深圳2016中考模拟01(含答案)

合集下载

广东省深圳市光明区2024届中考英语最后一模试卷含答案

广东省深圳市光明区2024届中考英语最后一模试卷含答案

广东省深圳市光明区2024届中考英语最后一模试卷含答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

Ⅰ. 单项选择1、Please turn off the TV. Your father _______ in the bedroom.A.sleeps B.slept C.is sleeping D.was sleeping2、--- It’s raining outside. Where’s my umbrella? ---Oh, Tom ____________.A.takes it away B.took it away C.has taken it away D.has taken away it3、I went shopping ________the rain.A.because B.although C.in spite of D.so4、I ____ to the cinema. Would you like to come with me?A.go B.am goingC.have gone D.went5、Which is the sentence pattern of “I enjoy reading a lot .”A.S +V +O B.S + V +IO +DO C.S+V D.S+V +P6、Ben is a hard-working writer. He wrote his ________ novel when he was ________ years old.A.fifth; fifty B.fifth; fiftieth C.five; fifty D.five: fiftieth7、A new study from a University found that 88 percent of people ______ make New Year’s resolutions failed. A.whose B.who C.which D.whom8、Bob’s fir st book was by four book companies, but he didn’t lose heart.A.taken down B.come down C.turned down D.written down9、–– Look at the young man in yellow. Is it Mr. Green?–– No, it ______be him. He is wearing a green coat today.A.mustn’t B.needn’t C.can’t10、I will do what I can ____________ whenever it is necessary.A.help you B.helping you C.to help you D.helps youⅡ. 完形填空11、Some students cheat because they’re busy or lazy and they want to get good grades without 1 the time studying. Other stu dents might feel that they can’t 2 the test without cheating. Even when there seems to be a “good reason” for cheating,it isn’t a good idea..A student who thinks cheating is the only way to pass a test 3 to talk with the teacher and his or her parents so they can find some better ways together.Talking about these problems and 4 them out will help feel better than cheating.If a student gets caught cheating, the teacher may give a “zero” on the test, send him or her to the head teacher’s5 , and call his or her parents. Worse than the6 grade may be the feeling of having disappointed thosepeople,like parents and teachers. A parent may worry that you are not an 7 person and a teacher might watch you more closely the next t ime you’re taking a test.There are plenty of reasons why a kid shouldn’t cheat, but some students have already cheated. If that’s you, it’s8 too late to stop cheating. Cheating can become a 9 , but a student is always able to act better and make better 10 . It might help to talk the problem over with a parent, teacher, or friend.1.A.taking B.spending C.costing D.using2.A.write B.exercise C.pass D.expect3.A.decides B.hopes C.refuses D.needs4.A.breaking B.dreaming C.missing D.working5.A.office B.school C.seat D.conversation6.A.natural B.dangerous C.anxious D.bad7.A.outside B.boring C.interesting D.honest8.A.always B.never C.once D.neither9.A.menu B.medicine C.habit D.match10.A.education B.decisions C.challenges D.risksⅢ. 语法填空12、IV.语法填空:用所给单词的适当形式填空,未提供单词的根据上下文填入适当的词。

中考综合模拟测试《数学试卷》含答案解析

中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。

初中语文中考复习 专题01 字音字形-5年(2016-2020)中考1年模拟语文试题分项详解(全国通

初中语文中考复习 专题01 字音字形-5年(2016-2020)中考1年模拟语文试题分项详解(全国通

专题01 字音字形5年中考【2020年】1.【2020年中考广东卷】下列词语中,每对加点字的读音相同的一项是()A.粗犷./心旷.神怡斗.篷/气冲斗.牛B.着.落/不着.痕迹默契./锲.而不舍C.瞭.望/眼花缭.乱拮据./引经据.典D.应和./随声附和.炫.耀/目眩.神迷【答案】D【解析】A.guǎng/kuàng dǒu/dǒu;B.zhuó/zhuó qì/qiè;C.liào/liào jū/jù;D.hè/ hèxuàn/xuàn;故选D。

2.【2020年中考广东卷】下列词语中,没有..错别字的一项是()A.云霄娇揉造作分歧重蹈复辙B.秀颀吹毛求疵遏制名副其实C.蔓延消声匿迹盘桓自出心裁D.遒劲分崩离析漩窝不屑置辨【答案】B【解析】A.娇揉造作——矫揉造作、重蹈复辙——重蹈覆辙;C.消声匿迹——销声匿迹;D.不屑置辨——不屑置辩;故选B。

3.【2020年中考天津卷】下面各组词语中加点字的注音,完全正确的一项是()A.俯瞰.(kàn)抉.择(jué)矫.揉造作(jiāo)B.钦.佩(qīn)恪.守(gè)心有灵犀.(xī)C.诧.异(chà)飘逸.(yì)络.绎不绝(luò)D.热忱.(zhěn)潮汛.(xùn)随声附和.(hè)【答案】C【解析】A.矫揉造作(jiǎo);B.恪守(kè);D.热忱(chén);故选C。

4.【2020年中考江西卷】下列字形和加点字注音全部正确的一项是()A.吞噬.(shì)伫蓄强.词夺理(qiáng)顿开茅塞B.撺.掇(chuān)统筹锲.而不舍(qiè)不折不饶C.娉.婷(pīn)闲暇惟妙惟肖.(xiào)轻歌漫舞D.睥.睨(pì)浩瀚人迹罕.至(hǎn)销声匿迹【答案】D【解析】A.有误,伫——贮,强.词夺理(qiǎng);B.有误,撺.掇(cuān),饶——挠;C.有误,娉.婷(pīng),漫——曼;故选D。

专题01 完形填空(含答案解析)---广东省2017-2021年5年中考1年模拟英语试题分项汇编

专题01 完形填空(含答案解析)---广东省2017-2021年5年中考1年模拟英语试题分项汇编

5年(2017-2021)中考1年模拟英语试题分项详解(广东专用)专题01 完形填空(解析版)一、2021年一、语法选择通读下面短文,掌握其大意,然后按照句子结构的语法和上下文连贯的要求,从每题所给的四个选项中选出一个最佳答案并将答题卡上对应题目所选的选项涂黑。

Last month, a new bridge was first opened to the public. It’s ________ hanging bridge for walkers in the world. Guess how long ________. It is 516 meters-over five football fields long.Workers started to build the bridge in May, 2018. ________ cost $2.8 million and took over two years to complete. The bridge runs ________ two mountains. At its highest point, it is 175 meters off the ground. Far, far below is a big rushing river. Along the river, there is ________ eight-kilometer-long wooden walkway. People could enjoy the scenery (风景) and watch ________ there.Now the city is hoping that the bridge ________ lots of tourists to the area. The website for the bridge describes the walk across the bridge as “the most exciting 510 meters of your life.” Many tourists, they believe will come ________ the fantastic experience of walking across.Some people ________ to check out the bridge before the opening. Jerry was one of them. He said ________, “I was a little afraid, but there is no other bridge like this one in the world, it was so worth it.”1.A.longer B.the longer C.longest D.the longest2.A.it is B.is it C.it was D.was it3.A.It B.Its C.They D.Theirs4.A.at B.under C.among D.between5.A./B.a C.an D.the6.A.bird B.birds C.bird’s D.birds’7.A.brought B.will bring C.is bringing D.was bringing8.A.enjoy B.enjoyed C.enjoying D.to enjoy9.A.are inviting B.are invited C.were invited D.were inviting10.A.excite B.excited C.excitedly D.excitement【答案】1.D 2.A 3.A 4.D 5.C 6.B 7.B 8.D 9.C 10.C【分析】本文主要介绍了世界上最长的徒步吊桥的相关情况,包括它的长度,在这上面可以欣赏的美景等内容。

广东省 深圳市 冲刺2024年中考物理真题重组卷01(深圳专用)(含答案)

广东省 深圳市 冲刺2024年中考物理真题重组卷01(深圳专用)(含答案)

冲刺2024年中考物理真题重组卷01(深圳专用)姓名:__________________班级:______________ 得分:_________________(考试时间:60分钟 试卷满分:70分)注意事项:1.本试卷共8页,六大题,19小题,满分70分,考试时间60分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上;答在试卷上的答案无效。

3.考试结束后,将本试卷和答题卡一并交回。

4. 全卷取g=10N/kg ,水的密度ρ=1.0×10³kg/m ³。

一、选择题(本题共 7小题,每小题2分,共14分.每小题只有一个选项符合题目要求。

)1.(2023·内蒙古呼和浩特·中考真题)我们常以生活中的某些常识为“尺”进行估测,下列估测最接近实际的是( )A .初三学生平均身高约为1mB .一颗鸡蛋的质量约为1gC .人对50m 外的高山喊一声,从发声到听到回声所用的时间约为1sD .初三学生大拇指指甲的面积约为2.(2023·广东深圳·中考真题)下列说法正确的是( )A .在学校内禁止鸣笛,这是在声音的传播过程中减弱噪音B .响铃声音大是因为音调高C .校内广播属于信息传播D .同学们“唰唰”写字的声音是次声波3.(2023·湖南娄底·中考真题)下列关于实验的叙述正确的是( )A.图甲中,抽出玻璃板后观察到的现象能说明分子间存在着引力21cmB.图乙中,水沸腾后软木塞被推出,软木塞的内能转化为它的机械能C.图丙中,把玻璃板拉出水面时弹簧测力计示数会变大,是大气压力的作用D.图丁中,将瓶塞弹出时,瓶内气体内能减少4.(2023·青海西宁·中考真题)两千多年前,我国古代思想家墨子就在《墨经》中论述了小孔成像等光学现象,下列光现象中与小孔成像原理相同的是( )A.海市蜃楼B.桥在水中的倒影C.用放大镜看报纸D.路灯下的影子5.(2023·青海西宁·中考真题)2023年5月,跳水世界杯蒙特利尔站女子单人10米跳台决赛上,16岁的全红婵延续预赛的完美发挥,以458.20分夺得冠军。

中考专题 九年级语文理解性默写综合题01(含答案)

中考专题 九年级语文理解性默写综合题01(含答案)

九年级语文理解性默写综合题01一、诗歌鉴赏1.江城子·密州出猎苏轼老夫聊发少年狂,左牵黄,右擎苍,锦帽貂裘,千骑卷平岗。

为报倾城随太守,亲射虎,看孙郎。

酒酣胸胆尚开张,鬓微霜,又何妨!持节云中,何日遣冯唐?会挽雕弓如满月,西北望,射天狼。

(1)词的上阕写极其壮观,使人有亲临其境之感;下阕杀敌卫国的豪情壮志跃然纸上。

(2)在下阙中作者运用两个典故,表这了怎样的思想感情2.阅读下面一首词,回答后面的问题。

武汉瘟神,晓袭江城,夜犯北京。

又嚣张尘上,随人潜入,全民告急,①。

测热查巡,杀消病毒,不见硝烟比炮鸣。

正春节,听燕声淒切,岁首寒星。

中南海里灯明。

夜难寐令军医出征。

看白衣天使,银装素裹,爱心涌动,舍已挟生。

九域多方,联屯除孽,②。

无所惧,隔离肺炎菌,明日相迎。

(1)根据这首词的形式,可以知道其词牌名称是。

(2)上阕和下阕各有一句省略,请根据该词牌知识,从下面选项中选出填入横线处的句子。

A.闭户又疏朋B.闭户疏朋C.度过难关一定赢D.度过难关定赢①②名著阅读。

大堰河,我是吃了你的奶而长大了的你的儿子,我敬你爱你!3.上面语段出自诗歌《》,作者(人名),原名,该诗选自诗集《》。

4.写出第(1)问中所填的诗集中对你影响最深的三篇作品。

5.阅读下面小诗回答问题:我们都是自然的婴孩,卧在宇宙的摇篮里。

诗句出自创作的,这两句诗反映该作品方面的内容。

6.《山坡羊·潼关怀古》中写人驻远望、感慨横生句子是:。

阅读下面诗文,完成问题。

[甲]竹石咬定青山不放松,立根原在破岩中。

千磨万击还坚劲,任尔东西南北风。

[乙]愚公移山(节选)太行、王屋二山,方七百里,高万仞。

本在冀州之南,河阳之北。

……河曲智叟笑而止之曰:“甚矣,汝之不惠!以残年余力,曾不能毁山之一毛,其如土石何?”北山愚公长息曰:“汝心之固,固不可彻,曾不若孀妻弱子。

虽我之死,有子存焉。

子又生孙,孙又生子;子又有子,子又有孙;子子孙孙无穷匮也,而山不加增,何苦而不平?”河曲智叟亡以应。

2023年中考物理第一模拟考试卷01(解析版)

2023年中考物理第一模拟考试卷01(解析版)

2023年中考第一模拟考试卷01(解析版)初中物理(考试时间:90分钟试卷满分:100分)第Ⅰ卷选择题一.选择题(本题共16小题,每小题2分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,某校八年级同学正在举行升旗仪式。

由图及日常生活经验,可以推断,该校旗杆的高度约为()A.4m B.7m C.10m D.12m【答案】B。

【解答】解:中学生的身高在170cm左右,由图知,旗杆的高度接近中学生身高的4倍,所以在7m左右,故B正确,ACD错误。

故选:B。

2.“熄灯一小时,低碳你我行”。

熄灯后,小亮利用黑暗的环境,用手电筒做了有趣的物理实验——手影。

下列成语描述的光学现象中,与“手影”形成原理相同的是()A.杯弓蛇影B.立竿见影C.镜花水月D.海市蜃楼【答案】B。

【解答】解:“手影”形成原理是光在同种均匀介质中沿直线传播;A、杯弓蛇影,属于平面镜成像,是由光的反射形成的,故A错误;B、立竿见影,是由光的直线传播形成的,故B正确;C、镜花水月,属于平面镜成像,是由光的反射形成的,故C错误;D、海市蜃楼,是由光的折射形成的,故D错误。

