《有理数的混合运算》教学设计(湖北省县级优课)
《有理数混合运算》教案
《有理数混合运算》教案教案:有理数混合运算一、教学目标:1.知识目标:掌握有理数混合运算的方法和技巧,能够正确运用有理数四则运算规则计算复杂算式。
2.能力目标:能够灵活运用有理数混合运算解决实际问题。
3.情感目标:培养学生耐心、细致的解题思维,增强对有理数运算的兴趣和动力。
二、教学重难点:1.教学重点:掌握有理数混合运算的方法和技巧,能够正确运用有理数四则运算规则计算复杂算式。
2.教学难点:能够灵活运用有理数混合运算解决实际问题。
三、教学准备:1.教师准备:教师课件、黑板、粉笔、教学实例。
2.学生准备:课本、笔记本、作业本。
四、教学过程:步骤一:导入1.引入新课:提问学生知道有理数的运算方法吗?请举例说明有理数的四则运算方法。
2.思考与讨论:学生回答问题并进行讨论。
步骤二:讲解有理数混合运算1.讲解:通过教师课件将有理数混合运算的基本方法和技巧进行讲解。
2.案例解析:通过几个例子进行有理数混合运算的步骤分析和解题方法演示。
步骤三:练习与合作1.练习:提供一些有理数混合运算的练习题,学生在课下进行练习并记录解题过程。
2.合作:学生在课堂上互相交流解题过程和答案,并与教师共同解析。
步骤四:巩固与拓展1.提问学生:请举例说明有理数混合运算在实际生活中的应用场景。
2.创设情境:通过一些实际问题,让学生自主运用有理数混合运算解决问题。
步骤五:总结与反思1.总结:教师总结有理数混合运算的方法和技巧,并对重点难点进行强调讲解。
2.反思:学生回顾和反思这堂课的学习收获和不足之处。
五、教学设计理念:1.理解为主:通过引导学生进行讨论、思考,帮助学生理解有理数混合运算的基本概念和原理。
2.案例导入:通过解析实例,让学生了解有理数混合运算的具体步骤和解题方法。
3.练习与合作:让学生在课下进行练习,课堂上进行合作学习,让学生积极参与讨论与解答问题。
4.情景创设:通过一些实际问题,让学生将有理数混合运算应用到实际生活中,培养学生运用数学知识解决实际问题的能力。
七年级数学《有理数的混合运算》教案
教案:有理数的混合运算一、教学目标:1.知识目标:(1)理解有理数的混合运算的概念;(2)能够正确进行有理数的混合运算。
2.能力目标:(1)能够在解决实际问题中运用有理数的混合运算;(2)培养学生的逻辑思维能力和运算能力。
3.情感目标:(1)培养学生对数学的兴趣,提高学生的学习积极性;(2)培养学生的合作学习意识,培养学生的团队合作精神。
二、教学重点和难点1.教学重点:(1)理解有理数的混合运算的概念和基本性质;(2)掌握有理数混合运算的基本规则;(3)能够应用有理数的混合运算解决实际问题。
2.教学难点:(1)如何将有理数混合运算应用于实际问题的解决中;(2)如何加深学生对有理数混合运算的理解和掌握。
三、教学过程1.课前预热(10分钟)通过数学小游戏加深对有理数的认识,提高学生对数学的兴趣。
2.导入新知(10分钟)(1)通过提问复习有理数的基本概念;(2)引入有理数的混合运算的概念。
3.理解有理数的混合运算(20分钟)(1)通过例题,解释有理数的混合运算的规则;(2)运用图示和实例帮助学生理解有理数混合运算的概念和基本性质。
4.深入学习有理数的混合运算(40分钟)(1)讲解有理数混合运算的特殊情况和解决方法;(2)强化练习,巩固对有理数混合运算的理解和掌握。
5.探究应用(20分钟)(1)将有理数混合运算应用于解决实际问题;(2)分组讨论,完成相关应用题目。
6.总结归纳(15分钟)(1)小结有理数的混合运算的基本规则和方法;(2)讲解解题思路和技巧。
7.课堂小结(5分钟)对本课所学内容进行总结回顾,强调复习和巩固的重要性。
四、板书设计有理数的混合运算:五、课后作业1.完成课后练习册上的相关题目;2.思考并解决以下问题:如果有理数的运算过程中出现分母为0的情况,应该如何处理?六、教学反思通过本节课的教学,学生对有理数的混合运算的概念和基本规则有了初步的理解。
在教学过程中,我采用了多种不同的教学方法,如讲解、实例分析、小组讨论等,使学生能够通过实例进行深入学习和探究。
有理数的混合运算教案
有理数的混合运算教案一、教学目标1. 知识与技能:(1)理解有理数的混合运算的概念;(2)掌握有理数加法、减法、乘法、除法的运算规则;(3)能够熟练地进行有理数的混合运算。
2. 过程与方法:(1)通过实例演示,让学生感受有理数的混合运算;(2)运用归纳总结,引导学生发现有理数混合运算的规律;(3)设计不同难度的练习题,提高学生解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、合作交流的精神;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)掌握有理数的混合运算概念;(2)熟练进行有理数的混合运算。
2. 教学难点:(1)有理数混合运算的运算顺序;(2)解决实际问题时,正确运用有理数混合运算。
三、教学准备1. 教学素材:PPT、练习题、黑板、粉笔。
2. 教学工具:多媒体设备。
四、教学过程1. 导入新课:(1)复习相关知识:有理数的加法、减法、乘法、除法;(2)提问:什么是混合运算?混合运算有哪些运算顺序?2. 知识讲解:(1)讲解有理数的混合运算概念;(2)引导学生发现有理数混合运算的规律;(3)举例演示有理数混合运算的过程。
