高考概率与统计考点解析

合集下载

高考大题规范解答系列(六)——概率与统计

高考大题规范解答系列(六)——概率与统计
第十章 概率(文)
高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

高考数学经典试题与解析 专题九 计数原理与概率统计

高考数学经典试题与解析 专题九 计数原理与概率统计

专题九计数原理与概率统计——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.[2023年全国高考真题]某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.231.答案:D解析:依题意,用1A ,2A 表示高一的2名学生,1B ,2B 表示高二的2名学生,则从4名学生中随机选2名学生的选法有()12,A A ,()12,B B ,()11,A B ,()12,A B ,()21,A B ,()22,A B ,共6种,其中2名学生来自不同年级的选法有()11,A B ,()12,A B ,()21,A B ,()22,A B ,共4种,所以所求概率4263P ==,故选D.2.将甲、乙等5名同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.120种 B.150种 C.180种 D.240种2.答案:B解析:根据题意,分2步进行分析:①先将甲、乙等5名同学分成3组:若分成1,2,2的3组,则有12254222C C C15 A =(种)方法;若分成1,1,3的3组,则有11354322C C C 10 A =(种)方法,故将5人分成3组,每组至少有1人,有151025+=(种)分组方法.②将分好的3组对应三所大学,则每所大学至少保送一人的不同保送方法有3325A 150=(种).3.[2023春·高二·四川内江·期中校考]在12nx ⎫-⎪⎭的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数是()A.454B.358-C.358D.73.答案:C解析:依题意知第五项的二项式系数最大,所以一共是9项,所以8n =,二项式展开项的通项公式为842218811C C 22rrr rr r r r T x x x -++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令462r +=,得4r =,所以6x 的系数为448135C 28⎛⎫-= ⎪⎝⎭.故选C.4.抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为8},则()P B A =∣()A.112B.29C.13D.234.答案:B解析:易知()()()n AB P BA n A =∣,其中AB 表示“两次的点数均为奇数,且两次的点数之和为8”,共有两种情况,即(3,5),(5,3),故()2n AB =.而1133()C C 9n A =⋅=,所以()2()()9n AB P B A n A ==∣.故选B.5.[2023春·高二·江苏盐城·月考联考]已知服从正态分布()2,N μσ的随机变量在区间(],μσμσ-+,(]2,2μσμσ-+和(]3,3μσμσ-+内取值的概率分别为68.26%,95.44%和99.74%.若某校高二年级1000名学生的某次考试成绩X 服从正态分布()290,15N ,则此次考试成绩在区间(]105,120内的学生大约有()A.477人B.136人C.341人D.131人5.答案:B 解析:根据题意,()()()60120751050.95440.68261051200.135922P X P X P X <≤-<≤-<≤===,则10000.1359135.9136⨯=≈,故此次考试成绩在区间(]105,120内的学生大约有136人.故选:B.6.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)99.29.49.69.810销量y (件)1009493908578预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为()参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.参考数据:615116iii x y==∑,622160.7i i x x =-=∑.A.9.4元B.9.5元C.9.6元D.9.7元6.答案:B解析:由题意,得1(99.29.49.69.810)9.56x =⨯+++++=,1(1009493908578)906y =⨯+++++=,6162216511669.590ˆ200.76i ii ii x y xybxx ==--⨯⨯===--∑∑,ˆ909.520280a=+⨯=,则ˆ20280y x =-+.设工厂获得利润L 元,则2(5)(20280)20(9.5)405L x x x =--+=--+,当9.5x =时,L 取得最大值.所以当单价定为9.5元时,工厂获得最大利润,故选B.7.[2024春·高一·河南三门峡·期末校考]某高中为了积极响应国家“阳光体育运动”的号召,调查该校3000名学生每周平均体育运动时长的情况,从高一、高二、高三三个年级学生中按照4:3:3的比例进行分层随机抽样,收集了300名学生每周平均体育运动时长(单位:小时)的数据,整理后得到如图所示的频率分布直方图.下列说法不正确的是()A.估计该校学生每周平均体育运动时长为5.8小时B.估计该校高一年级学生每周平均体育运动时长不足4小时的人数为300C.估计该校学生每周平均体育运动时长不少于8小时的百分比为10%D.估计该校学生每周平均体育运动时长不少于8小时的人数为6007.答案:C解析:对于A,估计该校学生每周平均体育运动时长为10.0530.250.370.2590.15110.05 5.8⨯+⨯+⨯+⨯+⨯+⨯=(小时),故选项A 正确;对于B,该校高一年级的总人数为430001200433⨯=++,由题中频率分布直方图可知,该校学生每周平均体育运动时长不足4小时的频率为()0.0250.120.25+⨯=,所以估计该校高一年级学生每周平均体育运动时长不足4小时的人数为12000.25300⨯=,故选项B 正确;对于C,估计该校学生每周平均体育运动时长不少于8小时的百分比为()0.0750.0252100%20%+⨯⨯=,故选项C 错误;对于D,估计该校学生每周平均体育运动时长不少于8小时的人数为300020%600⨯=,故选项D 正确.故选:C.8.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为12,23,34,且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17248.答案:D解析:设甲、乙、丙获得一等奖的概率分别是()12P A =,()23P B =,()34P C =,则不获一等奖的概率分别是()11122P A =-=,()21133P B =-=,()31144P C =-=,则这三人中恰有两人获得一等奖的概率为:()()()()()()()()()()()()P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C ++=++1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=,这三人都获得一等奖的概率为()()()()12312344P ABC P A P B P C ==⨯⨯=,所以这三人中至少有两人获得一等奖的概率1111724424P =+=.故选:D.二、多项选择题9.[2020年全国高考真题]我国新冠肺炎疫情防控进入常态化,各地有序推动复工复产.下面是某地连续11天的复工、复产指数折线图.根据该折线图,()A.这11天复工指数和复产指数均逐日增加B.在这11天期间,复产指数的增量大于复工指数的增量C.第3天至第11天,复工指数和复产指数都超过80%D.第9天至第11天,复产指数的增量大于复工指数的增量9.答案:CD解析:由题图可知第8,9天复工指数和复产指数均减小,故A 错误;第1天时复工指数小于复产指数,第11天时两指数相等,故复产指数的增量小于复工指数的增量,故B 错误;由题图可知第3天至第11天,复工复产指数都超过80%,故C 正确;第9天至第11天,复产指数的增量大于复工指数的增量,故D 正确.10.已知()*nx n ⎛+∈ ⎝N 的展开式中共有7项,则该二项展开式中()A.所有项的二项式系数和为64 B.所有项的系数和为1C.二项式系数最大的项为第4项 D.有理项共有4项10.答案:ACD解析:由题意知6n =,则6x ⎛⎝的展开式的通项为3666216C C (0,1,2,,6)2rr rr r r r T x x r --+===⋅ .对于A ,所有项的二项式系数和为6264=,故A 正确;对于B ,令1x =,得6613122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因此所有项的系数和为632⎛⎫⎪⎝⎭,不为1,故B 错误;对于C,由二项式系数的性质,可知6x ⎛⎝的展开式中第4项的二项式系数最大,为36C 20=,故C 正确;对于D ,当362r-∈Z ,即0,2,4,6r =时,对应的项为有理项,共有4项,故D 正确.