2020年广州中考数学模拟测试一(后附答案)

合集下载

2020年广东省广州市中考数学一模试卷(含答案解析)

2020年广东省广州市中考数学一模试卷(含答案解析)

2020年广东省广州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在实数−3,0,5,3中,最小的实数是()A. −3B. 0C. 5D. 32.如图是五个相同的小正方体搭成的几何体,其俯视图是()A.B.C.D.3.下列计算中,正确的是()A. (a2)3⋅a3=a9B. (a−b)2=a2+2ab−b2C. x2⋅x4=x8D. √2⋅√3=√54.如图,将△ABC沿AB方向平移至△DEF,且AB=5,BD=2,则CF的长度为()A. 4B. 5C. 3D. 25.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则参加绘画兴趣小组的频数是()。

A. 8B. 9C. 11D. 126.在下列性质中,菱形具有而矩形不具有的性质是()A. 内角和等于360°B. 对角相等C. 对角线平分一组对角D. 邻角互补7.不等式组{2x−1>1−x≤2的解集为()A. x>1B. −2≤x<1C. x≥−2D. 无解8.已知:如图,将∠ABC放置在正方形网格纸中,其中点A、B、C均在格点上,则tan∠ABC的值是()A. 2B. 12C. √52D. 2√559.已知一元二次方程x2−2018x+10092=0的两个根为α,β,则α2β+αβ2=()A. 10093B. 2×10093C. −2×10093D. 3×1009310.如图,在平面直角坐标系中,点A坐标为(2,1),直线l与x轴,y轴分别交于点B(−4,0),C(0,4),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是()A. (−2,2)B. (−32,52) C. (−12,72) D.(1,0)二、填空题(本大题共6小题,共18.0分)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.12.已知a<0,b>0,化简√(a−b)2=______.13.分式方程2xx−3=1的解是______.14.如图,已知∠ABC=30°,以O为圆心、2cm为半径作⊙O,使圆心O在BC边上移动,则当OB=______ cm时,⊙O与AB相切.15.一个圆锥的高线长是8cm,底面直径为12cm,则这个圆锥的侧面积是______.16.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3√5,且∠ECF=45°,则CF的长为__________.三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:a2−2aba−b −b2b−a,其中a=1+√3,b=−1+√3.四、解答题(本大题共8小题,共92.0分)18.计算:√83−2cos60°−(π−2018)0+|1−√4|19.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.20.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.21.已知一次函数y=ax+b与反比例函数y=3b−ax 的图象交于点(12,2),求:(1)这两个函数的解析式;(2)两个函数图象另一个交点的坐标.22.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?23.尺规作图(保留作图痕迹,不写作法和证明)如图,已知:△ABC,∠ACB=90°,求作:⊙O,使圆心O在AC边上,且⊙O与AB,BC均相切.24.如图,在平面直角坐标系中.直线y=−x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A(−1,0),连结AC.(1)求抛物线的解析式;(2)如图1,若点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)如图2,若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.25.如图,∠ABD=∠BCD=90°,DB平分∠A DC,过点B作BM//CD交AD于M,连接CM交DB于N。

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。

广东省广州市2020年中考数学一模试卷解析版

广东省广州市2020年中考数学一模试卷解析版

远地点高度约 368000 千米的地月转移轨道.数字 368000 用科学记数法表示为(

A. 36.8×104
B. 3.68×106
C. 3.68×105
D. 0.368×106
4. 已知 a,b 满足方程组
A. -4
B. 4
,则 a+b 的值为( )
C. -2
D. 2
5. 如图,四边形 ABCD 是⊙O 的内接正方形,点 P 是 上不同
于点 C 的任意一点,则∠BPC 的大小是( )
A. 22.5° B. 45° C. 30° D. 50°
6. 在平面直角坐标系中,将点 A(-1,2)向右平移 3 个单位长度得到点 B,则点 B 关 于 x 轴的对称点 C 的坐标是( )
A. (-4,-2)
B. (2,2)
C. (-2,F 翻折,得到四边形 EFC′D′,ED′交 BC 于点 G,则△GEF 的周长为( )
A. 6
B. 12
C. 6
二、填空题(本大题共 6 小题,共 18.0 分)
11. 计算:
=______.
12. 分解因式:b2-6b+9=______.
13. 如图,将一块三角板的直角顶点放在直尺的一边上,当
①∠CDF=60°;②△EDB∽△FDC;③BC= ;④S△ADB=
S△EDB. 其中所有正确结论的序号为______. 三、计算题(本大题共 1 小题,共 12.0 分) 17. 已知:关于 x 的一元二次方程 tx2-(3t+2)x+2t+2=0(t>0) (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2(其中 x1<x2),若 y 是关于 t 的函数,且 y=x2-2x1,求这个函数的解析式,并画出函数图象; (3)观察(2)中的函数图象,当 y≥2t 时,写出自变量 t 的取值范围.

2020年广州市数学中考第一次模拟试卷含答案

2020年广州市数学中考第一次模拟试卷含答案

2020年广州市数学中考第一次模拟试卷含答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形6.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:27.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .88.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)9.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm10.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°11.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额10 20 30 50 100 人数 2 4 5 3 1A .众数是100B .中位数是30C .极差是20D .平均数是3012.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4二、填空题13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.计算:103212sin45(2π)-+--+-o .22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 24.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .25.已知222111x x x A x x ++=---. (1)化简A ;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.3.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.4.B解析:B【解析】【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.5.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.6.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 9.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.11.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.12.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式112132=+-⨯+=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.23.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.24.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC22FC FB+=2234+,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.25.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.。

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版-CAL-FENGHAI.-(YICAI)-Company One1广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105 3.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5 10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<0.3∴最大为0.3故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=3.5×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x>﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC =S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b =﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y 与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△=;接着计算出∠AOE=120°,于是得到S扇形AO=3π,然后利用阴影ADO部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB+B1C=2+a,A2(2+a,a).1∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB+B2D=2+b,A3(2+b,b).2∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE =AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB•AD=2×=2,∵BF=2,BP=,∴S△BPF=BF•BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD ﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△==48a=16,解得:,所求抛物线的解析式为ACD=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t=0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G 横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a >,故要使满足∠MAB=75°的点M有且只有两个,则a 的取值范围为:.31。

2019-2020年广州市初三中考数学第一次模拟试卷【含答案】

2019-2020年广州市初三中考数学第一次模拟试卷【含答案】

2019-2020年广州市初三中考数学第一次模拟试卷【含答案】一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.。

广州2020中考数学综合模拟测试卷(含答案)

广州2020中考数学综合模拟测试卷(含答案)