3. 课堂练习:(1)设计不同难度的练习题,让学生独立完成;(2)挑选学生答案,进行讲解、分析。
4. 巩固知识:(1)让学生运用所学知识,解决实际问题;(2)引导学生总结有理数混合运算的技巧。
五、课后作业1. 请学生完成课后练习题,巩固有理数的混合运算;2. 鼓励学生自主探究,发现更多有理数混合运算的规律;3. 引导学生将所学知识应用到实际生活中,提高解决问题的能力。
六、教学拓展1. 对比整数和分数的混合运算,发现它们的运算规则有何异同?2. 探讨有理数混合运算在实际生活中的应用,如购物、烹饪等。
七、课堂小结1. 回顾本节课所学内容,让学生总结有理数混合运算的规则;2. 强调有理数混合运算在实际生活中的重要性。
有理数的混合运算 优质课教案
交流:对于只含有加减的混合运算你有什么经验?对于只含有乘除的混合运算你有什么经验?
3.不同级别的混合运算。
计算:(1) ;(2)
交流:对于不含括号的有理数混合运算,你认为运算顺序怎样?对于有括号的有理数混合运算顺序怎样?
4.适当运用运算定律。
计算:
(三)课堂练习,巩固提高。
2.这些算式属于有理数加、减、乘、除、乘方混合运算,怎样进行加、减、乘、除、乘方运算呢?这节课我们来学习这个问题。
(二)合作交流,探究新知。
1.复习铺垫。
(1)有理数加、减、乘、除、乘方的运算法则是什?
(2)有理数有哪些运算定律?
(3)小学学过的加减乘除四则混合运算顺序怎样?
2.同级别的混合运算。
1.计算:
(1) ,
(2)
2.计算:
(1)
(2)4-
3.计算:
(1)
(2)
(3)
(四)反思小结,拓展升华。
现定义两种新的运算:“○”、“▲”,对于任意的两个整数a.b,a○b=a+b+1,a▲b=ab-1,求4▲[(6○8)○(3▲5)]的值。
练习:规定a※b= ,求10※(2※4)的值。
有理数的混合运算
【教学目标】
1.通过适度的练习,掌握有理数的混合运算。
2.在运算过程中能合理地运用运算律简化运算。
【教学重难点】
重点:有理数的混合运算。
难点:符号的处理和顺序的确定。
【教学过程】
(一)激情引趣,导入新课。
1.怎样计算下列算式?(1) ;(2)
这些算式含有哪些运算?你认为运算顺序怎么样?
《有理数的混合运算》word优质课获奖教案(部优)
本课在整个单元中,属于比较重要的环节。
除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。
本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。
学习兴趣之于学生,是非常重要而且更加有意义的教学活动。
对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。
2.11有理数的混合运算(第一课时)教学目标:知识与技能:除、乘方混合运算的顺序;会进行有理数的混合运算;能够使用能够确定有理数的加、减、乘、运算律简化运算。
过程与方法:培养学生观察、分析、比较、归纳、概括的能力;通过对解决问题的过程的反思,获得解决问题的经验。
情感态度与价值观:学会与他人合作,并能与他人交流过程和结果;在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
教学重点:按照运算顺序,会进行有理数的混合运算。
教学难点:运算符号的确定和性质符号的处理。
教材分析:有理数的混合运算是建立在有理数的有关概念和各种运算的意义及法则上的综合性运算。
首先,各种运算要正确熟练,再结合混合运算法则,混合运算才能正确进行,混合运算是以上各种运算的继续和发展,对学生运算能力和数学学习能力的培养,有着十分重要的意义。
教学方法:尝试指导法,以学生为主体,以训练为主线。
课时安排:2课时教学用具:电脑多媒体第一课时教学过程:教学环节教师活动学生活动设计意图电脑展示:心算口答:复习导入(1)+17+20(2)-31-(-16)(3)-11×12;(4)(-27)÷(-13)(5)-64÷16(6)(-2)3+32.追问:(1)前面学过的运算有哪些?(2)当我们研究了单个运算之后,通常还要研究什么?引入课题:有理数的混合运算学生抢答设计此组计算题的目的是让学生进一步巩固有理数的各种运算,为后面的混合运算做好铺垫自主探究一下面的运算包括哪几种运算?(1) 22 -(-2)2 ×(-3)(2)115×(13+12)÷5怎样进行有理数混合运算?教师在学生回答的基础上,适当总结与补充。
有理数的混合运算教学设计
第二章有理数及其运算11. 有理数的混合运算湖北省宜昌市第九中学褚艳娟(邮编:443000 电话:)一、学生知识状况分析学生在小学已经学习了非负有理数的四则混合运算法则,运算顺序,掌握了运算律的使用方法,已经具备了计算的技能基础,在本章前十一节的学习过程中,也已具有了进行有理数加、减、乘、除、乘方各种运算的知识与技能基础。
在相关知识的学习过程中,学生已经历了实验、猜想、观察、比较、分析、综合、抽象概括等数学活动,积累了较为丰富的活动经验,在解决问题的同时体会到了学习数学的兴趣,在独立思考的基础上,体验到了合作交流的重要性,同时在语言表达,发表见解方面都有成功的感受,具备了学习本节课所需要的活动经验基础。