故选ACD.11.[2023春·高二·江苏·期中联考]红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色,等量的红色加蓝色调配出紫色,等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各2瓶,甲同学从6瓶中任取2瓶颜料,乙同学再从余下的4瓶中任取2瓶颜料,两人分别进行等量调配,A 表示事件“甲同学调配出红色”,B 表示事件“甲同学调配出绿色”,C 表示事件“乙同学调配出紫色”,则下列说法正确的是()A.1()15P A =B.1()4P C A =∣C.4()45P BC =D.事件B 与事件C 相互独立11.答案:AC解析:从6瓶中任取2瓶颜料的方法数为26C .对于A ,A 表示事件“甲同学调配出红色”,若调出红色,需要2瓶颜料均为红色,有22C 种方法,则2226C 1()C 15P A ==,故A 正确;对于B ,事件A 发生需要2瓶颜料均为红色,事件C 发生需要1瓶红色颜料和1瓶蓝色颜料,在事件A 发生的条件下,事件C 不可能发生,所以()0P CA =∣,故B 错误;对于C ,若事件B 发生,则甲同学取出1瓶黄色颜料和1瓶蓝色颜料,则112226C C 4()C 15P B ==,此时还剩1瓶黄色颜料和1瓶蓝色颜料,2瓶红色颜料,则1224C 1()C 3P C B ==∣,故414()()()15345P BC P B P C B =⨯=⨯=∣,故C 正确;对于D ,若事件C 发生,则乙取了1瓶红色颜料和1瓶蓝色颜料,甲同学取了至少1瓶黄色颜料或甲同学取了一瓶红色颜料和一瓶蓝色颜料,则21111111222242222264C C C C C C C C 4()C C 15P C ++==,444()()()151545P B P C P BC ⋅=⨯≠=,事件B 与事件C 不相互独立,故D 错误.故选AC.三、填空题12.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若,,{1,2,3,4}a b c ∈,且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率是_________.12.答案:12解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个.所以这个三位数为“有缘数”的概率121242P ==.13.已知随机变量X 有三个不同的取值,分别是0,1,x ,其中(0,1)x ∈,又1(0)4P X ==,1(1)4P X ==,则随机变量X 方差的最小值为__________.13.答案:18解析:由1(0)4P X ==,1(1)4P X ==,得1()2P X x ==,所以随机变量X 的数学期望21()4x E X +=,则方差222221123121111()42444442162x x x D X x ⎡⎤+--⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯=⨯-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.当12x =时,()D X 取到最小值18,故答案为18.14.[2023届·西北工业大学附中·模拟考试]将8张连号的门票分给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张门票随机分给其余的3个家庭,并且甲、乙两个家庭不能连排在一起(甲、乙两个家庭内部成员的顺序不予考虑),则这8张门票不同的分配方法有_________种.14.答案:72解析:设8张门票的编号分别为1,2,3,4,5,6,7,8.若甲选123,则乙可以是56,67,78共3种,此时共有333A 18=种;若甲选234,则乙可以是67,78共2种,此时共有332A 12=种;若甲选345,则乙可以是78共1种,此时共有33A 6=种;若甲选456,则乙可以是12共1种,此时共有33A 6=种;若甲选567,则乙可以是12,23共2种,此时共有332A 12=种;若甲选678,则乙可以是12,23,34共3种,此时共有333A 18=种.综上所述,不同的分配方法有181266121872+++++=种.四、解答题15.[2024春·高一·青海西宁·期末]为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在[)20,25和[]25,30中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的25%分位数.15.答案:(1)1 5 ;(2)8.75小时.解析:(1)由图可知,40名学生中周末的学习时间在[)20,25的人数为0.035406⨯⨯=人,周末的学习时间在[]25,30的人数为0.0155403⨯⨯=人,从中用分层抽样抽取6人,则周末的学习时间在[)20,25的有4人,记为A,B,C,D;周末的学习时间在[]25,30的有2人,记为a,b;则再从中选派3人接受检测的基本事件有ABC,ABD,ABa,ABb,ACD,ACa,ACb, ADa,ADb,Aab,BCD,BCa,BCb,BDa,BDb,Bab,CDa,CDb,Cab,Dab共有20个,其中检测的3人来自同一区间的基本事件有ABC,ABD,ACD,BCD共有4个,所以检测的3人来自同一区间的概率41205 P==;(2)学习时间在5小时以下的频率为0.0250.10.25⨯=<,学习时间在10小时以下的频率为0.10.0450.30.25+⨯=>,所以25%分位数在区间[)5,10内,则0.250.1 558.750.30.1-+⨯=-,所以这40名同学周末学习时间的25%分位数为8.75小时.16.[2024春·高二·宁夏石嘴山·月考校考]2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G ,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G 信号覆盖的可能性,在持续高风速下5G 信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G 的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G 、中国5G 的底气来自哪里.现在,5G 的到来给人们的生活带来更加颠覆性的变革,某IT 公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该IT 公司在1月份至6月份的5G 经济收入y (单位:百万元)关于月份x 的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x 123456收入y (百万元)6.68.616.121.633.041.0(1)根据散点图判断,y ax b =+与e dx y c =⋅(a ,b ,c ,d 均为常数)哪一个更适宜作为5G 经济收入y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y 关于x 的回归方程,并预测该公司7月份的5G 经济收入.(结果保留小数点后两位)(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X ,求X 的分布列和数学期望.参考数据:x yu 621()i i x x =-∑61()()iii x x y y =--∑61()()iii x x uu =--∑ 1.52e 2.66e 3.5021.15 2.8517.70125.35 6.734.5714.30其中,设ln u y =,ln i i u y =(1,2,3,4,5,6i =).参考公式:对于一组具有线性相关关系的数据(),(21,2,3,,)i i x v n = ,其回归直线ˆˆˆvx βα=+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii Ri i x x v v x x β==--=-∑∑,ˆˆv x αβ=-16.答案:(1)e dx y c =⋅更适宜(2) 1.520.38e ˆx y +=,65.35百万元(3)分布列见解析,1解析:(1)根据散点图判断,e dx y c =更适宜作为5G 经济收入y 关于月份x 的回归方程类型;(2)因为e dx y c =,所以两边同时取常用对数,得ln ln y c dx =+,设ln u y =,所以ln u c dx =+,因为 3.50x =, 2.85u =,所以61621()( 6.73ˆ0.380,17.70(iii ii x x u u dx x ==--==≈-∑∑所以ˆln 2.850.380 3.50 1.52c u dx=-≈-⨯=.所以ˆ 1.520.38u x =+,即ˆln 1.520.38y x =+,所以 1.520.38e ˆx y +=.