2020广州市初中毕业生学业模拟考试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.如图所示的几何体的左视图是()···3.据统计,2015年广州地铁日均客运量约为6 590 000人次.将6 590 000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×1064.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是()A. B. C. D.5.下列计算正确的是()A.=(y≠0)B.xy2÷=2xy(y≠0)C.2+3=5(x≥0,y≥0)D.(xy3)2=x2y66.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320tB.v=C.v=20tD.v=7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.58.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a-b>0C.a2+b>0D.a+b>09.对于二次函数y=-x2+x-4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值-3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点10.定义新运算:a★b=a(1-b),若a,b是方程x2-x+m=0(m<1)的两根,则b★b-a★a的值为()A.0B.1C.2D.与m有关第Ⅱ卷(非选择题,共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:2a2+ab=.12.代数式-有意义时,实数x的取值范围是.13.如图,△ABC中,AB=AC,BC=12 cm,点D在AC上,DC=4 cm.将线段DC沿CB方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.14.方程=-的解是.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧的长为(结果保留π).16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式组:,(),并在数轴上表示解集.18.(本小题满分9分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.19.(本小题满分10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%、小组展示占30%、答辩占30%,计算各小组的成绩,哪个小组的成绩最高.20.(本小题满分10分) 已知A=( )- ( - )(a,b ≠0且a ≠b).(1)化简A;(2)若点P(a,b)在反比例函数y=-的图象上,求A 的值.21.(本小题满分12分)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB.(尺规作图要求保留作图痕迹,不写作法)22.(本小题满分12分)如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60 m,随后无人机从A处继续水平飞行30m到达A'处.(1)求A,B之间的距离;(2)求从无人机A'上看目标D的俯角的正切值.23.(本小题满分12分)如图,在平面直角坐标系xOy中,直线y=-x+3与x轴交于点C,与直线AD交于点A,,点D的坐标为(0,1).(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE 相似时,求点E的坐标.24.(本小题满分14分)已知抛物线y=mx2+(1-2m)x+1-3m与x轴相交于不同的两点A、B.(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出最值及相对应的m值;若没有,请说明理由.25.(本小题满分14分)如图,点C为△ABD外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°.(1)求证:BD是该外接圆的直径;(2)连接CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.答案全解全析:一、选择题1.C正数与负数表示相反的意义.若正数表示收入,则负数应表示支出.评析本题考查的是正数、负数的意义,关键抓住“相反意义”这一点.2.A由左视图的定义可得出答案.3.D原数用科学记数法可表示为6.59×106.4.A依题意可知,最后一个数字总共有0~9这十种等可能情况,因此,一次就能打开该密码锁的概率为.5.D A.=(y≠0);B.xy2÷=2xy3(y≠0);C项不能进行二次根式的加法运算;D项正确.6.B根据公式:路程=速度×时间,可算得甲、乙两地之间的距离为320千米,再根据公式:速,可得出答案.度=路程时间7.D∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠ACB=90°.∵DE是AC的垂直平分线,∴∠AED=90°,点E是AC的中点,AD=DC,∴ED∥BC,∴ED是△ABC的中位线,D为AB的中点,∴AD=AB=5,∴CD=AD=5.评析本题考查了勾股定理的逆定理,三角形中位线和线段的垂直平分线.8.C∵一次函数的图象经过第一、二、四象限,∴a<0,b>0.A.∵a<0,b>0,∴ab<0,∴A错;B.∵a<0,b>0,∴a-b<0,∴B错;C.∵a2>0,b>0,∴a2+b>0,∴C正确;D.∵a<0,b>0,∴无法确定a+b的大小,∴D错.9.B A.由题可知,该二次函数的图象开口向下,对称轴为x=2.因此,当x<2时,y随x的增大而增大,当x>2时,y随x的增大而减小.所以A错;B.当x=2时,y有最大值-3.所以B正确;C.该二次函数图象的顶点坐标为(2,-3),所以C错;D.Δ=12-4×-×(-4)=-3<0,因此该二次函数图象与x轴没有交点,所以D错.评析本题考查二次函数的图象和性质,解决这类问题需要熟练掌握二次函数的知识. 10.A∵a,b是方程x2-x+m=0(m<1)的两根,∴a+b=1,由定义的新运算可得,b★b-a★a=b(1-b)-a(1-a)=b-b2-a+a2=a2-b2-(a-b)=(a-b)(a+b-1)=(a-b)(1-1)=0.评析对于定义的新运算必须抓住运算的本质特征,转化为熟悉的运算从而解决问题.本题通过定义新运算考查学生的转化能力.二、填空题11.答案a(2a+b)解析2a2+ab=a(2a+b).12.答案x≤9解析二次根式有意义的条件是被开方数要大于或等于0,故9-x≥0,即x≤9.评析本题考查二次根式的意义.13.答案13解析由题可得FC=7 cm,EF=DC=4 cm,EF∥DC,∴∠EFB=∠DCF,∵AB=AC,∴∠DCF=∠ABC,∴∠EFB=∠ABC,∴EB=EF=4 cm,∵BC=12 cm,∴BF=BC-FC=5 cm,∴△EBF的周长为EB+BF+EF=4+5+4=13 cm.评析本题考查了平移与等腰三角形的性质,理解平移中各线段的关系是解决这类问题的关键.14.答案x=-1解析原分式方程两边同时乘2x(x-3),得x-3=2×2x,解得x=-1,检验:当x=-1时,2x(x-3)≠0,∴x=-1是原分式方程的解.评析本题考查解分式方程,解分式方程的关键是去分母和检验.15.答案8π解析连接AO,由于弦AB为小圆的切线,点P为切点,故OP⊥AB,AP=BP=AB=6,在Rt△AOP中,tan∠AOP==,OA==12,∴∠AOP=60°,连接OB,则∠AOB=120°,∴l=π=8π.16.答案①②③解析由题可知△DGH≌△DCB,∴DH=DB,∠DHG=∠DBC=45°,∠DGH=∠DCB=90°,DG=DC=AD,又∵∠DAC=45°,∴∠DAC=∠DHG,∴AF∥EG.在Rt△AED和Rt△GED中,AD=GD,ED=ED,∴Rt△AED≌Rt△GED,∴∠ADE=∠GDE,故②正确;在△ADF与△GDF中,AD=GD,∠ADF=∠GDF,FD=FD,∴△ADF≌△GDF,∴AF=GF,∠DGF=∠DAF=45°,又∵∠DBA=45°,∴FG∥AE,∴四边形AEGF是平行四边形,又∵AF=GF,∴平行四边形AEGF是菱形,故①正确;∵∠GDF=∠ADB=22.5°,∠DGF=45°,∴∠DFG=112.5°,故③正确;∵FG=AE=HA=HD-AD=BD-AD=-1,∴BC+FG=1+-1=,故④不正确.评析正方形、菱形、等腰直角三角形是特殊的四边形和三角形.本题考查了平行四边形、三角形的知识,借助旋转把这些知识融合在一起,考查了学生把复杂的图形转化为简单的图形来解决问题的能力.三、解答题17.解析由2x<5得x<.由3(x+2)≥x+4得3x+6≥x+4.3x-x≥4-6.2x≥-2,x≥-1.∴这个不等式组的解集为-1≤x<.这个不等式组的解集在数轴上表示如图所示:评析本题主要考查一元一次不等式组的解法及在数轴上表示其解集等基础知识,考查运算能力.18.解析解法一:∵四边形ABCD是矩形,∴AO=AC,BO=BD,AC=BD,∴AO=BO.又∵AB=AO,∴AB=AO=BO,∴△ABO为等边三角形,∴∠ABD=60°.解法二:∵四边形ABCD是矩形,∴AO=AC,∠ABC=90°,∵AB=AO,∴AB=AC,在Rt△ABC中,cos∠BAC==,∴∠BAC=60°.∴△ABO为等边三角形,∴∠ABD=60°.评析本题主要考查矩形的性质、等边三角形的定义和性质,考查几何推理能力.本题也可以用三角函数求解.19.解析(1)甲组的平均成绩为=83(分),乙组的平均成绩为=80(分),丙组的平均成绩为=84(分),∵84>83>80,∴排名是:第一名是丙组,第二名是甲组,第三名是乙组.(2)甲组的成绩为91×40%+80×30%+78×30%=83.8(分),乙组的成绩为81×40%+74×30%+85×30%=80.1(分),丙组的成绩为79×40%+83×30%+90×30%=83.5(分),∵80.1<83.5<83.8,∴甲组成绩最高.20.解析(1)解法一:A=-(-)=-(-)=.解法二:A=-(-)=-(-)=(-)(-)=.(2)∵点P(a,b)在反比例函数y=-的图象上,∴ab=-5,∴A==-.评析本题主要考查分式的约分,完全平方公式,反比例函数图象上点的坐标特征等基础知识,考查运算能力.21.解析如图为所求作的图形.证法一:∵∠CAE=∠ACB,∴AD∥BC,又∵AD=BC,∴四边形ABCD是平行四边形,∴CD∥AB.证法二:∵∠ACB=∠CAE,CB=AD,AC=CA,∴△ABC≌△CDA,∴∠BAC=∠DCA,∴CD∥AB.评析本题主要考查尺规作图中作一个角等于已知角、作一条线段等于已知线段,平行线的判定与性质,平行四边形的判定与性质,全等三角形的判定与性质等基础知识,考查学生的动手能力和推理能力.22.解析(1)解法一:利用直角三角形中,30°角所对的直角边等于斜边的一半.如图1,∵AA'∥BC,∴∠B=∠1=30°,∴在Rt△ABC中,AC=AB=60 m,∴AB=120 m.图1解法二:利用正弦的概念.如图1,∵AA'∥BC,∴∠B=∠1=30°,∴在Rt△ABC中,sin B=,∴sin 30°=,即=,∴AB=120 m.解法三:利用余弦的概念.如图1,∵∠BAC=90°-∠1=90°-30°=60°,∴在Rt△ABC中,cos∠BAC=,∴cos 60°=,即=,∴AB=120 m.(2)(分两步进行,第一步求DC的长,第二步求正切值) 第一步,求DC的长有以下两种解法,如图2,解法一:∵∠DAC=90°-∠EAD=90°-60°=30°, ∴在Rt△ADC中,tan∠DAC=,∴tan 30°=,即=,∴DC=20m.解法二:∵AA'∥BC,∴∠EAD=∠ADC=60°,在Rt△ADC中,tan∠ADC=,∴tan 60°=,即=,∴DC=20m.图2第二步,求俯角的正切值有以下两种解法,解法一:利用正切的概念,构造直角三角形.如图2,连接A'D,过点A'作A'F⊥BC的延长线于点F.(备注:过点D作AA'的垂线,解法一样)∵AA'∥BC,AC⊥BC,∴A'F=AC=60 m,CF=AA'=30m,∠2=∠3.∴DF=DC+CF=20+30=50(m),∴在Rt△A'DF中,tan∠3='==,∴tan∠2=tan∠3=.解法二:利用相似三角形的性质.如图3,连接A'D,交AC于点M,图3∵AA'∥BC,∴△AMA'∽△CMD,∴='==,∴AM=AC=×60=36(m),∴在Rt△A'AM中,tan∠2='==.评析本题主要考查解直角三角形中特殊角的三角函数值及正切的概念等基础知识,考查用锐角三角函数解决实际问题的能力.23.解析(1)设直线AD的解析式为y=kx+b(k≠0),把点A,,D(0,1)的坐标代入y=kx+b,得,.解得,,∴直线AD的解析式为y=x+1.(2)∵△BOD与△BCE相似,且△BOD是直角三角形,∴△BCE也是直角三角形.∵在△BCE中,∠EBC为锐角,∴△BCE是直角三角形分两种情况:∠BCE=90°或∠BEC=90°.①如图1,过点C作CE⊥x轴交直线BD于点E,此时△BOD∽△BCE,∠BOD=∠BCE=90°.图1将y=0代入y=-x+3得-x+3=0,x=3,∴C(3,0).将x=3代入y=x+1,得y=×3+1=,∴E,.②如图2,过点C作CE⊥BD于点E,过点E作EH⊥x轴于H,图2此时△BOD∽△BEC,∠BOD=∠BEC=90°,把y=0代入y=x+1得x+1=0,x=-2,∴B(-2,0),OB=2.∵D(0,1),∴OD=1.求点E的坐标有以下六种解法:解法一:∵∠EBC+∠BEH=∠BEH+∠HEC=90°,∴∠EBC=∠HEC,即∠DBO=∠HEC,∴tan∠DBO=tan∠HEC,∵tan∠DBO=,tan∠HEC=,∴=,∵点E在直线y=x+1上,∴设E,,则点H(x,0),∵点C(3,0),∴CH=3-x,EH=x+1,∵=,∴=-,解得x=2,经检验x=2是原方程的解,x+1=×2+1=2,∴E(2,2).解法二:如图2,OB=2,OD=1,BC=5,BD=.∵△BOD∽△BEC,∴=,∴=,∴EB=2,∵OD∥HE,∴△BOD∽△BHE,∴==,∴==,∴HE=2,BH=4.∵OB=2,∴OH=2,∴E(2,2).(还可以用中位线求EH、BH的长,EB=2,BD=,点D为BE的中点) 解法三:∵∠EBC+∠BEH=∠BEH+∠HEC=90°,∴∠EBC=∠HEC,∵∠BHE=∠EHC=90°,∴△BEH∽△ECH,∴=,∴EH2=BH·CH,设E,,则点H(x,0),∵C(3,0),B(-2,0),∴EH=x+1,BH=x+2,CH=3-x,∴=(x+2)(3-x),解得x1=2,x2=-2,∵E在第一象限,∴x2=-2不合题意,舍去.当x=2时,x+1=×2+1=2,∴E(2,2).解法四:如图2,设E,,则CE=(-),EB=(), ∵△BOD∽△BEC,∴=,∴=(-)(),解得x1=2,x2=.经检验x1=2,x2=都是原方程的解,但是当x2=时,△BEC不是直角三角形, 所以舍去x2=.当x=2时,x+1=×2+1=2,∴E(2,2).解法五:如图2,设E,,∴EH=x+1,OH=x,∴BH=x+2,HC=3-x,在Rt△BEH中,BE2=BH2+HE2=(x+2)2+.在Rt△EHC中,CE2=EH2+HC2=+(3-x)2,在Rt△BEC中,BC2=BE2+EC2,∴52=(x+2)2+2+(3-x)2.化简得x2=4.∴x1=2,x2=-2(不符合题意,舍去),∴E(2,2).解法六:如图2,设直线CE的解析式为y=-2x+b, 把C(3,0)代入得-2×3+b=0,解得b=6,∴直线CE的解析式为y=-2x+6,解方程组,-,得,,∴E(2,2).综上所述,当△BOD与△BCE相似时,点E的坐标为E,或(2,2).评析本小题主要考查用待定系数法求一次函数解析式,一次函数图象与坐标轴的交点,相似三角形的性质与判定,锐角三角函数的应用等基础知识,考查推理能力、计算能力、分类讨论思想、转化思想.24.解析(1)∵二次函数图象与x轴有两个不同的交点,∴Δ>0,且m≠0.即(1-2m)2-4m(1-3m)>0,且m≠0.∴16m2-8m+1>0,且m≠0.∴(4m-1)2>0,且m≠0.∴m≠,且m≠0.(2)因为该抛物线一定经过定点,即与m的值无关,所以y=mx2+(1-2m)x+1-3m=mx2+x-2mx+1-3m=(x2-2x-3)m+x+1.则x 2-2x-3=0,x 1=3,x 2=-1. 当x=3时,y=4,则P(3,4);当x=-1时,y=0,则P(-1,0),此时点P 在x 轴上,不符合题意,舍去. ∴符合题意的点P 的坐标为(3,4).(3)当<m ≤8时,△ABP 的面积有最大值7,此时m=8.令y=0,即mx 2+(1-2m)x+1-3m=0. 求该方程的根有以下三种解法:解法一(因式分解法):(x+1)(mx+1-3m)=0,x+1=0或mx+1-3m=0. 解得x 1=-1,x 2=-.解法二(公式法):x=-( - ) ( - )=-( - ) ( - ).x 1=-( - )-( - ),x 2=-( - ) ( - ),化简得x 1=-1,x 2=-.解法三(根与系数的关系):由(2)得方程mx 2+(1-2m)x+1-3m=0的一个根为x 1=-1, 设另一个根为x 2,由根与系数的关系得x 1x 2= -,即-1·x 2=-,∴x 2=-,∴方程的两根为x 1=-1,x 2= -.将x 2=-化简得x 2=3-.∴A(-1,0),B -, .如果写成A -, ,B(-1,0),或分情况进行讨论都不影响解题的结果,甚至不写A,B 的坐标同样给分∴AB=|x 1-x 2|=- 或 -. ∵<m ≤8,∴≤<4,∴AB=4-. ∴S △ABP =·AB ·|y P |=-×4=8-.求面积的最值有以下两种解法:解法一:利用m的范围和不等式的基本性质变形得出.∵<m≤8,∴≤<4,∴-8<-≤-,∴0<8-≤8-,即0<S△ABP≤7,∴S△ABP有最大值7,此时m=8.S△ABP没有最小值.解法二:利用m的范围和S△ABP与m之间的函数增减性得出.∵S△ABP=8-,且<m≤8,∴随着m的增大,的值变小,∴8-的值增大,即S△ABP的值增大,∴当m取最大值8时,S△ABP有最大值=8-=7.S△ABP没有最小值.评析本小题主要考查二次函数图象与x轴交点个数和根的判别式的关系,二次函数概念,函数图象经过定点问题,一元二次方程及含参数的一元二次方程的解法,利用不等式性质对不等式进行变形及求最值问题等知识,考查运算能力、推理能力、方程思想、转化思想等数学思想方法.25.解析(1)证明:∵∠ADB=∠ACB,∠ACB=45°,∴∠ADB=45°,∵∠ABD=45°,∴∠BAD=180°-∠ABD-∠ADB=180°-45°-45°=90°,∴BD是该外接圆的直径.(2)证明:证法一:如图,延长CD至点E,使DE=BC,连接AE.∵四边形ABCD内接于圆,∴∠ABC+∠ADC=180°,∵∠ADE+∠ADC=180°,∴∠ABC=∠ADE,∵∠ABD=∠ADB=45°,∴AB=AD.在△ABC和△ADE中,,∴△ABC≌△ADE,∠∠,,∴∠BAC=∠DAE,AC=AE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE=90°, ∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴AC=BC+CD.证法二:如图,过点A作AE⊥AC,且截取AE=AC,连接DE.∵∠BAD=∠CAE=90°,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE,∠∠,,∴∠ABC=∠ADE,BC=DE,∵四边形ABCD内接于圆,∴∠ABC+∠ADC=180°,∴∠ADE+∠ADC=180°,∴C,D,E在同一直线上,∴CE=CD+DE=CD+BC,∵AE⊥AC,AE=AC,∴△ACE是等腰直角三角形,∴CE=AC,∴AC=BC+CD.证法三:如图,延长CB到E,使BE=CD,连接AE,∵四边形ABCD内接于圆,∴∠ABC+∠ADC=180°,∵∠ABE+∠ABC=180°,∴∠ABE=∠ADC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=90°,在△ABE和△ADC中,,∴△ABE≌△ADC,∠∠,,∴∠EAB=∠CAD,AE=AC,∴∠BAC+∠EAB=∠BAC+∠CAD,即∠EAC=∠BAD=90°,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=BC+BE=BC+DC,∴AC=BC+CD.证法四:如图,过点A作AE⊥AC,且截取AE=AC,连接BE.∵∠BAD=∠CAE=90°,∴∠EAB=∠CAD, 在△ABE和△ADC中,,∴△ABE≌△ADC,∠∠,,∴∠ABE=∠ADC,BE=DC,∵四边形ABCD内接于圆,∴∠ABC+∠ADC=180°,∴∠ABE+∠ABC=180°,∴C,B,E在同一直线上,∴CE=CB+BE=CB+DC,∵AE⊥AC,AE=AC,∴△ACE是等腰直角三角形,∴CE=AC,∴AC=BC+CD.证法五:如图,延长DC到E,使EC=BC,连接BE,∵BD为直径,∴∠BCD=90°,∴∠BCE=90°,∵EC=BC,∴∠E=45°,BE=BC.∵∠ACB=45°,∴∠E=∠ACB.又∵∠BAC=∠BDC,∴△ABC∽△DBE,∴=,∴=,即=,∴AC=EC+CD,∵EC=BC,∴AC=BC+CD.证法六:如图,延长BC到E,使EC=DC,连接DE,∵BD为直径,∴∠BCD=90°,∴∠DCE=90°,∵EC=DC,∴∠E=45°,DE=DC.∵∠ACB=45°,∠BCD=90°,∴∠ACD=45°,∴∠E=∠ACD.又∵∠CBD=∠CAD,∴△BDE∽△ADC,∴=,∴=,即=,∴AC=BC+CE.∵EC=DC,∴AC=BC+CD.(3)DM2,AM2,BM2三者之间满足的等量关系是DM2=BM2+2AM2,得到这个等量关系有如下四种解法:解法一:如图,作AE⊥AM,且截取AE=AM,连接ME,BE.∴△AME为等腰直角三角形,∠AME=45°,ME2=2AM2. ∵△ABC与△ABM关于直线AB对称,∴∠AMB=∠ACB=45°,∴∠BME=90°,∴BE2=BM2+ME2=BM2+2AM2.∵∠MAE=∠BAD=90°,∴∠EAB=∠MAD.在△DAM和△BAE中,,∠∠,,∴△DAM≌△BAE,∴DM=BE,∴DM2=BM2+2AM2.解法二:由(2)中的证法二出发,如图,连接BE,∵BD为直径,∴∠BCE=90°,BE2=BC2+CE2, ∵△ACE是等腰直角三角形,∴CE2=2AC2.∴BE2=BC2+2AC2.∵△ABC与△ABM关于直线AB对称,∴MA=AC,MB=BC,∠MAB=∠CAB,∴BE2=MB2+2MA2.∵∠BAD=∠CAE=90°,∴∠MAB+∠BAD=∠BAC+∠CAE,即∠MAD=∠BAE.∵AE=AC,MA=AC,∴MA=EA.在△MAD和△EAB中,,∴△MAD≌△EAB,∴MD=EB, ∠∠,,∴MD2=MB2+2MA2.解法三:如图,延长MB交圆于点E,连接AE,DE.∵BD为直径,∴∠MED=90°,∴DM2=ME2+ED2. ∵△ABC与△ABM关于直线AB对称,∴MB=BC,∠AMB=∠ACB=45°,∵∠AEB=∠ACB=45°,∴∠AMB=∠AEB=45°,∴∠MAE=90°,AM=AE,∴ME2=2AM2.∴DM2=2AM2+ED2,∵∠MAE=∠BAD=90°,∴∠MAB=∠EAD,在△MAB和△EAD中,,∴△MAB≌△EAD,∠∠,,∴BM=DE,∴DM2=2AM2+BM2.解法四:如图,过点A作AE⊥AM,交圆于点E,连接EB,ED,∵△ABC与△ABM关于直线AB对称,∴∠AMB=∠ACB=45°,∵BD是直径,∴∠BED=90°,∴∠AEB=∠ACB=∠AED=45°.∴∠AMB=∠AED=45°.∴△AME是等腰直角三角形.∵∠MAE=∠BAD=90°,∴∠MAB=∠EAD,在△MAB和△EAD中,∠∠,∠∠,,∴△MAB≌△EAD,∴∠MBA=∠EDA,MB=ED.∵四边形ABED内接于圆,∴∠ABE+∠ADE=180°,∴∠ABM+∠ABE=180°,∴M,B,E在同一直线上,在Rt△MDE中,DM2=ME2+DE2.在等腰直角三角形AME中,ME2=2AM2.∴DM2=2AM2+BM2.评析本题主要考查圆的内接四边形、圆周角的性质、等腰直角三角形的判定与性质、勾股定理的应用、全等三角形的判定与性质、轴对称图形的性质等基础知识,考查推理能力和转化思想.。