故选:B。

3.如图甲是0~10℃范围内水的密度随温度变化的图象。

图乙是用玻璃瓶、水和细管制作的一个“水温度计”。

用此“水温度计”测量温度,下列说法正确的是()A.当水的密度为0.9999g/cm3时,其温度一定为1℃B.温度为4℃时“水温度计”中水的体积最大C.温度从0℃上升至10℃过程中,“水温度计”中水的质量先变大后变小D.温度从0℃上升至10℃过程中,“水温度计”细管中的水柱先降低后升高【答案】D。

【解答】解:A、当水的密度为0.9999g/cm3时,其温度不一定为1℃,故A错误。

B、温度为4℃时“水温度计”中水的密度最大,体积最小,故B错误。

C、温度从0℃上升至10℃过程中,“水温度计”中水的质量不变,故C错误。

D、温度从0℃上升至10℃过程中,水的密度先变大,然后变小,故“水温度计”细管中的水柱先降低后升高,故D正确。

2024年中考数学临考押题卷01(广东深圳卷)(解析版)-备战2024年中考数学临考题号押题

2024年中考数学临考押题卷01(广东深圳卷)(解析版)-备战2024年中考数学临考题号押题

2024年中考数学临考押题卷01(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题有四个选项,其中只有一项是正确的.)1.下列各数中,相反数等于15-的数是()A .5B .5-C .15-D .15【答案】D【分析】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.根据相反数的意义,只有符号不同的数为相反数,即可求解.【详解】解:相反数等于15-的是15,故选:D .2.深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册,其中800万用科学记数法表示为()A .2810⨯B .5810⨯C .6810⨯D .70.810⨯【答案】C【分析】本题考查科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,解题关键是确定a 和n .根据科学记数法定义进行表示即可得到答案.【详解】解:∵800万8000000=,∴科学记数法表示为:68.010⨯,故选:C .3.《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A .武汉地铁B .重庆地铁C .成都地铁D .深圳地铁【答案】D【分析】本题考查中心对称图形,把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可判断.【详解】解:A 、该图案不是中心对称图形,故A 不符合题意;B 、该图案不是中心对称图形,故B 不符合题意;C 、该图案不是中心对称图形,故C 不符合题意;D 、图形是中心对称图形,故D 符合题意.故选:D .4.“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A .80和81B .81和80C .80和85D .85和80【答案】A【分析】本题考查了众数和中位数的定义,出现次数最多的数为众数,以及把数据排序(小到大或大到小)后,位于中间位置的数为中位数(当中间位置为两个数时,取它们的平均数),据此即可作答.【详解】解:80出现次数为2,是最多的,故众数是80;排序后:78,80,80,82,85,90.位于中间位置为:()18082812⨯+=∴这组数据的众数和中位数分别为80和81.故选:A5.下列运算正确的是()A .2523a a a -=B .236a a a ⋅=C .()2211b b +=+D .()3328a a -=-【答案】D【分析】本题考查了整式的运算,根据合并同类项、同底数幂的乘法、积的乘方运算法则、完全平方公式分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:A .523a a a -=,该选项错误,不合题意;B .235a a a ⋅=,该选项错误,不合题意;C .()22121b b b +=++,该选项错误,不合题意;D .()3328a a -=-,该选项正确,符合题意;故选:D .6.某一时刻在阳光照射下,广场上的护栏及其影子如图1所示,将护栏拐角处在地面上的部分影子抽象成图2,已知22MAD ∠=︒,23FCN ∠=︒,则ABC ∠的大小为()A .44︒B .45︒C .46︒D .47︒【答案】B【分析】本题考查平行投影,熟练掌握平行投影的性质是解题的关键.根据平行线的性质及角的和差即可求得.【详解】解:∵某一时刻在阳光照射下,AD BE FC ∥∥,且22MAD ∠=︒,23FCN ∠=︒,∴22MAD ABE ∠=∠=︒,23EBC FCN ∠=∠=︒,∴45ABC ABE EBC ∠=∠+∠=︒.故选:B .7.下图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.设共有银子x 两,共有y 人,则所列方程(组)错误的是()隔壁听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.《算法统宗》注:明代时1斤=16两,故有“半斤八两”这个成语A .7498y y +=-B .4879x x -+=C .7498y x y x =-⎧⎨=+⎩D .7498y x y x=+⎧⎨-=⎩【答案】D【分析】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.根据“如果每人分七两,则剩余四两;如果每人分九,则还差八两”,即可列出关于x 或y 的一元一次方程,此题得解.【详解】解:∵如果每人分七两,则剩余四两;如果每人分九,则还差八两.∴7498y y +=-或4879x x -+=或7498y x y x =-⎧⎨=+⎩.故选:D .8.榫卯是古代中国建筑、家具及其他器械的主要结构方式.如图,在某燕尾榫中,榫槽的横截面ABCD 是梯形,其中AD BC ∥,AB DC =,燕尾角B α∠=,外口宽AD a =,榫槽深度是b ,则它的里口宽BC 为()A .tan ba α+B .2tan ba α+C .tan b a α+D .2tan b aα+【答案】B【分析】本题考查了解直角三角形的应用,解直角三角形求出BE CF 、,再根据BC BE EF FC =++即可求解,正确作出辅助线构造直角三角形是解题的关键.【详解】解:过点A D ,分别作BC 的垂线段,垂足分别为E F 、,连接AD ,则90AEB AEF DFC DFE ∠=∠=∠=∠=︒,如图,在Rt AEB 中,tan tan AE bBE ABC α==∠,在Rt DFC △,tan tan DF bCF DCB α==∠,∵AD BC ∥,90AEF DFE ∠=∠=︒,∴90AEF DFE EAD FDA ∠=∠=∠=∠=︒,∴四边形AEFD 是矩形,∴EF AD a ==,∴2tan tan tan b b bBC BE EF FC a a ααα=++=++=+,故选:B .9.如图,在菱形ABCD 中,60ABC ∠=︒,E 是对角线AC 上一点,连接,作120BEF ∠=︒交CD 边于点F ,若12AE EC =,则DF FC的值为()A 233B .103C .43D .54【答案】D【分析】本题考查相似三角形的判定和性质,菱形的性质,等边三角形的判定和性质,由菱形的性质推出AB BC CD AD ===,60D ABC ∠=∠=︒,判定ABC ,ACD 是等边三角形,得到60BCE ACD ∠=∠=︒,BC AC =,求出18060120CBE BEC ∠+∠=︒-︒=︒,而120CEF BEC ∠+∠=︒,得到CEF CBE ∠=∠,即可证明CEF CBE ∽△△,推出::CF CE CE BC =,令AE x =,则2EC x =,得出43CF x =,得到45333DF x x x =-=,即可求出答案.【详解】解:∵四边形ABCD 是菱形,∴AB BC CD AD ===,60D ABC ∠=∠=︒,∴ABC ,ACD 是等边三角形,∴60BCE ACD ∠=∠=︒,BC AC =,∴18060120CBE BEC ∠+∠=︒-︒=︒,∵120BEF ∠=︒,∴120CEF BEC ∠+∠=︒,∴CEF CBE ∠=∠,∵ECF BCE ∠=∠,∴CEF CBE ∽△△,∴::CF CE CE BC =,∵12AE EC =,∴令AE x =,则2EC x =,∴23AC x x x =+=,∴3BC AC x ==,∴:22:3CF x x x =,∴43CF x =,∴45333DF x x x =-=,∴54DF FC =.故选:D .10.如图(a ),A ,B 是⊙O 上两定点,90AOB ∠=︒,圆上一动点P 从点B 出发,沿逆时针方向匀速运动到点A ,运动时间是()s x ,线段AP 的长度是()cm y .图(b )是y 随x 变化的关系图象,其中图象与x 轴交点的横坐标记为m ,则m 的值是()A .8B .6C .42D .143【答案】B【分析】本题考查了动点问题的函数图形,合理分析动点P 的运动时间是解题关键.根据AP 最长时经过的路程所用的运动时间,求出总路程所用的时间是之前的三倍,即可解答.【详解】解:如图,当点P 运动到PA 过圆心O ,即PA 为直径时,AP 最长,由图(b )得,AP 最长时为6,此时2x =,90AOB ∠=︒Q ,90POB ∴∠=︒,∴此时点P 路程为90度的弧,点P 从点B 运动到点A 的弧度为270度,∴运动时间为236⨯=,故选:B .第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分.)11.分解因式:3312m m -+=.【答案】3(2)(2)m m m -+-【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.先提取公因式,再用平方差公式因式分解,即得答案.【详解】323123(4)3(2)(2)m m m m m m m -+=--=-+-.故答案为:3(2)(2)m m m -+-.12.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成如图所示的4张无差别的卡片A ,B ,C ,D .将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是物理变化的概率是.A 冰化成水B 酒精燃烧C 牛奶变质D衣服晾干【答案】16【分析】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.画树状图得出所有等可能的结果数以及所抽取的2张卡片刚好都是物理变化的结果数,再利用概率公式可得出答案.【详解】解:物理变化的卡片有A 和D ,则画树状图如下:共有12种等可能的结果,其中所抽取的2张卡片刚好都是物理变化的结果有:AD ,DA ,共2种,∴所抽取的2张卡片刚好都是物理变化的概率为21126=.故答案为:16.13.如图,点A ,B ,C 在⊙O 上,AC 平分OAB ∠,若40OAB ∠=︒,则CBD ∠=°.【答案】70【分析】本题考查圆周角定理及其推论,解答中涉及角平分线定义,三角形外角的性质,能准确作出辅助线,掌握圆周角定理及其推论是解题的关键.延长AO 交O 于点E ,连接BE ,由已知条件求出50C E ∠=∠=︒,由角平分线定义,可得到1202CAB OAB ∠=∠=︒,最后根据“三角形的一个外角等于和它不相邻的两个内角的和”可求出CBD ∠的度数.【详解】解:延长AO 交O 于点E ,连接BE ,则90ABE ∠=︒,∵40OAB ∠=︒,∴9050E OAB ∠=︒-∠=︒,∴50C E ∠=∠=︒,∵AC 平分OAB ∠,∴1202CAB OAB ∠=∠=︒,∴205070CBD CAB C ∠=∠+∠=︒+︒=︒,故答案为:70.1R 030R =Ω.检测时,可通过电压表显示的读数()U V 换算为酒精气体浓度()3mg /m p ,设10R R R =+,电压表显示的读数()U V 与()ΩR 之间的反比例函数图象如图2所示,1R 与酒精气体浓度p 的关系式为16060R p =-+,当电压表示数为4.5V 时,酒精气体浓度为3mg m .【答案】12/0.5【分析】本题考查了反比例函数和一次函数的实际应用等知识.先求出()U V 与()ΩR 之间的反比例函数为270U R =,再根据10R R R =+求出130R =Ω,代入16060R p =-+即可求出12p =.【详解】解:设电压表显示的读数()U V 与()ΩR 之间的反比例函数为kU R=,∵反比例函数图象经过点()45,6,∴645270k =⨯=,∴()U V 与()ΩR 之间的反比例函数为270U R=,当 4.5V =时,270604.5R ==Ω,∵10R R R =+,030R =Ω,∴10603030R R R =-=-=Ω,把130R =Ω代入16060R p =-+得306060p =-+,解得12p =.故答案为:1215.如图,在ABC 中,90ACB ∠=︒,4AC BC ==,P 是ABC 的高CD 上一个动点,以B 点为旋转中心把线段BP 逆时针旋转45︒得到BP ',连接DP ',则DP '的最小值是.【答案】222-/222-+【分析】本题考查旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,垂线段最短等知识点,在BC 上截取BE BD =,连接EP ,构造()SAS EBP DBP ' ≌,推出DP EP '=,根据垂线段最短,可知当EP CD ⊥时,EP 有最小值,即DP '有最小值.正确作出辅助线是解题的关键.【详解】解:如图,在BC 上截取BE BD =,连接EP ,ABC 中,90ACB ∠=︒,4AC BC ==,CD AB ⊥,∴45CBA A ∠=∠=︒,22224442AB AC BC =+=+=,1222BD CD AD AB ====,∴22BE BD ==,∴422CE BC BE =-=-.以B 点为旋转中心把线段BP 逆时针旋转45︒得到BP ',∴45PBP CBA '∠=︒=∠,BP BP '=,∴CBA BPD PBP BPD '∠-∠=∠-∠,∴EBP DBP '∠=∠,在EBP △和DBP ' 中,BE BD EBP DBP BP BP '=⎧⎪∠=∠⎨='⎪⎩,∴()SAS EBP DBP ' ≌,∴DP EP '=,当EP CD ⊥时,EP 有最小值,即DP '有最小值,EP CD ⊥,45BCD ∠=︒,∴CEP △是等腰直角三角形,∴()2242222222EP CE ==⨯-=-,∴DP '的最小值是222-.故答案为:222-.分,第21题9分,第22题10分,共55分.)16.计算()201322cos 4520202π-⎛⎫---︒+- ⎪⎝⎭.【答案】2【分析】本题考查了含特殊角的三角函数的混合运算,先化简负整数指数幂、绝对值、余弦值、零次幂,再运算加减,即可作答.【详解】解:()201322cos 4520202π-⎛⎫----︒+- ⎪⎝⎭()2432212=---⨯+43221=-+-+2=.17.先化简21221244x x x x ⎛⎫+÷ ⎪--+⎝⎭,再从不等式组13x -≤<中选择一个适当的整数,代入求值.