令7x =,得 1.520.387 1.52 2.66ˆe e e 4.5714.3065.35y +⨯==⨯≈⨯≈,故预测该公司7月份的5G 经济收入大约为65.35百万元.(3)前6个月的收入中,收入超过20百万元的有3个,所以X 的取值为0,1,2,2326C 1(0)C 5P X ===,113326C C 3(1)C 5P X ===,2326C 1(2)C 5P X ===,所以X 的分布列为:X 012P153515所以()1310121555E X =⨯+⨯+⨯=.17.[2024春·高三·内蒙古赤峰·开学考试校考]卫生纸主要供人们生活日常卫生之用,是人民群众生活中不可缺少的纸种之一.某品牌卫生纸生产厂家为保证产品的质量,现从甲、乙两条生产线生产的产品中各随机抽取500件进行品质鉴定,并将统计结果整理如下:合格品优等品甲生产线250250乙生产线300200(1)判断能否有99.9%的把握认为产品的品质与生产线有关;(2)用频率近似为概率,从甲、乙两条生产线生产的产品中各随机抽取2件进行详细检测,记抽取的产品中优等品的件数为X ,求随机变量X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d=+++()20P K k ≥0.100.050.0250.0100.0010k 2.7069.8415.0246.63510.82817.答案:(1)没有;(2)分布列见解析,95解析:(1)补充列联表如下:合格品优等品总计甲生产线250250500乙生产线300200500总计5504501000根据列联表中的数据,经计算得到221000(250200250300)10.10110.828550450500500K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99.9%的把握认为产品的品质与生产线有关.(2)由题意,甲生产线生产的产品中抽取优等品的频率为25015002=,乙生产线生产的产品中抽取优等品的频率为20025005=,所以估计从甲、乙生产线生产的产品中各随机抽取优等品的概率分别为12,25,由题意随机变量X 的所有可能取值是0,1,2,3,4,()22139025100P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22211221312331C C 2525510P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2222211221313212372C C 2525525100P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()22211221212313C C 252555P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2212142525P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列为:X 01234P91003103710015125所以X 的期望()933711901234100101003255E X =⨯+⨯+⨯+⨯+⨯=.18.[2024春·高二·福建宁德·期末]毒品是人类的公敌,禁毒是社会的责任,当前宁德市正在创建全国禁毒示范城市,我市组织学生参加禁毒知识竞赛,为了解学生对禁毒有关知识的掌握情况,采用随机抽样的方法抽取了500名学生进行调查,成绩全部分布在75145~分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)由频率分布直方图可认为这次全市学生的竞赛成绩X 近似服从正态分布()2,N μσ,其中μ为样本平均数(同一组数据用该组数据的区间中点值作代表),13.σ=现从全市所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过135.2分的人数为Y ,求随机变量Y 的期望.(结果精确到0.01);(3)全市组织各校知识竞赛成绩优秀的同学参加总决赛,总决赛采用闯关的形式进行,共有20个关卡,每个关卡的难度由计算机根据选手上一关卡的完成情况进行自动调整,第二关开始,若前一关未通过,则其通过本关的概率为12;若前一关通过,则本关通过的概率为13,已知甲同学第一关通过的概率为13,记甲同学通过第n 关的概率为n P ,请写出n P 的表达式,并求出n P 的最大值.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.18.答案:(1)0.012;(2)0.23;(3)13217216n n P -⎛⎫=+ ⎪⎝⎭,n P 的最大值为49.解析:(1)由频率分布直方图,得()100.0050.0190.030.020.0021a a ⨯++++++=,解得0.012a =.(2)由题意得:800.05900.121000.191100.3μ=⨯+⨯+⨯+⨯1200.21300.121400.02109.2+⨯+⨯+⨯=,()2109.2,13X N ~,()()()122135.220.022752P X P X P X μσμσμσ--<≤+>=>+=≈,()10,0.02275Y B ~,()0.22750.23E Y np ==≈.(3)记甲同学第()*n n ∈N 关通过为事件n A ,依题意,113P =,当2n ≥时,()113n n P A A -=,()112n n P A A -=,()n n P P A =,所以()()()()()1111n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P +⎛⎫-=- ⎪⎝⎭,又因为113P =,则1320721P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为221-,公比为16-的等比数列,所以13217216n n P -⎛⎫=-- ⎪⎝⎭,当n 为奇数时,113213213721672167n n n P --⎛⎫⎛⎫=--=-<⎪⎪⎝⎭⎝⎭,当n 为偶数时,13217216n n P -⎛⎫=+ ⎪⎝⎭,则n P 随着n 的增大而减小,所以,249n P P ≤=,又4397>,所以n P 的最大值为49.19.[2024春·高二·江苏南通·月考校考]篮球运动是在1891年由美国马萨诸塞州斯普林尔德市基督教青年会训练学校体育教师詹姆士·奈史密斯博士,借鉴其他球类运动项目设计发明的.起初,他将两只桃篮钉在健身房内看台的栏杆上,桃篮上沿离地面约3.05米,用足球作为比赛工具,任何一方在获球后,利用传递、运拍,将球向篮内投掷,投球入篮得一分,按得分多少决定比赛胜负.在1891年的12月21日,举行了首次世界篮球比赛,后来篮球界就将此日定为国际篮球日.甲、乙两人进行投篮,比赛规则是:甲、乙每人投3球,进球多的一方获得胜利,胜利1次,则获得一个积分,平局或者输方不得分.已知甲和乙每次进球的概率分别是12和p ,且每人、每次进球与否都互不影响.(1)若23p =,求在进行一轮比赛后甲比乙多投进2球的概率;(2)若1223p ≤≤,且每轮比赛互不影响,乙要想至少获得3个积分且每轮比赛至少要超甲2个球,求:①设事件C 表示乙每轮比赛至少要超甲2个球,求()P C ;(结果用含p 的式子表示)②从数学期望的角度分析,理论上至少要进行多少轮比赛?19.答案:(1)124;(2)①321388p p +;②15解析:(1)设事件i A 表示甲在一轮比赛中投进i 个球,i B 表示乙在一轮比赛中投进i 个球,()0123i =,,,,D 表示进行一轮比赛后甲比乙多投进2球所以2031D A B A B =+()()()2031P D P A B P A B =+2332203133331111211C C C C 22323324⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⨯⨯⨯⨯⎭⎝⎭⎝⎭(2)①()()()()203031P C P B A P B A P B A =++()3332231323311113C 1C 22288p p p p p ⎛⎫⎛⎫⎛⎫=-⨯++⎡⎤⎢⎥⎢⎥=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎣⎭⎦⎝;②设随机变量X 表示n 轮比赛后,乙在每轮比赛至少要超甲2个球的情况下获得的积分,则有3213,88X B n p p ⎛⎫~+ ⎪⎝⎭,故()321388E X n p p ⎛⎫=+ ⎪⎝⎭,要满足题意,则()3E X ≥,即3213388n p p ⎛⎫+≥ ⎪⎝⎭,又12,23p ⎡⎤∈⎢⎥⎣⎦,故3231388n p p ≥+,令()321388f x x x =+,12,23x ⎡⎤∈⎢⎥⎣⎦,则()()3208f x x x '=+>在12,23⎡⎤⎢⎥⎣⎦恒成立,即()f x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,故()f x 的最大值为211354f ⎛⎫=⎪⎝⎭,即321388p p +的最大值为1154,于是,3231388p p +的最小值为16211,因162141511<<,故理论上至少要进行15轮比赛.。