广州市2020年中考数学模拟卷及答案

广州市2020年中考数学模拟卷及答案

第 1 页 共 11 页
广州市2020年中考数学模拟卷
一、选择题(每小题3分,共30分)
1、计算3(2)-所得结果是( )
A 6-
B 6
C 8-
D 8
2、将图1按顺时针方向旋转90°后得到的是( )
3、下面四个图形中,是三棱柱的平面展开图的是( )
4、若实数a 、b 互为相反数,则下列等式中恒成立的是( )
A 0a b -=
B 0a b +=
C 1ab =
D 1ab =-
5、方程(2)0x x +=的根是( )
A 2x =
B 0x =
C 120,2x x ==-
D 120,2x x ==
6、一次函数34y x =-的图象不经过( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限
7、下列说法正确的是( )
A “明天降雨的概率是80%”表示明天有80%的时间降雨
B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C “彩票中奖的概率是1%”表示买100张彩票一定会中奖
D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛。

2020年广东省广州市中考数学一模试卷及解析

2020年广东省广州市中考数学一模试卷及解析

2020年广省广州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分) 1. -2020的相反数是( )A. -2020B. 2020C.20201- D.20201- 2. 下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C. D.3. 如图几何体的俯视图是( )A. B. C. D.4. 下列运算正确的是( )A. a 6÷a 3=a 2B. a 4−a =a 3C. 2a ⋅3a =6aD. (−2x 2y)3=−8x 6y 35. 使分式x2x−4有意义的x 的取值范围是( )A. x =2B. x ≠2C. x =−2D. x ≠06. 下列说法正确的是( )A. 一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数和中位数都是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小7. 在二次函数y =−x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <−1 D. x >−18. 已知x 1、x 2是关于x 的方程x 2−ax −2=0的两根,下列结论一定正确的是( )A. x 1≠x 2B. x 1+x 2>0C. x 1⋅x 2>0D. x 1<0,x 2<09. 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且sinθ=13,则该圆锥的侧面积是( )A. 24√2πB. 24πC. 16πD. 12π10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y(cm 2),已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②当0<t ≤5时,y =25t 2;③直线NH 的解析式为y =−25t +27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18分)11.因式分解:a2−2ab+b2=______.12.分式方程1x−2=3x的解是______.13.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”)14.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是______千米.15.等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为______.16.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=12AB,连接OE.下列结论:①S▱ABCD= AD⋅BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的结论是______.三、计算题(本大题共2小题,共22分)17.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).18.【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ax)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+1x(x>0)的图象和性质.x (1)413121234…y……③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+1x(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.四、解答题(本大题共7小题,共80分)19.解不等式组{−2x≤03x−1<520.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,tan∠ABD=3,求线段AB的长.4(k>0)21.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=kx与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.22.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.AB,应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.24.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG 交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.25.抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(−1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=−x−4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点;(3)Q为直线y=−x−4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的相反数是:2020.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】C【解析】解:从上面看得到图形为,故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.4.【答案】D【解析】解:(A)原式=a3,故A错误;(B)原式=a4−a,故B错误;(C)原式=6a2,故C错误;故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【答案】B有意义,【解析】解:∵分式x2x−4∴2x−4≠0,即x≠2.故选:B.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.6.【答案】C【解析】解:A、一个游戏中奖的概率是1,做10次这样的游戏也不一定会中奖,故此10选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故此选项错误;故选:C.根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.7.【答案】A【解析】解:∵a=−1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=−x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=−b,在对称轴左边,y随x的增大而增大.2a8.【答案】A【解析】解:A.∵△=(−a)2−4×1×(−2)=a2+8>0,∴x1≠x2,结论A正确;B.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C.∵x1、x2是关于x的方程x2−ax−2=0的两根,∴x1⋅x2=−2,结论C错误;D.∵x1⋅x2=−2,∴x1、x2异号,结论D错误.故选:A.A.根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B.根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C.根据根与系数的关系可得出x1⋅x2=−2,结论C错误;D.由x1⋅x2=−2,可得出x1、x2异号,结论D错误.综上即可得出结论.本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.【答案】D【解析】解:∵sinθ=1,母线长为6,3×6=2,∴圆锥的底面半径=13∴该圆锥的侧面积=12×6×2π⋅2=12π.故选:D .先根据正弦的定义计算出圆锥的半径=2,然后根据扇形的面积公式求圆锥的侧面积. 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 10.【答案】B【解析】解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C , ∵点P 、Q 的运动的速度都是1cm/s , ∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4, ∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =ABBE =45, ∴PF =PBsin∠PBF =45t ,∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11, 故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10,解得:{k =−52b =552.故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34, ∴PQBQ =34,即11−t 5=34,解得:t =294.(故④正确);综上可得①②④正确,共3个.故选:B .据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.【答案】(a−b)2【解析】解:原式=(a−b)2故答案为:(a−b)2根据完全平方公式即可求出答案.本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.12.【答案】3【解析】解:去分母得:x=3(x−2),去括号得:x=3x−6,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【答案】频数分布【解析】解:频数分布是反映一组数据中,某一范围内的数据的出现的次数,通过次数计算出所占的比,而平均数则反映一组数据集中变化趋势,故答案为:频数分布.平均数是反映一组数据集中变化趋势,而频数分布则反映某一范围内的数出现的次数,即频数,因此选择频数分布.考查频数分布的意义、平均数的意义及求法,理解各个统计量的意义和反映数据的特征,才是解决问题的关键.14.【答案】3√6【解析】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BEAB,∴BE=AB⋅sin∠BAC=6×√32=3√3,由题意得,∠C=45°,∴BC=BEsinC =3√3÷√22=3√6(千米),故答案为:3√6.作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】30°或110°【解析】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AC,∠BAC=40°,∴∠ABC=∠C=70°,∵AB=AB,AC=PB,BC=PA,∴△ABC≌△BAP,∴∠ABP=∠BAC=40°,∴∠PBC=∠ABC−∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BC=40°+70°=110°,故答案为30°或110°.分两种情形,利用全等三角形的性质即可解决问题;本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】①②【解析】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=1AB,2∴E是AB的中点,∴DE=BE,∴∠BDE=1∠AED=30°,2∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD⋅BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,AD,∴OE//AD,OE=12∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故答案为:①②.求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD⋅BD;依据∠CDE=60°,∠BDE= 30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即AD,进而得可得到AO>DE;依据OE是△ABD的中位线,即可得到OE//AD,OE=12到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.17.【答案】(1)200;(2)补全图形,如图所示:甲 乙 丙 丁 甲 --- (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) --- (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) --- (丁,丙) 丁(甲,丁)(乙,丁)(丙,丁)---所有等可能的结果为种,其中符合要求的只有种, 则P =212=16.【解析】解:(1)根据题意得:20÷36360=200(人),则这次被调查的学生共有200人;故答案为:200; (2)见答案; (3)见答案. 【分析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A ,B 及D 的人数求出喜欢C 的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.18.【答案】解:(1)①故答案为:174,103,52,2,52,103,174.函数y =x +1x 的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x =1时,函数y =x +1x(x >0)的最小值是2.③y =x +1x =x 2+1x=x 2−2x+1x+2=(x−1)2x+2,∵x >0,所以(x−1)2x≥0,所以当x =1时,(x−1)2x的最小值为0,∴函数y=x+1x(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为√a时,它的周长最小,最小值是4√a.【解析】(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[(√x−√ax)2+2√a],即可求出答案.本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.19.【答案】解:{−2x≤0 ①3x−1<5 ②解不等式①得:x≥0解不等式②得:x<2∴不等式组的解集为0≤x<2.【解析】别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.20.【答案】解:∵四边形ABCD为菱形∴BO=OD,∠AOB=90°∵BD=8∴BO=4∵tan∠ABD=AOBO,∴34=AO4∴AO=3在Rt△ABC中,AO=3,OB=4则AB=√AD2+OB2=√32+42=5【解析】由菱形的性质可得BO=OD=4,∠AOB=90°,由锐角三角函数可求AO=3,由勾股定理可求AB的长.本题考查了菱形的性质,锐角三角函数,勾股定理,熟练运用菱形的性质是本题的关键.21.【答案】解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=kx,可得k=4,即反比例函数解析式为:y=4x,∵点F的横坐标为4,∴点F的纵坐标=44=1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE =DE ,BF =DF ,∠B =∠EDF =90°, ∵∠CDF +∠EDG =90°,∠GED +∠EDG =90°, ∴∠CDF =∠GED ,又∵∠EGD =∠DCF =90°, ∴△EGD∽△DCF ,结合图形可设点E 坐标为(k2,2),点F 坐标为(4,k4),则CF =k4,BF =DF =2−k4,ED =BE =AB −AE =4−k2,在Rt △CDF 中,CD =√DF 2−CF 2=√(2−k 4)2−(k4)2=√4−k ,∵CD GE=DFED ,即√4−k2=2−k44−k 2,∴√4−k =1, 解得:k =3.【解析】(1)根据点E 是AB 中点,可求出点E 的坐标,将点E 的坐标代入反比例函数解析式可求出k 的值,再由点F 的横坐标为4,可求出点F 的纵坐标,继而得出答案; (2)证明∠GED =∠CDF ,然后利用两角法可判断△EGD∽△DCF ,设点E 坐标为(k2,2),点F 坐标为(4,k4),即可得CF =k4,BF =DF =2−k4,在Rt △CDF 中表示出CD ,利用对应边成比例可求出k 的值.本题考查了反比例函数的综合,解答本题的关键是利用点E 的纵坐标,点F 的横坐标,用含k 的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.22.【答案】解:(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元; 根据题意得:{2x +3y =90x +2y =55,解得:{x =15y =20;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克, 根据题意得:12−t ≥2t , ∴t ≤4,∵W =15t +20(12−t)=−5t +240, k =−5<0,∴W 随t 的增大而减小,∴当t =4时,W 的最小值=220(元),此时12−4=8; 答:购买桂味4千克,糯米糍8千克时,所需总费用最低.【解析】(1)设桂味的售价为每千克x 元,糯米糍的售价为每千克y 元;根据单价和费用关系列出方程组,解方程组即可;(2)设购买桂味t 千克,总费用为W 元,则购买糯米糍(12−t)千克,根据题意得出12−t ≥2t ,得出t ≤4,由题意得出W =−5t +240,由一次函数的性质得出W 随t 的增大而减小,得出当t =4时,W 的最小值=220(元),求出12−4=8即可.本题考查了一次函数的应用、二元一次方程组的应用;根据题意方程方程组和得出一次函数解析式是解决问题的关键.23.【答案】应用:解:①若PB =PC ,连接PB ,则∠PCB =∠PBC , ∵CD 为等边三角形的高, ∴AD =BD ,∠PCB =30°, ∴∠PBD =∠PBC =30°, ∴PD =√33DB =√36AB , 与已知PD =12AB 矛盾,∴PB ≠PC ,②若PA =PC ,连接PA ,同理可得PA ≠PC , ③若PA =PB ,由PD =12AB ,得PD =BD , ∴∠APD =45°, 故∠APB =90°;探究:解:∵BC =5,AB =3, ∴AC =√BC 2−AB 2=√52−32=4, ①若PB =PC ,设PA =x ,则x 2+32=(4−x)2,∴x =78,即PA =78,②若PA =PC ,则PA =2,③若PA =PB ,由图知,在Rt △PAB 中,不可能. 故PA =2或78.【解析】应用:连接PA 、PB ,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB三种情况利用等边三角形的性质求出PD 与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB =45°,然后即可求出∠APB 的度数; 探究:先根据勾股定理求出AC 的长度,根据准外心的定义,分①PB =PC ,②PA =PC ,③PA =PB 三种情况,根据三角形的性质计算即可得解.本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论. 24.【答案】(1)证明:如图1,∵PE =BE , ∴∠EBP =∠EPB .又∵∠EPH =∠EBC =90°,∴∠EPH −∠EPB =∠EBC −∠EBP . 即∠PBC =∠BPH . 又∵AD//BC , ∴∠APB =∠PBC . ∴∠APB =∠BPH .(2)△PHD 的周长不变为定值8.证明:如图2,过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB =∠BPH ,在△ABP和△QBP中{∠APB=∠BPH ∠A=∠BQPBP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4−BE)2+x2=BE2.解得,BE=2+x28.∴CF=BE−EM=2+x28−x.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴S=12(BE+CF)BC=12(4+x24−x)×4.即:S=12x2−2x+8.配方得,S=12(x−2)2+6,∴当x=2时,S有最小值6.【解析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH= AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4−BE)2+x2=BE2,利用二次函数的最值求出即可.此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.25.【答案】解:(1)由抛物线y=a(x+2)2+c可知,其对称轴为x=−2,∵点A坐标为(−1,0),∴点B坐标为(−3,0),∵OB=OC,∴C点坐标为(0,−3).将A(−1,0)、C(0,−3)分别代入解析式得,{a +c =04a +c =−3,解得,{a =−1c =1,则函数解析式为y =−x 2−4x −3.(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m , 由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0, ∵平移后的抛物线总有不动点, ∴△≥0,∴4m 2+4m +1−4(m 2−2m −4)≥0, 解得m ≥−1712.(3)如图,设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,切点为D ,直线y =−x −4交抛物线的对称轴于E ,则E(−2,−2)∴PE =m +2,PD =√22PE ,∵PA =PD , ∴(m+2)22=1+m 2,解得m =2±√6,故P(−2,2+√6)或(−2,2−√6).【解析】(1)根据函数的解析式可以得到函数的对称轴是x =−2,则B 点的坐标可以求得,求得OB 的长,则C 的坐标可以求得,把A 、C 的坐标代入函数解析式即可求得;(2)由题意平移后的抛物线的解析式为y =−(x −m)2+2m ,由{y =−x −4y =−(x −m)2+2m ,消去y 得到:x 2−(2m +1)x +m 2−2m −4=0,平移后的抛物线总有不动点,推出△≥0,由此构建不等式即可解决问题;(3)设P(−2,m),以P 为圆心的圆与直线y =−x −4相切,根据切线的性质即可求解. 本题考查二次函数综合题、待定系数法求函数的解析式、一次函数的应用,以及直线与圆相切的判定等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。

2020年广东省广州市中考数学一模试卷解析版

2020年广东省广州市中考数学一模试卷解析版
中考数学一模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. 在实数 、0、-1、- 中,最小的实数是( )
A. -
B. -1
C. 0
D.
2. 如图所示的几何体的俯视图是( )
A.
B( )
A.
B. (-p2q)3=-p5q3
C.
第 4 页,共 17 页
么销售单价至少为多少元?
23. 如图,在△ABC 中,∠ACB=90°,点 O 是 BC 上一点.
(1)尺规作图:作⊙O,使⊙O 与 AC、AB 都相切.(不写作法与证明,保留作 图痕迹) (2)若⊙O 与 AB 相切于点 D,与 BC 的另一个交点为点 E,连接 CD、DE,求证 :DB2=BC⋅BE.
A. (-3,0) B. (-6,0)
C. (- ,0)
D. (- ,0)
二、填空题(本大题共 6 小题,共 18.0 分) 11. 太阳半径约为 696 000 千米,数字 696 000 用科学记数法表示为______.
12. 若 a<1,化简
=______.
13. 分式方程
的解是______.
D. (a+b)2=a2+b2
4. 如图所示,将面积为 5 的△ABC 沿 BC 方向平移至 △DEF 的位置,平移的距离是边 BC 长的两倍,那
么图中的四边形 ACED 的面积为( )
A. 10
B. 15
C. 20
D. 25
5. 学校抽查了 30 名学生参加“学雷锋社会实践”活 动的次数,并根据数据绘制成了条形统计图,则 30 名学生参加活动的平均次数是(

2020年广东省中考数学一模试卷(含答案解析)

2020年广东省中考数学一模试卷(含答案解析)

2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. 6B. −6C. 16D. −162.下列选项中的图形,不属于中心对称图形的是()A. 等边三角形B. 正方形C. 正六边形D. 圆3.在建的北京新国际机场预计2025年旅客吞吐量将达到72 000 000人次.将72 000 000用科学记数法表示应为()A. 7.2×106B. 72×106C. 7.2×107D. 0.72×1084.方程3x2−7x−2=0的根的情况是()A. 方程没有实数根B. 方程有两个不相等的实数根C. 方程有两个相等的实数很D. 不确定5.下列运算正确的是()A. a2⋅a3=a6B. a3+a2=a5C. (a2)4=a8D. a3−a2=a6.一组数据:0、−1、−2、3、1、2、1.则这组数据的中位数是()A. 3B. 0C. 2D. 17.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为().A. 50°;B. 60°;C. 70°;D. 80°.8.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于()A. 30°B. 40°C. 50°D. 60°9.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AO等于()DOA. 2√53B. 13C. 23D. 1210.如图,等腰直角三角形ABC的斜边BC在直线m上.且BC=3cm,边长为1cm的正方形EFGD沿着BC方向从B点开始以1cm/s的速度向右运动,当G点和C点重合时即停止.若正方形和等腰直角三角形重合部分的面积为y(cm2),运动的时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B.C. D.二、填空题(本大题共7小题,共15.0分)11.分解因式:m2−25=______.12.十边形的内角和是________.13.已知等腰三角形的两条边长为1cm和3cm,则这个三角形的周长为______14.已知△ABC∽△DEF,且它们的面积之比为4:25,则它们对应中线的比为________.15.不等式组{x−1>03x−5≤2的解是______.16.如图,在矩形ABCD中,AB=4cm,AD=3cm.将矩形ABCD绕点D旋转,使点A落在对角线BD上,得矩形A′B′C′D,则B,B′两点之间的距离为________cm.17.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为______.三、解答题(本大题共8小题,共75.0分)18.计算:|−3|+(√2−1)0−(13)−119.先化简,再求值:m2−4m+4m−1÷(3m−1−m−1),其中m=√3−2.20.如图,在Rt△ABC中,∠C=90°.作∠BAC的平分线AP交边BC于点D.(保留作图痕迹,不写作法);若∠BAC=28°,求∠ADB的度数.21.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”“一般”“较强”“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据以上信息,解答下列问题:(1)该校有1200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?(2)请直接将条形统计图补充完整.22.如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F.(1)求证:△ABE≌△CFE;(2)求证:四边形ABFD是平行四边形.23.如图,身高1.6米的小明为了测量学校旗杆AB的高度,在平地上C处测得旗杆高度顶端A的仰角为30°,沿CB方向前进3米到达D处,在D处测得旗杆顶端A的仰角为45°,求旗杆AB的高度(√3=1.7,√2=1.4)24.如图,已知AB//CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象交x轴于点A(−4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,−2),连接AE.(1)求二次函数的表达式;(2)若点D为第二象限内抛物线上的一个动点,求使△ADE面积最大时点D的坐标;(3)在抛物线的对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请求出所有P点的坐标;若不存在,请说明理由.【答案与解析】1.答案:A解析:解:|−6|=6,故选:A.根据负数的绝对值是它的相反数,可得负数的绝对值.本题考查了绝对值,负数的绝对值是它的相反数.2.答案:A解析:解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:C解析:解:72 000 000=7.2×107,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:由根的判别式△=b2−4ac=(−7)2−4×3×(−2)=49+24=73>0,所以方程有两个不相等的实数根.故选:B.先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.答案:C解析:此题主要考查了同底数幂的乘法运算以及幂的乘方运算和合并同类项,正确掌握运算法则是解题关键.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和合并同类项法则分别计算得出答案.解:A、a2⋅a3=a5,故此选项错误;B、a3+a2,a3和a2不是同类项,不能合并,故此选项错误;C、(a2)4=a8,故此选项正确;D、a3−a2,a3和a2不是同类项,不能合并,故此选项错误;故选C.6.答案:D解析:解:把这些数从小到大排列为:−2、−1、0、1、1、2、3,最中间的数是1,则这组数据的中位数是1;故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.答案:D解析:[分析]如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数.[详解]∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∠1+60∘=180∘,∴32∴∠1=80°.故选D.[点睛]本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.8.答案:D解析:【试题解析】。

