .若 AB 132 米,求观景亭 D 到南滨河路 AC 的距离约为多少米?(结果精确 到 1 米,参考数据: sin 650 0.91,cos650 0.42, tan 650 2.14)
12. >
13. 0
14. 58
15. k≤5 且 k≠1
16. 15 4
17. 3
18. 8(1 分),6053(2 分)
三、解答题(一):本大题共 5 小题,共 26 分.解答应写出必要的文字说明,证明过程或演算步骤.(注:
解法合理、答案正确均可得分)
19.(4 分)
解:原式= 2 3 3 3 1 2
草坪,使草坪的面积为 570m2 .若设道路的宽为 xm,则下面所列方程正确的是( )
A. 32 2x20 x 570
B. 32x 220x 3232 570
C. 32 x20 x 3220 570
D. 32x 2 20x 2x2 570
10.如图①,在边长为 4 的正方形 ABCD 中,点 P 以每秒 2cm 的速度从点 A 出发,沿 AB BC 的路径运
二、填空题:本大题 共 8 小题,每小题 4 分,共 32 分,将答案填在答题纸上
11.分解因式: x2 2x 1 ____________.
12. 估计 5 1 与 0.5 的大小关系: 5 1 ___________0.5(填“>”或“=”或“<”)
2
2
13.如果 m 是最大的负整数, n 是绝对值最小的有理数, c 是倒数等于它本身的自然数,那么代数式
m2015 2016n c2017 的值为

14.如图, ABC 内接于 O ,若 OAB 320 ,则 C

15.若关于 x 的一元二次方程 k 1 x2 4x 1 0 有实数根,则 k 的取值范围是

16.如图,一张三角形纸片 ABC , C 900, AC 8cm, BC 6cm .现将纸片折叠:使点 A 与点 B 重合,
解法合理、答案正确均可得分)
24.(7 分) 解:(1)m=70,
1分
n=0.2;
2分
(2)频数分布直方图如图所示,
频数分布直方图 频数(人)
5
成绩(分)
(3) 80≤x<90;
(4)该校参加本次比赛的 3000 名学生中成绩“优”等的约有:
3000×0.25=750(人).
25.(7 分) 解:(1)∵点 P 在反比例函数的图象上,
(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;
(2)分别求出李燕和刘凯获胜的概率.
四、解答题(二):本大题共 5 小题 ,共 50 分. 解答应写出文字说明、证明过程或演算步骤.
24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校 3000
C. x2 x3 x6
D. x2 x2 0
6.将一把直尺与一块三角板如图放置,若 1 450 ,则 2 为 ( )
5
A. 115°
B. 120°
C. 135°
D.145°
7.在平面直角坐标系中,一次函数 y kx b 的图象如图所示,观察图象可得( )
A. k 0,b 0
B. k 0,b 0
40
n
80 x 90
m
0.35
90 x 100
50
0.25
频数分布直方图
根据所给信息,解答下列问题:
5
(1) m __________, n ____Байду номын сангаас_________;
(2)补全频数分布直方图; (3)这 200 名学生成绩的中位数会落在_______________分数段; (4)若成绩在 90 分以上(包括 90 分)为“优”等,请你估计该校参加本次比赛的 3000 名学生中成绩是 “优”等的约有多少人?
(2)当四边形 BEDF 是菱形时,设 BE=x
则 DE= x , AE 6 x , 在 Rt△ADE 中, DE2 AD2 AE2 ,
25.已知一次函数
y
k1x b
与反比例函数
y
k2 x
的图象交于第一象限内的
P
1 2
,8,Q 4, m 两点,与
x
轴交于 A 点.
(1)分别求出这两个函数的表达式;
(2)写出点 P 关于原点的对称点 P 的坐标;
(3)求 PAO 的正弦值.
26.如图,矩形 ABCD 中, AB 6, BC 4 ,过对角线 BD 中点 O 的直线分别交 AB,CD 边于点 E, F .
∴解得 x 115.8 ,
4分
C
E
B
∴ DE 248 (米).
5分
∴观景亭 D 到南滨河路 AC 的距离约为 248 米. 23.(6 分)
解:(1)画树状图:
开始
1分
A 6分

3
4
5
5
乙6 7 8 9
6789
6 7 89
3分
列表


6
3
9
7
8
9
10
11
12
4
10
11
12
13
5
11
12
13
14
3分
28.如图,已知二次函数 y ax2 bx 4 的图象与 x 轴交于点 B 2, 0 ,点 C 8, 0 ,与 y 轴交于点 A .
(1)求二次函数 y ax2 bx 4 的表达式; (2)连接 AC, AB ,若点 N 在线段 BC 上运动(不与点 B,C 重合),过点 N 作 NM / / AC ,交 AB 于点 M , 当 AMN 面积最大时,求 N 点的坐标; (3)连接 OM ,在(2)的结论下,求 OM 与 AC 的数量关系.
三、解答题(一):本大题共 5 小题,共 38 分.解答应写出文字说明、证明过程或演算步骤.
19. 计算:
12
3 tan
300
40
1 2
1
20.
解不等式组
1 2
x
1
1
,并写出该不等式组的最大整数解.
1 x 2
21. 如图,已知 ABC ,请用圆规和直尺作出 ABC 的一条中位线 EF (不写作法,保留作图痕迹).
可见,两数和共有 12 种等可能性;
4分
(2) 由(1)可知,两数和共有 12 种等可能的情况,其中和小于 12 的情况有 6 种,和大于 12 的 情况
有 3 种,
∴李燕获胜的概率为 6 1 ;
5分
12 2
刘凯获胜的概率为 3 1 .
6分
12 4
四、解答题(二):本大题共 5 小题,共 40 分.解答应写出必要的文字说明,证明过程或演算步骤.(注:
5
白银市 2 017 年初中毕业、高中招生考试 数学试题参考答案及评分标准
一、选择题:本大题共 1 0 小题,每小题 3 分,共 30 分.每小题只有一个正确选项.
题号 1
2
3
4
5
6
7
8
9
10
相关文档
最新文档