高三数学选修2-3(B版)_专题提升:概率与统计

高三数学选修2-3(B版)_专题提升:概率与统计

概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。

高考概率与统计常考点解析

高考概率与统计常考点解析

高考概率与统计常考点解析概率、统计是每年高考的重点考查内容之一,在近几年新课标各省市的高考试卷中,一般命制1~2道题,在整套试卷中占12~17分左右,一般有一道选择题或填空题和一道解答题,在选择题或填空题中往往单独考查古典概型和几何概型,在解答题中往往是概率与统计综合考查.命题特点是:(1)强化应用意识.试题一般以应用题的形式呈现,例如2011年山东高考题以我们的日常生活和社会热点为背景,重在考查应用数学的能力.(2)注重综合能力,尤其加强对数学符号使用能力的考查.下面简要分析了近年来高考中概率与统计的常考点:考向一:抽样方法:考查抽样方法及抽样中的计算.应抓住各种抽样方法及各自特点.对于分层抽样,与其有关计算在高考试题中较常见,难度较低,关键抓住按怎样的比例分层.【示例1】►(2011·天津)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析: 本题主要考查用分层抽样抽取样本的问题,分层抽样是随机抽样常用的方法之一,其特点是样本中各层人数的比例与总体中各层人数的比例相等.抽取的男运动员的人数为2148+36×48=12.反思:本题考查了分层抽样方法在解决实际问题中的应用,注重考查了考生的实际应用能力.考向二:频率分布直方图的考查:考查频率分布直方图的识图与计算.重点考查看图、识图的能力,对频率分布直方图中各参数的认识,以及在统计学中样本对总体的估计作用.延伸(1)频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.注意频率分布直方图中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率组距=频率.(2)各组频率的和等于1,即所有长方形面积的和等于1.(3)频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.(4)从频率分布直方图可以清楚地看出数据分布的总体态势,但是从频率分布直方图本身得不出原始的数据内容.【示例2】►(2010·北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=________.若要从身高在[120,130), [130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析: 根据频率之和等于1,可知(0.005+0.010+0.020+a+0.035)×10=1,解得a=0.030;身高在[120,150]内的频率为0.6,人数为60人,抽取比例是1860,而身高在[140,150]内的学生人数是10,故应该抽取10×1860=3人.反思:本题主要考查频率分布直方图的应用、考生的识图与用图能力,同时也考查了考生的数据处理能力和分析解决问题的能力.考向三:有关茎叶图的考查考查:茎叶图的识图与计算.高考常借助样本的数字特征,频率分布直方图、茎叶图来考查考生的绘图、识图和计算能力.延伸(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示;(2)茎叶图只便于表示两位(或一位)有效数字的数据,对位数多的数据不太容易操作;而且茎叶图只方便记录两组数据,两组以上的数据虽然能够记录,但是没有表示两组数据那么直观、清晰;(3)茎叶图对重复出现的数据要重复记录,不能遗漏.【示例3】►(2010·天津)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析: 由茎叶图可知甲的平均数为乙的平均数为反思:本题考查茎叶图和平均数的基本知识,考查观察能力和计算能力,属于基本题.茎叶图是近几年考查的热点之一,常与平均数、方差、中位数和众数联合考查.考向四:有关样本的数字特征的考查考查样本的数字特征的计算.中位数、众数、平均数、标准差(方差)是进行统计分析的重要数字特征,是高考的常考点.我们不但要熟练掌握公式进行计算,还要理解公式的本质及联系.【示例4】►(2011·南京模拟)对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度的数据如下:甲:27,38,30,37,35,31;乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.解析: 根据统计知识可知,需要计算两组数据的x与s2,然后加以比较,最后作出判断.∵x甲=16×(27+38+30+37+35+31)=33,x乙=16×(33+29+38+34+28+36)=33,s 2甲=16×[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=16×94=1523, s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=16×76=1223. ∴x 甲=x 乙,s 2甲>s 2乙.由此可以说明,甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.反思:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的分散程度越大,越不稳定;标准差、方差越小,数据的分散程度越小,越稳定.考向五:变量的相关性:虽然任何一组不完全相同的数据都可以求出回归直线方程,但只有具有线性相关关系的一组数据才能得到具有实际价值的回归直线方程;线性相关系数可以为正、为负或为零,线性相关系数为正时是正相关,为负时是负相关,反之也成立. 【示例5】►(2011·江西)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( ). A .r 2<r 1<0 B .0<r 2<r 1 C .r 2<0<r 1 D .r 2=r 1解析:对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关,即r 1>0;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,即r 2<0,所以有r 2<0<r 1.故选C.反思:本题主要考查两个变量间的线性相关性、线性相关系数以及正相关、负相关等概念.利用正相关、负相关求解是问题得到解决的关键所在.考向六:回归分析:对于回归分析,要理解其基本思想方法,建立回归直线方程的基本思想是使通过建立的方程得到的估计值和真实值之差的平方和最小,无论建立的是什么样的回归方程(直线的和曲线的),由这个回归方程得到的预报变量的值只能是估计值,或者说是在大量的重复情况下得到的数值的平均值,这个值不是精确值,这就是回归分析中建立的函数模型与通常意义下的函数模型的不同之处,也是统计思维和确定性思维的差异所在.