二、教学任务分析本节课既可以看成是一节新授课,又可以当作是一节复习课,是本章的重点,是全章知识的综合与运用。
根据本节课的内容及学生的特点,设置教学目标及重难点如下:1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力。
本节课的重点是有理数的混合运算;本节课难点是准确地掌握有理数的运算顺序和运算中的符号问题。
三、教学过程分析本节课设计了六个环节:复习回顾引入新课;自主探索探索新知;例题讲解巩固新知;尝试训练巩固提高;归纳小结布置作业;拓展延伸能力提升。
具体内容与分析如下:第一环节复习回顾引入新课内容:活动1:说一说有理数的四则运算法则及运算律。
活动2:练一练计算(1)-5.4+0.2-0.6+0.8 ;(2)3× (-4)+(-28)÷7 ;(3)(-7)(-5)-90÷(-15) ;(4)-(-7)2;活动3:想一想归纳有理数同级运算法则并试着计算下题目的:通过“说一说”、“练一练”复习回顾有理数四则运算的法则和运算律,并通过练习为新课学习铺设台阶;通过“想一想”引出新课学习课题:有理数的混和运算,并为下一环节的进行提出问题。
《有理数的混合运算》精品教案
一、教学目标
在有理数的混合运算中,能确定正确的运算顺序,并能灵活的运用运算律来简化运算。
二、教学重点难点
有理数的运算顺序;
加法交换律和结合律,乘法交换律、结合律和分配律;
除法只有转化为乘法时,才能运用乘法的分配律。
三、教学方法:整体建构 和谐教学
四、教学过程
教师活动
学生活动
设计意图
学生讨论后口答。
通过这些题目找到混合运算计算的方法,加深对运算法则的理解。
逆用二次分配律,加深对分配律的理解
先确定符号后逆用分配律,加深对分配律的理解
讨论交流解决疑难
(1)
(2)
让学生独立完成
让学生独立完成
。
通过举例让学生体会到计算方法的灵活性。
强化训练,巩固所学的知识。
检查反馈评价矫正
小结回归
(1)
导入新课
明确目标
回顾: 1、有理数的乘法、除法法则是什么
2、 底数是什么,乘方是什么
3、有理数的混合运算顺序是什么
学生口答
教师总结
为学习有理数的混合运算做准备
指导自学整体
感知
计算:(1)
(2)
(3)
(4)
有理数的混合运算涉及多种运算,关键:①要确定合理的运算顺序;②能用简便方法的要尽量用简便方法。
让学生叙述运算顺序,然后让学生独立完成
解:
原式=17
_____
(2)
(3)
在运用乘法的分配律计算时,只有将除法运算转变为乘法运算,才能运用乘法的分配律,而不能在除法运算中直接运用乘法的分配律。
课
加深理解
及时总结,巩固知识
《有理数的混合运算》精品教学方案
11 有理数的混合运算配套北师大版【教学方案】第二章有理数及其运算11 有理数的混合运算一、教学目标1.掌握有理数的混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;2.能合理地运用运算律简化运算;3.在活动过程中,培养学生的分析、推理、交流的能力;4.培养学生的运算能力及综合运用知识解决问题的能力.二、教学重难点重点:掌握有理数的混合运算的顺序,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.难点:能合理地运用运算律简化运算.三、教学用具多媒体课件四、教学过程设计提问:还有没有别的计算方法呢? 预设答案:可以利用乘法分配律简化运算.解:原式=25939⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦×259939⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=××=-6+(-5) =-11提问:你能用自己的话说一说有理数的混合运算该如何计算吗?【归纳】有理数的混合运算法则:1.先算乘方,再算乘除,最后算加减;2.同级运算,从左到右进行;3.如有括号,要先算括号里面的;4.在运算过程中,可以利用运算律来简化运算.【做一做】你会玩“24点”游戏吗?从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌必须用一次且只能用一次,可以加括号),使得运算结果为24或-24. 其中红色扑克牌代表负数,黑色扑克牌代表正数,J ,Q ,K 分别代表11,12,13.(1)小飞抽到了,他运用下面的方法凑成了24:7×(3+3÷7)=24如果抽到的是,你能凑成24吗?预设答案:7×[3-(-3)÷7]=24如果抽到的是,你能凑成24吗?预设答案:7×[3+(-3)÷(-7)]=24(2)请将下面的每组扑克牌凑成24.预设答案:第一个图:12×3-(-12)×(-1)=24或(-12)×[ (-1)12-3]=24第二个图:(-2-3)2-1=24【典型例题】。
《有理数的混合运算》教学设计方案
