2015-2016学年人教A版必修一:集合的含义 作业
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(62)
1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(52)
3.已知 , ,且 ,则( )
A. B. C. D.
答案:B
解析:根据集合的包含关系可求得 的取值范围.
详解:
, ,且 , .
故选:B.
4.能够组成集合的是( )
A.与2非常数接近的全体实数
B.很著名的科学家的全体
C.某教室内的全体桌子
D.与无理数π相差很小的数
答案:C
解析:由集合中元素的特征:确定性、互异性、无序性,进行判断即可
1.1 集合的概念
一、单选题
1.已知集合 ,集合 ,若 ,则实数 的值是( )
A.0B. C.0或 D.0或
答案:C
解析:计算 ,考虑 , , 三种情况,计算得到答案.
详解:
, ,
当 时, , ;当 时, , ;当 时, .
即 或 或 .
故选:C.
2.已知 小于 的自然数},则( )
A. B. C. D.
故答案为:
2.已知 ,则实数 的值是_________.
答案:-1
解析:试题分析:
考点:元素互异性
【名师点睛】对于集合中含有参数的问题,要注意将得到的参数的值代回集合中,对解出的元素进行检验,判断是否满足集合中元素的互异性.
3.已知集合 ,则实数 的取值范围为__________.
答案:
解析:根据题意得 ,解不等式即可得答案
点睛:
本题考查了一元二次不等式的解法,属于基础题.
7.设集合 , ,则下列关系中正确的是( )
A. B. C. D.
答案:C
解析:根据元素与集合之间的关系,即可求出结果.
详解:
由题意可知, ,所以 ,故选C.
点睛:
本题主要考查了元素与集合之间的关系.
人教A版高中数学必修一练习:活页作业1集合的含义(1)
活页作业(一)集合的含义(时间:45分钟满分:100分)一、选择题(每小题5分,共25分)1.下列几组对象可以构成集合的是()A.充分接近π的实数的全体B.善良的人C.世界著名的科学家D.某单位所有身高在1.7 m以上的人解析:A、B、C中标准不明确,故选D.答案:D2.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中正确语句的个数是()A.0B.1C.2D.3解析:N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.答案:A3.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为()A.2 B.2或4C.4 D.0解析:若a=2∈A,则6-a=4∈A;或a=4∈A,则6-a=2∈A;若a=6∈A,则6-a=0∉A.故选B.答案:B4.若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是() A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .故选D. 答案:D5.设a ,b ∈R ,集合A 中含有0,b ,ba 三个元素,集合B 中含有1,a ,a +b 三个元素,且集合A 与集合B 相等,则a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0,∴ba =-1,∴a =-1,b =1,∴a +2b =1.答案:A二、填空题(每小题5分,共15分)6.已知集合A 中只含有1,a 2两个元素,则实数a 不能取的值为________. 解析:由a 2≠1,得a ≠±1. 答案:±17.若集合P 含有两个元素1,2,集合Q 含有两个元素1,a 2,且P ,Q 相等,则a =________. 解析:由于P ,Q 相等,故a 2=2,从而a =±2. 答案:±28.已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =________.解析:∵x ∈N ,且2<x <a ,∴结合数轴可得a =6. 答案:6三、解答题(每小题10分,共20分)9.若所有形如3a +2b (a ∈Z ,b ∈Z )的数组成集合A ,判断6-22是不是集合A 中的元素.解:∵3a +2b (a ∈Z ,b ∈Z )中, 令a =2,b =-2,可得6-22, ∴6-22是集合A 中的元素.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3, 且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠3,且 x ≠0,且x ≠-1. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1,∴x =-2.一、选择题(每小题5分,共10分)1.已知2a ∈A ,a 2-a ∈A ,若A 只含这两个元素,则下列说法中正确的是( ) A .a 可取全体实数B .a 可取除去0以外的所有实数C .a 可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.故选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t ∈A ,则t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每小题5分,共10分)3.已知集合A 是由m -1,3m ,m 2-1三个元素组成的集合,且3∈A ,则实数m 的值为________.解析:由m -1=3,得m =4,此时3m =12,m 2-1=15,故m =4符合题意;由3m =3,得m =1,此时m -1=m 2-1=0,故舍去;由m 2-1=3,得m =±2,经检验m =±2符合题意.故填4或±2.答案:4或±24.若a ,b ∈R 且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当ab <0时,|a |a +|b |b =0;当a <0,b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3. 答案:3三、解答题(每小题10分,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成,其中k ∈R ,若A 中的元素只有一个,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 若k =0,则x =23,知A 中只有一个元素,符合题意;若k ≠0,则方程为一元二次方程.当Δ=9-8k =0,即k =98时,方程kx 2-3x +2=0有两个相等的实数解,此时A 中只有一个元素.综上所述,k =0或98.6.已知集合A 中的元素全为实数,且满足:若a ∈A ,则1+a1-a ∈A .(1)若a =2,求出A 中其他所有元素. (2)0是不是集合A 中的元素?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外,其他所有元素为-3,-12,13.(2)0不是集合A 中的元素.理由如下: 若0∈A ,则1+01-0=1∈A ,而当1∈A 时,1+a1-a 不存在,故0不是集合A 中的元素.。
人教A版高中数学必修一新课标集合的含义训练教师专用含答案