【示例6】►(2010·广东)某市居民2005~2009年家庭平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:均支出有________线性相关关系.解析:由表可以得到中位数为13,画出散点图,可知成正相关关系.反思:本题考查回归分析的基本思想及其初步应用,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力.考向七:独立性检验:独立性检验中统计量K2的计算公式中分母是列联表中除了总合计的四个合计量的乘积,分子是总合计量与样本频数中四个数交叉乘积之差的平方的乘积.解题时要对照公式正确使用列联表中的数据.【示例7】►(2011·湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,K2=260×50×60×50≈7.8.附表:A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运运与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析: 据独立性检验的思想方法,可知正确选项为A.反思:本题考查独立性检验的定义,考查学生分析数据的能力,属容易题.考向八:古典概型:古典概型是一种最基本的概率模型,在概率部分占有相当重要的地位.从近年各省市的概率考题来看,古典概型是高考的一个热点.在解答题中常与统计综合,考查基本概念和基本运算,解答时对数学符号的运用要加以重视.对于较为复杂的基本事件空间,列举时要按照一定的规律进行,做到不重不漏.【示例8】►(2011·江西)某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.解析:将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种.令D表示此人被评为优秀的事件,E表示此人被评为良好的事件,F表示此人被评为良好及以上的事件,则(1)P(D)=1 10;(2)P(E)=35,P(F)=P(D)+P(E)=710.反思:本题型主要弄清题干中的事件的基本事件个数,一般可以列举出每个事件,从而得到结果.考向九:互斥事件的概率加法公式:概率加法公式是计算概率的一个最基本的公式,根据它可以计算一些较为复杂的事件的概率,运用该公式的关键是分清事件之间是否为互斥的关系,高考题中涉及的事件一般都不复杂,容易辨别,属于中低档题.另外,此类试题往往与统计综合考查,例如2011年陕西高考题.认真审题是正确解决该类问题的前提条件.【示例9】►国家射击队的某队员射击一次,命中7~10环的概率如下表所示:(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率解析:记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥.(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)=P(A9)+P(A10)=0.32+0.28=0.60.(2)设“射击一次,至少命中8环”的事件为B,那么当A8,A9,A10之一发生时,事件B发生.由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.(3)由于事件“射击一次,命中不足8环”是事件B:“射击一次,至少命中8环”的对立事件,即B表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得P(B)=1-P(B)=1-0.78=0.22.反思:求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求解法,先求此事件的对立事件的概率,再用公式P (A )=1-P (A ),即运用逆向思维(正难则反),特别是“至多”、“至少”型题目,用间接求解法就显得较简便.考向十:几何概型:几何概型也是一种基本的概率模型,几何概型与古典概型的本质区别在于试验结果的无限性,几何概型经常涉及的几何度量有:长度、面积、体积等,解决该类问题的关键是找准几何度量.例如2011年福建高考题涉及的几何度量就是面积.新课标高考对几何概型的要求较低,因此高考试卷中此类试题以低、中档题为主.【示例10】►(2009·山东)在区间[-1,1]上随机取一个数x ,cos πx2的值介于0到12之间的概率为( ). A.13 B.2π C.12 D.23解析 在区间[-1,1]上随机取一个实数x ,cosπx2的值位于[0,1]区间,若使cos πx 2的值位于⎣⎢⎡⎦⎥⎤0,12区间,取到的实数x 应在区间⎣⎢⎡⎦⎥⎤-1,-23∪⎣⎢⎡⎦⎥⎤23,1内,根据几何概型的计算公式可知P =2×132=13. 反思:解答本题要抓住它的本质特征,即与长度有关.考向十一:概率统计初步综合问题:概率统计是高中数学中与实际生活联系最紧密的部分,因此,高考越来越重视对概率统计的考查,把随机抽样、用样本估计总体等统计知识和概率知识相结合命制概率统计解答题已经是一个新的命题趋向.概率统计初步综合解答题的主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键,因此在复习该部分时,要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法.【示例11】►(2011·天津)编号分别为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:(2)①用运动员编号列出所有可能的抽取结果;②求这2人得分之和大于50的概率.解析:(1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A3,A4,A5,A10,A11,A13.从中随机抽取2人,所有可能的抽取结果有:{A3,A4},{A3,A5},{A3,A10},{A3,A11},{A3,A13},{A4,A5},{A4,A10},{A4,A11},{A4,A13},{A5,A10},{A5,A11},{A5,A13},{A10,A11},{A10,A13},{A11,A13},共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:{A4,A5},{A4,A10},{A4,A11},{A5,A10},{A10,A11},共5种.所以P(B)=515=13.反思:本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.。