【答案】22x -,当0x =时,原式1=-.【分析】本题考查了分式的化简求值,先利用分式的性质和运算法则对分式化简,再从不等式组13x -≤<中选择一个适当的整数代入到化简后的结果中计算即可求解,掌握分式的性质和运算法则是解题的关键.【详解】解:原式()()22212221x x x x x --⎛⎫=+⨯ ⎪---⎝⎭()()221221x x x x --=⨯--,22x -=,当1x =或2x =时,原式无意义,故取整数0x =时,原式0212-==-.18.有效的垃圾分类,可以减少污染,保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,测试结果分为A ,B ,C ,D 四个等级,绘制成如图所示的两幅不完整的统计图.(1)求测试结果为D 等级的人数占调查总人数的百分比;(2)在扇形统计图中,求表示D 等级的扇形的圆心角的度数;(3)测试结果为A 等级的有多少人?并补全条形统计图;(4)测试结果达到A ,B 等级,社区居委会认定为优秀.若该社区共有居民1500人,请估计社区内达到优秀标准的居民大约有多少人?【答案】(1)5%(2)18︒(3)测试结果为A 等级的有12人,详见解析(4)达到优秀标准的居民大约有1125人【分析】(1)先求出调查的总人数,再用“D 组”的人数除以调查的总人数,即可求解;(2)用360︒乘以“D 组”所占的百分比,即可求解;(3)求出测试结果为A ,B 等级的人数,即可求解;(4)用1500人乘以测试结果达到A ,B 等级所占的百分比,即可求解.【详解】(1)解:调查人数为:820%40÷=(人),“D 组”所占的百分比为:240100%5%÷⨯=;(2)解:D 等级的扇形的圆心角的度数为3605%18︒⨯=︒;(3)解:测试结果为B 等级的有4045%18⨯=(人),测试结果为A 等级的有()40145%20%5%12⨯---=(人);补全条形统计图如下:(4)解:()150015%20%1125⨯--=(人).因此,达到优秀标准的居民大约有1125人.【点睛】本题主要考查了条形统计图和扇形统计图,样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.19.为培养学生的阅读能力,深圳市某校八年级购进《朝花夕拾》和《西游记》两种书籍,分别花费了14000元和7000元,已知《朝花夕拾》的订购单价是《西游记》的订购单价的1.4倍.并且订购的《朝花夕拾》的数量比《西游记》的数量多300本.(1)求该校八年级订购的两种书籍的单价分别是多少元;(2)该校八年级计划再订购这两种书籍共100本作为备用,其中《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元,请求出再订购这两种书籍的最低总费用的方案及最低费用为多少元?【答案】(1)《西游记》的单价是10元,《朝花夕拾》的单价是14元;(2)订购《朝花夕拾》30本,订购《西游记》70本时,最低总费用为1120元.【分析】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.(1)设《西游记》的订购单价是x 元,则《朝花夕拾》的订购单价是1.4x 元,利用数量=总价÷单价,结合用14000元订购的《朝花夕拾》的数量比用7000元订购的《西游记》的数量多300本,可列出关于x 的分式方程,解之经检验后,可得出《西游记》的订购单价,再将其代入1.4x 中,即可求出《朝花夕拾》的订购单价;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据“《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元”,可列出关于m 的一元一次不等式组,解之可得出m 的取值范围,设该校八年级再次订购这两种书籍共花费为w 元,利用总价=单价⨯数量,可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】(1)解:设《西游记》的订购单价是x 元,则《朝花夕拾》的订购单价是1.4x 元,根据题意得:1400070003001.4x x-=,解得:10x =,经检验,10x =是所列方程的解,且符合题意,1.4 1.41014x ∴=⨯=(元).答:《朝花夕拾》的订购单价是14元,《西游记》的订购单价是10元;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据题意得:301410(100)1200m m m ≥⎧⎨+-≤⎩,解得:3050m ≤≤.设该校八年级再次订购这两种书籍共花费为w 元,则1410(100)w m m =+-,即41000w m =+,40> ,w ∴随m 的增大而增大,∴当30m =时,w 取得最小值,最小值为43010001120⨯+=(元),此时1001003070m -=-=(本).答:当再次订购30本《朝花夕拾》,70本《西游记》时,总费用最低,最低费用为1120元.20.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E .点F 在AC 的延长线上,且12∠=∠CBF CAB .(1)求证:直线BF 是O 的切线;(2)若3AB =,5sin 5CBF ∠,求BF 的长.【答案】(1)见解析(2)4【分析】本题主要考查了切线的判定,等腰三角形的性质,三角函数的定义,熟练掌握各种性质是解题的关键.(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明结论;(2)作CG BF ⊥于点G ,利用已知条件证明AGC ABF ∽,利用比例式求出线段长.【详解】(1)证明:连接AE ,AB 是O 的直径,90AEB ∴∠=︒,90EAB EBA ∴∠+∠=︒,AB AC = ,EAB EAC ∴∠=∠,12CBF CAB ∠=∠ ,CBF EAB ∴∠=∠,90CBF EBA ∴∠+∠=︒,即90ABF ∠=︒,∴直线BF 是O 的切线;(2)解:作CG BF ⊥于点G ,在Rt ABE △中,5sin sin 5EAB CBF ∠=∠=,55EB AB ∴=,3AB = ,355BE ∴=,6525BC BE ∴==,在Rt BCG 中,5sin 5CG CBF BC ∠==,655BC =,65CG ∴=,CG AB ∥ ,GF CG BF AB∴=,22125BG BC CG =-= ,125GF BF BG BF ∴=-=-,6,35CG AB == ,12255BF BF -∴=,解得4BF =.(),m n (),m n ()()10y k x k =-≠无论k 值如何变化,该函数图象恒过点()1,0,则点()1,0称为这个函数的“永恒点”.【初步理解】一次函数()130y mx m m =+>的定点的坐标是__________;【理解应用】二次函数()22230y mx mx m m =--+>落在x 轴负半轴的定点A 的坐标是__________,落在x 轴正半轴的定点B 的坐标是__________;【知识迁移】点P 为抛物线()22230y mx mx m m =--+>的顶点,设点B 到直线()130y mx m m =+>的距离为1d ,点P 到直线()130y mx m m =+>的距离为2d ,请问12d d 是否为定值?如果是,请求出12d d 的值;如果不是,请说明理由.【答案】【初步理解】()3,0-;【理解应用】()3,0-,()1,0;【知识迁移】是,2【分析】【初步理解】解析式变形为()()130y m x x m =+>,求解即可;【理解应用】由二次函数变形为()()()()2223130y m x x m x x m =-+-=--+>,求解即可;【知识迁移】由题意可得:()1,4P m -,()10B ,,作辅助线如解析图,则1d BC =,2d PQ =,90PQE BCF ∠=∠=︒,PEQ BFC ∠=∠,()1,2E m -,()1,4F m ,构建相似三角形,找出比例关系即可;【详解】解:【初步理解】由一次函数变形为()()130y m x m =+>,,当3x =-时,无论m 值如何变化,10y =故一次函数()()130y m x x m =+>必过一定点(3,0)-.故答案为:()3,0-.【理解应用】由二次函数变形为()()()()2223130y m x x m x x m =-+-=--+>,,当3x =-时,无论m 值如何变化,20y =当1x =时,无论m 值如何变化,20y =故二次函数()22230y mx mx m m =--+>必过定点(3,0)-,()1,0.所以二次函数()22230y mx mx m m =--+>落在x 轴负半轴的定点A 的坐标是(3,0)-,落在x 轴正半轴的定点B 的坐标是()1,0;故答案为:()3,0-,()1,0.【知识迁移】由题意得()()22223140y mx mx m m x m m =--+=-++>∴()1,4P m -,由上一小题得:()10B ,,作PE y 轴交直线()130y mx m m =+>于点E ,作BF y ∥轴交直线()130y mx m m =+>于点F ,则PEQ BFC ∠=∠,()1,2E m -,()1,4F m ,分别过点P 、B 作直线()130y mx m m =+>的垂线,垂足为Q 、C ,则1d BC =,2d PQ =,90PQE BCF ∠=∠=︒,2P E PE y y m ∴=-=,4F B BF y y m =-=,∵90PQE BCF ∠=∠=︒,PEQ BFC ∠=∠,PEQ BFC∴△∽△422BC BF m PQ PE m∴===即122d d =【点睛】本题主要考查了恒过定点的直线,抛物线以及相似三角形.本题主要理解新定义,构建相似三角形解题,有一定的难度.22.如图1,菱形ABCD 中,B α∠=,2BC =,E 是边BC 上一动点(不与点,B C 重合),连接DE ,点C 关于直线DE 的对称点为C ',连接AC '并延长交直线DE 于点,P F 是AC '的中点,连接,DC DF '.(1)填空:DC '=______,APD ∠=______(用含α的代数式表示);(2)如图2,当90α=︒,题干中其余条件均不变,连接BP .求证:2BP =.(3)(2)的条件下,连接AC .①若动点E 运动到边BC 的中点处时,ACC '△的面积为______.②在动点E 的整个运动过程中,ACC '△面积的最大值为______.【答案】(1)2,1902α︒-(2)证明见详解(3)①45;②222-【分析】(1)由C '是C 关于DE 的对称点,可得CD 沿DE 翻折后可得到C D ',可求2C D CD '==,12CDP C DP CDC ''∠=∠=∠,再由三线合一定理得到12C DF ADC ''∠=∠,90DFC '=︒∠,求出FDP ∠的度数,即可求出答案;(2)过A 作GA PA ⊥,交PD 的延长线于G ,在Rt AGP △中,可求2PG AP =,再证BAP DAG ≌得到BP DG =,则2BP DP AP +=,在Rt DFP △中,2DP FP =,由此即可证明结论;(3)连接BD 交AC 于O ,连接PC ,可证B 、P 、C 、D 四点共圆,O 为圆心,A 在O 上,再证BPE DCE ∽ ,可求255BP =,55PE =,从而可求4105AP =,在Rt AFD △中,22105AF AD DF =-=,即可求解;②过C '作C M AC '⊥,交AC 于M ,C '的运动轨迹是以D 为圆心,2C D '=为半径的 AC , AC 与BD 交于Q ,可得12222ACC S C M C M '''=⨯= ,当C M '取最大时,ACC S '△最大,所以当C '与Q 重合时,即C M QO '=,C M '最大,即可求解.【详解】(1)解: 四边形ABCD 是菱形,ADC B α∠=∠=,2AD CD AB ===,C ' 是C 关于DE 的对称点,CD ∴沿DE 翻折后可得到C D ',2C D CD '∴==,12CDP C DP CDC ''∠=∠=∠,AD C D '∴=,F 是AC '的中点,12C DF ADC ''∴∠=∠,DF AC '⊥,即90DFC '=︒∠FDP C DF C DP ∴∠=∠+'∠',1122ADC CDC ''=∠+∠12ADC =∠12α=,∴190902APD DFP α=︒-=︒-∠∠.故答案:2,1902α︒-.(2)证明:如图,过A 作GA PA ⊥,交PD 的延长线于G ,90GAP ∴∠=︒,四边形ABCD 是菱形,90B Ð=°,∴四边形ABCD 是正方形,90ADC BAD ∴∠=∠=︒,AB AD =,由(1)得:19090452DPF ∴∠=︒-⨯︒=︒,45G DPF ∴∠=∠=︒,AG AP ∴=,在Rt AGP △中,2PG AP =,2DP DG AP ∴+=;90DAG DAP ∠+∠=︒ ,90BAP DAP ∠+∠=︒,BAP DAG ∴∠=∠,在BAP △和DAG 中AB AD BAP DAG AG AP =⎧⎪∠=∠⎨⎪=⎩,∴BAP DAG ≌(SAS ),BP DG ∴=,2BP DP AP ∴+=.在Rt DFP △中,2DP FP =,∴()22BP FP AF FP +=+,∴2BP FP=(3)解:①如图,连接BD 交AC 于O ,连接PC ,由(2)得:45APB G ∠=∠=︒,90BPD BPA DPF ∴∠=∠+∠=︒90BPD BCD ∴∠=∠=︒,∴B 、P 、C 、D 四点共圆,O 为圆心, 四边形ABCD 是正方形,OA OC ∴=,A ∴在O 上,90APC ∴∠=︒,E 是BC 的中点,112CE BE CD ∴===,2222125DE CE CD ∴=+=+=,BEP DEC ∠=∠ ,90BPE DCE ∠=∠=︒,BPE DCE ∴∽ ,BE BP PE DE DC CE∴==,1215BP PE ∴==,255BP ∴=,55PE =,255DG BP ∴==,5255255AP ∴++=,4105AP ∴=,由(2)得:45FPD FDP ∠=∠=︒,∴22PD DF FP ==,655PD PE DE =+=,3105DF FP ∴==,在Rt AFD △中,22105AF AD DF =-=,105C F '∴=,2105C P FP C F ''∴=-=,,由(1)折叠得:2105CP C P '==,12ACC S AC CP ''∴=⋅ 1210210255=⨯⨯45=.②如图,过C '作C M AC '⊥,交AC 于M ,C '的运动轨迹是以D 为圆心,2C D '=为半径的 AC , AC 与BD 交于Q ,12ACC S AC C M ''∴=⋅ ,222AC AB == ,12222ACC S C M C M '''∴=⨯= ,∴当C M '取最大时,ACC S '△最大,如图,当C '与Q 重合时,即C M QO '=,C M '最大,22BD AC == ,122DM BD ∴==,22C M C D DM ''∴=-=-,()222222ACC S '∴=-=- ,故ACC '△面积的最大值为222-.【点睛】本题考查了菱形的性质,正方形的判定及性质,对称和折叠的性质,等腰三角形的判定及性质,勾股定理,三角形相似的判定及性质等,掌握相关的判定方法及性质是解题的关键.。