2020年广州市中考模拟考试数学试题(1)及答案

2020年广州市中考模拟考试数学试题(1)及答案

初中毕业生学业考试模拟试题(1)数 学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.化简4的值为( )A.±4 B.-2 C.±2 D. 2 2.如右图,小手盖住的点的坐标可能为( )A .(52),B . (46)--,C .(63)-,D .(34)-, 3、国家游泳中心--“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为( ).A .60.2610⨯ B. 52.610⨯ C.62.610⨯ D. 42610⨯4.某商品原价300元,连续两次降价a %后售价为248元,下面所列方程正确的是( )A .300(1+a%)2=248B .300(1-a 2%)=248C .300(1-2a%)=248D .300(1-a%)2=2485.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )A .中位数B .众数C .平均数D .方差6.如图,利用标杆BE 测量建筑物DC 的高度,如果标杆BE 长为1.2米,测得 1.6AB = 米,8.4BC =米.则楼高CD 是( ) A .7.5米 B .6.3米 C .8米 D .6.5米7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A .内含.B .外切.C .相交.D .外离.8.如上右图, AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( )A.10B.8C.6D.4 9、如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸 中的格点,为使△D EM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的 ( )A .FB .GC .HD .K10.已知二次函数2y ax x c =++的图像如图所示,则在“①a <0,②b >0,③c <0,④b 2-4ac >0”中正确的的个数为( ).A.1 B.2 C.3 D.4第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.)11.函数6y x =-的自变量x 的取值范围是 。

2020年广州中考数学一模拟试卷

2020年广州中考数学一模拟试卷

A B C D广州市天河区2020年中考数学一模试卷本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项:1. 答卷前,考生务必在答题卡第1面用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写座位号,再用2B 铅笔把对应号码的标号涂黑.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在数轴上表示实数一1和7这两点间的距离为( )个单位长度. (A) 6 (B) 8 (C) 一6 (D) -8 2.函数3y x =-中,自变量x 的取值范围是( ).(A )x >3 (B )x ≥3 (C )x >-3 (D )x ≥-3 3.在一个圆柱体中间挖出一个小圆洞,如图1所示,则该物体俯视图的形状是( ).4.如图2,在△ABC 中,AB=AC ,∠A=40°,顶点B在直线DE 上,△ABC 绕着点B旋转,当AC ∥DE 时,∠CBE 的度数是( ). (A)50° (B) 60° (C) 70° (D) 80°5.在梯形ABCD 中,AD ∥BC ,AD<BC , AB >CD ,则∠B 与∠C 的关系是( ). (A) ∠B >∠C (B) ∠B <∠C (C) ∠B =∠C (D)无法比较 6.对于抛物线2y x m =-,若y 的最小值是1,则m =( ). (A) -1 (B) 0 (C)1 (D) 27. 如图3,在⊙O 中,∠ABC = ∠ACD = 60°,若△ACD 的周长为27,则AC = ( ).(A) 7 (B) 8 (C) 9 (D) 108.若一元二次方程220x x a --=有两个实数根,则a 的值不可以...是( ). (A)1 (B) 0 (C) -1 (D)-2 9.如图4,直线AB 与x 轴相交于点A(1,0),则直线AB 绕点A 旋转90°后 所得到的直线解析式可能是( ).(A) 1y x =+ (B) 1y x =-+ (C) 1y x =- (D) 1y x =--10.将一个正方形纸片依次按图(1),图(2)方式对折,然后沿图(3)中的虚线(剪切点是边的三等分点)裁剪,最后将图(4)的纸再展开铺平,所看到的图案面积与原正方形面积的比值为( ). (A) 3236π- (B) 436π+ (C) 29π+ (D) 89π-第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.)(向上对折)图(1)(向右对折) 图(2)图(3)图(4)11.()29a a a••=12.将点A(-1,1)沿x 轴的正方向平移3个单位得到点B 的坐标是 . 13. 已知1x =是方程20x mx -=的解,则实数m 的值等于 .14.如图5,铁道口栏杆的短臂长为1.6 m ,长臂长为10 m ,当短臂端点下降0.8 m 时,长臂端点升高 m .(杆的粗细忽略不计)15.已知关于x 的方程4 ( x – 3 ) = 3t + 9的解为正数,则t 的取值范围为 . 16.对于函数y ax b =+ ,根据图6表格的对应值,则可以判断方程0(0,,ax b a a b +=≠为常数)的解可能是 .(只写出满足条件的一个解即可)三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分) 计算:2933x x x ---.18.(本小题满分9分) 如图7,AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上的一点,且∠A = ∠BOC = 60°.求证:△ADB ≌ △OBC .图6图7CAOBD19.(本小题满分lO分)八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成6个小组,分别负责早、中、晚三个时段闯红灯违章现象的调查数据汇总如下:如图8图8观察表中的数据及条形统计图回答下列问题:(1)早晨、中午、晚上三个时段的车流总量的极差是,这三个时段的每分钟车流量的平均数是 , 三个时段车辆及行人违章的九个数组成的一组数据的中位数是 .(2)写出你发现的一个现象,并针对此现象向交通管理部门提出一条合理化建议.20.(本小题满分10分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下. 小明和小亮各从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由;(3)若小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.其他条件不变,则小明获胜的概率为.21.(本小题满分12分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图9所示,请根据图象所提供的信息解答下列问题:(1)描述乙队在0~6(h)内所挖河渠的长度变化情况;(2)请你求出:乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲队在施工过程中所挖河渠的长度y的值在30和50之间变化?图922.(本小题满分12分)已知线段a,b(如图10所示)(1)用尺规作图法作出△ABC,使得BC = a ,AB = AC = b (保留作图痕迹,不写作法) (2)通过直尺测量线段a ,b 的长度,利用计算器计算出所作的等腰△ABC 的底角度数.(精确到度)23.(本小题满分12分)如图11,AB 为半圆的直径, 点C 、D 在半圆上. (1)若3,2BC AD CD AD ==,求∠DAB 和∠ABC 的大小; (2)若点C 、D 在半圆上运动,并保持弧CD 的长度不变,(点C 、D 不与点A 、B 重合).试比较∠DAB 和∠ABC 的大小.ba 图1024.(本小题满分14分) 如图12,抛物线E :()20y axa =>沿x 轴正方向平移2个单位得到抛物线F ,抛物线F 的顶点为B ,抛物线F 交抛物线E 于点A ,点C 是线段OB 上一动点.(1)求点A 的坐标;(2)求证:△AOB 是等腰三角形;(3)当a 为何值时,直线AC 把△AOB 分割成 的两个三角形均为等腰三角形.图11图1 225.(本小题满分14分)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、BC、•PF,b = PE•PN,解答下列问题:AD于点M、N、(1)当四边形ABCD是菱形时(如图13),请判断a与b的大小关系;(2)当四边形ABCD是平行四边形,且∠A为钝角时(如图14),(1)中的结论是否成立?请说明理由.(3)在(2)的条件下,设DPkPB=,是否存在这样的实数k,使得49PECNBCDSS=?若存在,请求出满足条件的所有k的值;若不存在,请说明理由。

(广东卷) 2020年中考数学第一次模拟考试(参考答案)

(广东卷) 2020年中考数学第一次模拟考试(参考答案)

∴PQ=2x=
≈15.8(m),
3
答:树 PQ 的高度约为 15.8m.
22.【解析】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
故答案为 20;
数学 第 2页(共 7页) 2
(2)∵C 类女生:20×25%-2=3(名); D 类男生:20×(1-15%-50%-25%)-1=1(名); 如图:
数学 第 1页(共 7页) 1
∴∠ABC=90°-30°=60°, ∵BD 平分∠ABC,
1
∴∠CBD= ∠ABC=30°,
2
∴∠C=∠CBD=30°, ∴DC=DB. 21.【解析】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m, 在 Rt△PBC 中, ∵∠PBC=60°,∠PCB=90°, ∴∠BPQ=30°; (2)设 CQ=x, 在 Rt△QBC 中, ∵∠QBC=30°,∠QCB=90°,
(3)列表如下:A 类中的两名男生分别记为 A1 和 A2,
男 A1
男 A2
女A
男D
男 A1 男 D
男 A2 男 D
女A男D
女D
男 A1 女 D
男 A2 女 D
女A女D
共有 6 种等可能的结果,其中,一男一女的有 3 种,所以所选两位同学恰好是一位男生和一位女生的
概率为: 3 1 . 62
x 3y 240
(2)连接 AC,如图 2,
∵AM 是⊙O 直径,弦 BC⊥AM,
∴ BM = CM
∴∠BAM=∠CAM, ∴∠BDC=∠BAC=2∠BAM=∠BED, ∴BD=BE.
数学 第 4页(共 7页) 4
ቤተ መጻሕፍቲ ባይዱ

