各种材料淬火硬度

合集下载

淬火硬度hrc62

淬火硬度hrc62

淬火硬度hrc62全文共四篇示例,供读者参考第一篇示例:淬火硬度是一种表征材料硬度的重要指标,它反映了材料在淬火过程中获得的硬度水平。

在工程材料中,淬火硬度通常以HRC(硬度洛氏硬度)为单位进行表示,HRC62表示材料的硬度为62HRC。

HRC62的硬度水平处于中高水平,适用于对材料硬度要求较高的场合。

淬火硬度的提高可以通过控制淬火工艺参数来实现,例如淬火温度、保温时间、冷却速率等。

在淬火过程中,材料会受到快速冷却的作用,使其组织发生相变,从而提高硬度。

HRC62的硬度水平意味着材料经过淬火后能够获得较高的硬度,有较好的耐磨性和耐腐蚀性。

在实际工程中,HRC62的硬度通常应用于一些对材料硬度要求较高的零部件上,例如汽车发动机零部件、工程机械零部件、刀具等。

这些零部件需要具备较高的耐磨性和耐腐蚀性,以确保其在长期使用过程中不易发生磨损或腐蚀而导致失效。

HRC62的硬度水平还可以通过其他方式来实现,例如表面淬火、渗碳淬火等。

表面淬火是一种将薄层表面淬火以提高硬度的方法,适用于对零部件表面硬度要求较高的场合。

渗碳淬火则是通过在材料表面渗入碳元素再进行淬火,以提高表面硬度和耐磨性。

HRC62的硬度水平代表了材料具有一定的硬度和耐磨性,适用于对材料硬度要求较高的场合。

在工程中,我们可以通过控制淬火工艺参数或采用其他方式来实现HRC62的硬度水平,以满足不同零部件的硬度要求。

淬火硬度是实现材料硬度提高的一种有效方法,有助于提高材料的使用寿命和可靠性。

第二篇示例:淬火是一种金属热处理工艺,通过在高温下迅速冷却金属,使其获得一定的硬度和韧性。

淬火硬度是评价金属硬度和抗拉强度的一个重要指标,通常用HRC单位来表示。

HRC62是一种较高的淬火硬度,表明金属具有较高的硬度和抗磨损性能。

淬火硬度HRC62的金属通常包括碳素钢、合金钢、不锈钢等。

这些金属在经过淬火处理后,表面硬度可达HRC62以上,具有较高的耐磨性,适用于制造各种工具、模具、机械零件等高强度要求的产品。

材料硬度总结

材料硬度总结

总结一:1:410:在925℃~1000℃油淬后,230℃~370℃回火,HB在360~380.(HRC38~41左右);540℃回火,HB在260~330.(HRC27~36左右);600℃回火,HB在210~250.(HRC19~26左右);700℃回火,HB在170~195.2:17-4PH:固溶(1020℃~1060℃)+时效(480℃),硬度HRC40-45;固溶(1020℃~1060℃)+时效(550℃),硬度HRC35-40;固溶(1020℃~1060℃)+时效(580℃),硬度HRC31-35;固溶(1020℃~1060℃)+时效(620℃),硬度HRC28-31。

3:9Cr18MoV:淬火(1050℃~1075℃)+低温回火(100℃~200℃),硬度HRC48~55. 4:镀硬烙(HCr),硬度HV900~1000.5:所有材质(3Cr1NiMo,2Cr12MoV,304L,316L等),渗氮(NT)时, 硬度HV800-1000.6:司太立堆焊:厚度至少2mm,硬度硬度HRC40~45.7:Ni65:熔覆厚度1.5~2mm,硬度HRC58~62.(常用于球芯)8:Ni60:熔覆厚度1.5~2mm,硬度HRC55~58.(常用于阀座)9:2Cr13,3Cr13:调质处理,硬度HRC28~32.10:4Cr13:淬火+低温回火,硬度HRC45-50.11:416:经硬化处理,硬度HRC38左右。

12:Monel 400 的化学成分:Monel K-500 的化学成分:Monel K-500的化学成分大致与Monel400一致,差别是Monel K-500中有钛和铝,经固溶时效处理后,会析出Ni3Ti和Ni3Al沉淀相析出,硬度增加,硬度HRC35-38.小总结:0Cr17Ni4Cu4Nb,0Cr17Ni7Al,0Cr15Ni7Mo1Al,与Monel K-500经固溶时效处理后,析出Ni3(Nb,Al,Ti),形成表面强度,提高硬度,硬度HRC35-38.13:哈氏合金B,固溶热处理温度要控制在1060~1080℃之间,之后进行水冷淬火或材料厚度在1.5mm以上时可以快速空冷以获得最好的耐蚀性能。

430热处理淬火硬度hrc范围

430热处理淬火硬度hrc范围

430热处理是一种常见的金属加工工艺,主要应用于不锈钢和合金钢等金属材料的热处理过程中。

这种热处理工艺可以通过对金属材料的加热和冷却过程进行控制,改变材料的物理性能和组织结构,达到增加材料硬度和耐磨性的效果。

在430热处理过程中,淬火是其中的重要环节,其结果将决定材料的硬度。

在进行430热处理淬火硬度测试时,需要根据具体材料的成分和热处理工艺参数来确定淬火硬度的范围。

以下是关于430热处理淬火硬度hrc范围的内容:1. 材料成分对430热处理淬火硬度的影响:430不锈钢是一种铬含量较高的不锈钢材料,其主要成分包括铬、镍、硅和铁等。