《有理数的混合运算》教学设计方案一、内容和内容解析1.内容有理数的混合运算.2.内容解析有理数的混合运算是一节习题课,学生在小学阶段已经学过了正数的混合运算,对混合运算的顺序有了初步的了解,对加、减、乘、除运算法则也已熟练掌握,到了有理数阶段,只是把正数的混合运算扩大到了有理数的混合运算.主要包括:(1)没有括号的有理数的混合运算,按照先乘除后加减的顺序进行计算;(2)有括号的有理数的混合运算,先算括号内的,再按照先乘除后加减的顺序进行;(3)能利用运算律简便计算的,利用运算律进行简便计算.二、目标和目标解析1.目标(1)探索由小学学过的正数的混合运算扩大到有理数的混合运算的过程,找出不同之处.(2)掌握有理数的混合运算顺序,在运算过程中能合理使用运算律简化运算.2.目标解析达成目标的标志是:能够熟练地按照有括号先算括号内的,先乘除后加减的运算顺序进行计算,得到正确结果;能够灵活应用运算律简化计算,得到正确结果.三、重点难点重点:掌握有理数混合运算法则,并能使用运算律进行简便运算.难点:准确地掌握有理数运算的顺序和运算中符号的确定.四、教学过程设计1.复习回顾问题1我们在小学就学过了四则运算,大家看看下面几道题怎么做:8+4÷2=?7×5-90÷15=?=?师生活动:学生积极踊跃发言,说出自己计算的答案,最后得到8+4÷2=8+2=10;7×5-90÷15=35-6=29;======.老师总结:先加减后乘除,有括号先算括号里面的,可以用运算律的用运算律进行简化运算.老师给出下面例题,看与上面题目有什么异同,该如何计算.设计意图:让学生回顾以前学过的正数的四则运算,熟悉运算顺序,以便熟练地运用到后面的计算中.2.典例精析例1计算:(1)-8+4÷(-2);(2)(-7)×(-5)-90÷(-15);(3).设计意图:老师给出不同类型的例题和学生进行交流,并有针对性地进行板演,学生逐渐熟悉并掌握有理数的混合运算.问题2在计算-8+4÷(-2)的时候,先算什么?后算什么?需要注意什么?师生活动:教师引导学生复习四则运算法则,回忆刚学过的有理数运算法则并得到准确结果.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(1)-8+4÷(-2)先计算除法,注意异号两数相除,符号为负=-8-4÷2=-8-2=-10师生活动:教师引导学生复习有理数的运算法则,在四则运算中注意要先判断符号,学生积极回答有理数等计算法则并计算本题得到答案,比较大家得到的答案,一起分析错误的答案错在哪里.问题3(2)(3)题计算时注意什么?(2)(-7)×(-5)-90÷(-15)同号两数相乘,符号为正;异号两数相除,符号为负=35-(-6)减去一个负数,等于加上它的相反数=35+6=41(3)注意除法没有运算律,不要看到有相同的数就想着用运算律简便计算,先把带分数化为假分数=前面除法化除为乘后面除法先通分=应用乘法分配律后面合并同类项=乘法注意积的符号===师生活动:教师继续引导学生从小学学到的正数四则运算法则和有理数的各种运算法则,总结出有理数的四则运算的运算法则和小学学过的一样,只是计算的时候注意数的符号.学习了有理数的混合运算,你会应用了吗?试试看.例2某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?师生活动:一起分析公司的盈亏情况,把每一阶段的盈亏情况用有理数表示出来,再进行计算,得到总的盈亏情况.解:记盈利额为正数,亏损额为负数.公司去年全年盈亏额(单位:万元)为(-1.5)×3+2×3+1.7×4+(-2.3)×2=-4.5+6+6.8-4.6=3.7答:这个公司去年全年盈利3.7万元.设计意图:数学来源于生活,应用于生活.教师引导学生从实际情况中提取出数据进行计算,得到实际情况的解,解决生活中的实际问题.我们在做前面例1中(3)时,很多同学做错了,我们一起看看几个类似的题,看看大家掌握的怎么样了吧!3.易错分析例3计算:(1);(2).师生活动:老师和学生一起讨论计算的先后顺序和注意事项,老师分析易错原因,引导学生走出思维误区.解:(1)先确定后面两数相除的符号为正,再带分数化为假分数=注意:不能看到是倒数就想着先相乘得1,要按同级运算顺序先除后乘===1(2)先确定每一个乘除算式的符号本题既有带分数、假分数,又有小数,符号不一,同学们在计算的时候很容易做错某一步而导致结果出错.避免出错的方法就是一步一步解答,不要几步合在一起写,解答完后检查每一步是否正确.=把小数化为分数,把带分数化为假分数=化除为乘=逆用乘法分配律=通分=合并同类项=异号相乘,符号为负=计算结果=化为带分数=设计意图:本节课一些混合运算数的类型比较多(例如有带分数、假分数、小数、绝对值等,而且有正有负),很多学生在做的过程中一不小心就会做错,还有一些学生看到一些数的特征就想直接用运算律,而不管运算顺序.针对这些易错的点,给出了2道易错题进行讨论计算.通过解答上面的例题,大家掌握了混合运算的要点吗?我们来试试吧!4.巩固提升计算:1.;2.;3.;4..师生活动:老师监督学生完成练习,根据学生完成情况进行有针对性的讲解.解:1.====2.====3.====1.44.======设计意图:由浅入深、逐步递进、构造合理的序列设计习题,使学生保持浓厚的学习兴趣,顺着台阶上.并检查学生的掌握情况及时弥补教学的不足.我们做了这么多的题,来一起总结一下吧!5.课堂小结师生活动:学生分小组讨论有理数混合运算的注意事项.让学生谈出自己的体会与收获.做好笔记、掌握要点.(1)本节主要学习了有理数加、减、乘、除的混合运算,有理数的混合运算的关键是熟练掌握有理数混合运算的法则、运算律及运算顺序.特别要注意两点:①不要乱用运算律;②注意先确定符号.