2020年广东省广州市中考数学第一次模拟训练测试试卷 含解析

2020年广东省广州市中考数学第一次模拟训练测试试卷 含解析

2020年中考数学第一次模拟训练测试试卷一、选择题1.﹣2020的相反数是()A.﹣2020B.2020C.﹣D.2.规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上()A.向北走了15米B.向南走了15米C.向北走了5米D.向南走了5米3.下列各数中,是有理数的是()A.﹣B.C.2.1234…D.4.用科学记数法表示的数3.61×105,它的原数是()A.36100000B.3610000C.361000D.36100 5.下列方程中,是一元一次方程的是()A.x2=4x B.=2C.x+2y=1D.=1 6.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2B.3,﹣2C.2,﹣2D.4,﹣2 7.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.=a B.a+b>0C.|a|<|b|D.<0 8.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)9.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=10.计算(2x+1)2﹣4x(x+1)的结果是()A.8x+1B.1C.4x﹣3D.1﹣4x 11.下列分解因式正确的是()A.x2﹣3x+1=x(x﹣3)+1B.a2b﹣2ab+b=b(a﹣l)2C.4a2﹣1=(4a+1)(4a﹣1)D.(x﹣y)2=x2﹣2xy+y212.使代数式+有意义的正整数x有()A.3个B.4个C.5个D.无数个13.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.514.某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=360015.若将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为()A.(﹣3,1)B.(3,1)C.(2,2)D.(﹣3,﹣3)16.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min17.已知一次函数y=(m﹣1)x+m2﹣1(m为常数),若它的图象过原点,则m()A.m=1B.m=±1C.m=﹣1D.m=018.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大19.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>220.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个二、综合题(共3题,满分50分):21.(1)计算(π﹣1)0+|﹣2|﹣()﹣1+;(2)化简:(﹣)÷.22.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?23.(20分)已知关于x的方程ax2+(3a+1)x+3=0.(1)求证:无论a取任何实数时,该方程总有实数根;(2)若抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求a值以及此时抛物线的顶点H的坐标;(3)在(2)的条件下,直线y=﹣x+5与y轴交于点C,与直线OH交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,请直接写出它的顶点横坐标h的值或取值范围.参考答案一、单项选择题:(共20小题,每小题5分,共100分)1.﹣2020的相反数是()A.﹣2020B.2020C.﹣D.【分析】直接利用相反数的定义得出答案.解:﹣2020的相反数是:2020.故选:B.2.规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上()A.向北走了15米B.向南走了15米C.向北走了5米D.向南走了5米【分析】根据正负数的意义,列出加法算式,再进行计算,看结果的符号,确定实际意义.解:∵5+(﹣10)=﹣5km,∴实际上向南走了5米.故选:D.3.下列各数中,是有理数的是()A.﹣B.C.2.1234…D.【分析】直接利用有理数的定义分析得出答案.解:A、﹣是无理数,故本选项错误;B、是无理数,故本选项错误;C、2.1234…是无理数,故本选项错误;D、是有理数,故本选项正确;故选:D.4.用科学记数法表示的数3.61×105,它的原数是()A.36100000B.3610000C.361000D.36100【分析】3.61×105,还原成原数就是把3.61的小数点向右移动5位所得到的数.解:3.61×105=361000,故选:C.5.下列方程中,是一元一次方程的是()A.x2=4x B.=2C.x+2y=1D.=1【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:A、未知项的最高次数为2,不是一元一次方程;B、符合一元一次方程的定义;C、含有两个未知数,不是一元一次方程;D、分母中含有未知数,不是一元一次方程.故选:B.6.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2B.3,﹣2C.2,﹣2D.4,﹣2【分析】直接利用多项式的次数确定方法以及一次项的定义分析得出答案.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.7.实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.=a B.a+b>0C.|a|<|b|D.<0【分析】直接利用数轴上a,b的位置,进而分别判断得出答案.解:如图所示:a<0,则=﹣a,故选项A错误;a+b<0,故选项B错误;|a|>|b|,故选项C错误;<0,正确.故选:D.8.下列计算错误的是()A.2a3•3a=6a4B.(﹣2y3)2=4y6C.3a2+a=3a3D.a5÷a3=a2(a≠0)【分析】根据单项式乘法、积的乘方和幂的乘方、同底数幂的除法、合并同类项的计算法则进行分析即可.解:A、2a3•3a=6a4,故原题计算正确;B、(﹣2y3)2=4y6,故原题计算正确;C、3a2和a不是同类项,不能合并,故原题计算错误;D、a5÷a3=a2(a≠0),故原题计算正确;故选:C.9.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=【分析】根据等式的性质求解即可.解:A.若a=b,则a﹣3=b﹣3,成立;B.若a=3,则a2=3a,成立;C.若3a=2b,则,成立;D.当a=b=0时,不成立.故选:D.10.计算(2x+1)2﹣4x(x+1)的结果是()A.8x+1B.1C.4x﹣3D.1﹣4x【分析】根据完全平方公式以及单项式乘多项式的运算法则展开,再合并同类项即可.解:(2x+1)2﹣4x(x+1)=4x2+4x+1﹣4x2﹣4x=1.故选:B.11.下列分解因式正确的是()A.x2﹣3x+1=x(x﹣3)+1B.a2b﹣2ab+b=b(a﹣l)2C.4a2﹣1=(4a+1)(4a﹣1)D.(x﹣y)2=x2﹣2xy+y2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.解:A、x2﹣3x+1=x(x﹣3)+1,不符合因式分解的定义,故此选项错误;B、a2b﹣2ab+b=b(a﹣l)2,故此选项正确;C、4a2﹣1=(2a+1)(2a﹣1),故此选项错误;D、(x﹣y)2=x2﹣2xy+y,不符合因式分解的定义.故选:B.12.使代数式+有意义的正整数x有()A.3个B.4个C.5个D.无数个【分析】根据二次根式有意义的条件可得5﹣x≥0,根据分式有意义的条件可得x﹣3≠0,再解即可.解:由题意得:x﹣3≠0,且5﹣x≥0,解得:x≤5,且x≠3,∵x是正整数,∴x=1,2,4,5,共4个,故选:B.13.已知是方程组的解,则a+b的值是()A.﹣1B.1C.﹣5D.5【分析】把x与y的值代入方程组求出a+b的值即可.解:把代入方程组得,①+②得:3(a+b)=﹣3,则a+b=﹣1.故选:A.14.某地区2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是()A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入2500万元,预计2012年投入3600万元即可得出方程.解:设教育经费的年平均增长率为x,则2011的教育经费为:2500×(1+x)2012的教育经费为:2500×(1+x)2.那么可得方程:2500×(1+x)2=3600.故选:A.15.若将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,则平移后的二次函数的顶点坐标为()A.(﹣3,1)B.(3,1)C.(2,2)D.(﹣3,﹣3)【分析】按照“左加右减,上加下减”的规律即可得到函数解析式,求得其顶点坐标即可.解:∵将二次函数y=x2﹣1的图象向上平移2个单位长度,再向右平移3个单位长度,∴平移后的二次函数的解析式为:y=(x﹣3)2+1,∴平移后的二次函数的顶点坐标为(3,1),故选:B.16.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min【分析】因为小明从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小明家的距离;小明从体育场到文具店是减函数,此段函数图象最高点与最低点纵坐标的差为小明家到文具店的距离;根据“速度=路程÷时间”即可得出小明从体育场出发到文具店的平均速度;先求出小明家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.17.已知一次函数y=(m﹣1)x+m2﹣1(m为常数),若它的图象过原点,则m()A.m=1B.m=±1C.m=﹣1D.m=0【分析】将(0,0)代入y=(m﹣1)x+m2﹣1即可求出m的值.解:将(0,0)代入y=(m﹣1)x+m2﹣1得,m2﹣1=0,解得m=±1,当m=1时,m﹣1=0,故m=﹣1.故选:C.18.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【分析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.解:由点(1,﹣3)的坐标满足反比例函数y=﹣,故A是正确的;由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数图象的对称性,可知反比例函数y=﹣的图象关于y=x对称是正确的,故C也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.19.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>2【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.解:∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵ax<,∴在第一和第三象限,正比例函数y=ax的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.20.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x轴的另一个交点,则可判断①②是否正确;由抛物线与x轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确.解:∵二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,∴当x=﹣1时,y=0,即a﹣b+c=0.∴①正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,∴4ac﹣b2<0,故③错误;∵当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④正确.综上,正确的有①②④.故选:C.二、综合题(共3题,满分50分):21.(1)计算(π﹣1)0+|﹣2|﹣()﹣1+;(2)化简:(﹣)÷.【分析】(1)直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质分别化简得出答案;(2)直接去括号利用分式的混合运算法则计算得出答案.解:(1)(π﹣1)0+|﹣2|﹣()﹣1+=1+2﹣﹣3+2=;(2)(﹣)÷=×a(a+1)﹣×a(a+1)=a﹣==.22.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已修建道路多少米?(2)求原计划每小时修建道路多少米?【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.解:(1)按原计划完成总任务的时,已抢修道路为1800×=600(米),答:按原计划完成总任务的时,已修建道路600米;(2)设原计划每小时抢修道路x米,根据题意得:+=10,解得:x=140,经检验:x=140是原方程的解.答:原计划每小时抢修道路140米.23.(20分)已知关于x的方程ax2+(3a+1)x+3=0.(1)求证:无论a取任何实数时,该方程总有实数根;(2)若抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求a值以及此时抛物线的顶点H的坐标;(3)在(2)的条件下,直线y=﹣x+5与y轴交于点C,与直线OH交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,请直接写出它的顶点横坐标h的值或取值范围.【分析】(1)分别讨论当a=0和a≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则ax2+(3a+1)x+3=0,求出两根,再根据抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且a为正整数,求出a的值,即可求顶点坐标;(3)分两种情况讨论,通过特殊位置可求h的范围,由平移的抛物线与直线CD(含端点C)只有一个公共点,联立方程组可求h的值,即可求解.解:(1)当a=0时,原方程化为x+3=0,此时方程有实数根x=﹣3.当m≠0时,原方程为一元二次方程.∵△=(3a+1)2﹣12a=9a2﹣6a+1=(3a﹣1)2≥0.∴此时方程有两个实数根.综上,不论m为任何实数时,方程ax2+(3a+1)x+3=0总有实数根.(2)∵令y=0,则ax2+(3a+1)x+3=0.解得x1=﹣3,x2=﹣.∵抛物线y=ax2+(3a+1)x+3的图象与x轴两个交点的横坐标均为整数,且m为正整数,∴a=1.∴抛物线的解析式为y=x2+4x+3=(x+2)2﹣1.∴顶点H坐标为(﹣2,﹣1);(3)∵点O(0,0),点H(﹣2,﹣1)∴直线OH的解析式为:y=x,∵现将抛物线平移,保持顶点在直线OD上.∴设平移后的抛物线顶点坐标为(h,h),∴解析式为:y=(x﹣h)2+h,∵直线y=﹣x+5与y轴交于点C,∴点C坐标为(0,5)当抛物线经过点C时,∴5=(0﹣h)2+h,∴h1=﹣,h2=2,∴当﹣≤h≤2时,平移的抛物线与射线CD(含端点C)只有一个公共点;当平移的抛物线与直线CD(含端点C)只有一个公共点,联立方程组可得∴x2+(1﹣2h)x+h2+h﹣5=0,∴△=(1﹣2h)2﹣4(h2+h﹣5)=0∴h=,∴抛物线y=(x﹣)2+与射线CD的唯一交点为(3,2),符合题意;综上所述:平移的抛物线与射线CD(含端点C)只有一个公共点,顶点横坐标h=或﹣≤h≤2.。