在进行热处理时,不同成分的含量会对材料的淬火硬度产生影响。

一般来说,铬含量越高,材料的淬火硬度也会随之增加。

在进行430热处理淬火硬度测试时,需要考虑材料的具体成分,以确定其淬火硬度范围。

2. 热处理工艺参数对430热处理淬火硬度的影响:除了材料成分外,热处理工艺参数也是决定430热处理淬火硬度范围的重要因素。

加热温度、保温时间和冷却速度等参数都会对淬火硬度产生影响。

一般来说,通过控制热处理工艺参数,可以在一定范围内调节材料的淬火硬度,以满足不同的使用要求。

3. 淬火硬度hrc范围的确定方法:在进行430热处理淬火硬度测试时,可以采用硬度测试仪进行测试,通过对不同淬火硬度测试样品进行测试,得到一组淬火硬度数据。

然后根据测试结果,确定材料的淬火硬度范围,以便在实际生产中进行参考和应用。

430热处理淬火硬度hrc范围是一个在材料加工和生产过程中非常重要的参数,它直接影响着材料的加工性能和使用寿命。

在进行430热处理淬火硬度测试和控制时,需要对材料成分和热处理工艺参数进行合理的分析和设计,以确保材料的淬火硬度满足设计要求。

在实际生产中,确定430热处理淬火硬度hrc范围的过程需要引起高度重视,因为淬火硬度的精确范围直接关系到材料的使用性能和品质。

对于不同的材料成分及热处理工艺参数,其淬火硬度的确定方法也会有所不同。

热处理淬火hrc

热处理淬火hrc

热处理淬火hrc
热处理淬火是一种常见的金属材料加工方法,它可以使金属材料的硬度、强度和耐磨性得到显著提高。

在热处理淬火过程中,金属材料首先被加热到一定温度,然后迅速冷却,以改变其晶体结构和物理性质。

热处理淬火的硬度通常用HRC(Rockwell硬度)来表示。

HRC是一种常见的硬度测试方法,它通过在金属材料表面施加一定的压力,然后测量压力下降的深度来确定材料的硬度。

HRC值越高,表示材料越硬。

热处理淬火可以应用于各种金属材料,包括钢、铁、铜、铝等。

在钢材中,热处理淬火可以使其硬度提高到50-60 HRC,从而使其具有更好的耐磨性和强度。

在铜和铝等非铁金属中,热处理淬火可以使其硬度提高到30-40 HRC,从而使其更适合用于制造高强度零件。

热处理淬火的过程中,温度和冷却速度是非常关键的因素。

温度过高或冷却速度过慢都会导致淬火效果不佳,从而影响材料的硬度和强度。

因此,在进行热处理淬火之前,需要对材料的性质和要求进行充分的了解和分析,以确定最适合的温度和冷却速度。

热处理淬火是一种非常重要的金属材料加工方法,它可以显著提高材料的硬度、强度和耐磨性。

在实际应用中,需要根据材料的性质和要求,选择最适合的温度和冷却速度,以获得最佳的淬火效果。

40号钢淬火极限硬度

40号钢淬火极限硬度

40号钢淬火极限硬度40号钢是低碳钢中的一种,其硬度一般通过淬火工艺可以得到提高。

淬火是指将钢材加热到一定温度后迅速冷却,使其获得较高的硬度和强度。

极限硬度是指通过该工艺处理后钢材所能达到的最高硬度。

淬火过程中,钢材的组织发生变化,主要通过钢材中的碳元素来实现。

40号钢中一般含有较低的碳含量,一般在0.37%~0.44%之间。

这样的钢材在加热到淬火温度后,通过快速冷却,使钢材中的碳元素从奥氏体相转变为马氏体相。

这样的组织结构具有较高的硬度和强度,从而得到了提高。

40号钢的淬火温度一般在800℃~1000℃之间,具体的温度取决于钢材的成分和要求的强度。

在温度达到要求后,钢材迅速进入冷却介质中进行快速冷却。

冷却介质可以是水、油、盐水等,不同的介质冷却速度略有不同,对最终的硬度也会有所影响。

成功进行淬火后,40号钢的硬度会显著提高。

一般来说,40号钢的极限硬度可以达到HRC 50~55左右。

这个高硬度使得该钢材具有较好的耐磨性、抗压性和强度,广泛应用于机械制造、汽车零部件等领域。

同时,淬火后的40号钢还具有一定的韧性,不会变得过于脆化,能够在一定程度上承受冲击力。

然而,要达到极限硬度并不仅仅依靠淬火一项工艺就能实现。

除了淬火温度和冷却介质的选择,钢材的成分、加热速度、保温时间等也会对最终硬度产生影响。

此外,40号钢并非高碳钢,其内部的化学成分限制了其硬度的提高,因此在实际应用中,需要根据具体要求来选择合适的材料。

总之,40号钢通过淬火工艺可以获得较高的硬度。

通过选择适当的淬火温度和冷却介质,以及控制其他加工参数,可以使其达到HRC 50~55的硬度。

这种硬度使得40号钢广泛应用于制造业,具有良好的强度和耐磨性。

当然,淬火的工艺和参数需要根据具体要求进行调整和优化,以得到最佳的性能。

45钢淬火后硬度范围

45钢淬火后硬度范围

45钢淬火后硬度范围
45钢是一种高强度钢材,具有优异的机械性能和耐热性能,是用于制造轴承、齿轮、螺丝、机械零件等产品的理想材料。

经过45钢淬火后,其硬度范围在280-320 HBW之间,具有良好的耐磨性能、延伸率和抗拉强度。

由于45钢具有优异的机械性能,因此经过淬火后,它的硬度范围也得到了提高,硬度的大小与淬火的温度有关,淬火温度越高,硬度越高,淬火温度越低,硬度越低。

经过淬火后,45钢的硬度一般在280-320 HBW之间,硬度越高,产品的耐磨性也越高,可以满足不同的使用要求。

45钢淬火后的硬度范围广泛,硬度处于中等水平,此时钢材具有良好的耐磨性能,可以满足曲柄、螺母、齿轮、轴承等零件制造的需求。

45钢淬火后硬度范围较低,则可以用于制造金属锻件,具有抗拉强度和延伸率,是一种理想的钢材。

总之,45钢淬火后的硬度范围广泛,一般在280-320 HBW之间,具有良好的耐磨性能、抗拉强度和延伸率,是用于制造轴承、齿轮、螺丝、机械零件以及金属锻件等产品的理想材料。

45号钢淬火的最佳硬度

45号钢淬火的最佳硬度

45号钢淬火的最佳硬度
45号钢是一种常用的工业材料,广泛应用于制造零件和工具。

淬火是一种热处理工艺,通过快速冷却可使钢材达到理想的硬度和强度。

淬火过程中的最佳硬度是关键因素之一。

过低的硬度可能导致强度不足,无法满足使用要求;而过高的硬度则容易引起脆性断裂。

对于45号钢来说,最佳的淬火硬度通常在40-45 HRC(洛氏硬度)之间。

在这个范围内,钢材能够达到良好的硬度和强度,并且具有适当的韧性。

要获得最佳的淬火硬度,需要控制以下几个方面:
•淬火介质:选择合适的淬火介质可以有效控制冷却速率。

一般常用的淬火介质包括水、油和盐水等。

•淬火温度:钢材在淬火温度下达到奥氏体转变点后开始冷却。

不同的钢材有不同的转变点,需要根据具体材料来确定最佳的淬火温度。

•淬火时间:冷却时间对钢材的硬化程度也有影响。

通常情况下,淬火时间越长,硬度越高。

•淬火前的加热:钢材在淬火前需要进行加热处理,使其达到适当的温度。

加热时间和温度需要根据具体情况来确定。

•淬火后的回火:淬火后的钢材通常会存在内应力,通过回火可以缓解应力并提高韧性。

回火温度和时间也需要根据具体材料来确定。

在进行淬火处理时,务必严格遵守操作规程和安全操作要求,以确保人身安全和工艺质量。

总之,45号钢淬火的最佳硬度范围一般在40-45 HRC之间。

通过合理选择淬火介质、控制淬火温度和时间,并结合适当的加热和回火处理,可以获得理想的硬度和强度,满足不同工业应用的需求。

各种材料淬火硬度

各种材料淬火硬度

一、不锈钢440-C:美国制之优质不锈钢材, 含铬量高达16-18%。

最初被应用於外科手术刀具及船舶业, 耐蚀性及耐恴能力极强。

现更广泛应用於手制刀及优质厂制刀具。

含碳量约1%(440系分A, B, C, 及F级; C级及F级含碳量最高则较少) 经熟处理後可达HRc58之硬度。

154CM:美国制之优质不锈钢材, 铬含量达15%, 钼含量达4%; 故定名为154CM。

乃近代手制刀之一代宗师率先工性极优, 耐蚀性, 刀锋耐损性及韧性皆强, 但售价较高, 故只见被应用於手制刀具。

含碳量约%, 经热处理60~61之硬度。

ATS-34 : 日本“日立金属工业”针对美制154CM 而开发之优质不锈钢, 用料和成份与154CM 各方面之性能皆达至154CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀具钢材之一, 现已成为质厂制刀具应用之主流。