(2)做题的步骤:确定各项符号→计算→检查→改正.设计意图:了解学生对知识的掌握情况,为学生创造展示自己的机会,锻炼学生的语言表达能力.6.课后作业P38页练习8.(1)、(2)、(4).补充练习:1.计算:.2.计算:.3.现有有理数将这四个数3、4、-6、10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,请你写出两个符合条件的算式.补充练习答案1.====2.======3.(1)(10-4)-3×(-6)=24;(2)4-(-6)÷3×10=24;(3)3×.设计意图:作业是课堂教学的重要组成部分,也是课堂教学的延伸.作业既是教师了解学生学习情况的一种方式,也是训练学生思维和培养学生能力的一种方式,通过作业使不同层次的学生都得到提高和锻炼.。
有理数的混合运算优秀教案
有理数的混合运算【教学目标】(一)教学知识点:1.有理数的混合运算。
2.在运算中合理使用运算律简化运算。
(二)能力训练要求:1.掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主)。
2.在运算过程中能合理使用运算律简化运算。
(三)情感与价值观要求:1.通过学生做题,来提高学生的灵活解题的能力。
2.通过师生共同的活动,来培养学生的应用意识,训练学生的思维。
【教学重点】如何按有理数的运算顺序,正确而合理地进行有理数混合运算。
【教学难点】如何按有理数的运算顺序,正确而合理地进行有理数混合运算。
【教学过程】1.复习回顾,引入课题。
[师]前面我们学习了有理数的加、减、乘、除、乘方的意义及其运算。
现在我们来回顾:有理数的加法运算法则是什么?减法运算法则是什么?它们的结果各叫什么?[生]有理数的加法法则是:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
有理数加法运算的结果叫和。
有理数减法法则是:减去一个数等于加上这个数的相反数。
有理数减法运算的结果叫差。
[师]很好,大家来一起背一下这两个运算法则。
(学生齐声背)[师]好。
我们再来回顾有理数的乘法运算法则是什么?有理数的除法运算法则是什么?它们的结果各叫什么?[生]有理数的乘法法则是:两数相乘,同号得正、异号得负,绝对值相乘。
任何数与0相乘,积仍为0。
有理数乘法的运算结果叫积。
有理数除法法则是:法则1:两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
法则2:除以一个数等于乘以这个数的倒数。
有理数除法运算的结果叫商。
[师]很好。
除法有两个法则,在运算时要灵活运用。
根据减法法则,减法可以转化为加法,以便利用运算律来简化运算。
同样,在一些除法运算中,也可以利用除法法则二把除法运算转化为乘法运算,这样就可以利用运算律简化运算。
《有理数的混合运算》教案
一、教学目标:1. 知识与技能:使学生掌握有理数的混合运算方法,能正确进行加、减、乘、除、乘方、开方等运算。
2. 过程与方法:通过实例分析,引导学生运用有理数的运算规律,提高解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学学科的兴趣,感受数学在生活中的应用,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:有理数的混合运算方法及运算规律。
2. 教学难点:解决实际问题中的混合运算,以及运算顺序的判断。
三、教学过程:1. 导入:以生活实例引入有理数的混合运算,激发学生的学习兴趣。
2. 新课讲解:讲解有理数的加、减、乘、除、乘方、开方等基本运算方法,并通过例题演示。
3. 课堂练习:布置练习题,让学生独立完成,巩固所学知识。
4. 解决问题:利用所学知识解决实际问题,提高学生的应用能力。
5. 总结与拓展:总结本节课所学内容,提出拓展问题,引导学生课后思考。
四、教学方法:1. 采用讲解法、演示法、练习法、问题解决法等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 注重启发式教学,引导学生主动探究、积极思考。
五、作业布置:1. 完成课后练习题,巩固所学知识。
2. 搜集生活中的有理数混合运算实例,进行分析与解答。
3. 总结有理数混合运算的运算顺序及规律,形成文字材料。
六、教学评价:1. 评价内容:学生对有理数混合运算的掌握程度,包括运算方法、运算规律和实际应用能力。
2. 评价方式:课堂练习、课后作业、问题解答、小组讨论等。
3. 评价标准:能正确进行有理数混合运算,解决实际问题,具备一定的逻辑思维能力。
七、教学反思:1. 反思内容:教学方法的适用性,学生学习效果,课堂氛围等。
2. 反思方式:教师自我反思、学生反馈、同行评价等。
3. 改进措施:根据反思结果,调整教学方法,关注学生需求,提高教学质量。
八、教学拓展:1. 拓展内容:有理数混合运算在实际生活中的应用,如金融、物理、化学等领域。
《有理数的混合运算》教案
=-12;
(2)-2-[15+(1-0.6÷3)×(-52)]
=-2-[15+(1-0.2)×(-25)]
=-2-[15+0.8×(-25)]
=-2-[15-20]
=-2-(-5)
=3.