2020年广东省广州市中考数学一模试题及答案

2020年广东省广州市中考数学一模试题及答案

2020年广东省广州市中考数学一模试题及答案学校:___________姓名:___________班级:___________考号:___________ 1.-2020的相反数的绝对值是()A .-2020B .2020C .12020D .12020-2.目前,世界上能制造出的最小晶体管的长度只有0.00000004 m ,将0.00000004用科学记数法表示为4×4×1010n ,则n 是()A .8 B .-8 C .-9 D .-7 3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()A .青B .春C .梦D .想4.函数y =21x x +-中自变量x 的取值范围是()A .2x ≥-且1x ≠B .2x ≥-C .1x ≠D .21x -≤<5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下图:下列说法正确的是()A .该班级所售图书的总数收入是226元B .在该班级所售图书价格组成的一组数据中,中位数是4C .在该班级所售图书价格组成的一组数据中,众数是15D .在该班级所售图书价格组成的一组数据中,方差是26.估计()123+623⨯的值应在(的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y 值为1的是(的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==, 9.如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12厘米,EF=16厘米,则边AD 的长是(的长是( )A .12厘米B .16厘米C .20厘米D .28厘米 10.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线1x =-,给出四个结论:①24b ac >;②20a b +=;③0a b c ++>;④若点B (52-,1y )、C (12-,2y )为函数图象上的两点,则12y y <,其中正确结论是( )A .②④②④B .①④①④C .①③①③D .②③②③11.64立方根是__________.12.分解因式:(x +5)2-4=____.13.如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若23=OA ,则阴影部分的面积为_____.14.观察下列一组数:1121231234123451,,,,,,,,,,,,,,,,1213214321543216….它们是按分子、分母和的递增顺序排列的(和相等的分数,分子小的排在前面),那么这一组数的第108个数是______15.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-; 2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-;2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:根据以上信息,完成下面计算: 2(12)(2)(2)i i i +-+-=_______.16.如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x =≠的图象上运动,且始终保持线段42AB =的长度不变.M 为线段AB 的中点,连接OM .则线段OM 长度的最小值是_____(用含k 的代数式表示).17.(1)计算:(2﹣1)0﹣2sin30°2sin30°++(13)﹣1+(﹣1)2019(2)解不等式组:21452x x x -<⎧⎨+>+⎩并把解集在数轴上表示出来.18.如图,在Rt △ABC 中,M 是斜边AB 的中点,以CM 为直径作圆O 交AC 于点N ,延长MN 至D ,使ND =MN ,连接AD 、CD ,CD 交圆O 于点E(1)判断四边形AMCD 的形状,并说明理由;(2)求证:ND =NE ;(3)若DE =2,EC =3,求BC 的长.19.某汽车销售公司一位销售经理1—5月份的汽车销售统计图如下:月份的汽车销售统计图如下:(1)已知1月的销售量是2月的销售量的3.5倍,则1月的销售量为________辆,在扇形图中,2月的销售量所对应的扇形的圆心角大小为________;(2)补全图中销售量折线统计图;)补全图中销售量折线统计图;(3)已知4月份销售的车中有3辆国产车和2辆合资车,国产车分别用G 1,G 2,G 3表示,合资车分别用H 1,H 2表示,现从这5辆车中随机抽取两辆车参加公司的回馈活动,请用列举法(画树状图或列表)求出“抽到的两辆车都是国产车”的概率.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A 处,手柄长25AB cm =, AB 与墙壁'DD 的夹角'37D AB ∠=︒,喷出的水流BC 与AB 形成的夹角72ABC ∠=︒,现在住户要求:当人站在E 处淋浴时,水流正好喷洒在人体的C 处,且使50,130.DE cm CE cm == 问:安装师傅应将支架固定在离地面多高的位置?安装师傅应将支架固定在离地面多高的位置? (参考数据:sin370.60,cos370.80,tan370.75,sin 720.95,cos720.31,︒≈︒≈︒≈︒≈︒≈tan 72 3.08,sin350.57,cos350.82,tan350.70︒≈︒≈︒≈︒≈).21.如图,在平面直角坐标系中,直线AB 与y 轴交于点(0,7)B ,与反比例函数8y x-=在第二象限内的图象相交于点(1, )A a -.(1)求直线AB 的解析式; (2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E ,与y 轴交于点D ,求ACD ∆的面积;的面积;(3)设直线CD 的解析式为y mx n =+,根据图象直接写出不等式8mx n x-+≤的解集.22.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,件,其中其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.23.如图,Rt △ABC 中,∠ACB =90°,以BC 为直径的为直径的⊙⊙O 交AB 于点D ,E 、F 是⊙O 上的两点,连结AE 、CF 、DF ,满足EA =CA .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径是3,tan ∠CFD =43,求AD 的长.24.如图,在正方形ABCD 中,AB =10cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2cm 的速度运动,当点E 与点D 重合时,运动停止.设△BEF 的面积为y cm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围;的取值范围;(3)求△BEF 面积的最大值.25.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.参考答案1.B【解析】【分析】根据相反数的定义:指绝对值相等,正负号相反的两个数互为相反数,绝对值的性质:正数的绝对值是它本身即可求解.【详解】【详解】解:-2020的相反数的绝对值是2020.故选:B【点睛】【点睛】本题主要考查的是相反数和绝对值,掌握相反数和绝对值是解题的关键.2.B【解析】【分析】绝对值小于1的正数利用科学记数法表示为:10n a -⨯,将0.00000004 m 表示为此形式即可得出n 的值.【详解】解:0.00000004=4×0.00000004=4×1010-8故选:B【点睛】本题主要考查的是绝对值小于1的正数的科学记数法的表示形式,掌握这个知识点是解题的关键.3.B【解析】【解析】【分析】根据正方体展开图可知,相对的面一定不相邻即可得出结果.根据正方体展开图可知,相对的面一定不相邻即可得出结果.【详解】解:“梦”的对面是“青”,“想”的对面是“亮”,“点”的对面是“春”.故选:B【点睛】【点睛】本题主要考查的是正方体展开图,熟练掌握正方体展开图找对面的方法是解题的关键. 4.A【解析】【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0,解得:x≥-2且x≠1.故选:A .【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x .②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.5.A【解析】【分析】【分析】根据表即可算出总收入,根据表即可算出总收入,可对可对A 进行判断;利用中位数和众数的定义对B 、C 进行判断;利用方差的计算公式计算出这组数据的方差,从而对D 进行判断.进行判断.【详解】解:该班级所售图书总收入为::3×3×14+4×14+4×14+4×11+5×11+5×11+5×10+6×10+6×10+6×15=22615=226,故A 选项正确;选项正确;第25个数字是4,第26个数字是5,所以这组数据的中位数为4.5,故B 选项错误;选项错误; 这组数据的众数为6,故C 选项错误;这组数据的平均数为:226÷226÷50=4.5250=4.52,所以这组数据的方差为:()()()()22221143 4.52114 4.52105 4.52156 4.52 1.450⎡⎤⨯⨯-+⨯-+⨯-+⨯-≈⎣⎦,故D 选项错误.故选:A【点睛】本题主要考查的是众数、中位数与方差,掌握众数、中位数和方差是解题的关键. 6.C【解析】【分析】【分析】先将原式化简为2+24,由于24在4和5之间,那么2+24就在6和7之间.【详解】解:()123+623⨯=2+623=2+24 又因为4<24<5所以6<2+24<7故答案为C.【点睛】本题考查了二次根式的化简,其中明确化简方向和正确的估值是解题的关键.7.A【解析】【分析】根据“乙把其一半的钱给甲,则甲的数为50”和“甲把其23的钱给乙.则乙的钱数也为50”两个等量关系,即可列出方程组.【详解】【详解】解:设甲的钱数为x ,乙的钱数为y ;由甲得乙半而钱五十,可得:1x y 502+= 由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y += 故答案为:A【点睛】本题考查了列二元一次方程组解实际问题,解题的关键在于,找到正确的等量关系. 8.D【解析】【解析】【分析】逐项代入,寻找正确答案即可.【详解】【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m-1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.9.C【解析】【解析】【分析】【详解】【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=12cm ,EF=16cm ,根据勾股定理得HF=22+EF EH ,∴HF=20cm ,∴AD=20cm ,故选C10.B【解析】【解析】【分析】根据抛物线与x 轴的交点情况判断轴的交点情况判断①①,根据对称轴判断根据对称轴判断②②,根据抛物线的对称性判断根据抛物线的对称性判断③③、④. 【详解】∵抛物线的开口方向向下,抛物线的开口方向向下,∴a <0;∵抛物线与x 轴有两个交点,轴有两个交点,∴240b ac ->,即24b ac >,故①正确 由图象可知:对称轴12b x a=-=-, ∴20a b -=,故②错误;∵抛物线与y 轴的交点在y 轴的正半轴上,∴c >0,由图象可知:当x=1时y=0,∴0a b c ++=,故③错误;由图象可知:当x=﹣1时y >0,∴点B (52-,1y )、C (12-,2y )为函数图象上的两点,为函数图象上的两点,则则12y y <,故④正确.故选B . 11.2;【解析】【分析】【分析】先计算64=8,再计算8的立方根即可.【详解】【详解】∵64=8,38=2,∴64的立方根是2.故答案为:2.【点睛】【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.12.(x +7)(x +3)【解析】【分析】【分析】将原式化为()2252x +-,再利用平方差公式:()()22a b a b a b -=+-,即可得出结果. 【详解】解:原式()()()()()22=52=52527+3x x x x x +-++⨯+-=+⨯.故答案为:(x +7)(x +3)【点睛】本题主要考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.本题主要考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.13.3π+【解析】【解析】【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是AOD ∆的面积与扇形OBC 的面积之和再减去BDO ∆的面积,本题得以解决.【详解】【详解】解:作OE AB ⊥于点F ,Q 在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.23=OA , 90AOD ︒∴∠=,90BOC ︒∠=,OA OB =,30OAB OBA ︒∴∠=∠=, 3tan302323OD OA ︒∴=⋅=⨯=,4=AD ,3222362AB AF ==⨯⨯=,3OF =, 2BD ∴=,∴阴影部分的面积是:223230(23)23323602AOD BDO OBC S S S ππ∆∆⨯⨯⨯-++-==+扇形, 故答案为:3π+.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答. 14.313【解析】【分析】【分析】根据观察数列,可发现规律:1121231234123451,,,,,,,,,,,,,,,,1213214321543216⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…和相等的数分别为1个、2个、3个、4个…,即可得出答案.【详解】【详解】解:()114141+2+3+4++14=1052+⨯=K , 即第105个数是141, 第106个数是115, 第107个数是214, 第108个数是313. 故答案为:313【点睛】 本题主要考查了找规律,根据题目提供的已知数据找出其中所存在的规律是解题的关键.15.7i -【解析】【分析】【分析】根据题目材料,可得复数计算方法,先去括号,再进行加减运算.【详解】【详解】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++- 26i i =-- 61i =-+7i =-.故答案为:7i -.【点睛】【点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.16.28k +【解析】【解析】【分析】如图,如图,当当OM ⊥AB 时,线段OM 长度的最小.长度的最小.首先证明点首先证明点A 与点B 关于直线y=x 对称,对称,因因为点A ,B 在反比例函数()0ky k x=≠的图象上,AB=42,所以可以假设A (m ,k m),则B (m+4,k m -4),则有+4k m =4k m -,解得k=m 2+4m ,推出A (m ,m+4),B (m+4,m ),可得M (m+2,m+2),求出OM 即可解决问题.【详解】 如图,当OM AB ⊥时,线段OM 长度的最小,长度的最小,∵M 为线段AB 的中点,∴OA OB =,∵点A ,B 在反比例函数()0ky k x =≠的图象上,的图象上,∴点A 与点B 关于直线y x =对称,∵42AB =,∴可以假设,k A m m ⎛⎫ ⎪⎝⎭,则4,4k B m m ⎛⎫+- ⎪⎝⎭, ∴22222(4)(4)k km m m m +=++-, 解得24k m m =+,∴(),4A m m +,()4,B m m +, ∴()2,2M m m ++, ∴()()2222248OM m m m =+=++28k =+, ∴OM 的最小值为28k +.