经热处理後可达HRc60~61硬度。

ATS-34:日本“日立金属工业”针对美制154CM 而开发之优质不锈钢, 用料和成份与154CM相近, 而各方面之性能4CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀具钢材之一, 现已成为手制及优质厂制刀具应经热处理後可达HRc60~61硬度。

AUS8(8A):日本“爱知制钢” 所开发之优质不锈钢材, 耐蚀性, 刀锋耐损性及韧性皆达优异水平, 多被应用於日本刀具。

AUS 钢种分为10A (含碳量约1%), 8A (含量%) 及6A (含碳量约%) 三种。

8A 经热处理後HRc58~59之D2:金属机械加工用之耐磨工具钢材D2, 属风硬钢 (Air-Hardening steel) ; 被广泛应用砍伐刀或猎刀次制量高达%, 含铬量亦高达%, 经热处理後可达HRc60之硬度, 但相对地廷展性(韧性)较弱, 耐锈能力亦不甚佳,亦难作镜面磨光处理。

Hi-Speed Tool Steel (高速工具钢):高度加工制成成之工具钢材, 含碳量高, 而含铬量则低(约4%), 故打磨钢材表面之光泽较暗, 经热处理後2之高硬度, 但耐锈性能不甚佳。

常用材料的淬火硬度

常用材料的淬火硬度
钢号
加热温度/℃
冷 却 剂
淬火后硬度(≥)/HRC
15,20(渗碳后)
780~800

59
35
870
盐水
50
45
820~850
水或盐水
50
T7~T12
770~800
水淬或水淬油冷
60
20CrMnMo(渗碳后)
840~860

55
20Cr(渗碳后)
790~820
油淬或水淬油冷
55
20CrMnTi(渗碳后)