广东中考冲刺模拟检测《数学试卷》含答案解析

广东中考冲刺模拟检测《数学试卷》含答案解析

广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)1. 6-的相反数是( )A. 6B. -6C. 16D.16-2. 根据世卫组织最新实时统计数据,截至北京时间5月30日01时02分,全球确诊新冠肺炎5704736例;请将5704736用科学计数法表示为( )A. 57.04736×105B. 5.704736×106C. 5.704736×105D. 0.5704736×1073. 如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A. B. C. D.4. 立定跳远是湛江市2020年体育中考项目之一,某校中考前体育模拟测试九年级(2)班第五小组跳远成绩如下(单位cm):171,235,265,210,189,210,260,则平均数和众数是( )A. 210,210B. 220,210C. 235,210D. 235,2355. 下列四个城市的地铁标志中,既是中心对称又是轴对称图形的是()A. B.C. D.6. 下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = 7. 实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A. m n >B. ||n m ->C. ||m n ->D. ||||m n <8. 一元二次方程4x 2﹣2x ﹣1=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根 9. 已知k 1<0<k 2,则函数1y k x 1=-和2k y x = 的图象大致是 A. B. C. D. 10. 如图,已知▱ABCD 的对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,交AC 与点F ,且∠BCD=60°,BC=2CD ,连接OE ,则下列结论:①OE ∥AB ②S ▱ABCD =BD ·CD ③AO=2BO ④S △DOF =2S △EOF ,其中成立的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,每小题4分,共28分)11. 分解因式:2ab a -=______.12. 代数式13x -有意义时,x 应满足的条件是________.13. 不等式组20360a a -<⎧⎨+>⎩解集是________. 14. 正五边形外角和等于 _______◦.15. 如果将一副三角板按如图方式叠放,那么∠1=_____.16. 在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是 ________.17. 如图,在正方形ABCD 中,AB=12,点E 为BC 中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是_________.三、解答题(一)(本大题共3小题,每小题6分,共18分)18. 计算:113122cos30()3---+︒+.19. 先化简再求值:2111()2111a a a a a-÷--++-,其中a=-2. 20. 如图,在ABC 中,AB AC =,70ABC ∠=︒, (1)用直尺和圆规作ABC ∠的平分线BD 交AC 于点 (保留作图痕迹,不要求写作法);(2)在(1)的条件下,求BDC ∠的度数.四、解答题(二) (本大题共3小题,每小题8分,共24分)21. “校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中”了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到”非常了解”和”基本了解”程度的总人数为______人;(4)若从对校园安全知识达到”非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.22. 如图所示,某施工队要测量隧道长度BC ,600AD =米,AD BC ⊥,施工队站在点处看向,测得仰角45︒,再由走到处测量,,500DE AC DE =∕∕米,测得仰角为53︒,求隧道BC 长.(sin 5345︒≈, cos5335︒≈,tan 5343︒≈).23. 某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?五、解答题(三) (本大题共2小题,每小题10分,共20分)24. 如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,BC.(1)求证:△ADB≌△BCA;(2)若OD⊥AC,AB=4,求弦AC的长;(3)在(2)的条件下,延长AB至点P,使BP=2,连接PC.求证:PC是⊙O的切线.25. 如图,在平面直角坐标系中,抛物线与x轴交于点A(1, 0),B(-7, 0),顶点D坐标为(-3,23),点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.过顶点D作DD1⊥x轴于点D1(1)求抛物线的表达式(2)求证:四边形BFCE是平行四边形.(3)点P是抛物线上一动点,当P在B点左侧时,过点P作PM⊥x轴,点M为垂足,请问是否存在P点使得△PAM 与△DD1A相似,如果存在,请写出点P的横坐标.答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1. 6- 的相反数是( )A. 6B. -6C. 16D. 16- 【答案】B【解析】【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .2. 根据世卫组织最新实时统计数据,截至北京时间5月30日01时02分,全球确诊新冠肺炎5704736例;请将5704736用科学计数法表示为( )A. 57.04736×105B. 5.704736×106C. 5.704736×105D. 0.5704736×107 【答案】B【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则65704736 5.70473610⨯=故选:B .【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.3. 如图是由4个相同的小立方体搭成的几何体,则它的主视图是( )A. B. C. D.【答案】B【解析】【分析】主视图有2列,每列小正方形数目分别为1,2.【详解】如图所示:它的主视图是:,故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4. 立定跳远是湛江市2020年体育中考项目之一,某校中考前体育模拟测试九年级(2)班第五小组的跳远成绩如下(单位cm):171,235,265,210,189,210,260,则平均数和众数是( )A. 210,210B. 220,210C. 235,210D. 235,235【答案】B【解析】【分析】根据平均数和众数的概念来解.【详解】解:平均数是:171+235+265+210+189+210+260=2207在这一组数据中210是出现次数最多的,故众数是210;故选:B.【点睛】点评:本题为统计题,考查众数和平均数的意义,解题时要细心.5. 下列四个城市的地铁标志中,既是中心对称又是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断,利用排除法求解.【详解】A.既不是中心对称图形,也不是轴对称图形,故本选项错误;B.既不是中心对称图形,也不是轴对称图形,故本选项错误;C.不是中心对称图形,是轴对称图形,故本选项错误;D.既是中心对称图形,又是轴对称图形,故本选项正确;故答案选D【点睛】本题主要考查了轴对称图形和中心对称图形的判断,准确理解定义及掌握排除法的方法是解题的关键.6. 下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab =【答案】C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.7. 实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A. m n >B. ||n m ->C. ||m n ->D. ||||m n < 【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|>|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.8. 一元二次方程4x 2﹣2x ﹣1=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根 【答案】B【解析】【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【详解】∵△=(﹣2)2﹣4×4×(﹣1)=20>0, ∴一元二次方程4x 2﹣2x ﹣1=0有两个不相等的实数根.故选B【点睛】此题考查根的判别式,解题关键在于掌握运算法则9. 已知k 1<0<k 2,则函数1y k x 1=-和2k y x = 的图象大致是 A. B. C. D.【答案】A【解析】试题分析:∵直线1y k x 1=-与y 轴的交点为(0,-1),故排除B 、D .又∵k 2>0,∴双曲线在一、三象限.故选A .10. 如图,已知▱ABCD 的对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,交AC 与点F ,且∠BCD=60°,BC=2CD ,连接OE ,则下列结论:①OE ∥AB ②S ▱ABCD =BD ·CD ③AO=2BO ④S △DOF =2S △EOF ,其中成立的有( )A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】①先根据题意说明BE=CE 、OA=OC ,然后根据三角形中位线定理即可判断;②只要说明BD ⊥CD 即可判定为正确;③设AB=x ,分别表示OA 和OB 的长,然后进行比较即可判断;④利用平行线分线段成比例定理可得DF=2EF ,然后根据三角形的面积公式即可判定.【详解】解:①∵四边形ABCD 是平行四边形∴AD//BC ,OA=OC ,∠ADC+∠BCD=180°∵∠BCD=60°,∴ADC= 120°,∵DE 平分∠ADC ,∴∠CDE=∠BCD=60°∴△CDE 等边三角形∴CE=CD∵BC=2CD∴BE=CE∵OA=OC.∴OE//AB故①正确;②∵△DEC 等边三角形,∴∠DEC=60°=∠DBC+∠BDE ∵BE=EC=DE∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90° ∴BD ⊥CD∴S 平行四边形ABCD =2BCD S △=2×12BD ·CD= BD ·CD ; 故②正确;③设AB=x ,则AD=2x ,,∴则由勾股定理可得:2AO x == 故③不正确;④∵AD//EC , ∴21AD DF EC EF == ∴DF=2EF∵S △DOF 和S △EOF 的高相同∴S △DOF =2S △EOF故④正确;即共有3个正确.故选C .【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、三角形中位线的性质以及等边三角形的判定与性质等知识点,证得△BCE 是等边三角形是解答本题的关键.二、填空题(本大题共7小题,每小题4分,共28分)11. 分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).12.有意义时,x 应满足的条件是________.【答案】x<3【解析】【分析】通过分式有意义条件与二次根式有意义的条件相结合可求出结果.【详解】由题可得300x -≥⎧⎪≠ 解得:3x <.故答案为:3x <.【点睛】本题主要考查了分式有意义的条件,解题中准确把二次根式有意义的条件与分式有意义条件结合是解题的关键.13. 不等式组20360a a -<⎧⎨+>⎩的解集是________. 【答案】a>2【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分,得出不等式组的解集,表示在数轴上即可.【详解】解:不等式组20360a a -<⎧⎨+>⎩①②, 解①得:2a >,解②得:a >-2,∴原不等式组的解集为2a >;故答案为:2a >.【点睛】此题考查了一元一次不等式组的解法,其中一元一次不等式的解法步骤为:去分母,去括号,移项,合并同类项,将x 系数化为1,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.14. 正五边形的外角和等于_______◦.【答案】360【解析】试题分析:任何n边形的外角和都等于360度.考点:多边形的外角和.15. 如果将一副三角板按如图方式叠放,那么∠1=_____.【答案】105°【解析】试题解析:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为105°.16. 在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 ________.【答案】10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,2n=0.2,解得,n=10.故估计n大约有10个.故答案为10.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17. 如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是_________.【答案】18+18π【解析】【分析】作FH⊥BC于H,连接AE,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE65=,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆-S△ABE-S△AEF进行计算.【详解】解:作FH⊥BC于H,连接AE,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,22AE61265=+=,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF2111121261266565222π=⨯+⋅⋅-⨯⨯-⋅ =18+18π.【点睛】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.三、解答题(一)(本大题共3小题,每小题6分,共18分)18. 计算:113122cos30()3--︒+.【答案】3.【解析】【分析】先化简绝对值、化简二次根式、特殊角的余弦值、负整数指数幂,再计算实数的混合运算即可. 【详解】原式33233=+ 33233=3=.【点睛】本题考查了化简绝对值、化简二次根式、特殊角的余弦值、负整数指数幂等知识点,熟记各运算法则是解题关键.19. 先化简再求值:2111()2111a a a a a -÷--++-,其中a=-2. 【答案】11,24a a + 【解析】【分析】先通分计算括号内的运算,然后计算分式除法,得到最简分式,再把2a =-代入计算,即可得到答案. 【详解】解:2111)2111a a a a a-÷--++-( =211(1)(1)(11)()a a a a a a ---+÷+-- =1(1)(1)12a a a a+-⨯--=12a a+ 当2a =-时,原式=2112(2)4-+=⨯-. 【点睛】本题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.20. 如图,在ABC 中,AB AC =,70ABC ∠=︒,(1)用直尺和圆规作ABC ∠的平分线BD 交AC 于点 (保留作图痕迹,不要求写作法);(2)在(1)的条件下,求BDC ∠的度数.【答案】(1)见解析;(2)75BDC ∠=︒.【解析】【分析】(1)以B 为圆心,任意长为半径画弧交AB ,BC 于点E ,F ,再分别以点E ,F 为圆心、以大于12EF 长为半径画弧,两弧交于点G ,作射线BG 交AC 于点D ,(2)根据等腰三角形的性质求出∠C ,根据角平分线的定义求出∠CBD ,再根据三角形内角和定理即可解决问题.【详解】(1)如图所示,BD 即为所求;(2)在ABC 中,AB AC =,70ABC ∠=︒,180218014040A ABC ∴∠=︒-∠=︒-︒=︒,BD 是ABC ∠的平分线,11703522ABD ABC ∴∠=∠=⨯︒=︒, BDC ∠是ABD 的外角,403575BDC A ABD ∴∠=∠+∠=︒+︒=︒ .【点睛】本题考查基本作图、角平分线的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是灵活应用知识解决问题,属于中考常考题型.四、解答题(二) (本大题共3小题,每小题8分,共24分)21. “校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中”了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到”非常了解”和”基本了解”程度的总人数为______人;(4)若从对校园安全知识达到”非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.【答案】(1)60,10;(2)96°;(3)1020;(4)23【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以”了解很少”的比例即可得;(3)用”非常了解”和”基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=,故答案为60,10;(2)扇形统计图中”了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为96°; (3)该学校学生中对校园安全知识达到”非常了解”和”基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.22. 如图所示,某施工队要测量隧道长度BC ,600AD =米,AD BC ⊥,施工队站在点处看向,测得仰角45︒,再由走到处测量,,500DE AC DE =∕∕米,测得仰角为53︒,求隧道BC 长.(sin 5345︒≈, cos5335︒≈,tan 5343︒≈).【答案】隧道BC 的长度为700米.【解析】【分析】作EM ⊥AC 于M ,解直角三角形即可得到结论.【详解】如图,ABD ∆是等腰直角三角形,600AB AD ==,作EM AC ⊥点M ,则500AM DE ==∴100BM =在CEM ∆中,tan 53CM EM ︒=,即46003CM = ∴800CM =∴800100700BC CM BM =-=-=(米)答:隧道BC 的长度为700米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键. 23. 某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.五、解答题(三) (本大题共2小题,每小题10分,共20分)24. 如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC .(1)求证:△ADB ≌△BCA ;(2)若OD ⊥AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC .求证:PC 是⊙O 的切线.【答案】(1)详见解析;(2)23AC =3)详见解析.【解析】【分析】(1)可证∠ACB=∠ADB=90°,则由HL 定理可证明结论;(2)可证AD=BC=DC ,则∠AOD=∠ABC=60°,由直角三角形的性质可求出AC 的长;(3)可得出BC=BP=2,∠BCP=30°,连接OC ,可证出∠OCP=90°,则结论得证.【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=∠ADB=90°,∵AB=AB ,∴△ADB≌△BCA (HL);(2)解:如图,连接DC ,∵OD⊥AC,∴AD DC =,∴AD=DC,∵△ADB≌△BCA,∴AD=BC,∴AD=DC=BC,∴∠AOD=∠ABC=60°,∵AB=4,∴3604232AC AB sin=⋅︒=⨯=;(3)证明:如图,连接OC,由(1)和(2)可知BC=222AB AC-=∵BP=2∴BC=BP=2∴∠BCP=∠P,∵∠ABC=60°,∴∠BCP=30°,∵OC=OB,∠ABC=60°,∴△OBC是等边三角形,∴∠OCB=60°,∴∠OCP=∠OCB+∠BCP=60°+30°=90°,∴OC⊥PC,∴PC是⊙O的切线.【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,添加恰当辅助线是本题的关键.25. 如图,在平面直角坐标系中,抛物线与x 轴交于点A(1, 0),B(-7, 0),顶点D 坐标为(-3,23-),点C 在y 轴的正半轴上,CD 交x 轴于点F,△CAD 绕点C 顺时针旋转得到△CFE,点A 恰好旋转到点F,连接BE.过顶点D 作DD 1⊥x 轴于点D 1(1)求抛物线的表达式(2)求证:四边形BFCE 是平行四边形.(3)点P 是抛物线上一动点,当P 在B 点左侧时,过点P 作PM ⊥x 轴,点M 为垂足,请问是否存在P 点使得△PAM 与△DD 1A 相似,如果存在,请写出点P 的横坐标.【答案】(1)233373y x x =+-;(2)见解析;(3)存在,点P 的横坐标为:-11或37-3 【解析】【分析】 (1)根据题意可设函数解析式为(1)(7)y a x x =-+,把点的坐标代入求出的值即可;(2)欲证明四边形BFCE 是平行四边形,只需推知//EC BF 且EC BF 即可;(3)利用相似三角形的对应边成比例求得点的横坐标,没有指明相似三角形的对应边(角),需要分类讨论.【详解】解(1)设函数解析式为(1)(7)y a x x =-+,把(3,23)D --带入可得3a = 所以23333731)(7)y x x -+=; (2)证明:1DD x ⊥轴于点1D ,190COF DD F ∴∠=∠=︒,又1D FD OFC ∠=∠,△1DD F COF ∆∽,11D D OC FD OF=,(3,D --,1D D ∴=13OD =,AC CF =,CO AF ⊥,1OF OA ∴==(三线合一),2AF=,11312D F D O OF ∴=-=-=,1OC =,解得OC =在Rt AOC ∆中,2AC ==2AC CF FA ∴===,ACF ∴∆是等边三角形,60AFC ACF ∴∠=∠=︒,CAD ∆绕点顺时针旋转得到CFE ∆,即 60ACF ECF ∠=∠=︒,60ECF AFC ∴∠=∠=︒,//EC BF ∴,由距离公式得6EC DC ==, 6BF =,EC BF ∴=,四边形BFCE 是平行四边形;(3)存在.点是抛物线上一动点,设点2(x , 当点在点的左侧时,PAM ∆与△1DD A 相似,11DD D A PM MA =或 11DD D A AM PM=,41x =-或=, 解得:11x =(不合题意舍去),211x =-或11x =(不合题意舍去) 2373x =-; P ∴点横坐标为11-或373-. 【点睛】本题考查了二次函数的综合题,待定系数法求函数的解析式,等边三角形的判定和性质,平行四边形的判定,相似三角形的判定和性质,正确的理解题意是解题的关键.。