故答案为28k +.【点睛】本题考查反比例函数图象上的点的特征,反比例函数的性质等知识,解题的关键是理解题意,学会利用参数解决问题.17.(1)2;(2)﹣1<x <3,数轴见解析【解析】【分析】(1)任何数的零次幂等于1(零除外),sin30°等于12,一个不为0的数的负指数幂等于它正指数幂的倒数,-1的奇次幂等于-1,根据以上知识点即可得出结果;,根据以上知识点即可得出结果;(2)分别解出不等数组中的两个不等式,再求出不等式组的解集在数轴上表示出来即可.【详解】解:(1)原式=1﹣2×12+3﹣1=1﹣1+3﹣1=2. (2)解不等式x ﹣2<1得x <3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:【点睛】【点睛】本题主要考查的是实数的综合运算以及不等式组的解集,掌握实数的综合运算以及解不等式组是解题的关键.18.(1)四边形AMCD是菱形,理由见解析;(2)证明见解析;(3)BC=25.【解析】【解析】【分析】(1)证明四边形AMCD的对角线互相平分,且为菱形;的对角线互相平分,且∠∠CNM=90°,可得四边形AMCD为菱形;(2)可证得∠CMN=∠DEN,由CD=CM可证出∠CDM=∠CMN,则∠DEN=∠CDM,结论得证;论得证;(3)证出△MDC∽△EDN,由比例线段可求出ND长,再求MN的长,则BC可求出.【详解】【详解】(1)四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,的中点,∴CM=AM,∵CM为⊙O的直径,的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形;(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,是菱形,∴CD =CM ,∴∠CDM =∠CMN ,∴∠DEN =∠CDM ,∴ND =NE ;(3)∵∠CMN =∠DEN ,∠MDC =∠EDN ,∴△MDC ∽△EDN ,∴MD DC DE DN=, 设DN =x ,则MD =2x ,由此得252x x =, 解得:x =5或x =﹣5(不合题意,舍去),∴5MN =,∵MN 为△ABC 的中位线,∴BC =2MN ,∴BC =25.【点睛】本题考查了圆的综合知识,熟练运用圆周角定理、菱形的判定与性质、直角三角形的性质、勾股定理以及相似三角形的判定与性质是解题的关键.勾股定理以及相似三角形的判定与性质是解题的关键.19.(1)7;36°;(2)见解析;(3)树状图见解析,310【解析】【分析】【分析】(1)结合扇形统计图和折线统计图即可得出销售总量,再求出三月份的销售量,根据1月的销售量是2月的销售量的3.5倍即可得出1月份的销售量,再根据2月份销售量占销售总量几分之几即可得出2月份销售量所对圆心角;月份销售量所对圆心角;(2)由题(1)中得出来的每个月的销售量即可补充完整折线统计图;中得出来的每个月的销售量即可补充完整折线统计图;(3)根据题目要求画出树状图即可.【详解】解:(1)∵由题得销售总量为:5÷5÷25%=2025%=20(辆),三月份销售量为:20×20×10%=210%=2(辆),则一月份和二月份销售量和为:20-2-5-4=9(辆),1月的销售量是2月的销售量的3.5倍,倍,∴2月份销售量::9÷(1+3.5)=2(辆),1月销售量为2×2×3.5=73.5=7(辆),2月份销售量所对的圆心角:2÷2÷20×20×20×360°360°360°=36°=36°.(2)由题(1)得:如图所示.(3)画树状图如下:所有等可能的情况有20种,抽到的两辆车都是国产车的情况有6种.所以P(抽到的两辆车都是国产车)=632010=. 【点睛】【点睛】本题主要考查的是折线统计图和扇形统计图的结合,掌握这两种统计图是解题的关键. 20.安装师傅应将支架固定在离地面160cm 的位置.的位置.【解析】【分析】【分析】过B 作'BG D D ⊥于点G ,延长EC 、GB 交于点F ,根据锐角三角函数的定义即可求出答案.【详解】【详解】过点B 作'BG D D ⊥于点G ,延长EC 、GB 交于点F ,∵25AB =,50DE =,∴sin37GB AB ︒=,cos37GA AB︒=, ∴250.6015GB ≈⨯=,250.8020GA ≈⨯=,∴501535BF =-=,∵72ABC ∠=︒,'37D AB ∠=︒,∴53GBA ∠=︒,∴55CBF ∠=︒,∴35BCF ∠=︒,∵tan35BF CF ︒=, ∴35500.70CF ≈=, ∴50130180FE =+=,∴180GD FE ==,∴18020160AD =-=,∴安装师傅应将支架固定在离地面160cm 的位置.的位置.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.21.(1))7y x =-+;(2)ACD ∆的面积为18;(3)40x -≤<或2x ≥.【解析】【分析】【分析】 (1)将点A (-1,a )代入反比例函数8y x-=求出a 的值,确定出A 的坐标,再根据待定系数法确定出一次函数的解析式;(2)根据直线的平移规律得出直线CD 的解析式为y=-x-2,从而求得D 的坐标,联立方程求得交点C 、E 的坐标,根据三角形面积公式求得△CDB 的面积,然后由同底等高的两三角形面积相等可得△ACD 与△CDB 面积相等;(3)根据图象即可求得.)根据图象即可求得.【详解】(1))∵点(1, )A a -在反比例函数8y x -=的图象上,的图象上, ∴881a -==-, ∴(1,8)A -,∵点(0,7)B ,∴设直线AB 的解析式为7y k x =+, ∵直线AB 过点(1,8)A -,∴87k =-+,解得1k =-,∴直线AB 的解析式为7y x =-+;(2)∵将直线AB 向下平移9个单位后得到直线CD 的解析式为2y x =--, ∴(0,2)D -,∴729BD =+=,联立28y x y x =--⎧⎪⎨=⎪⎩,解得42x y =-⎧⎨=⎩或24x y =⎧⎨=-⎩, ∴(4,2)C -,(2,4)E -,连接AC ,则CBD ∆的面积194182=⨯⨯=, 由平行线间的距离处处相等可得ACD ∆与CDB ∆面积相等,∴ACD ∆的面积为18.(3)∵(4,2)C -,(2,4)E -,∴不等式8mx n x-+≤的解集是:40x -≤<或2x ≥.【点睛】【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,三角形的面积求法,以及一次函数图象与几何变换,熟练掌握待定系数法是解题的关键.22.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,时,获利最大,即买即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,)问中所有进货方案获利相同,③③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x元,则B 种商品每件的进价是()20x -元,元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩…, 解得:40183a ≤≤, ∵a 为正整数,为正整数,∴a =14、15、16、17、18,∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,元,由题意得:(())(()()())8050453040y m a a =--+-- ()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程 23.(1)证明见解析;(2)325. 【解析】【分析】(1)连接OA ,OE ,易证△AOC ≌△AOE (SSS ),从而可知,从而可知∠∠OEA=∠ACB=90°,所以AE 是⊙O 的切线.(2)连接CD ,因为∠CBA=∠CFD ,所以tan ∠CBA=tan ∠CFD=43,从而可求出AC=8,利用勾股定理即可求出AB=10,再证明△ADC ∽△ACB ,从而可求出AD 的长度.的长度.【详解】(1)连接OA ,OE ,在△AOC 与△AOE 中,中,AC AE OC OE OA OA⎧⎪⎨⎪⎩=== ∴△AOC ≌△AOE (SSS )∴∠OEA=∠ACB=90°,∴OE ⊥AE ,∴AE 是⊙O 的切线的切线(2)连接CD∵∠CBA=∠CFD∴tan ∠CBA=tan ∠CFD=43,∵在Rt △ACB 中,中,tan ∠CBA=463CA CA CB == ∴AC=8∴由勾股定理可知:AB=10,∵BC 为⊙O 的直径,∴∠CDB=∠ADC=90°,∵∠ADC=∠ACB ,∠DAC=∠CAB ,∴△ADC ∽△ACB∴AD AC AC AB=, ∴AD=6.4本题考查圆的综合问题,本题考查圆的综合问题,涉及全等三角形的性质与判定,涉及全等三角形的性质与判定,涉及全等三角形的性质与判定,相似三角形的性质与判定,相似三角形的性质与判定,相似三角形的性质与判定,勾股定勾股定理,圆周角定理等知识,综合程度较高.24.(1)见解析;(2)22522520252252522y x x x y x x x ⎧⎛⎫=-+≤≤⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-<≤ ⎪⎪ ⎪⎝⎭⎩;(3)50 【解析】【分析】【分析】 (1)作辅助线,构建三角形全等,证明△AEM ≌△EFN 和△ADE ≌△CDE (SAS ),可得AE=CE=EF ;(2)分两种情况:根据三角形的面积公式可得y 与x 之间关系的函数表达式,根据勾股定理计算BD 的长可得x 的取值;(3)根据(2)中的两种情况,分别利用配方法和二次函数的增减性可得结论.)中的两种情况,分别利用配方法和二次函数的增减性可得结论.【详解】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N ,∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD ,∴MN ⊥AD ,MN ⊥BC ,∴∠AME =∠FNE =90°=∠NFE +∠FEN ,∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°,∴∠AEM =∠NFE ,∵∠DBC =45°,∠BNE =90°,∴BN =EN =AM ,∴△AEM ≌△EFN (AAS ),AE EF∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE ,∵DE =DE ,∴△ADE ≌△CDE (SAS ),∴AE =CE =EF ;(2)解:在Rt △BCD 中,由勾股定理得:BD =221010102+=,∴0≤x ≤52,由题意得:BE =2x ,∴BN =EN =2x ,由(1)知:△AEM ≌△EFN ,则AE=EF=EC ,分两种情况:分两种情况:当0≤x≤ 522时,如图1,∵AB=MN=10,∴ME =FN =10﹣2x ,∴BF =FN ﹣BN =10﹣2x ﹣2x =10﹣22x ,∴y =11(1022)222BF EN x x ⋅=-⋅=﹣2x 2+52x (0≤x ≤522);当52522x <≤时,如图2,过E 作EN ⊥BC 于N ,∴EN=BN=2x ,∴FN=CN=10-2x ,∴BF=BC-2CN=10-2(10-2x )=22x-10,∴y =11(2210)222BF EN x x ⋅=-⋅=2x 2-52x (52522x <≤); 综上,y 与x 之间关系的函数表达式为22522520252252522y x x x y x x x ⎧⎛⎫=-+≤≤⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-<≤ ⎪⎪ ⎪⎝⎭⎩(3)①当0≤x≤ 522时,如图1,∴y =﹣2x 2+52x =﹣2(x ﹣524)2+254,∵﹣2<0,∴当x =524时,y 有最大值是254; 当52522x <≤时,如图2, ∴y =﹣2x 2+52x =2(x ﹣524)2-254,∵2>0,∴当x =52时,y 有最大值是50;即△BEF 面积的最大值是50.【点睛】本题是四边形的综合题,主要考查正方形的性质,全等三角形的判定与性质,勾股定理,三角形面积,角形面积,二次函数的最值等知识点的理解和掌握,二次函数的最值等知识点的理解和掌握,二次函数的最值等知识点的理解和掌握,难度适中,难度适中,熟练掌握正方形中利用辅助线构建全等来解决问题是本题的关键.25.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或317317(,)22+-+.(3)当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】【解析】【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:,分两种情况讨论:①①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=g,得到m 的表达式,利用二次函数求最值问题配方即可.的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--,∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,两点,∴30k b b +=⎧⎨,解得:k 1=⎧⎨,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-,∵//CE y 轴,轴,∴(1,2)E -,∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --, ∴223(23)3MN a a a a a =----=-+,∴232a a -+=,解得:2a =,1a =(舍去),∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,答案第23页,总23页 ∴2223(3)3MN a a a a a =----=-,∴232a a -=, 解得:3172a +=,3172a -=(舍去), ∴317317(,)22M +-+, 综合可得M 点的坐标为(2,1)-或317317(,)22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,∴223(23)3PG m m m m m =----=-+,∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+g ,∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-. 【点睛】本题是二次函数综合题,本题是二次函数综合题,考查了待定系数法求函数解析式,考查了待定系数法求函数解析式,考查了待定系数法求函数解析式,二次函数求最值问题,二次函数求最值问题,二次函数求最值问题,以及二次以及二次函数与平行四边形、三角形面积有关的问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广州中考数学模拟测试一(后附答案)
一、选择题
1.在平面直角坐标系中,点A(2,-3)在第象限.( )
(A)一 (B)二 (C)三 (D)四
2.如图,AB∥CD,EF分别交AB、CD于点E,F,∠1=50°,则∠2的度数为( )
(A)50°(B)120° (C)130°(D)150°
3.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( )
(A)某市八年级学生的肺活量 (B)从中抽取的500名学生的肺活量
(C)从中抽取的500名学生 (D)500
4.错误!未找到引用源。