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。

高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析

高中数学概率与统计的常见题型解析概率与统计是高中数学中的一门重要课程,也是学生们普遍感觉较难的一部分内容。

在考试中,概率与统计题型占比较大,因此对于这部分知识的掌握至关重要。

本文将结合常见的概率与统计题型,进行解析和说明,帮助高中学生和他们的父母更好地理解和应对这些题目。

一、事件概率计算题事件概率计算题是概率与统计中的基础题型,也是最常见的题型之一。

这类题目要求计算某个事件发生的概率。

例如:【例题】已知一副扑克牌中有52张牌,其中红心牌有13张。

从中随机抽取一张牌,求抽到红心牌的概率。

解析:这是一个典型的事件概率计算题。

根据题目所给的信息,我们知道红心牌有13张,总共有52张牌,因此红心牌的概率为13/52,即1/4。

这类题目的考点在于理解概率的定义,并且能够根据题目给出的条件计算出事件发生的概率。

在解题过程中,可以通过简化分数、约分等方法,使计算更加简便。

二、排列组合题排列组合题是概率与统计中的另一类常见题型,也是较为复杂的题目之一。

这类题目要求计算事件的排列或组合方式。

例如:【例题】某班有10个学生,要从中选出3个学生组成一支篮球队,求不考虑位置的情况下,有多少种不同的组合方式。

解析:这是一个排列组合题。

我们需要从10个学生中选出3个学生,不考虑位置的情况下,即选出的学生是无序的。

根据组合的定义,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)进行计算。

代入题目的数据,即C(10,3) = 10!/(3!(10-3)!)=120种不同的组合方式。

这类题目的考点在于理解排列和组合的概念,并且能够根据题目给出的条件进行计算。

在解题过程中,可以使用排列组合公式简化计算,同时注意分子和分母的阶乘运算。

三、事件独立性题事件独立性题是概率与统计中的另一个重要题型,也是较为复杂的题目之一。

这类题目要求判断多个事件之间是否独立。

例如:【例题】甲、乙、丙三个人独立地进行一项考试,他们的及格率分别为0.8、0.9和0.7。

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析

§11。

4 抽样方法与总体分布的估计基础篇固本夯基【基础集训】考点一随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性()A。

与第几次有关,第一次可能性最大 B。

与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案D2.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是1,则该单位员工总数为45()A。

110B。

100 C.900D。

800答案B3.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示。

若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手"称号的人数为()A.2B.4C.5D。

6答案B4.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案10考点二用样本估计总体5.甲、乙两组数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A。

极差 B.方差C。

平均数 D.中位数答案C6。

为比较甲、乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月5天11时的平均气温比乙地该月5天11时的平均气温高1 ℃,则甲地该月5天11时的气温数据的标准差为()甲乙9 82 6 892 m 03 1 1 A 。

2 B 。

√2 C 。

10 D 。

√10答案 B7.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品。

高中数学概率与统计中的随机事件与条件概率解析

高中数学概率与统计中的随机事件与条件概率解析

高中数学概率与统计中的随机事件与条件概率解析概率与统计是高中数学中的重要内容,其中随机事件与条件概率是基础且常见的考点。

在本文中,我将通过具体题目的举例,对随机事件与条件概率进行解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

一、随机事件的概念与性质随机事件是指在一次试验中可能发生也可能不发生的事件。

我们以一个例子来说明。

例题1:一颗骰子投掷一次,事件A为“出现奇数点数”,事件B为“出现偶数点数”。

求事件A和事件B的关系。

解析:骰子有6个面,每个面上的点数是1、2、3、4、5、6。

事件A中包含的样本点有1、3、5,事件B中包含的样本点有2、4、6。

从样本点的角度看,事件A和事件B没有共同的样本点,即事件A和事件B互不相容。

因此,事件A和事件B是互斥事件。

通过这个例子,我们可以了解到随机事件的概念以及互斥事件的性质。

在解题过程中,需要注意对事件的定义和样本空间的确定,以便准确地判断事件之间的关系。

二、条件概率的计算与应用条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

我们通过一个实际问题来说明。

例题2:某班级有60名学生,其中30名男生和30名女生。

从中随机抽取一名学生,已知这名学生是男生,求他的身高大于170cm的概率。

解析:设事件A为“抽取的学生是男生”,事件B为“抽取的学生身高大于170cm”。

根据题意可知,事件A的概率为P(A) = 30/60 = 1/2。

事件B的概率为P(B) = (男生中身高大于170cm的人数)/60。

由于题目没有给出具体的数据,我们暂时无法计算P(B)。

但是,已知学生是男生,即事件A发生,我们可以在男生中进行考察。

假设在男生中,身高大于170cm的有20人,那么事件A和事件B同时发生的概率为P(A∩B) = 20/60。

根据条件概率的定义,我们有P(B|A) = P(A∩B)/P(A) = (20/60)/(1/2) = 2/3。

通过这个例题,我们可以看到条件概率的计算过程。

概率与统计- 高考数学试题分项版解析(解析版)

概率与统计- 高考数学试题分项版解析(解析版)