专题01 单项选择(含答案解析)---安徽省2017-2021年5年中考1年模拟英语试题分项汇编

专题01 单项选择(含答案解析)---安徽省2017-2021年5年中考1年模拟英语试题分项汇编

5年(2017-2021)中考1年模拟英语试题分项详解(安徽专用)专题01 单项选择(解析版)一、2021年一、单选题1.We should ________ the friendship that we have developed in the past years.A.value B.change C.make D.win【答案】A【详解】句意:我们应该珍惜我们在过去几年里发展起来的友谊。

考查动词辨析。

value珍惜;change改变;make制造;win赢得。

根据“the friendship that we have developed in the past years”可知,此处指珍惜友谊,故选A。

2.The dancing teacher gives us instructions ________ until we are perfect in every move.A.patiently B.quickly C.bravely D.suddenly【答案】A【详解】句意:舞蹈老师耐心地指导我们,直到我们的每一个动作都做到完美。

考查副词辨析。

patiently耐心地;quickly快速地;bravely勇敢地;suddenly突然。

根据“until we are perfect in every move”可知,很有耐心地指导,故选A。

3.—The Chinese language is more and more popular.—Exactly! It’s becoming a ________ language skill in the international community.A.similar B.difficult C.necessary D.traditional【答案】C【详解】句意:——汉语越来越受欢迎。

——的确如此!它正在成为国际社会的一种必要的语言技能。

2016届中考化学教材梳理专题检测1

2016届中考化学教材梳理专题检测1

专题01 地球周围的空气☞解读考点[2015年题组]1.【2015年重庆A】空气中氮气的体积分数大约是()A.21% B.31% C.50% D.78%【答案】D【解析】试题分析:空气中氮气的体积分数大约是78%,故选D考点:空气的成分2.【2015年重庆市B】医院里的下列物质属于纯净物的是()A.生理盐水 B.止咳糖浆 C.液氧 D.碘酒【答案】C【解析】试题分析:混合物由多种物质组成,常见的混合物:空气、合金、溶液等,纯净物由一种物质组成,液氧是氧气的液态,属于纯净物,故选C考点:混合物和纯净物的判断3.【2015年四川省宜宾市】空气是一种宝贵的自然资源,下列措施中,不利于提高空气质量的是()A.开发新能源代替化石燃料 B.改进汽车尾气的净化技术C.节假日燃放烟花爆竹D.控制PM2.5的排放以减少雾霾天气4.【2015年湖北省宜昌市】空气的成分中,能供给呼吸的是()A.氮气B.氧气C.二氧化碳D.水蒸气【答案】B【解析】试题分析:氮气的化学性质稳定,不供给呼吸;氧气的化学性质活泼,能支持燃烧,能供给呼吸;二氧化碳能使澄清的石灰水变浑浊,不能支持燃烧,不能供给呼吸;水是由氢元素和氧元素组成的,不能供给呼吸。

故选B。

考点:空气的成分5.【2015年四川省成都市】实验室用氯酸钾和二氧化锰制取氧气,有关该实验的说法错误的是()A.二氧化锰是反应物B.与高锰酸钾制取氧气装置相同C.可用向上排空气法收集D.可用带火星的木炭检验氧气【答案】A【解析】试题分析:二氧化锰是催化剂;与高锰酸钾制取氧气装置相同,都需要加热,反应物都是固体;可用向上排空气法收集,因为氧气的密度大于空气;可用带火星的木炭检验氧气,如果立刻复燃说明是氧气。

故选A.考点:氧气的制取6.【2015年四川省乐川市】(4分)下图是实验室的部分仪器或实验装置,回答有关问题。

(1)实验室要用KClO3和MnO2制取氧气,应选用发生装置是(填编号),若用排水法收集氧气,收集完毕后,应先,再移开酒精灯。

定弦定角最值问题(含答案)

定弦定角最值问题(含答案)

定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。

【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。

(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。

)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。

②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。

④确定圆心位置,计算隐形圆半径。

⑤求出隐形圆圆心至所求线段定点的距离。

⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

【例1】(2016·新观察四调模拟1)如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-解:∵∠CDP =∠ACB =45°∴∠BDC =135°(定弦定角最值)如图,当AD 过O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴△BO ′C 为等腰直角三角形∴∠ACO ′=45°+45°=90°∴AO ′=5又O ′B =O ′C =4∴AD =5-4=1【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916解:连接AE∵AD 为⊙O 的直径∴∠AEB =∠AED =90°∴E 点在以AB 为直径的圆上运动当CE 过圆心O ′时,CE 有最小值为213-【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解:连接CD ∴∠PAC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O ′时,AD 有最小值 ∵∠BDC =135°∴∠BO ′C =90°∴O ′B =O ′C =4又∠ACO ′=90°∴AO ′=5∴AD 的最小值为5-4=1【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】(2014·洪山区中考模拟1)如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21B .22C .23D .43 【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________解:连接DM∵D 是弦EF 的中点∴DM ⊥EF∴点D 在以A 为圆心的,OM 为直径的圆上运动当CD 过圆心A 时,CD 有最小值连接CM∵C 为弧AB 的中点∴CM ⊥AB∴CD 的最小值为12【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________解:连接OD∵D 为弦AP 的中点∴OD ⊥AP∴点D 在以AO 为直径的圆上运动当CD 过圆心O ′时,CD 有最小值过点C 作CM ⊥AB 于M∵OB =OC ,∠ABC =60°∴△OBC 为等边三角形∴OM =21,CM =23 ∴O ′C =47∴CD 的最小值为2147友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