45
50CrVA
850~870

52
CrWMn
830~850
硝盐
60
820~840

60
60Si2Mn
840~870

60
GCr15
830~850

60
GCr15SiMn
820~840

60
5CrNiMo
830~850

52
65Mn
790~820

55
3Cr2W8V
1050~11070

55
38CrMoAlA(渗氮后)
930~950

55
40Cr
840~860
油淬或水淬油冷
50
40MnVB
830~850

45
40CrMnMo
850~870

52
35CrMoSiA
880~900

45
35CrMo
830~860

45
42CrMo
840~860

各种硬度转化

各种硬度转化

各种硬度转化硬度是物质的一种基本性质,它是指物质抵抗外力的能力。

在实际生活中,我们经常需要将不同硬度的物质进行转化,以满足不同的需求。

下面,我们将按照不同的类别,介绍各种硬度转化的方法。

1. 金属硬度转化金属是一种常见的材料,它的硬度可以通过加热和冷却来进行转化。

例如,将金属加热到一定温度后,再迅速冷却,就可以使其硬度增加。

这种方法被称为淬火。

相反,将金属加热到一定温度后,缓慢冷却,就可以使其硬度降低。

这种方法被称为退火。

2. 塑料硬度转化塑料是一种常见的材料,它的硬度可以通过添加不同的添加剂来进行转化。

例如,添加增塑剂可以使塑料变得更加柔软,而添加填充剂可以使其变得更加坚硬。

此外,通过改变塑料的分子结构,也可以改变其硬度。

例如,将聚丙烯加热到一定温度后,再迅速冷却,就可以使其硬度增加。

3. 木材硬度转化木材是一种常见的材料,它的硬度可以通过不同的处理方法来进行转化。

例如,将木材加热到一定温度后,再迅速冷却,就可以使其硬度增加。

这种方法被称为热处理。

相反,将木材浸泡在水中,可以使其变得更加柔软。

此外,通过改变木材的纹理方向,也可以改变其硬度。

例如,将木材切成纵向条状,可以使其硬度增加。

4. 石材硬度转化石材是一种常见的材料,它的硬度可以通过不同的处理方法来进行转化。

例如,将石材加热到一定温度后,再迅速冷却,就可以使其硬度增加。

这种方法被称为热处理。

相反,将石材浸泡在水中,可以使其变得更加柔软。

此外,通过改变石材的纹理方向,也可以改变其硬度。

例如,将石材切成纵向条状,可以使其硬度增加。

总之,各种硬度转化方法都是为了满足不同的需求。

在实际生活中,我们需要根据不同的材料和需求,选择合适的硬度转化方法,以达到最佳效果。

各种材料热处理硬度

各种材料热处理硬度

常用金属材料热处理硬度常用金属材料热处理规范┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 880- 930 ┃空冷┃HB≤156┃┃20┃Ac3 855 ┃渗碳┃ 920- 950 ┃┃┃┃┃Ar3 835 ┃渗碳淬火┃ 860- 880 ┃水或油冷┃HRC>56 ┃┃┃Ar1 680 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB150 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃正火┃ 850- 890 ┃空冷┃HB≤185┃┃35┃Ac3 802 ┃退火┃ 840- 890 ┃炉冷┃┃┃┃Ar3 774 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 680 ┃淬火┃ 850- 890 ┃水冷┃HRC≥47┃┃┃┃回火┃ 500- 540 ┃空冷┃HB241-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃退火┃ 820- 840 ┃炉冷┃HB≤207┃┃45┃Ac3 780 ┃正火┃ 830- 870 ┃空冷┃HB≤229┃┃┃Ar3 751 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 682 ┃淬火┃ 820- 860 ┃水冷┃HRC50-60 ┃┃┃┃回火┃ 520- 560 ┃空冷┃HB228-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 900- 930 ┃空冷┃HB≤179┃┃┃Ac3 854 ┃高温回火┃ 659- 680 ┃空冷┃┃┃20Mn ┃Ar3 835 ┃┃┃┃┃┃┃Ar1 682 ┃┃┃┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 734 ┃退火┃ 830- 880 ┃炉冷┃┃┃35Mn ┃AC3 812 ┃正火┃ 850- 880 ┃空冷┃HB≤187┃┃┃Ar3 796 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 675 ┃淬火┃ 850- 880 ┃水或油冷┃HRC50-55 ┃┃┃┃回火┃ 400- 500 ┃空冷┃HB302-332 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 820- 850 ┃炉冷┃HB≤217┃┃45Mn ┃Ac3 790 ┃正火┃ 830- 860 ┃空冷┃┃┃┃Ar3 768 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 689 ┃淬火┃ 810- 840 ┃水或油冷┃HRC54-60 ┃┃┃┃回火┃根据需要回火┃水或空冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛常用金属材料热处理规范┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 725 ┃退火┃ 840- 870 ┃炉冷┃HB≤187┃┃20Mn2 ┃Ac3 844 ┃正火┃ 870- 900 ┃空冷┃┃┃┃┃高温回火┃ 650- 680 ┃空冷┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃35SiMn┃Ac1 750 ┃退火┃ 850- 870 ┃炉冷┃HB≤229┃┃┃Ac3 830 ┃正火┃ 880- 920 ┃空冷┃┃┃┃Ar3 --- ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 645 ┃淬火┃ 880- 900 ┃油冷┃HRC≥┃┃┃┃回火┃ 580- 600 ┃油冷┃HB235-277 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃42Mn2V┃Ac1 725 ┃正火┃ 860- 900 ┃空冷┃┃┃┃Ac3 770 ┃高温回火┃ 640- 680 ┃空冷┃HB≤217┃┃┃┃淬火┃ 850- 870 ┃水冷┃HRC56-58 ┃┃┃┃回火┃ 530- 670 ┃空冷┃HB362-375 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 765 ┃退火┃ 850- 870 ┃炉冷┃HB≤187┃┃30CrMn┃Ac3 838 ┃正火┃ 870- 890 ┃空冷┃┃┃┃Ar3 798 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 700 ┃淬火┃ 850- 880 ┃油或水冷┃HRC≈45┃┃┃┃回火┃ 560- 580 ┃空冷┃HB223-269 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 760 ┃退火┃ 840- 860 ┃炉冷550℃后空冷┃┃30CrMn┃AC3 830 ┃正火┃ 860- 880 ┃空冷┃HB≤217┃┃Si ┃Ar3 705 ┃高温回火┃ 630- 710 ┃空冷┃┃┃(35) ┃Ar1 670 ┃淬火┃ 860- 900 ┃油冷┃┃┃┃┃回火┃ 590- 610 ┃油或水冷┃HB269-302 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 740 ┃正火┃ 950- 970 ┃空冷┃HB156-207 ┃┃20CrMn┃Ac3 825 ┃渗碳淬火┃ 930- 950/850┃油冷┃HRC58-63 ┃┃Ti ┃Ar3 730 ┃┃┃┃芯部┃┃┃Ar1 650 ┃┃┃┃HRC30-45 ┃┃┃┃┃┃┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 766 ┃退火┃ 860- 890 ┃炉冷┃HB≤179┃┃20Cr ┃Ac3 838 ┃正火┃ 870- 900 ┃空冷┃┃┃┃Ar3 799 ┃渗碳淬火┃ 920- 950/850┃水或油冷┃HRC58-63 ┃┃┃Ar1 702 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB≤300┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 743 ┃退火┃ 825- 845 ┃炉冷┃HB≤207┃┃40Cr ┃Ac3 782 ┃正火┃ 850- 880 ┃空冷┃HB156-207 ┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 693 ┃淬火┃ 830- 860 ┃油冷┃HRC52-60 ┃┃┃┃回火┃ 540- 580 ┃油或水冷┃HB269-302 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃退火┃ 840- 850 ┃炉冷┃HB≤241┃┃40CrMn┃Ac3 780 ┃正火┃ 850- 880 ┃空冷┃HB≤321┃┃Mo ┃Ar3 - ┃高温回火┃ 660- 680 ┃空冷┃HB≤241┃┃┃Ar1 680 ┃淬火┃ 840- 860 ┃油冷┃┃┃┃┃回火┃ 670- 690 ┃水冷┃HB241-286 ┃┃┃┃正火回火┃ 680- 700 ┃空冷┃HB179-241 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 755 ┃正火┃ 860- 880 ┃空冷┃HB241-286 ┃┃35CrMo┃Ac3 800 ┃淬火┃ 850- 880 ┃水或油冷┃┃┃┃Ar3 750 ┃回火┃ 570- 590 ┃空冷┃HB235-277 ┃┃┃Ar1 695 ┃┃┃┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 800 ┃退火┃ 840- 870 ┃炉冷┃HB≤229┃┃38CrMo┃AC3 940 ┃正火┃ 930- 970 ┃空冷┃┃┃Al ┃Ar3 - ┃高温回火┃ 700- 720 ┃空冷┃┃┃┃Ar1 730 ┃淬火┃ 930- 950 ┃油或水冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃┃回火┃ 650- 670 ┃水或油冷┃HB241-277 ┃┃┃┃氮化┃ 550- 650 ┃┃HV≥850┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 727 ┃退火┃ 810- 860 ┃炉冷┃HB≤220┃┃65┃Ac3 752 ┃正火┃ 820- 860 ┃空冷┃┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 696 ┃淬火┃ 780- 830 ┃水或油冷┃┃┃┃┃回火┃ 550- 650 ┃空冷┃HB207-241 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 780- 840 ┃炉冷┃HB≤229┃┃65Mn ┃Ac3 765 ┃正火┃ 820- 860 ┃空冷┃HB≤269┃┃┃Ar3 741 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 689 ┃淬火┃ 780- 800 ┃油冷┃HRC52-60 ┃┃┃┃回火┃ 500- 540 ┃油或水冷┃HB415-444 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 755 ┃退火┃ 740- 760 ┃炉冷┃HB≤222┃┃60Si2 ┃Ac3 810 ┃正火┃ 830- 860 ┃空冷┃HB≤302┃┃Mn ┃Ar3 770 ┃高温回火┃ 640- 680 ┃空冷┃┃┃┃Ar1 700 ┃淬火┃ 840- 870 ┃油或水冷┃┃┃┃┃回火┃ 400- 450 ┃空冷┃HB387-477 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 745 ┃退火┃ 790- 810 ┃炉冷┃┃┃GCr15 ┃Ac3 900 ┃球化退火┃ 780- 790 ┃炉冷┃┃┃┃Ar3 - ┃┃(等温710-720) ┃空冷┃HB207-229 ┃┃┃Ar1 700 ┃正火┃ 900- 950 ┃空或风冷┃HB ┃┃┃┃高温回火┃ 650- 700 ┃空冷┃HB229-285 ┃┃┃┃淬火┃ 825- 850 ┃油冷┃┃┃┃┃回火┃ 150- 170 ┃空冷┃HRC61-65 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 730 ┃退火┃ 750- 770 ┃炉冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃T7┃AC3 770 ┃等温退火┃ 780- 790 ┃炉冷┃┃┃T8┃Ar3 - ┃┃(等温710-720) ┃空冷┃HB229-285 ┃┃┃Ar1 700 ┃正火┃ 790- 820 ┃空冷┃HB228-241 ┃┃┃┃高温回火┃ 650- 700 ┃空冷┃┃┃┃┃淬火┃ 800- 830 ┃水或油冷┃┃┃┃┃回火┃ 149- 160 ┃空冷┃HRC60-61 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 730 ┃退火┃ 750- 780 ┃炉冷┃┃┃T10 ┃Ac3 752 ┃等温退火┃ 620- 680 ┃炉或空冷┃HB≤197┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 696 ┃淬火┃ 770- 810 ┃水或油冷┃┃┃┃┃回火┃ 140- 160 ┃空冷┃HRC58-62 ┃┃┃┃正火┃ 800- 850 ┃空冷┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 800 ┃退火┃ 850- 870 ┃炉冷┃┃┃Cr12 ┃Ac3 ┃等温退火┃ 720- 750 ┃炉或空冷┃HB228-255 ┃┃┃Ar3 ┃淬火┃1000-1050 ┃油冷┃┃┃┃Ar1 760 ┃回火┃ 400- 450 ┃空冷┃HRC60-63 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 ┃退火┃ 850- 870 ┃炉冷┃┃┃W18Cr4┃Ac3 ┃等温退火┃ 850- 870 ┃炉冷┃┃┃V ┃Ar3 ┃┃(等温720-750) ┃炉或空冷┃HB207-255 ┃┃┃Ar1 ┃淬火┃1.预热800-850 ┃┃┃┃┃┃┃加热1260-1300 ┃油冷┃┃┃┃┃┃2.预热550-650 ┃┃┃┃┃┃┃ 800-850 ┃┃┃┃┃┃┃加热1260-1300 ┃油冷┃┃┃┃┃回火┃550-570回3次┃空冷┃HRC63-65 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 ┃退火┃ 870- 890 ┃炉冷至600℃空冷HB155┃┃2Cr13 ┃Ac3 ┃淬火┃1000-1050 ┃油或空冷┃ -180┃┃┃Ar3 - ┃回火┃ 150- 510 ┃空或油冷┃HRC35-45 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 ┃退火┃ 870- 890 ┃炉冷至600℃空冷HB155┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃3Cr13 ┃AC3 ┃淬火┃ 980-1100 ┃油或空冷┃ -180┃┃┃Ar3 ┃回火┃ 230- 540 ┃空冷┃HRC38-53 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃┃退火┃ 880- 920 ┃炉冷至600℃空冷HB207┃┃9Cr18 ┃┃淬火┃1010-1050 ┃油或空冷┃ -235┃┃┃┃回火┃ 230- 375 ┃空冷┃HRC55-59 ┃┗。