专题11 概率与统计1. 【2014高考福建卷文第13题】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________.2. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.203. 【2014高考广东卷文第12题】从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .4. 【2014高考湖北卷文第5题】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P << 【答案】C 【解析】试题分析:依题意,36101=P ,3626361012=-=P ,36183=P ,所以231P P P <<.选C. 考点:古典概型公式求概率,容易题.5. 【2014高考湖北卷文第6题】根据如下样本数据:x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0<b B.0a > ,0>b C.0a < ,0<b D.0a < ,0>b6. 【2014高考湖北卷文第11题】甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.7. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查8. 【2014高考湖南卷文第5题】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 9. 【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .10. 【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]80,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.【考点】频率分布直方图.11. 【2014高考江西卷文3第题】掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D12. 【2014高考江西卷文第7题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( ) 表1 不及格 及格 总计 男 6 14 20 女1022 32 总计 16 3652A.成绩 表2 不及格 及格 总计 男 4 16 20 女1220 32 总计 163652B.视力表3 不及格 及格 总计 男 8 12 20 女824 32 总计 163652C.智商表4 不及格 及格 总计 男 14 6 20 女23032总计 16 36 52D.阅读量13.14. 【2014高考辽宁卷文第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π 15. 【2014高考全国1卷文第13题】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P63 ==.考点:古典概率的计算16.【2014高考全国2卷文第13题】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.17.【2014高考山东卷文第8题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【答案】C【解析】由图知,样本总数为2050.0.160.24N==+设第三组中有疗效的人数为x,则60.36,1250xx+==,故选C.考点:频率分布直方图.18.【2014高考陕西卷文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D19. 【2014高考陕西卷文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s20.【2014高考四川卷文第2题】在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

高考概率统计考点解析与试题集粹

高考概率统计考点解析与试题集粹

高考概率统计考点解析与试题集粹
熊小明
【期刊名称】《数学教学通讯:中学生版高三卷》
【年(卷),期】2005(000)001
【摘要】概率与统计试题是高考的必考内容.它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档题,预计这也是今后高考概率统计试题的考查特点和命题趋向.下面对其常见题型和考点进行解析,希望能开阔同学们视野,帮助同学们作好复习备考工作。

【总页数】5页(P69-73)
【作者】熊小明
【作者单位】四川省渠县中学635200
【正文语种】中文
【中图分类】G633
【相关文献】
1.高考集合与简易逻辑考点解析与试题集粹 [J], 郑兴明
2.高考函数考点解析与试题集粹(上) [J], 郑兴明
3.高考解析几何考点解析与试题集粹(上) [J], 郑兴明
4.高考解析几何考点解析与试题集粹(下) [J], 郑兴明
5.高考解析几何考点解析与试题集粹(中) [J], 郑兴明
因版权原因,仅展示原文概要,查看原文内容请购买。

文科数学高考知识点概率

文科数学高考知识点概率

文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。

概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。

在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。

一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。

概率的基本单位是事件,而事件是指某件事情发生或者不发生。

在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。

概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。

二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。

在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。

2.频率概率频率概率是根据事件发生的频率来计算概率。

通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。

3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。

几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。

4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。

条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。

5.全概率全概率是利用分区思想来计算概率的一种方法。

通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。

三、概率的应用概率在现实生活中有着广泛的应用。

在商业领域中,概率可以用于市场调研、销售预测等方面。

在医学领域中,概率可以帮助医生分析疾病的风险和预后。

在金融领域中,概率可以用于投资决策和风险控制。

在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。

总之,概率在各个领域中都发挥着重要的作用。

结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。

高中数学概率与统计中的正态分布与抽样误差解析

高中数学概率与统计中的正态分布与抽样误差解析

高中数学概率与统计中的正态分布与抽样误差解析概率与统计是高中数学中的重要内容之一,其中正态分布和抽样误差是常见的考点。

本文将通过具体的题目举例,分析这两个概念的含义、应用以及解题技巧,以帮助高中学生和家长更好地理解和应用这些知识。

一、正态分布正态分布是概率与统计中最重要的分布之一,也称为高斯分布。

它的特点是呈钟形曲线,左右对称,均值和标准差完全决定了曲线的形状。

在实际应用中,正态分布广泛用于描述各种随机变量的分布情况,例如身高、考试成绩等。

我们以一个具体的题目来说明正态分布的应用。

假设某班级的学生数学成绩服从正态分布,平均分为80分,标准差为5分。

现在我们想要计算在这个班级中成绩在90分以上的学生所占的比例。

解题思路如下:1. 根据正态分布的性质,我们知道平均分左右对称,即成绩在90分以上的学生所占的比例等于成绩在70分以下的学生所占的比例。

2. 根据标准差的定义,我们知道约68%的学生成绩在平均分的一个标准差范围内,约95%的学生成绩在平均分的两个标准差范围内,约99.7%的学生成绩在平均分的三个标准差范围内。

3. 根据以上信息,我们可以计算出成绩在70分以下的学生所占的比例为68%+95%=163%。

4. 因此,成绩在90分以上的学生所占的比例为100% - 163% = 37%。

通过这个例子,我们可以看到正态分布在解决实际问题中的应用。

同时,我们也需要注意正态分布的性质,例如对称性和标准差的定义,以便更好地理解和应用这个概念。

二、抽样误差在实际调查和统计中,我们通常无法对整个总体进行全面调查,而是通过抽样来获取一部分样本数据,并通过这些样本数据来推断总体的特征。

然而,由于抽样的随机性和样本容量的限制,样本数据与总体数据之间存在误差,这就是抽样误差。

下面我们以一个实际问题来说明抽样误差的概念。

假设我们想要调查某市的居民对某项政策的满意度,总共有100万名居民。

由于时间和资源的限制,我们只能随机抽取1000名居民进行调查。

统考版2024高考数学二轮专题复习专题四统计与概率第1讲统计统计案例课件理

统考版2024高考数学二轮专题复习专题四统计与概率第1讲统计统计案例课件理
——准确计算,数据分析
考点三 回归分析的实际应用——准确计算,数据分析
线性回归方程