解答:
(1)(-)÷(-)+(-2)2×(-14)
=(-)×(-6)+4×(-14)
=×(-6)-×(-6)+(-56)
谈谈你这一节课有哪些收获.
回顾本节课的教学内容,从知识和方法两个层面进行总结.
归纳知识体系,提炼思想和方法.
《有理数的混合运算》教案这篇文章共3566字。
教会学生利用计算器进行有理数的混合运算,同时说明计算器其实也是按照有理数的运算顺序进行计算的,只是速度比较快.
练一练:
计算:
(1)(-++)÷(-)2;
(2)(-)×(-6)+(-)2÷(-)3;
(3)-14-[2-(-3)2];
(4)÷(-2)+×-÷4.
独立完成,课堂交流.
当堂巩固所学知识.
课堂小结:
=-3+2-56
=-57;
(2)4×(-7)+(-2)2×5-4÷(-)
=-4×7+(-2)2×5+4×2
=-4(7-5-2)
=0;
(3)3×(3-7)×÷1
=××(-)×
=1×(×-×)
=3-7
=-4.
解答:
(1){[2×(-1)3-7]-18}-3×
=×[-2-7]-×18-4
=-2-7-14-4
2.会用计算器进行较繁杂的有理数混合运算.
教学重点
1.有理数的混合运算.
2.运用运算律进行有理数的混合运算的简便计算.
教学难点
七年级数学上册《有理数的混合运算》教案
七年级数学上册《有理数的混合运算》教案一、教学目标本节课我们将一起探讨《有理数的混合运算》。
首先我希望同学们能够理解和掌握有理数的混合运算顺序,这是我们的首要目标。
在实际生活中,我们会遇到各种各样的计算问题,包括加减乘除以及乘方等运算,有时候还会涉及到有理数的混合运算。
因此理解并掌握这些内容,不仅能帮助我们更好地学习数学,还能解决生活中的实际问题。
我们的课程不仅要让同学们知道如何进行有理数的混合运算,更重要的是要培养同学们的逻辑思维能力和问题解决能力。
在学习过程中,我希望同学们能够积极思考,主动探索通过实例和练习,逐步掌握有理数混合运算的方法和技巧。
1. 知识与技能:初步理解有理数的概念,通过学习让学生们了解什么是正数、什么是负数,以及有理数在日常生活中的实际应用。
我们会通过实例让学生明白有理数的概念不仅仅是抽象的数学符号,而是与现实生活紧密相连的。
掌握混合运算的基本规则,我们将重点讲解加减法、乘除法以及括号的使用规则。
通过大量的练习,让学生们熟练掌握这些规则,并能够在实际问题中灵活运用。
同时我们也会强调运算顺序的重要性,让学生们理解并记住“先乘除后加减,括号先行”的原则。
我们还会涉及有理数的绝对值概念和运算法则的深入学习,让学生能够熟练掌握它的运算规则和实际应用。
培养学生解决实际问题的能力,我们会通过一系列实际问题,让学生们运用所学的混合运算知识来解决。
这不仅让学生感受到数学的实用性,也能帮助他们巩固所学知识,提高解决问题的能力。
同时我们也会鼓励学生运用创造性思维来解决新问题,培养他们的创新意识和实践能力。
a. 掌握有理数的混合运算顺序同学们我们知道数学是逻辑的世界,每一步都要稳稳地走。
今天我们要走进有理数的世界,学习混合运算。
首先我们要掌握有理数的混合运算顺序,这就像做饭要先准备好食材和步骤一样重要。
有理数的混合运算可不是简单的加加减减,我们要遵循一定的规则,就像交通规则一样,保证我们的计算既准确又高效。
有理数的混合运算 —— 初中数学第一册教案
有理数的混合运算——初中数学第一册教案一、教学目标1.了解有理数的概念和性质;2.掌握有理数的混合运算方法;3.能够解决有理数混合运算的实际问题。
二、教学重点1.了解有理数的概念和性质;2.掌握有理数的四则混合运算方法。
三、教学难点1.解决实际问题中的有理数混合运算;2.了解有理数的性质并进行运算。
四、教学准备1.教师准备教案和课件;2.学生准备纸和铅笔。
五、教学步骤步骤一:导入1.引入有理数的概念,通过示意图介绍有理数的定义和表示方法;2.回顾整数运算的基本规则,为混合运算打下基础。
步骤二:学习有理数的性质1.教师用互动的方式向学生提问有理数的性质;2.学生积极参与回答,并由教师进行解释;3.教师总结有理数的性质并进行概括。
步骤三:混合运算的基本方法1.教师介绍有理数混合运算的基本方法,包括加法、减法、乘法和除法;2.教师通过例题演示混合运算的步骤和要点;3.学生跟随教师的指导完成练习题。
步骤四:练习与巩固1.学生在教师辅导下独立完成若干练习题;2.学生互相交流,对练习题进行讨论和核对答案;3.教师对学生的答题情况进行评价和指导。
步骤五:解决实际问题1.教师给出实际问题,并引导学生分析解决问题的方法;2.学生尝试独立解决实际问题,并将解题过程写在作业本上;3.学生展示解决问题的过程和答案。