苏教版中考模拟检测《数学试卷》含答案解析

苏教版中考模拟检测《数学试卷》含答案解析

苏教版数学中考模拟测试学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有6小题,每小题3分,共18分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 下列运算中,·正确的是( )A. 4 = 2B. 2-3=-6C. (ab) 2=ab2D. 3a + 2a = 5a23. 若反比例函数y=﹣1x的图象经过点A(2,m),则m的值是()A. 12B. 2C. ﹣12D. ﹣24. 如图是由六个小正方体组合而成的一个立体图形,它的主视图是()A. B. C. D.5. 已知方程x 2 +x=2,则下列说中,正确的是( )A. 方程两根之和是1B. 方程两根之和是-1C. 方程两根之积是2D. 方程两根之差是-16. 如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A. 1cm <OA <4cmB. 2cm <OA <8cmC. 2cm <OA <5cmD. 3cm <OA <8cm二、填空题(本大题共10小题,每小题3分,共30分)7. 实数4的倒数是_________8. 经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为_________每千克.9. 在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是_________队(填"甲"或"乙"),10. 函数1y=x 2-中,自变量x 的取值范围是 ▲ . 11. 计算:111x x x ---=_____. 12. 如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.13. 一个正n 边形的一个外角等于72°,则n 的值等于_____.14. 教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是_________千克. 15. 如图所示,一只青蛙,从A 点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A 点的左侧的某个位置处,请问这个位置到A 点的距离最少是_____厘米.16. 如图,矩形纸片ABCD 中,AD= 1,AB 一2.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F,AE 与FG 交于点仪当触ED 的外接圆与BC 相切于BC 的中点N.则折痕FG 的长为________三、解答题(本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤) 17. 先化简,再求值(a-2)a-(a+6)(a-2),其中a=-2.18. 求不等式组21 {210 xx-≤+>19. 莫菲、隆迪、紫惠和曲代4人一起去火锅店吃火锅,4人在如图所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同侧,(1)请用适当的方法表示出所有的不同就座方案.(2)请问隆迪恰好坐在靠近过道一侧的概率是多少?20. 如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数kyx=(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.21. 游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)“家长陪同时会”的学生所占比例为%,“一定不会”的学生有人;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?22. 如图,在Rt△ABC 中,∠C=90°,AD 平分∠CAB,交CB 于点D,DE⊥AB 于点E.(1)求证:△ACD≌△AED(2)若AC=5,△DEB 的周长为8,求△ABC 的周长23. 如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西30.的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A 的距离姓B.(结果保留小数点后一位,其中3 1.732)24. 实践操作如图,∠△ABC 是直角三角形,∠ACB=90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC 的平分线,交BC 于点0②以点0为圆心,OC 为半径作圆.综合运用在你所作的图中,(1)直线AB 与⊙0位置关系是(2)证明:BA·BD=BC·BO;(3)若AC=5,BC=12,求⊙0的半径25. 某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系、(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元26. (1)如图1,△ABC中,D是BC边上一点,则△BD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为S ABDS ADC=BDDC(△ABD、△ADC的面积分别用S△ABD、S△ADC表示).现有BD=13BC,则S△ABD:S△ADC=(2)如图2,△ABC中,E、F分别是BC、AC边上一点,且有BE:EC=1:2,AF: FC=1:1,AE与BF相交于点G、现作EH ∥BF交AC于点H、依次求FH :HC、AG: GE、BG:GF的值(3)如图3,△ABC中,点P在边AB上,点M、N在边AC上,且有AP=PB,AM=MN=NC,BM、BW与CP分别相交于点R、Q.,现已知△ABC的面积为1,求△BRQ的面积.27. 如图1,在平面直角坐标系中,过点A (23-,0)的直线AB 交y 轴的正半轴于点B ,60ABO ∠=︒.(1)求直线AB 的解析式;(直接写出结果)(2)如图2,点C 是x 轴上一动点,以C 为圆心,3为半径作⊙C ,当⊙C 与AB 相切时,设切点为D ,求圆心C 的坐标;(3)在(2)的条件下,点E 在x 轴上,△ODE 是以OD 为底边的等腰三角形,求过点O 、E 、D 三点的抛物线.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2. 下列运算中,·正确的是( )A. 4B. 2-3=-6C. (ab) 2=ab2D. 3a + 2a = 5a2【答案】A【解析】试题解析:A. 4 = 2,正确;B. 2-3=18,故原选项错误;C. (ab) 2=a2b2故原选项错误;D.3a + 2a = 5a故原选项错误. 故选A.3. 若反比例函数y=﹣1x的图象经过点A(2,m),则m的值是()A. 12B. 2C. ﹣12D. ﹣2【答案】C【解析】【分析】把点A(2,m)代入反比例函数中,即可得到m的值.【详解】∵反比例函数y=﹣1x的图象经过点A(2,m),∴12 m=-.故选C.【点睛】考查了反比例函数图象上点的坐标特征,注意:反比例函数解析式中横纵坐标的乘积为定值k.4. 如图是由六个小正方体组合而成的一个立体图形,它的主视图是()A. B. C. D.【答案】B【解析】【分析】解:从正面看易得第一层有3个正方形,第二层从左往右有2个正方形.故选B【详解】5. 已知方程x 2 +x=2,则下列说中,正确的是( )A. 方程两根之和是1B. 方程两根之和是-1C. 方程两根之积是2D. 方程两根之差是-1【答案】B【解析】试题解析:方程x2+x=2,即方程x2+x-2=0,∴方程的两根的和为-1,两根的积为-2故选B.6. 如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A. 1cm<OA<4cmB. 2cm<OA<8cmC. 2cm<OA<5cmD. 3cm<OA<8cm【答案】A【解析】在△ABC中,因为BC-AB<AC<BC+AC,即5-3<AC<5+3,则2<AC<8,因为AC=2OA,所以1<OA<4,故选A.二、填空题(本大题共10小题,每小题3分,共30分)7. 实数4的倒数是_________【答案】1 4【解析】试题分析:当两数的乘积为1时,则两数互为倒数.8. 经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为_________每千克.【答案】2.01×10﹣6【解析】试题解析:0.000002012.01×10﹣69. 在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是_________队(填"甲"或"乙"),【答案】甲【解析】试题解析:由于S甲2<S乙2,则甲队中身高更整齐.∴两队中身高更整齐是甲队.10. 函数1y=x2-中,自变量x的取值范围是▲.【答案】x2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.11. 计算:111xx x---=_____.【答案】-1【解析】【分析】根据分式的性质进行计算即可解答【详解】解:11=111x x x x x-----=﹣1.故答案为﹣1.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则12. 如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.【答案】12【解析】【详解】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=41 = 82故答案为:12.13. 一个正n边形的一个外角等于72°,则n的值等于_____.【答案】5.【解析】分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n 的值为360°÷72°=5. 故答案为:5【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.14. 教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是_________千克. 【答案】59 【解析】试题解析有:设该班有x 名学生,根据题意得:140+170=145+1x x解得:x=5经检验:x=5是原方程的根.∴老师的体重为:39×6-35×5=59千克.15. 如图所示,一只青蛙,从A 点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A 点的左侧的某个位置处,请问这个位置到A 点的距离最少是_____厘米.【答案】1 【解析】 【分析】可以假设向左跳为负,向右跳为正,然后根据有理数的加减法计算法则得出最后的位置的最小值.【详解】向左跳一次再向右跳一次看成一组操作, 左跳1 个单位长度,接着向右跳2个单位长度,那么这时在A 点右侧1个单位长度处;然后向左跳3个单位长度,接着向右跳4个单位长度,那么这时在A 点右侧2个单位长度处;2018次:2018+2=1009 (组),则青蛙第2018次的落,点在A 的左侧,距离是1个单位长度, 故答案为:1.16. 如图,矩形纸片ABCD 中,AD= 1,AB 一2.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F,AE 与FG 交于点仪当触ED 的外接圆与BC 相切于BC 的中点N.则折痕FG 的长为________【答案】17 15【解析】试题解析:设AE与FG的交点为O.根据轴对称的性质,得AO=EO.取AD的中点M,连接MO.则MO=12DE,MO∥DC.设DE=x,则MO=12 x,在矩形ABCD中,∠C=∠D=90°,∴AE为△AED的外接圆的直径,O为圆心.延长MO交BC于点N,则ON∥CD.∴∠CNM=180°-∠C=90°.∴ON⊥BC,四边形MNCD是矩形.∴MN=CD=AB=2.∴ON=MN-MO=2-12x.∵△AED的外接圆与BC相切, ∴ON是△AED的外接圆的半径.∴OE=ON=2-12x,AE=2ON=4-x.在Rt△AED中,AD2+DE2=AE2, ∴12+x2=(4-x)2.解这个方程,得x=158.∴DE=158,OE=2-12x=1716.根据轴对称的性质,得AE⊥FG.∴∠FOE=∠D=90°.可得FO=17 30.又AB ∥CD,∴∠EFO=∠AGO,∠FEO=∠GAO . ∴△FEO ≌△GAO .∴FO=GO .∴FG=2FO=1715. ∴折痕FG 的长是1715. 【点睛】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.三、解答题(本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤)17. 先化简,再求值(a-2)a-(a+6)(a-2),其中a=-2. 【答案】24. 【解析】试题分析:原式第一项利用单项式乘以多项式法则计算,第二项利用多项式乘以多项式法则计算,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=a 2-2a-a 2-4a+12 =612a -+当a=-2时,原式=-2×(-6)+12=24.18. 求不等式组21{210x x -≤+>【答案】132x -<≤ 【解析】试题分析:分别求出每一个不等式的解集,再取它们的公共部分即可. 试题解析:21{210x x -≤+>①②解不等式①,得:3x ≤ 解不等式②,得:12x >-, 所以132x -<≤ 19. 莫菲、隆迪、紫惠和曲代4人一起去火锅店吃火锅,4人在如图所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同侧,(1)请用适当的方法表示出所有的不同就座方案.(2)请问隆迪恰好坐在靠近过道一侧的概率是多少?【答案】(1)所有的就座方案见解析;(2)隆迪恰好坐在靠近过道一侧的概率是12.【解析】试题分析:(1)、根据不同的排列顺序用表格的形式表示出不同的就座方案;(2)、根据列出的所有方案,找出符合题意的几种情况,从而得出概率.试题解析:(1)莫菲、隆迪、紫惠和曲代依次用数字1、2、3、4编号,则所有的就座方案如下表:A 1 1 3 3 2 2 4 4B 3 3 1 1 4 4 2 2C 2 4 2 4 1 3 1 3D 4 2 4 2 3 1 3 1共有8种不同的就座方案.(2)从(1)中可以看出,有4种方案中,隆迪恰好坐在靠近过道一侧,所以隆迪恰好坐在靠近过道一侧的概率是1 220. 如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数kyx(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.【答案】(1)a=4;(2)P′的坐标是(2,4);(3)y=8x. 【解析】 【分析】(1)把(-2,a )代入y=-2x 中即可求a ;(2)坐标系中任一点关于y 轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变; (3)把P′代入y=kx中,求出k ,即可得出反比例函数的解析式. 【详解】解:(1)把(-2,a )代入y=-2x 中,得a=-2×(-2)=4, ∴a=4;(2)∵P 点的坐标是(-2,4),∴点P 关于y 轴的对称点P′的坐标是(2,4); (3)把P′(2,4)代入函数式y=kx,得 4=2k , ∴k=8,∴反比例函数的解析式是y=8x. 【点睛】本题考查了待定系数法求反比例函数解析式,一次函数图象上点的坐标特征,关于x 轴、y 轴对称点的坐标.知道经过函数的某点一定在函数的图象上,坐标系中任一点关于x 轴、y 轴的点的特征. 21. 游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了 名学生;(2)“家长陪同时会”的学生所占比例为 %,“一定不会”的学生有 人; (3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?【答案】(1)400(2)详见解析(3)100【解析】【分析】(1)根据一定会的人数和所占的百分比即可求出总人数:20÷5%=400(人).(2)用总人数减去其它人数得出不会的人数,再根据家长陪同的人数除以总人数得出家长陪同时会的所占的百分比,从而补全统计图.(3)用2000乘以一定会下河游泳所占的百分百,即可求出该校一定会下河游泳的人数.【详解】解:(1)400.(2)一定不会的人数是400﹣20﹣50﹣230=100(人),家长陪同的所占的百分比是230400×100%=57.5%.补图如下:(3)根据题意得:2000×5%=100(人).答:该校2000名学生中大约有多少人“一定会下河游泳”有100人.22. 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E.(1)求证:△ACD≌△AED(2)若AC=5,△DEB的周长为8,求△ABC的周长【答案】(1)证明见解析;(2)△ABC的周长是18.【解析】【分析】(1)根据角平分线的性质得出DC=DE,结合AD=AD 从而得出两个直角三角形全等; (2)根据全等得出AE=AC=5,CD=ED,从而得出△ABC 的周长=AC+AC+△DEB 的周长得出答案. 【详解】(1)证明:因为AD 平分∠CAB ,∠C=90°,DE ⊥AB 所以DC=DE在△ACD 和△AED 中,,DC DEAD AD=⎧⎨=⎩ ∴△ACD ≌△AED (HL ). (2)由(1)得△ACD ≌△AED 所以AE=AC=5,CD=ED , C △ABC =AC+AB+BC=AC+(AE+EB )+(BD+DC ) =AC+AC+(EB+BD+DE ) =AC+AC+C △DEB =5+5+8 =18.【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是掌握角平分线的性质定理,属于中考常考题型.23. 如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西30.的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A 的距离姓B.(结果保留小数点后一位,其中3=1.732)【答案】此时渔政船距钓鱼岛A 的距离AB 约为69.3海里. 【解析】试题分析:此题可先由速度和时间求出BC 距离,再由各方向角关系确定△ABC 为直角三角形,解此直角三角形即可求得结果. 试题解析:由题意得,BC =80×12=40(海里), ∠ACB =60°,∠DCB =30°,∠EBC =150°, 而∠EBA =60°,所以∠ABC =90°, 在Rt △ABC 中,tan 60°=3ABBC=, 3403AB BC =⋅=≈69.3(海里). 答:此时渔政船距钓鱼岛A 的距离AB 约为69.3海里.24. 实践操作如图,∠△ABC 是直角三角形,∠ACB=90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作∠BAC 的平分线,交BC 于点0②以点0为圆心,OC 为半径作圆.综合运用在你所作的图中, (1)直线AB 与⊙0的位置关系是 (2)证明:BA·BD=BC·BO; (3)若AC=5,BC=12,求⊙0的半径【答案】实践操作,作图见解析;综合运用:(1)相切;(2)证明见解析;(3)103【解析】实践操作:根据题意画出图形即可;综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB 与⊙O 的位置关系是相切; (2)证明ΔBOD∽ΔBAC 即可;(3)首先根据勾股定理计算出AB 的长,再设半径为x,则OC=OD=x,BO=(12-x )再次利用勾股定理可得方程x 2+82=(12-x )2,再解方程即可. 试题解析:实践操作,如图所示:综合运用:综合运用:(1)AB与⊙O的位置关系是相切.∵AO是∠BAC的平分线,∴DO=CO,∵∠ACB=90°,∴∠ADO=90°,∴AB与⊙O的位置关系是相切;(2)∵AB、AC是切线∴∠BDO=∠BCA=90°又∠DBC=∠CBA∴ΔBDO∽ΔCBA∴BD BO BC BA=即:BD BA BO BC⋅=⋅(3)因为AC=5,BC=12,所以AD=5,AB=13,所以DB=13﹣5=7,设半径为x,则OC=OD=x ,BO=(12﹣x), x2+82=(12﹣x)2,解得:x=103.答:⊙O的半径为103.25. 某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系、(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元【答案】(1)182y x=-+;(2)2110432z x x=-+-,当10x=万元时,最大月获利为7万元.(3)销售单价应定为8万元.【解析】试题分析:(1)设直线解析式为y=kx+b,把已知坐标代入求出k,b的值后可求出函数解析式;(2)根据题意可知z=411yx y--,把x=10代入解析式即可;(3)令z=5,代入解析式求出x的实际值.试题解析:(1)设y kx b=+,它过点56{48k bk b=+=+,解得:1{28kb=-=,182y x∴=-+(2)()2114118411104322z yx y x x x x⎛⎫=--=-+--=-+-⎪⎝⎭∴当10x=万元时,最大月获利为7万元.(3)令5z =, 得21510432x x =-+-, 整理得:220960x x -+=解得:18x =,212x =由图象可知,要使月获利不低于5万元,销售单价应在8万元到12万元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使月获利不低于5万元,销售单价应定为8万元.26. (1)如图1,△ABC 中,D 是BC 边上一点,则△BD 与△ADC 有一个相同的高,它们的面积之比等于相应的底之比,记为S ABD S ADC =BD DC (△ABD、△ADC 的面积分别用S △ABD 、S △ADC 表示).现有BD=13BC,则S △ABD :S △ADC = (2)如图2,△ABC 中,E 、F 分别是BC 、AC 边上一点,且有BE:EC=1:2,AF: FC=1:1,AE 与BF 相交于点G 、现作EH ∥BF 交AC 于点H 、依次求FH :HC 、AG : GE 、BG :GF 的值(3)如图3,△ABC 中,点P 在边AB 上,点M 、N 在边AC 上,且有AP=PB,AM=MN=NC,BM 、BW 与CP 分别相交于点R 、Q.,现已知△ABC 的面积为1,求△BRQ 的面积.【答案】(1)1:3;(2):=1:2FH HC 、:=3:1AG GE 、:=1:1BG GF ;(3)320. 【解析】 试题分析:根据两个三角形有一个相同的高,它们的面积之比等于相应的底之比进行计算即可;(2)由平行线分线段成比例定理即可得解;(3)由(2)易得:=3:2BR RM 、:=3:1BQ QN 、::=5:3:2CQ QR RP ,因△ABC 的面积为1.则可得:1122BCP ABC S S ∆∆==,331020BRQ BCP S S ∆∆==. 试题解析:(1)S ABD S ADC =BD DC =1133BC BC = (2):=1:2FH HC 、:=3:1AG GE 、:=1:1BG GF(3)由(2)易得::=3:2BR RM 、:=3:1BQ QN 、::=5:3:2CQ QR RP△ABC 的面积为1.则1122BCP ABC S S ∆∆==,331020BRQ BCP S S ∆∆==. 27. 如图1,在平面直角坐标系中,过点A (23-,0)的直线AB 交y 轴的正半轴于点B ,60ABO ∠=︒.(1)求直线AB 的解析式;(直接写出结果)(2)如图2,点C 是x 轴上一动点,以C 为圆心,3为半径作⊙C ,当⊙C 与AB 相切时,设切点为D ,求圆心C 的坐标;(3)在(2)的条件下,点E 在x 轴上,△ODE 是以OD 为底边的等腰三角形,求过点O 、E 、D 三点的抛物线.【答案】(1)直线AB 的解析式为323y x =+; (2)当⊙C 与AB 相切时,点C 坐标为(0,0)或(43-,0);(3)过点O 、E 、D 三点的抛物线为2(3)y x x =-+或213(3)237y x x =-+ 【解析】试题分析:(1)、根据Rt△AOB 的性质求出点B 的坐标,然后根据待定系数法求出函数解析式;(2)、根据⊙C 在直线AB 的左侧和右侧两种情况以及圆的切线的性质分别求出AC 的长度,从而得出点C 的坐标;(3)、本题也需要分两种情况进行讨论:⊙C 在直线AB 的右侧相切时得出点D 的坐标,根据等边△1ODE 的性质得出1E 的坐标,从而根据待定系数法求出抛物线的解析式;⊙C 在直线AB 的左侧相切时,根据切线的直角三角形的性质求出点2E 的坐标,根据待定系数法求出抛物线的解析式.试题解析:(1)∵A (23-0),∴23AO =. 在Rt△AOB 中,90AOB ∠=︒. tan AO ABO BO ∠=,23BO = 2BO =. ∴B (0,2). 设直线AB 的解析式为y kx b =+.则2{0b b =-+=解得{2k b ==∴直线AB的解析式为2y x =+. (2)如图3,①当⊙C 在直线AB 的左侧时, ∵⊙C 与AB 相切,∴90ADC ∠=︒.在Rt△ADC 中,90ADC ∠=︒. DC sin DAC AC ∠=,AC =,AC =而AO =∴C 与O 重合,即C 坐标为(0,0).②根据对称性,⊙C 还可能在直线AB 的右侧,与直线AB 相切,此时CO =∴C坐标为(-0).综上,当⊙C 与AB 相切时,点C 坐标为(0,0)或(-,0).(3)如图4,①⊙C 在直线AB 的右侧相切时,点D的坐标为(2-32). 此时△1ODE 为等边三角形.∴1E(0).设过点O 、E 、D三点的抛物线的解析式为(y a x x =.则3222a ⎛⎛=-+⨯- ⎝⎝⎭ 2a =-∴(2y x x =-+ ②当⊙C 在直线AB 的左侧相切时,D(2-,32-) 设2E C x =,则2DE x =,2ME x =. 在Rt△2MDE 中,290DME ∠=︒. 22222MD ME DE +=,即22232x x ⎛⎫⎫+= ⎪⎪⎝⎭⎭, x = ∴2E(0). 设过点O 、E 、D三点的抛物线的解析式为y a x x ⎛=+⎝.则32a ⎛⎛-=⨯ ⎝⎝,223a =-.223y x x ⎛=- ⎝. 综上,过点O 、E 、D三点的抛物线为(2y x x =-+或223y x x ⎛=- ⎝.点睛:本题主要考查的就是圆的切线的性质、分类讨论思想以及待定系数法求二次函数解析式,本题在解答的过程中容易出现漏解的现象,做题的时候要细心.在解决切线问题的时候,我们一般首先画出切线的位置,然后转化为直角三角形的问题来进行解决,从而得出我们所需要求的答案.在求切线的时候,一定要注意圆所在的位置进行分类讨论.。