各种材料热处理硬度

各种材料热处理硬度

常用金属材料热处理硬度常用金属材料热处理规范┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 880- 930 ┃空冷┃HB≤156┃┃20┃Ac3 855 ┃渗碳┃ 920- 950 ┃┃┃┃┃Ar3 835 ┃渗碳淬火┃ 860- 880 ┃水或油冷┃HRC>56 ┃┃┃Ar1 680 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB150 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃正火┃ 850- 890 ┃空冷┃HB≤185┃┃35┃Ac3 802 ┃退火┃ 840- 890 ┃炉冷┃┃┃┃Ar3 774 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 680 ┃淬火┃ 850- 890 ┃水冷┃HRC≥47┃┃┃┃回火┃ 500- 540 ┃空冷┃HB241-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃退火┃ 820- 840 ┃炉冷┃HB≤207┃┃45┃Ac3 780 ┃正火┃ 830- 870 ┃空冷┃HB≤229┃┃┃Ar3 751 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 682 ┃淬火┃ 820- 860 ┃水冷┃HRC50-60 ┃┃┃┃回火┃ 520-560 ┃空冷┃HB228-286 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 900- 930 ┃空冷┃HB≤179┃┃┃Ac3 854 ┃高温回火┃ 659- 680 ┃空冷┃┃┃20Mn ┃Ar3 835┃┃┃┃┃┃┃Ar1 682┃┃┃┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 734 ┃退火┃ 830- 880 ┃炉冷┃┃┃35Mn ┃AC3 812 ┃正火┃ 850- 880 ┃空冷┃HB≤187┃┃┃Ar3 796 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 675 ┃淬火┃ 850- 880 ┃水或油冷┃HRC50-55 ┃┃┃┃回火┃ 400- 500 ┃空冷┃HB302-332 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 820- 850 ┃炉冷┃HB≤217┃┃45Mn ┃Ac3 790 ┃正火┃ 830- 860 ┃空冷┃┃┃┃Ar3 768 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 689 ┃淬火┃ 810- 840 ┃水或油冷┃HRC54-60 ┃┃┃┃回火┃根据需要回火┃水或空冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛常用金属材料热处理规范┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 725 ┃退火┃ 840- 870 ┃炉冷┃HB≤187┃┃20Mn2 ┃Ac3 844 ┃正火┃ 870- 900 ┃空冷┃┃┃┃┃高温回火┃ 650- 680 ┃空冷┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃35SiMn┃Ac1 750 ┃退火┃ 850- 870 ┃炉冷┃HB≤229┃┃┃Ac3 830 ┃正火┃ 880- 920 ┃空冷┃┃┃┃Ar3 --- ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 645 ┃淬火┃ 880- 900 ┃油冷┃HRC≥┃┃┃┃回火┃ 580- 600 ┃油冷┃HB235-277 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃42Mn2V┃Ac1 725 ┃正火┃ 860- 900 ┃空冷┃┃┃┃Ac3 770 ┃高温回火┃ 640- 680 ┃空冷┃HB≤217┃┃┃┃淬火┃ 850-870 ┃水冷┃HRC56-58 ┃┃┃┃回火┃ 530- 670 ┃空冷┃HB362-375 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 765 ┃退火┃ 850- 870 ┃炉冷┃HB≤187┃┃30CrMn┃Ac3 838 ┃正火┃ 870- 890 ┃空冷┃┃┃┃Ar3 798 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 700 ┃淬火┃ 850- 880 ┃油或水冷┃HRC≈45┃┃┃┃回火┃ 560- 580 ┃空冷┃HB223-269 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 760 ┃退火┃ 840- 860 ┃炉冷550℃后空冷┃┃30CrMn┃AC3 830 ┃正火┃ 860- 880 ┃空冷┃HB≤217┃┃Si ┃Ar3 705 ┃高温回火┃ 630- 710 ┃空冷┃┃┃(35) ┃Ar1 670 ┃淬火┃ 860- 900 ┃油冷┃┃┃┃┃回火┃ 590- 610 ┃油或水冷┃HB269-302 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫970 ┃空冷┃HB156-207 ┃┃20CrMn┃Ac3 825 ┃渗碳淬火┃ 930- 950/850┃油冷┃HRC58-63 ┃┃Ti ┃Ar3 730┃┃┃┃芯部┃┃┃Ar1 650┃┃┃┃HRC30-45 ┃┃┃┃┃┃┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 766 ┃退火┃ 860- 890 ┃炉冷┃HB≤179┃┃20Cr ┃Ac3 838 ┃正火┃ 870- 900 ┃空冷┃┃┃┃Ar3 799 ┃渗碳淬火┃ 920- 950/850┃水或油冷┃HRC58-63 ┃┃┃Ar1 702 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB≤300┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 743 ┃退火┃ 825- 845 ┃炉冷┃HB≤207┃┃40Cr ┃Ac3 782 ┃正火┃ 850- 880 ┃空冷┃HB156-207 ┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 693 ┃淬火┃ 830- 860 ┃油冷┃HRC52-60 ┃┃┃┃回火┃ 540- 580 ┃油或水冷┃HB269-302 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫850 ┃炉冷┃HB≤241┃┃40CrMn┃Ac3 780 ┃正火┃ 850- 880 ┃空冷┃HB≤321┃┃Mo ┃Ar3 - ┃高温回火┃ 660- 680 ┃空冷┃HB≤241┃┃┃Ar1 680 ┃淬火┃ 840- 860 ┃油冷┃┃┃┃┃回火┃ 670- 690 ┃水冷┃HB241-286 ┃┃┃┃正火回火┃ 680- 700 ┃空冷┃HB179-241 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 755 ┃正火┃ 860- 880 ┃空冷┃HB241-286 ┃┃35CrMo┃Ac3 800 ┃淬火┃ 850- 880 ┃水或油冷┃┃┃┃Ar3 750 ┃回火┃ 570- 590 ┃空冷┃HB235-277 ┃┃┃Ar1 695┃┃┃┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 800 ┃退火┃ 840- 870 ┃炉冷┃HB≤229┃┃38CrMo┃AC3 940 ┃正火┃ 930- 970 ┃空冷┃┃┃Al ┃Ar3 - ┃高温回火┃ 700- 720 ┃空冷┃┃┃┃Ar1 730 ┃淬火┃ 930- 950 ┃油或水冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫670 ┃水或油冷┃HB241-277 ┃┃┃┃氮化┃ 550- 650 ┃┃HV≥850┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 727 ┃退火┃ 810- 860 ┃炉冷┃HB≤220┃┃65┃Ac3 752 ┃正火┃ 820- 860 ┃空冷┃┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 696 ┃淬火┃ 780- 830 ┃水或油冷┃┃┃┃┃回火┃ 550- 650 ┃空冷┃HB207-241 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 780- 840 ┃炉冷┃HB≤229┃┃65Mn ┃Ac3 765 ┃正火┃ 820- 860 ┃空冷┃HB≤269┃┃┃Ar3 741 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 689 ┃淬火┃ 780- 800 ┃油冷┃HRC52-60 ┃┃┃┃回火┃ 500- 540 ┃油或水冷┃HB415-444 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 755 ┃退火┃ 740- 760 ┃炉冷┃HB≤222┃┃60Si2 ┃Ac3 810 ┃正火┃ 830- 860 ┃空冷┃HB≤302┃┃Mn ┃Ar3 770 ┃高温回火┃ 640- 680 ┃空冷┃┃┃┃Ar1 700 ┃淬火┃ 840- 870 ┃油或水冷┃┃┃┃┃回火┃ 400- 450 ┃空冷┃HB387-477 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 745 ┃退火┃ 790- 810 ┃炉冷┃┃┃GCr15 ┃Ac3 900 ┃球化退火┃ 780- 790 ┃炉冷┃┃┃┃Ar3 - ┃┃(等温710-720) ┃空冷┃HB207-229 ┃┃┃Ar1 700 ┃正火┃ 900- 950 ┃空或风冷┃HB ┃┃┃┃高温回火┃ 650- 700 ┃空冷┃HB229-285 ┃┃┃┃淬火┃ 825- 850 ┃油冷┃┃┃┃┃回火┃ 150- 170 ┃空冷┃HRC61-65 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 730 ┃退火┃ 750- 770 ┃炉冷┃┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃T7┃AC3 770 ┃等温退火┃ 780- 790 ┃炉冷┃┃┃T8┃Ar3 - ┃┃(等温710-720) ┃空冷┃HB229-285 ┃┃┃Ar1 700 ┃正火┃ 790- 820 ┃空冷┃HB228-241 ┃┃┃┃高温回火┃ 650- 700 ┃空冷┃┃┃┃┃淬火┃ 800- 830 ┃水或油冷┃┃┃┃┃回火┃ 149- 160 ┃空冷┃HRC60-61 ┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 730 ┃退火┃ 750- 780 ┃炉冷┃┃┃T10 ┃Ac3 752 ┃等温退火┃ 620- 680 ┃炉或空冷┃HB≤197┃┃┃Ar3 730 ┃高温回火┃ 650- 680 ┃空冷┃┃┃┃Ar1 696 ┃淬火┃ 770- 810 ┃水或油冷┃┃┃┃┃回火┃ 140- 160 ┃空冷┃HRC58-62 ┃┃┃┃正火┃ 800- 850 ┃空冷┃┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 800 ┃退火┃ 850- 870 ┃炉冷┃┃┃Cr12 ┃Ac3 ┃等温退火┃ 720- 750 ┃炉或空冷┃HB228-255 ┃┃┃Ar3 ┃淬火┃1000-1050 ┃油冷┃┃┃┃Ar1 760 ┃回火┃ 400-450 ┃空冷┃HRC60-63 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 ┃退火┃ 850- 870 ┃炉冷┃┃┃W18Cr4┃Ac3 ┃等温退火┃ 850- 870 ┃炉冷┃┃┃V ┃Ar3 ┃┃(等温720-750) ┃炉或空冷┃HB207-255 ┃┃┃Ar1 ┃淬火┃1.预热800-850 ┃┃┃┃┃┃┃加热1260-1300 ┃油冷┃┃┃┃┃┃2.预热550-650 ┃┃┃┃┃┃┃ 800-85 0 ┃┃┃┃┃┃┃加热1260-1300 ┃油冷┃┃┃┃┃回火┃550-570回3次┃空冷┃HRC63-65 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 ┃退火┃ 870- 890 ┃炉冷至600℃空冷HB155┃┃2Cr13 ┃Ac3 ┃淬火┃1000-1050 ┃油或空冷┃ -180┃┃┃Ar3 - ┃回火┃ 150- 510 ┃空或油冷┃HRC35-45 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 ┃退火┃ 870- 890 ┃炉冷至600℃空冷HB155┃┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃3Cr13 ┃AC3 ┃淬火┃ 980-1100 ┃油或空冷┃ -180┃┃┃Ar3 ┃回火┃ 230- 540 ┃空冷┃HRC38-53 ┃┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃┃退火┃ 880- 920 ┃炉冷至600℃空冷HB207┃┃9Cr18 ┃┃淬火┃1010-1050 ┃油或空冷┃ -235┃┃┃┃回火┃ 230- 375 ┃空冷┃HRC55-59 ┃┗。