方程ොy=bx+ො
a称为线性回归方程,其中 b=
෠ x;(തx,തy)称为样本中心点.
·四川省成都市石室中学模拟]某企业为了了解年广告费 x(单位:
万元)对年销售额 y(单位:万元)的影响,统计了近 7 年的年广告费 xi 和年
体由差异明显的几部分组成.
例 1 (1)某工厂利用随机数表对生产的700个零件进行抽样测试,先
将700个零件进行编号001、002、…、699、700.从中抽取70个样本,
下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读
取数据,则得到的第5个样本编号是(
)
3321183429 7864560732 5242064438 1223435677 3578905642
支持结论“X与Y有关系”.
对点训练
[2021·全国甲卷]甲、乙两台机床生产同种产品,产品按质量分为一
级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生
产了200件产品,产品的质量情况统计如下表:
甲机床
销售额 yi(i=1,2,3,4,5,6,7)的数据,得到下面的表格:
年广告费 x
2
3
4
5
6
7
8
年销售额 y 25 41 50 58 64 78 89
由表中数据,可判定变量 x,y 的线性相关关系较强.
(1)建立 y 关于 x 的线性回归方程;
(2)已知该企业的年利润 z 与 x,y 的关系为 z=2 y -x,根据(1)的
界人口变化情况的三幅统计图:
下列结论中错误的是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考概率与统计考点解析概率与统计试题是高考的必考内容。

它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。

下面对其常见量刑和考点进行解析。

考点1 考查等可能事件概率计算在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。

如果事件A包含的结果有m 个,那么P (A )= nm。

这就是等可能事件的判断方法及其概率的计算公式。

高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。

例1(2004天津)从4名男生和2名女生中任选3人参加演讲比赛. (I) 求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率; (III)求所选3人中至少有1名女生的概率.本小题考查等可能事件的概率计算及分析和解决实际问题的能力.满分12分.(I)解: 所选3人都是男生的概率为 34361.5C C =(II)解:所选3人中恰有1名女生的概率为 1224363.5C C C =(III)解:所选3人中至少有1名女生的概率为12212424364.5C C C C C += 考点2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算不可能同时发生的两个事件A 、B 叫做互斥事件,它们至少有一个发生的事件为A+B ,用概率的加法公式)()()(B P A P B A P +=+计算。

事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为B A ⋅。

用概率的法公式()()()B P A P B A P ⋅=⋅计算。

高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。

例2.(2005全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. 解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C ,……1分 则A 、B 、C 相互独立,由题意得: P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1P (BC )=P (B )P (C )=0.125…………………………………4分解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A 、B 、C 相互独立,∴A B C 、、相互独立,……………………7分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.50.3P A B C P A P B P C ⋅⋅==⨯⨯=……………………10分∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-=……12分 考点3 考查对立事件概率计算必有一个发生的两个互斥事件A 、B 叫做互为对立事件。

即-=A B 或-=B A 。

用概率的减法公式()⎪⎭⎫⎝⎛-=_1A P A P 计算其概率。

高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。

例3.(2005福建卷文)甲、乙两人在罚球线投球命中的概率分别为5221与.(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率. 解:(Ⅰ)依题意,记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则.53)(,21)(,52)(,21)(====B P A P B P A P∵“甲、乙两人各投球一次,恰好命中一次”的事件为B A B A ⋅+⋅.2152215321)()()(=⨯+⨯=⋅+⋅=⋅+⋅∴B A P B A P B A B A P 答:甲、乙两人在罚球线各投球一次,恰好命中一次的概率为.21(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不命中”的概率为100953532121=⨯⨯⨯=P∴甲、乙两人在罚球线各投球两次至少有一次命中的概率.10091100911=-=-=P P答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为.10091 考点4考查独立重复试验概率计算若在n 次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。

若在1 次试验中事件A 发生的概率为P ,则在n 次独立惩处试验中,事件A 恰好发生k 次的概率为()()kn kk n n P P C k P --=1。

高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。

例4.(2005湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p考点5 考查随机变量概率分布与期望计算解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。

以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。

例5.(2005湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。

如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率.解:ξ的取值分别为1,2,3,4.1=ξ,表明李明第一次参加驾照考试就通过了,故P (1=ξ)=0.6.2=ξ,表明李明在第一次考试未通过,第二次通过了,故.28.07.0)6.01()2(=⨯-==ξPξ=3,表明李明在第一、二次考试未通过,第三次通过了,故.096.08.0)7.01()6.01()3(=⨯-⨯-==ξPξ=4,表明李明第一、二、三次考试都未通过,故.024.0)8.01()7.01()6.01()4(=-⨯-⨯-==ξP∴李明实际参加考试次数ξ的分布列为ξ 1 2 3 4 P 0.6 0.28 0.096 0.024∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544. 李明在一年内领到驾照的概率为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976. 考点6考查随机变量概率分布列与其他知识点结合 1考查随机变量概率分布列与函数结合例6.(2005湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.解:(I )分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5, P (A 3)=0.6.客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3. P (ξ=3)=P (A 1·A 2·A 3)+ P (321A A A ⋅⋅) = P (A 1)P (A 2)P (A 3)+P ()()()321A P A P A ) =2×0.4×0.5×0.6=0.24,P (ξ=1)=1-0.24=0.76.所以ξ的分布列为E ξ=1×0.76+3×0.24=1.48.(Ⅱ)解法一 因为,491)23()(22ξξ-+-=x x f所以函数),23[13)(2+∞+-=ξξ在区间x x x f 上单调递增,要使),2[)(+∞在x f 上单调递增,当且仅当.34,223≤≤ξξ即从而.76.0)1()34()(===≤=ξξP P A Pξ1 3 P0.760.24解法二:ξ的可能取值为1,3.当ξ=1时,函数),2[13)(2+∞+-=在区间x x x f 上单调递增, 当ξ=3时,函数),2[19)(2+∞+-=在区间x x x f 上不单调递增.0 所以.76.0)1()(===ξP A P2、考查随机变量概率分布列与数列结合例7 甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。

已知甲乙两人射击一次击中的概率均为87,且第一次由甲开始射击。

相关文档
最新文档