步骤六:总结与拓展1.教师对本节课的重点进行总结和归纳;2.学生对有理数混合运算的方法进行梳理,并写在笔记本上;3.教师布置相关作业和拓展练习。
六、教学反思通过本节课的教学,学生对有理数的混合运算有了初步的了解和掌握。
在教学中,教师充分发挥学生的主动性,通过互动和实际问题的解决,培养了学生的思维能力和解决问题的能力。
同时,教师也注意到一些学生在运算过程中存在概念理解错误的情况,下节课将重点对这部分内容进行备课和讲解。
七、课后作业1.完成教师布置的练习题;2.思考并解决一个有关有理数的实际问题,写在作业本上。
《有理数的混合运算》word版公开课一等奖教案(1)
《有理数的混合运算》word版公开课一等奖教案(1)当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!2。
11.有理数的混合运算【学习目标】课标要求:1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力。
目标达成:1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;学习流程:【课前展示】1:说一说有理数的四则运算法则及运算律。
2:练一练计算(1)-5.4+0.2-0.6+0.8 ;(2)3× (-4)+(-28)÷7 ;(3) (-7)(-5)-90÷(-15) ;(4) -(-7)2 ;3:想一想归纳有理数同级运算法则并试着计算下题1-21-55032)(?÷+【自学导航】计算1-21-55032)(?÷+【合作探究】1-21-55032)(?÷+问题1:算式1-21-55032)(?÷+里含有哪几种运算?问题2:哪些运算是同一级运算?分别是几级运算?问题3:根据以上分析你能解答该题吗?你能归纳出有理数混合运算法则吗?【展示提升】典例分析知识迁移例1 计算【强化训练】计算下列各题:(1)-3-[-5+(1-0.2×5)÷(-2)] (2)-14-×[ 2-(-3)2] (3)(-2)2-(-52)×(-1).45113)2131(5114÷?-?)(【归纳总结】)].95(32[3-22-+-?))(().31()2(6181-?-÷-)(1.口诀歌同级运算,从左至右;异级运算,由高到低;若有括号,先算内部;简便方法,优先采用.【板书设计】2.10有理数的混合运算法则例【教学反思】1、这节课的特点是通过课前师生调查收集实际生活中的大数据和超大数据,让学生感受在大数读写上的困难,感受到数学来源与生活,充分体会到学习数学对于指导实践的价值。
有理数混合运算的教案
有理数混合运算的教案教案标题:有理数混合运算的教案教案目标:1. 理解有理数的概念和性质。
2. 掌握有理数的加法、减法、乘法和除法运算规则。
3. 能够灵活运用有理数的混合运算解决实际问题。
教学重点:1. 有理数的加法和减法运算。
2. 有理数的乘法和除法运算。
3. 有理数混合运算的解题方法。
教学难点:1. 有理数混合运算的解题策略选择。
2. 解决实际问题时的数学建模能力。
教学准备:1. 教师准备:教学课件、教学素材、教学工具。
2. 学生准备:教材、练习册、计算器。
教学过程:Step 1: 引入(5分钟)1. 利用教学素材或教学课件,通过实例引导学生思考有理数的概念和性质。
2. 提问学生:你们对有理数有什么了解?有理数有哪些运算性质?Step 2: 知识讲解(15分钟)1. 通过教学课件或板书,讲解有理数的加法、减法、乘法和除法运算规则。
2. 结合具体例子,解释混合运算的概念和解题方法。
Step 3: 练习与巩固(20分钟)1. 分发练习册,让学生进行有理数混合运算的练习。
2. 教师巡视并指导学生,解答他们在练习中遇到的问题。
Step 4: 拓展与应用(15分钟)1. 提供一些实际问题,要求学生运用所学的有理数混合运算解决问题。
2. 学生分组合作,讨论解题思路并展示解答过程。
Step 5: 总结与评价(5分钟)1. 教师与学生一起总结本节课所学的有理数混合运算知识点。
2. 针对学生在课堂中的表现,给予积极的评价和指导。
教学扩展:1. 鼓励学生通过互动讨论、小组合作等方式,培养他们的合作与交流能力。
2. 引导学生将有理数混合运算与实际生活问题相结合,提高他们的数学建模能力。
教学评价:1. 课堂练习的完成情况。
2. 学生在解决实际问题时的数学建模能力。
3. 学生对有理数混合运算规则的理解程度。