各种材料淬火硬度

各种材料淬火硬度

一、不锈钢440-C:美国制之优质不锈钢材, 含铬量高达16-18%。

最初被应用於外科手术刀具及船舶业, 耐蚀性及耐恴能力极强。

现更广泛应用於手制刀及优质厂制刀具。

含碳量约1%(440系分A, B, C, 及F级; C级及F级含碳量最高则较少) 经熟处理後可达HRc58之硬度。

154CM:美国制之优质不锈钢材, 铬含量达15%, 钼含量达4%; 故定名为154CM。

乃近代手制刀之一代宗师R.W s 率先所采用。

加工性极优, 耐蚀性, 刀锋耐损性及韧性皆强, 但售价较高, 故只见被应用於手制刀具。

含碳量经热处理後可达HRc60~61之硬度。

ATS-34 : 日本“日立金属工业”针对美制154CM 而开发之优质不锈钢份与154CM相近, 而各方面之性能皆达至154CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀一, 现已成为手制及优质厂制刀具应用之主流。

经热处理後可达HRc60~61硬度。

ATS-34:日本“日立金属工业”针对美制154CM 而开发之优质不锈钢, 用料和成份与154CM相近, 而各方面之性能4CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀具钢材之一, 现已成为手制及优质厂制刀具应经热处理後可达HRc60~61硬度。

AUS8(8A):日本“爱知制钢” 所开发之优质不锈钢材, 耐蚀性, 刀锋耐损性及韧性皆达优异水平, 多被应用於日本制之具。

AUS 钢种分为10A (含碳量约1%), 8A (含量0.8%) 及6A (含碳量约0.6%) 三种。

8A 经热处理後HR 硬度。

D2:金属机械加工用之耐磨工具钢材D2, 属风硬钢(Air-Hardening steel) ; 被广泛应用砍伐刀或猎刀次制作高达1.5%, 含铬量亦高达11.5%, 经热处理後可达HRc60之硬度, 但相对地廷展性(韧性)较弱, 耐锈能力亦不材表面亦难作镜面磨光处理。