九年级中考数学模拟试卷(01)

九年级中考数学模拟试卷(01)

九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。

01卷-2023年中考地理模拟冲刺卷(原卷版)

01卷-2023年中考地理模拟冲刺卷(原卷版)

【决胜中考·抢分冲刺】备战2023年中考地理模拟冲刺卷(福建专用)01卷(本试卷共31小题满分100分考试时间60分钟)一、选择题(本题包括25小题,每小题2分,共50分。

每小题只有一个正确选项)重庆气象台2022年11月27日18时发布江津区2022年11月28日~12月1日天气预报:11月28日晴16℃24℃、29日阴8℃12℃、30日小雨6℃9℃、12月1日小雨5℃7℃。

下图为江津区四面山12月1日景观图。

读材料和下图完成下面14小题。

1.四面山出现降雪的主要原因是()A.地势高B.纬度高C.距海近D.日照少2.江津2022年11月28日~12月1日遭遇的气象灾害是()A.暴雨B.冰雹C.暴雪D.寒潮3.影响这次气象灾害的主要气流是()A.西北季风B.东南季风C.西南季风D.西风4.减少此次气象灾害对农业造成损失,最有效的预防措施是()A.在田间地头燃烧秸秆B.在耕地上撑起大伞C.在庄稼上覆盖塑料大棚D.在耕地上覆盖棉絮位于美国西部的加利福尼亚州地区森林覆盖率较高,雨季来临前气温高,多大风。

2020年9月加利福尼亚州塞拉利昂国家森林发生大火,火势迅速扩大,过火面积相当于10个纽约市的面积,打破历史纪录,大火造成大量人员和财产损失,同时也给当地生态环境造成了恶劣影响。

读加利福利亚州气候类型分布图,完成下面57小题。

5.据图判断加利福尼亚州的气候类型为()A.亚热带季风气候B.地中海气候C.温带海洋性气候D.温带季风气候6.以下对此次加利福尼亚州大火的分析,不合理的是()A.该地森林覆盖率高,此季节枯枝、落叶等松散可燃物数量多B.该地此季节风速较高,加剧了火势蔓延C.该季节气温较高,且降水少,可燃物变得异常干燥D.该地全年气候干燥,极易引发森林火灾7.此次森林火灾给加利福尼亚州带来的不利影响有()℃森林面积减少℃破坏森林生态系统平衡℃严重污染大气环境℃生物多样性减少A.℃℃℃B.℃℃℃℃C.℃℃℃D.℃℃℃2021年10月9日上午10时,纪念辛亥革命110周年大会在北京人民大会堂度重举行。

专题01 数与式中考1年模拟数学真题分项汇编

专题01  数与式中考1年模拟数学真题分项汇编

专题01数与式5年中考真题一、单选题1.【2019年】规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A .+3B .﹣3C .﹣13D .+132.【2022年】与132-相等的是()A .132--B .132-C .132-+D .132+3.【2021年】能与3645⎛⎫-- ⎪⎝⎭相加得0的是()A .3645--B .6354+C .6354-+D .3645-+4.【2021年】如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是()A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<5.【2021年】不.一定相等的一组是()A .a b +与b a +B .3a 与a a a ++C .3a 与a a a⋅⋅D .()3a b +与3a b+6.【2018年】图中的手机截屏内容是某同学完成的作业,他做对的题数是()A .2个B .3个C .4个D .5个7.【2022年】某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为()A .42410m ⨯B .421610m ⨯C .521.610m ⨯D .421.610m ⨯8.【2020年】已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为()A .5B .6C .5或6D .5或6或79.【2019年】一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为()A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣10.【2018年】一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A .4B .6C .7D .1011.【2022年】计算3a a ÷得?a ,则“?”是()A .0B .1C .2D .312.【2020年】若k 为正整数,则()k k kkk k ++⋅⋅⋅+= 个()A .2k kB .21k k +C .2kk D .2kk +13.【2020年】墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是()A .+B .-C .×D .÷14.【2020年】若()()229111181012k--=⨯⨯,则k =()A .12B .10C .8D .615.【2018年】若2n +2n +2n +2n =2,则n=()A .﹣1B .﹣2C .0D .1416.【2019年】小明总结了以下结论:①a(b+c)=ab+ac ;②a(b ﹣c)=ab ﹣ac ;③(b ﹣c)÷a =b÷a ﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是()A .1B .2C .3D .417.【2018年】将9.52变形正确的是()A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.5218.【2019年】图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=()A .232x x ++B .22x +C .221x x ++D .223x x+19.【2018年】用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加()A .4cmB .8cmC .(a+4)cmD .(a+8)cm20.【2020年】对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是()A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解21.【2022年】下列正确的是()A23=+B 23=⨯C =D 0.7=22.【2021年】).A .321-+B .321+-C .321++D .321--23.【2021年】1.442的结果是()A .-100B .-144.2C .144.2D .-0.0144224.【2020年】若a b ¹,则下列分式化简正确的是()A .22a ab b+=+B .22a ab b-=-C .22a a b b=D .1212aa b b =25.【2022年】若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是()A .1B .2C .3D .426.【2019年】如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在()A .段①B .段②C .段③D .段④27.【2018年】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A .只有乙B .甲和丁C .乙和丙D .乙和丁28.【2021年】由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是()A .当2c =-时,12A =B .当0c =时,12A ≠C .当2c <-时,12A >D .当0c <时,12A <二、填空题29.【2019年】若2107777p ⨯⨯﹣﹣=,则p 的值为_____.30.【2018年】若a ,b 互为相反数,则a 2﹣b 2=_____.31.【2018年】.32.【2020年】==ab =_________.33.【2021年】现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为___________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片___________块.34.【2022年】如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a =______;(2)设甲盒中都是黑子,共()2m m >个,乙盒中都是白子,共2m 个,嘉嘉从甲盒拿出()1a a m <<个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多______个;接下来,嘉嘉又从乙盒拿回a 个棋子放到甲盒,其中含有()0x x a <<个白子,此时乙盒中有y 个黑子,则yx的值为______.三、解答题35.【2022年】发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.【答案】验证:22215+=;论证见解析36.【2021年】某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.37.【2019年】有个填写运算符号的游戏:在“1269 ”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯ =﹣,□内的符号;(3)在“1269 ﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.37.【2020年】有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.39.【2018年】嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++ ,发现系数“W ”印刷不清楚.(1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几?40.【2022年】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用求从下到上前31个台阶上数的和.发现试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.1年模拟新题一、单选题1.(2022·河北·石家庄市第四十一中学模拟预测)2022的相反数是()A .12022B .12022-C .−2022D .20222.(2022·河北·平泉市教育局教研室二模)若()2132x x +-+=- ,则W 表示的多项式是()A .2132x x -++-B .()2132x x -+--C .2132x x -+-D .2132x x +-+3.(2022·河北唐山·三模)如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为()A .3B .1-C .2-D .3-4.(2022·河北唐山·三模)下列计算正确的是()A .3182-⎛⎫-=- ⎪⎝⎭B .2163-⎛⎫-= ⎪⎝⎭C .0122⎛⎫-= ⎪⎝⎭D .1122-⎛⎫-= ⎪⎝⎭5.(2022·河北唐山·三模)运算后结果正确的是()A .12=B 2=C 0=D =6.(2022·河北石家庄·三模)若分式()2011x xx x x ≠-- 的运算结果为x ,则在“ ”处的运算符号()A .只能是“÷”B .可以是“÷”或“–”C .不能是“–”D .可以是“×”或“+”7.(2022·河北邯郸·三模)如图,有两个正方形A ,B .现将B 放在A 的内部得图甲,将A ,B 并列放置后,构造新的正方形得图乙.已知图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A 和两个正方形B 如图丙摆放,则图丙中阴影部分的面积为()A .28B .29C .30D .318.(2022·河北唐山·)A .5和6之间B .6和7之间C .7和8之间D .8和9之间9.(2022·河北邯郸·三模)14000的值用科学记数法表示为10n a ⨯,其中a 和n 的值分别为()A .4,3-B .2.5,4-C .2.5,3-D .4,4-10.(2022·河北·=b a 的值是()A .6B .9C .12D .27二、填空题11.(2022·河北邯郸·三模)分解因式3x x -+=______.12.(2022·河北唐山·二模)已知1x =+,1y ,则222x xy y ++=______,22x y -=______.13.(2022·河北唐山·三模)代数式12xM x+÷+化简的结果是2x +,则整数M =______.当2x <-时,12x x++______12(填“>”“<”“=”)14.(2022·河北唐山·三模)如图是一个长方体的主视图和左视图,其中左视图的面积是24x -.则(1)用x 表示图中长方体的高为______.(2)用x 表示其俯视图的面积______.15.(2022·河北保定·一模)在平面直角坐标系中,O 为坐标原点,对于点M (x ,y ),可以用以下方式定义M 到O 的“原点距离”:若|x |≥|y |,则M 到O 的“原点距离”为|x |;若|x |<|y |,则M 到O 的“原点距离”为|y |.例如,(5,7)到O 的“原点距离”为7.(1)点A (4,3)、B (3,﹣2)、C (﹣3,5)、D (﹣3,﹣3)四点中,到O 的“原点距离”为3的点有_____个.(2)经过点(1,3)的一次函数y =kx +b (k 、b 是常数,k ≠0)的图象上存在唯一的点P ,到O 的“原点距离”为2,则k =_____.三、解答题16.(2022·河北·石家庄市第四十一中学模拟预测)如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m -,94m -.(1)求AB 的长;(用含m 的代数式表示)(2)若2AB BC =,求m .17.(2022·河北·石家庄市第四十一中学模拟预测)佳佳在“+”“-”“×”“÷”四个符号中选了一个符号,填入212212⎛⎫+⨯ ⎪⎝⎭的□中,计算的结果是8.(1)佳佳选取的运算符号是______;(2)佳佳认为:把题目中的“2”(指数除外)换成“a ”()0a ≠后,在□中填入“×”一定比在□中填入“÷”的值大,请通过计算说明佳佳的说法是否正确.18.(2022·河北保定·一模)已知:A 、B 是两个整式,A =3a 2﹣a +1,B =2a 2+a ﹣2.尝试当a =0时,A =______,B =______.当a =2时,A =______,B =______.猜测嘉淇猜测:无论a 为何值,A >B 始终成立.验证请证明嘉淇猜测的结论.19.(2022·河北唐山·二模)已知实数﹣3,1,m .(1)当m =﹣5时,计算最大数与最小数的差;(2)如果这三个数的平均数是2,求m 的值;(3)当m =-______.20.(2022·河北石家庄·三模)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:22420=-,221242=-.(1)请你将68表示为两个连续偶数的平方差形式;(2)试证明“神秘数”能被4整除;(3)两个连续奇数的平方差是“神秘数”吗?试说明理由.21.(2022·河北承德·二模)对于任意四个有理数a ,b ,c ,d ,都可以组成两个有理数对(),a b 与(),c d .我们规定:()(),,a b c d bc ad =-★.例如:()()1,23,423142=⨯-⨯=★.根据上述规定解决下列问题:(1)()12,33,2⎛⎫= ⎝--⎪⎭★______;(2)计算()2,2-★;(3)当x +y =2,xy =-3时,求()(),22,45x y x y x y x y ++--+★的值.。

2024年中考语文第一次模拟考试 广东卷01(原卷版)