的算术平方根的相反数是( )
(A)2 (B)-2 (C)4 (D)-4
5.某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如图直方图,根据图示信息描述不正确的是( )
(A)抽样的学生共50人
(B)估计这次测试的及格率(60分为及格)在92%左右
(C)估计优秀率(80分以上为优秀)在36%左右
(D)60.5~70.5这一分数段的频数为12
6.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )
(A)2场(B)5场(C)7场(D)9场
7.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为( )
(A)80°(B)40°(C)60°(D)50°
8.已知实数x,y,m满足错误!未找到引用源。

+|3x+y+m|=0,且y为负数,则m的取值范围是( )
(A)m>6 (B)m<6 (C)m>-6 (D)m<-6
9.在地震抢险时,某镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )
(A)10人(B)11人
(C)12人(D)13人
10.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到长方形的边时,点P的坐标为( )
(A)(1,4) (B)(5,0)
(C)(6,4) (D)(8,3)
二、填空题
11.4x a+2b-5-2y3a-b-3=8是二元一次方程,那么a-b= .
12.若点A(a,3)在y轴上,则点B(a-2,a+1)在第象限.
13.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图.如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是.
14.不等式组错误!未找到引用源。

的解集是.
15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是.
16.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.
17.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的错误!未找到引用源。

,另一根露出水面的长度是它的错误!未找到引用源。

.两根铁棒长度之和为220 cm,此时木桶中水的深度是 cm.
18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[错误!未找到引用源。

]=1.现对72进行如下操作:72第一次[错误!未找到引用源。

]=8,第二次[错误!未找到引用源。

]=2,第三次[错误!未找到引用源。

]=1,这样对72只需进行3次操作变为1,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.
三、解答题
19.解方程组错误!未找到引用源。

20.解不等式组:错误!未找到引用源。

并在数轴上表示出不等式组的解集.
21.若错误!未找到引用源。

+|2x-3y-5|=0,求:x-8y的平方根.
22.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC 沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
(2)求出在整个平移过程中,△ABC扫过的面积.
23.如图,已知∠BED=∠B+∠D.求证:AB∥CD.
24.小红和小凤两人在解关于x,y的方程组错误!未找到引用源。

时,小红因看错了系数a,得到方程组的解为错误!未找到引用源。

小凤因看错了系数b,得到方程组的解为错误!未找到引用源。

若按正确的a,b计算,求原方程组的解.
25.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?。

相关文档
最新文档