Hi-Speed Tool Steel (高速工具钢):高度加工制成成之工具钢材, 含碳量高, 而含铬量则低(约4%), 故打磨钢材表面之光泽较暗, 经热处理後2之高硬度, 但耐锈性能不甚佳。

各种材料热处理

各种材料热处理

各种材料热处理
【45#钢】⼀般重要零件,使⽤最⼴泛,调质硬度HRC26-32(相当于HB220-280),淬⽕硬度HRC45-50
出⼚的硬度(未热处理之前的硬度⼀般是HRC28左右,所以,调质并不能显著提⾼硬度,调质是为了提⾼材料的综合⼒学性能,强度和刚度),
如果零件只受摩擦,⽽不受很⼤的⼒,就直接淬⽕⾄HRC50-55,不要回⽕,⼀般承受交变载荷的零件⼤多采⽤"调质“处理,调质HRC28-32。

【40Cr】⼀般重要的零件,综合性能⽐45#钢好,⽐如重要的齿轮,轴等等不宜使⽤45#,就⽤40Cr,⼀般调质处理硬度HRC32-38(相当于HB301-340),淬⽕硬度HRC45-50
【SKD11】⼀般⽤在需要摩擦和撞击的结构,模具钢,⼯具钢(尺⼨稳定性好),淬⽕硬度HRC58-62
低碳钢如果想硬度⾼,先要渗碳,提⾼碳含量,再淬⽕,这样能保证表⾯硬度,同时⼼部韧性好
中碳钢不需要渗碳,直接淬⽕即可。

t10淬火硬度

t10淬火硬度

t10淬火硬度淬火硬度是金属材料淬火后的硬度指标,也是评价金属材料淬火效果的重要参数之一。

淬火硬度直接影响着金属材料的强度、耐磨性和使用寿命。

在金属材料的淬火过程中,淬火硬度的大小受到多种因素的影响,包括淬火工艺、淬火介质、淬火温度、淬火时间等。

淬火硬度的大小是由金属材料的晶粒细度、组织结构以及残余应力等因素决定的。

在淬火过程中,金属材料的晶粒会发生变化,晶粒细化可以提高材料的硬度。

淬火时,金属材料的组织结构也会发生变化,形成马氏体、珠光体等组织,这些组织的形成对硬度也有着重要的影响。

此外,淬火过程中产生的残余应力会导致金属材料的硬度增加。

淬火硬度的测试方法通常采用洛氏硬度计或布氏硬度计等硬度测试仪器进行测试。

在测试淬火硬度时,需要选择合适的测试方法和测试点,以确保测试结果的准确性。

淬火硬度的测试结果可以通过硬度值来表示,通常以HRC、HRA、HRB等硬度标准来表示淬火硬度的大小。

在金属材料的淬火工艺中,控制淬火硬度的大小是非常重要的。

合理的淬火工艺可以确保金属材料的硬度达到设计要求,提高材料的使用性能。

淬火硬度的大小对金属材料的性能有着重要的影响,因此在金属材料的淬火工艺中,需要严格控制淬火硬度的大小,以确保金属材料的质量。

总的来说,淬火硬度是金属材料淬火后的硬度指标,直接影响着金属材料的性能。

淬火硬度的大小受多种因素的影响,包括淬火工艺、淬火介质、淬火温度、淬火时间等。

在金属材料的淬火工艺中,需要合理控制淬火硬度的大小,以确保金属材料的硬度达到设计要求,提高材料的使用性能。

淬火硬度的测试方法通常采用硬度测试仪器进行测试,测试结果以硬度值的形式表示。

淬火硬度的大小对金属材料的性能有着重要的影响,因此在金属材料的淬火工艺中,需要严格控制淬火硬度的大小,以确保金属材料的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、不锈钢440-C:美国制之优质不锈钢材, 含铬量高达16-18%。

最初被应用於外科手术刀具及船舶业, 耐蚀性及耐恴能力极强。

现更广泛应用於手制刀及优质厂制刀具。

含碳量约1%(440系分A, B, C, 及F级; C级及F级含碳量最高则较少) 经熟处理後可达HRc58之硬度。

154CM:美国制之优质不锈钢材, 铬含量达15%, 钼含量达4%; 故定名为154CM。

乃近代手制刀之一代宗师R.W s 率先所采用。

加工性极优, 耐蚀性, 刀锋耐损性及韧性皆强, 但售价较高, 故只见被应用於手制刀具。

含碳量经热处理後可达HRc60~61之硬度。

ATS-34 : 日本“日立金属工业”针对美制154CM 而开发之优质不锈钢份与154CM相近, 而各方面之性能皆达至154CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀一, 现已成为手制及优质厂制刀具应用之主流。

经热处理後可达HRc60~61硬度。

ATS-34:日本“日立金属工业”针对美制154CM 而开发之优质不锈钢, 用料和成份与154CM相近, 而各方面之性能4CM之标准, 且犹有过之, 但价格则较廉, 被业内认定为最佳刀具钢材之一, 现已成为手制及优质厂制刀具应经热处理後可达HRc60~61硬度。

AUS8(8A):日本“爱知制钢” 所开发之优质不锈钢材, 耐蚀性, 刀锋耐损性及韧性皆达优异水平, 多被应用於日本制之具。

AUS 钢种分为10A (含碳量约1%), 8A (含量0.8%) 及6A (含碳量约0.6%) 三种。

8A 经热处理後HR 硬度。

D2:金属机械加工用之耐磨工具钢材D2, 属风硬钢(Air-Hardening steel) ; 被广泛应用砍伐刀或猎刀次制作达1.5%, 含铬量亦高达11.5%, 经热处理後可达HRc60之硬度, 但相对地廷展性(韧性)较弱, 耐锈能力亦不甚面亦难作镜面磨光处理。

Hi-Speed Tool Steel (高速工具钢):高度加工制成成之工具钢材, 含碳量高, 而含铬量则低(约4%), 故打磨钢材表面之光泽较暗, 经热处理後2之高硬度, 但耐锈性能不甚佳。

Cowry X(RT-6):日本大同特殊纲(株)於1993年开发之超级粉末系合金钢材, 为近代日本冶金技术的新突破, 现已被日本刀於大型砍伐刀具, 钢材含碳量高达3%, 经热处理後可得HRc67之高硬度。

Cowry Y(CP-4):日本大同特殊钢(株) 於1993年开发之优质粉末系合金钢材, 含碳量达1.2%, 更罕有地混入金属元素"钶经热处理後可达HRc63之高硬度, 却仍保有极佳之延展性能。

A-2:金属加工用之高韧性耐磨工具钢材A-2, 属风硬钢, 含碳量颇高, 约1%,经热处理後可达HRc57之硬度, 5%, 经打磨後钢材表面光泽较暗, 耐蚀性优, 延展性(极强), 刀锋之耐损性亦佳。

VG10:日本“武生特制钢” 之「V金10号」不锈钢材, 乃「V金」, 系钢材之最优级别, 含碳量约1%, 含钼1.2%经热处理後可达HRc60-62之硬度。

VG-10加工性优, 韧性及耐蚀性皆强, 多被应用於日制之优质刀具。

BG-42:极优质之不锈钢材, 含碳量1.15%, 含钒量则高达1.20%; 故钢材组织微粒细密, 经热处理後可达HRc60加工性优, 耐蚀力极强, 韧性亦佳。

BG-42最初被应用於航天工业, 作为制造滑轮及机轴等之材料, 因价格颇业则多被应用於刀匠之手制刀具。

SANDVIK:SANDVIK 公司是北欧制钢及五金工业之翘楚, 120C不锈钢材乃SANDVIK 之优良钢种之一, 含碳量约量约14%, 经热处理後可达HRc56-58 之硬度, 加工性优, 北欧出产之名厂刀具多以SANDVIK 之钢材制作。