2024年中考语文第一次模拟考试 广东卷01(原卷版)
(选自《史记·孔子世家》)
10.下列各组句子中,加点词语意思相同的一项是( )
A.孔子学鼓琴师襄子/一鼓作气B.可以益矣/曾益其所不能
C.丘已习其曲矣/学而时习之D.丘未得其志也/处处志之
11.请用三条“/”给文中画线的句子断句。
黯 然 而 黑 几 然 而 长 眼 如 望 羊 如 王 四 国
12.“为人师表”在孔子身上得到了很好的体现。在文中,孔子以实际行动践行了《〈论语〉十二章》的哪几则语录?请你写下来。
2024春中考语文第一次模拟考试
答题注意事项:
1.全卷共8页,满分为120分,考试用时为120分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
一、积累运用(29分)
②当时还带着困意的我晕乎乎地答应着,随后就听到救护车吱哇乱叫的声音,几个陌生人敲开门,拿凳子做担架,将倒在地上的我爸抬走。
③我就是在那个瞬间突然清醒,看着我妈和被抽去了意识的我爸消失在电梯里,很久之后,那些只言片语还在空荡荡的屋子上方盘旋。
④“你爸在卫生间摔倒了……”“我本来以为没事的,没想到他一直醒不过来……”
在平衡膳食的基础上,运动对于提高免疫力是有效的;而长时间的剧烈运动,可能会导致免疫力在运动后明显下降,恢复缓慢。
所以,规律地坚持运动锻炼会使基础的免疫力水平逐步升高,这才是我们需要的持久的免疫力。但运动对免疫力的提升具有不可储存性,即长时间不运动,这种健康收益会逐步消失。
最佳的提高身体免疫力的运动锻炼是每次30分钟—45分钟的中等强度运动,每周5次左右,长期坚持四周以上。
7.根据名著内容,完成下面题目

2016年中考语文 专题01 辨识现代汉语常用字字音、字形试题(含解析)

2016年中考语文 专题01 辨识现代汉语常用字字音、字形试题(含解析)

专题01 辨识现代汉语常用字字音、字形☞解读考点☞2年中考[2015年题组]1.(2015届贵州遵义中考)字词积累——读下面一段文字,根据拼音写出汉字。

善良,是人们心间斑lán()的花。

心怀善良,便yæng()绕满怀温馨,延己及人;心怀善良,便生出随喜之心,huç()然开朗;心怀善良,便拥有不老容颜,芳龄永驻。

依善行事,我们会qiâ()意、愉快。

【答案】(4分)斓萦豁惬(每个字1分)【考点定位】识记并正确书写现代汉语普通话常用字的字音。

能力层级为识记A。

识记并正确书写现代常用规范汉字。

能力层级为识记A。

2.(2015届黑龙江哈尔滨中考)(3分)下列词语中加点字注音完全正确....的一项是()A.梦寐.(mâi)雷霆.(tæng)惬.意(qiâ)B.重荷.(hã)匿.名(nå)哺.育(bǔ)C.撺.掇(cuün)蓬蒿.(hüo)克.扣(ký)D.拆.散(chüi)嗥.鸣(güo)观瞻.(zhün)【答案】A【解析】试题分析:此类型的题目考查学生的理解识记能力,考查等级为A。

需要学生在平时多读课文,养成熟练地语感,注意读音,多积累词语,多读课下注释,多查字典等工具书。

B.重荷.(hâ)C.克.扣(kâ)D.嗥.鸣(háo)【考点定位】识记并正确书写现代汉语普通话常用字的字音。

能力层级为识记A。

3.(2015届湖北黄石中考)下列加点字的读音全部正确的一项是()A.脑髓.(suǐ)躯壳.(kã)皲.裂(jūn)度.德量力(dù)B.憎.恶(zâng)混.淆(hùn)唐雎.(suÿ)恪.尽职守(kâ)C.闷.热(mýn)濒.临(bÿn)挑剔.(tÿ)恃才放旷.(guǎng)D.绥.靖(suæ)绮.丽(qǐ)缥.碧(piǎo)怏怏..不乐(yàng)【答案】D【解析】试题分析:此类型的题目考查学生的理解识记能力,考查等级为A。

初中数学 中考模拟复习专题01 经典母题30题2考试卷及答案

初中数学 中考模拟复习专题01 经典母题30题2考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:大庆油田某一年的石油总产量为4 500万吨,若用科学记数法表示应为()吨.A.4.5×10-6 B.4.5×106 C.4.5×107 D.4.5×108试题2:下列运算正确的是()A.a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4试题3:如图中几何体的俯视图是()试题4:下面图形中,是中心对称图形的是()评卷人得分A. B. C. D.试题5:如图所示把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )(A)正三角形(B)正方形(C)正五边形(D)正六边形试题6:如图,已知二次函数 =,当<<时, 随的增大而增大,则实数a的取值范围是( )(A)>(B)<≤(C)>0 (D)<<试题7:如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2 B.﹣2 C.﹣ D.﹣试题8:在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2 B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2试题9:如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°试题10:如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.A.7.5 B.15 C.22.5 D.30试题11:如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6试题12:如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个试题13:二元一次方程组的解为试题14:如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).试题15:如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB= .试题16:如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.试题17:服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.试题18:写出一个图象经过点(﹣1,2)的一次函数的解析式.试题19:如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.试题20:如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.试题21:在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是.试题22:如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.试题23:已知非零实数a满足a2+1=3a,求的值.试题24:先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.试题25:如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1) 请画出△ABC向左平移5个单位长度后得到的△A B C;(2) 请画出△ABC关于原点对称的△A B C;(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.试题26:某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?试题27:如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?试题28:某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?试题29:如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2试题30:如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.试题31:如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.试题32:如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.试题1答案:C.试题2答案:B【解析】A、a3和a4不能合并,故A错误;B、2a3•a4=2a7,故B正确;C、(2a4)3=8a12,故C错误;D、a8÷a2=a6,故D错误;故选B.试题3答案:A.【解析】从上面看易得第一层最右边有1个正方形,第二层有3个正方形.故选A.试题4答案:C.试题5答案:A【解析】由题意可知将剪出的直角三角形全部打开后得到如图所示的三角形,为正三角形.试题6答案:B【解析】由得对称轴为x=1,∵a=-1<0,∴当x<1时,y随x的增大而增大,∵当-1<x<a时, y随x的增大而增大∴a≤1,因此选B试题7答案:A【解析】连接OC,∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,∴△AOC的边AC上的高是,△BOC边BC上的高为,∴阴影部分的面积是,故选A.试题8答案:C【解析】∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x﹣1)2+2.故选C.试题9答案:D【解析】如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.试题10答案:D【解析】∵D、E分别是AC、BC的中点,DE=15米,∴AB=2DE=30米,故选D.试题11答案:D【解析】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4-1+4﹣1=6.故选D.试题12答案:C【解析】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△A BH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.试题13答案:.【解析】,①×3-②×2得:11x=33,即x=3,将x=3代入②得:y=2,则方程组的解为.试题14答案:AB=CD 或OA=OB或OB=OC等【解析】从图中可知∠AOB=∠DOC,所以要想△AOB≌△DOC,只需要再有一边对应相等(AB=CD 或OA=OB或OB=OC)即可,利用ASA、AAS就可判定,当然也也可以给出别的条件AB=CD,(以此为例)理由是:∵在△AOB和△DOC中∴△AOB≌△DOC,试题15答案:.【解析】由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF-∠BAF=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB=.试题16答案:﹣16【解析】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∴k=﹣16,试题17答案:120【解析】设这款服装每件的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.∴标价比进价多300﹣180=120元.试题18答案:答案不唯一,如:y=2x+4等【解析】设函数的解析式为y=kx+b,将(﹣1,2)代入,得b﹣k=2,所以可得y=2x+4.试题19答案:36°【解析】∵∠ABC与∠ADC是所对的圆周角,∴∠ABC=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.试题20答案:2【解析】由题意得,a﹣1=0,b﹣4=0,解得a=1,b=4,∵菱形的两条对角线的长为a和b,∴菱形的面积=×1×4=2.试题21答案:【解析】列表得:1 2 3 41 (1,1)(1, 2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y﹣x+5的概率为:.试题22答案:【解析】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为.试题23答案:7.【解析】∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.试题24答案:;3【解析】原式=÷=•=,当a﹣2=0,即a=2时,原式=3.试题25答案:(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)试题26答案:(1)a=45,b=39,c=0.26,作图见解析:(2)该校“不重视阅读数学教科书”的初中人数约为598人;(3)①见解析,②见解析.【解析】(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:(2)该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人);(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.试题27答案:1)一次函数的解析式为y=﹣2x﹣3,反比例函数的解析式为y=﹣;(2)当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【解析】(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.试题28答案:(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.【解析】(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.试题29答案:(1)BE=FH ;理由见解析(2)证明见解析(3)=2π【解析】(1)BE=FH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届深圳中考数学模拟题(1)一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.﹣14的倒数是()A、-4B、4C、14D、-142.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是()A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A、①②B、①④C、②③D、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,π3B 、2√3,πC 、√3,2π3D 、2√3,4π311. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4B 、6C 、8D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论: ①BE=12GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( ) A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图第二部分 非选择题二、填空题(本题共有4小题,每小题3分,共12分)13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=kx (x <0)的图象经过点A ,则k= ________. 三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:√16+(﹣1)2013﹣(12)−2+(π﹣3)0﹣√83.18. 解不等式组{4(x +1)≤7x +10x −5<x−83并写出它的所有非负整数解.19. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。

(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为人。

20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:√2≈1.41,√3≈1.73,结果保留整数)21. 某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22. 如图,在直角坐标系中,⊙M经过原点O(0,0),点A(√6,0)与点B(0,−√2),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1) 求⊙M的半径;(2) 求证:BD平分∠ABO;(3) 在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.23. 如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S△AOP =4SBOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,交x轴于点E,是否存在点Q,使得直线AC将△ADE的面积分成1:2的两部分?若存在,求出所有点Q的坐标,若不存在,请说明理由。

参考答案一、单选题1. A.2.C.3.D.4. A.5. C.6. D.7. B解:设赚了25%的衣服是x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服是y元,则(1-25%)y=120,解得y=160元,则赔了160-120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人赔了40-24=16元.故选B.8. C.9.C解:由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;由图象可知0<﹣b2a <1,∴b2a>﹣1,又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b2﹣4ac>0,故③正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,∴a>0,c<0,∴ac<0,故④不正确;综上可知正确的为②③,故选C.10. D11. C 解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=12BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO=√AB2−OB2=√52−32=4,∴AE=2AO=8.12. B 解答∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=√22GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE 和△ECH 不相似,∴④错误;即正确的有2个.二、填空题13. a (a+2)(a ﹣2) 14. 1315. 150 【解答】解:当n 为奇数时:通过观察发现每一个图形的每一行有n+12个,故共有3(n+12)个;当n 为偶数时,中间一行有n2+1个,故共有3n2+1个. 所以当n=99时,共有3×99+12=150个.故答案为150. 16. -15解:∵△ABC 的内心在x 轴上, ∴OB 平分∠ABC,∵点B 的坐标是(2,0),点C 的坐标是(0,﹣2), ∴OB=OC,∴△OBC 为等腰直角三角形, ∴∠OBC=45°, ∴∠ABC=90°, ∴AB 2+BC 2=AC 2,∴(﹣3﹣2)2+b 2+22+22=(﹣3)2+(b+2)2, 解得b=5, ∴A 点坐标为(﹣3,5), ∴k=﹣3×5=﹣15. 三、计算题17. 解:原式=4﹣1﹣4+1﹣2 =﹣2. 18. 解:{4(x +1)≤7x +10(1)x −5<x−83(2) 由①得:x≥﹣2; 由②得:x <72,∴不等式组的解集为﹣2≤x<72,则不等式组的所有非负整数解为:0,1,2,3.19. 解:(1)调查的总人数是:30÷10%=300(人); (2)凤凰山的人数是:300×20%=60(人), 选择河口的人数所占的比例:99300×100%=33%, 选择市内景区的所占比例:75300×100%=25%,(3)“凤凰山”部分的圆心角是:360×20%=72°, (4)估计首选去河口的人数约为:2000×33%=660(人). 20.【解答】如图,过点C 作CD⊥AB 于点D ,通过解直角△ACD 和直角△BCD 来求CD 的长度.过点C 作CD⊥AB 于点D , 设CD=x .∵在直角△ACD 中,∠CAD=30°, ∴AD=CDtan30∘ = √3x . 同理,在直角△BCD 中,BD= CD tan60∘=√33x .又∵AB=30米,∴AD+BD=30米,即 √3x+√33 x=30.解得x=13.答:河的宽度为13米. 21. 解:(1)设甲队单独完成需x 天,则乙队单独完成需1.5x 天.根据题意,得120x+1201.5x =1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天. (2)设甲队每天的施工费为y 元.根据题意,得 200y+200×150×2≤300×10 000+300×150×2, 解得y≤15150.答:甲队每天施工费最多为15150元.22.(1)解:∵点A (√6,0)与点B (0,−√2), ∴OA=√6,OB=√2,∴AB=√OA 2+OB 2=2√2, ∵∠AOB=90°, ∴AB 是直径,∴⊙M 的半径为:√2 (2)解:∵∠COD=∠CBO,∠COD=∠CBA, ∴∠CBO=∠CBA, 即BD 平分∠ABO (3)解:如图,过点A 作AE⊥AB,垂足为A ,交BD 的延长线于点E ,过点E 作EF⊥OA 于点F ,即AE 是切线, ∵在Rt△AOB 中,tan∠OAB=OB OA =√2√6=√33, ∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°, ∴∠ABC=∠OBC=12∠ABO=30°, ∴OC=OB•tan30°=√2×√33=√63,∴AC=OA﹣OC=2√63, ∴∠ACE=∠ABC+∠OAB=60°, ∴∠EAC=60°,∴△ACE 是等边三角形, ∴AE=AC=2√63, ∴AF=12AE=√63,EF=√32AE=√2, ∴OF=OA﹣AF=2√63, ∴点E 的坐标为:(2√63,√2). 23. (1)解:把A (﹣3,0),C (0,3)代入y=﹣x 2+bx+c ,得 {0=−9−3b +c3=c ,解得{b =−2c =3.故该抛物线的解析式为:y=﹣x 2﹣2x+3.(2)解:由(1)知,该抛物线的解析式为y=﹣x 2﹣2x+3,则易得B (1,0). ∵S △AOP =4S △BOC ,∴12×3×|﹣x 2﹣2x+3|=4×12×1×3.整理,得(x+1)2=0或x 2+2x ﹣7=0,解得x=﹣1或x=﹣1±2√2. 则符合条件的点P 的坐标为:(﹣1,4)或(﹣1+2√2,﹣4)或(﹣1﹣2√2,﹣4);。

相关文档
最新文档