4. 学生在课堂互动中的参与度和表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册第一章有理数
《1.5.1乘方》教学设计
一、教材分析
(一)教材的地位:本课时是在小学学过平方和立方、七上刚学习了有理数的乘法等计算以后的一个新知识点,即学生有一定的基础,但又是一个新内容。
这一内容是后面即将学习的幂的乘方等内容的基础,所以学生要弄清弄懂“乘方”的概念,好为今后的学习打下良好的基础。
(二)教学目标:
1.知识与技能:
(1)理解有理数乘方的意义;
(2)正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算;
(3)能熟练进行有理数的混合运算。
2.过程与方法:
(1)使学生能够灵活地进行乘方运算。
(2)通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
3.情感、态度和价质观
(1)通过对实例的感悟,让学生体会数学与生活的密切联系。
(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。
(三)教学重点、难点
1.教学重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则。
2.教学难点:正确理解乘方的意义。
二、教法与学法
1、教法:引导探索,尝试指导,充分体现学生的主体地位。
2、学法:尝试探究、独立思考、合作与交流
三、教学过程
(一)创设情境,初探概念
问题组1:
1、边长为2cm的正方形的面积为;棱长为2cm的正方体的体积为;
2、把一张纸对折1次可得2层;把一张纸对折2次可得4层,即2×2层;
对折3次可得8层,即2×2×2层;
如果对折10次可得多少层?(请用一个算式表示,不用算出结果)
如果对折100次,算式中有几个2相乘?
师生活动:学生回答上面问题,教师引导:
如果2×2记作22;2×2×2记作23,那么(-2)×(-2)×(-2)应记作多少呢?
222222
------
()()()()()()呢?
555555
设计意图:通过生活实例和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
(二)类比推理,归纳概念
问题组2:
上面这些式子都有什么共同特征?
你能用一般形式把它们表现出来吗?
1
2 这个式子实际上是对哪两种运算的一个转化?
为什么要进行这样的转化?
师生活动:学生充分交流的基础上,教师评议:1、都是乘法运算,2、因数相同。
从而与学生共同得出概念.
乘方:求n 个相同因数a
n 个
a n 读作a 的n 次幂(或a 的n 次方)。
其中a 是底数,n 是指数。
设计意图:通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳和概括的能力,让学生在活动中感受数学符号的简捷美。
(三)运用新知,理解概念 问题3:分别指出下列幂中,底数和指数分别是什么? 83,(-3)2,-27,100,2.55,91
-2(), 323
(),5--1(),m n ,2()x y 师生活动:学生回答,互相纠正补充后,教师温馨提示:分数和负数为底数时要加括号,负数在括号外面的视为幂的相反数。
问题4:计算: (1) (-4)3 (2) (-2)4 (3) 07 (4)
设计意图:教师在学生回答的基础上示范解题格式,在学生思维和习惯上进行引领。
学生尝试计算:
(1)(-5)3 (2)(-2)6 (3)(-0.2)5 (4)21
-3
() 设计意图:学生独立完成习题的过程中暴露错误,不断纠正来进一步深化概念,比教师多讲更有效果。
问题5:从以上习题你发现负数的幂有什么规律?你能根据你发现的规律判断下列各式与0的大小关系吗?
2(1)()n a ___0 2(2)a n ___0
21(3)(1)n ___0 2(4)()x y ___0
设计意图:这组习题从易到难,步步深入,通过学生自己做练习、探索规律,获取乘方运算的符号法则。
教师放手学生操作,把课堂还给学生,真正体现学生的主体地位。
(四)实际运用,巩固概念
问题6:你能用计算器计算(-8)5和(-3)6吗?
师生活动:介绍计算器的乘方功能键,学生尝试计算,并解决:如果将一张0.2mm 的纸对折100次,估算相当于多少层楼的高度,体会乘方精神。
设计意思:体会乘方结果的惊人,培养对数学探究的兴趣,培养学生坚忍不拔的毅力和不断求索的科学精神。
(五)综合运用,深化概念
=a n a ·a ·…·a = 32321350215⎛⎫+÷⨯-- ⎪⎝⎭22
5339。