1095:高碳钢中最优质者莫过於1095, 其含碳量达1.03%, 经热处理後可达HRc58-60之硬度, 韧性十分好, 但被应用於传统之欧洲式猎刀, 大型砍伐刀及军用刀如二次大战时美国“KA-BAR”军刀便是以1095作为刀身材二、碳合金钢(非不锈钢)这一类钢材是通常用于锻造的钢材。

其实不锈钢也是可以锻造的(象Sean McWilliams 就锻造不锈钢), 但另外,同一块碳钢可以用经由分段冶炼方法来获得非常坚硬的刃端和坚韧而具弹性的背端,而不锈钢不可以这当然,在不同程度上碳钢比不锈钢容易生锈,也比使用不锈钢风险大-- 但我相信,只要热处理方法正确,下面有的钢材都相当不错。

在AISI 钢材命名系统中,10xx 是碳钢,其他的则是合金钢,例如,50xx 系列是铬钢命名系统中,带有字符标示的(例如, W-2, A-2) 是工具钢。

另外还有ASM 命名系统,但它在刀具界中很少所以在这里我们可以忽略它。

通常在钢材名称中的最后一个数字即为该种钢材的含碳量,如1095 约含0.95% 100 约含1.0% 的碳,而5160 则约含0.60% 的碳。

---------------------O-1----------------------------------O-1这是一种应用得很广泛的优秀钢材,用作刃材可加工出非常坚韧和可深度打磨的刀刃,但它容易生锈。

Randa ad Dog都用0-1。

O-1 : 油硬级(Oil-Hardening types)之工具钢材最广泛被使用, 而其中最佳者是O-1型, 其高锰伴同铬与钨可能, 使钢材可不需剧烈之水淬(代之以嵹鵐的油淬) 也能硬化至高硬度(HRc62)水平。

O-1钢之加工性佳, 但韧则较弱。

美国着名刀匠Randall便多以O-1工具钢作其刀身之材料。

0-1可能是用来做刀最容易的简单型合金它制造的刀锋完全可以很好地胜任日常的用途;而且热处理很容易。

还有呢?嗯,大师Cooper 使用这种钢材伙儿都很喜欢他的刀,因为够结实。

还有,一位最杰出的刀匠曾经说过,0-1如果处理得好的话可以砍断任何一革;而且没人反驳他。

0-1刀锋保持力很强。

除非你运气不好遇到钢材中有瑕疵,一般来说0-1都能够被打磨就算你不怎么会热处理,你也可以用0-1来反复练习,只要你不把它熔掉。

而且,它很坚韧,你可以放心打磨---------------------0-6-----------------------------------0-60-6 是仅次于0-1 的容易热处理的钢材,但是打磨它绝对是个噩梦。

非常完美的晶状结构和硬石磨粒子组成了坚韧耐磨的钢材。

0-6的刀胚料都要经过高温碾压处理和精细打磨,高温碾压处理的价格还算合理。

0-6胚料有近似桔红色的光泽,非常坚韧,在打磨时这一点更显著;用它做出来的刀锋保持性出奇地好,甚至胜过大马士---------------------W-1-----------------------------------W-1,W-2,和10--系列W-1,W-2,和10--系列(从1045到1095)等等都是构成非常简单的钢材,而且都只经过很浅的淬水过程,常被用来制作刀刃硬度分层次变化的刀具,比如传统日本刀。

这类钢材最显著的特征是坚韧,所以用它们制造刀、弹簧和锉刀等产品。

适合用打磨带来打磨。

用作刀锋的话,1045勉强可用,1060不错,1084更好,10和W-2就很出色了。

W-1 和W-2 常常被称为O-F(Old-File 老锉刀)。

这个系列中常见到含碳量过高的钢为太硬,所以无法做成好刀。

W-2这种钢材由于含有0.2%的钒,因此可用于加工相当坚韧和可打磨的刀刃。

大部分锉刀都用W-1,一种与W-2钢材,只是W-1不含钒。

---------------------10-系列------------------------------------10-系列-- 1095 (1084, 1070, 1060, 1050, 等等)在刀具业中,1095是被用得最广泛的10-系列钢材。

按从1095 - 1050 排序,总地来说,含碳量从高到低打磨度也从高到低,但坚韧性却从低到高到最高。

同样的,按从1060 - 1050 排序通常适应于制剑业。

而对095是一种很“标准”的碳钢材料,性能良好而且成本不贵,具有适当的坚韧度和打磨度。

这是一种较单纯的钢锈,仅含有两种合金成分:0.95%的碳和0.4%的锰。

KABAR系列通常使用1095,再加上黑色涂层。

-----------------------碳V-------------------------------碳V碳V 是一个Cold Steel (冷钢公司)专用的术语,它并不一定是指某种特殊的钢材,确切地说,它指Cold的任何一种钢材,代表着他们不断选用不同钢材来制造刀具的历程。

以我之见,碳V 的性能大致在1095系系列之间,抗锈能力和O-1 差不多。

我曾听人说碳V就是O-1或1095,现在我知道它们当然是不同的。

很多坚持说它是0170-6,而有rec.knives的读者作过粗略实验后,好象指出它是50100-B,其实50100-B 和01一种钢材(见下文)。

这就是今天的碳V的情况。

------------------------0170-6-------------------------------0170-6 和50100-B同一种钢材却有不同的名称:0170-6 是炼钢业的叫法,而50100-B 是AISI 的命名。

这是一种很不错的铬-钒象O-1,但比0-1便宜得多。

刚去世的Blackjack 曾用O170-6制造过一些刀。

碳V 可能就是0170-6。

50是52100,但铬含量只有52100的1/3。

而50100-B中的B 表示这种钢材加入了钒,是铬-钒钢。

------------------------A-2------------------------------A-2A-2是一种非常优秀的压缩钢材,以很好的坚韧性和打磨度而著名。

因为是压缩钢,所以不能指望它可以进行突出的坚韧性使其常常作为生产战斗刀具的首选。

Chris Reeve 和Phil Hartsfield 都采用A-2,而Blackjac 也是用的A-2。

A-2 是一种非常特殊的钢材,抗磨损能力特别强,并且有很好的抗退火能力和抗变形能力。

打磨起来比0-1 更也没到很极端的程度。

因为钢材中加有5%铬的缘故,所以锯料过程比较艰难。

它的打磨效果非常光整漂亮,难疵。

Phil Hartsfield 发现这种钢材的刀锋切割能力好得令人难以置信,而且弹性很好。

其他几种A- 系列钢材用来做刀刃。

金属加工用之高韧性耐磨工具钢材A-2, 属风硬钢, 含碳量颇高, 约1%,经热处理後可达HRc57之硬度, 铬含经打磨後钢材表面光泽较暗, 耐蚀性优, 延展性(极强), 刀锋之耐损性亦佳。

相关文档
最新文档