(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.考察下列每组对象,能构成一个集合的是()①某校高一年级成绩优秀的同学;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2008年北京奥运会比赛金牌获得者.A.③④B.②③④C.②③D.②④解析:①中“成绩优秀”没有明确的标准,所以不能构成一个集合.②③④中的对象都满足确定性与整体性,所以能构成集合.答案: B2.由a,a,b,b,a2,b2构成集合A,则集合A中的元素最多有()A.6个B.5个C.4个D.3个解析:根据集合中元素的互异性可知,集合A中的元素最多有4个,故选C.答案: C3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为()A.2 B.3C.0或3 D.0,2,3均可解析:因为2∈A,所以m=2或m2-3m+2=2,解得m=0或m=2或m=3.又集合中的元素要满足互异性,对m的所有取值进行一一验证可得m=3,故选B.答案: B4.已知集合A由x<1的数构成,则有()A.3∈A B.1∈AC.0∈A D.-1∉A解析:很明显3,1不满足不等式,而0,-1满足不等式.答案: C二、填空题(每小题5分,共10分)5.已知集合A由元素1和a2构成,实数a不能取的值的集合是________.解析:由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.答案:{1,-1}6.如果具有下述性质的x都是集合M中的元素,其中:x=a+b2(a,b∈Q),则下列元素中不属于集合M的元素个数是______个.①x=0,②x=2,③x=3-22π,④x=13-22,⑤x=6-42+6+4 2.解析:①当a=b=0时,x=0;①正确;②当a=0,b=1时,x=2,②正确;③当a=3,b=-2π时,b∉Q,x=3-22π∉M,③不正确;④当x=3,b=2时,x=3+22=13-22,④正确;⑤x=6-42+6+42=2-2+2+2=4 当a=4,b=0时,x=4,⑤正确.答案: 1三、解答题(每小题10分,共20分)7.已知集合A 由元素a -3,2a -1,a 2-4构成,且-3∈A ,求实数a 的值.解析: ∵-3∈A ,A ={a -3,2a -1,a 2-4},∴a -3=-3或2a -1=-3或a 2-4=-3.若a -3=-3,则a =0,此时集合A ={-3,-1,-4},符合题意.若2a -1=-3,则a =-1,此时集合A ={-4,-3,-3},不满足集合中元素的互异性.若a 2-4=-3,则a =1或a =-1(舍去),当a =1时,集合A ={-2,1,-3},符合题意.综上可知,a =0,或a =1.8.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N ,求a ,b 的值.解析: 方法一:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧ a =0b =0或⎩⎨⎧ a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧ a =0b =1或⎩⎨⎧ a =14b =12.方法二:∵两个集合相同,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2a ·b =2a ·b 2, 即⎩⎪⎨⎪⎧a +b (b -1)=0 ①ab ·(2b -1)=0 ② ∵集合中的元素互异,∴a ,b 不能同时为零.当b ≠0时,由②得a =0,或b =12. 当a =0时,由①得b =1,或b =0(舍去).当b =12时,由①得a =14. 当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧ a =0b =1或⎩⎨⎧a =14b =12 尖子生题库☆☆☆9.(10分)数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1). (1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.解析: (1)2∈A ,则11-2∈A ,即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A , 即2∈A ,所以A 中其他所有元素为-1,12. (2)如:若3∈A ,则A 中其他所有元素为-12,23. (3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a,a -1a , 且三个数的乘积为-1.证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a≠1, 所以又有11-11-a=a -1a ∈A 且a -1a ≠1, 进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a,则a 2-a +1=0,而方程a 2-a +1=0无解). 故11-a≠a -1a , 所以A 中只能有3个元素,它们分别是a ,11-a,a -1a 且三个数的乘积是-1.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(10)
1.1 集合的概念一、单选题1.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃2.已知集合{}1,A x x x Z =≤∈,则满足条件BA 的集合B 的个数为( ) A .3 B .4C .7D .83.已知集合{}14A x Z x =∈-<<,则集合A 的非空子集个数是( )A .7B .8C .15D .16 4.集合{,,}a b c 的真子集共有( )个 A .5 B .6C .7D .8 5.下列表示正确的是 A .0∈N B .27∈NC .–3∈ND .π∈Q 6.设集合{|21,},5A x x k k Z a ==+∈=,则有( ) A .a A ∈ B .a A -∈ C .{}a A ∈ D .{}a A ⊇7.下列关于空集∅的叙述:①0∈∅;②{}∅∈∅;③{}0∅=.正确的个数为( )A .0B .1C .2D .3 85R ;②14Q ∉;③1.5Z ∈.其中正确的个数是( )A .1B .2C .3D .09.方程组2219x y x y +=-=⎧⎨⎩的解集是( ) A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-二、填空题 1.如果有一集合含有两个元素:x ,2x x -,则实数x 的取值范围是________.2.已知集合A =0, 1}, B =2{,2}a a ,其中a R ∈, 我们把集合1212{|,,}x x x x x A x B =+∈∈记作A +B ,若集合A +B 中的最大元素是21a +,则a 的取值范围是______.3.一元二次方程x 2+4x+3=0的解集为________(用列举法)4.已知集合2{|320,,}A x ax x x R a R =-+=∈∈,若集合A 中只有一个元素,则实数a 的取值为______ .5.若不等式组120161x x a-≥⎧⎨+⎩的解集中的元素有且仅有有限个数,则a =________. 三、解答题 1.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示什么?集合C ,D 之间有什么关系?2.已知集合2{|210}A x ax x =∈++=R ,其中a ∈R .(1)若12A ∈,用列举法表示集合A ;(2)若集合A 中有且仅有一个元素,求a 的值组成的集合B .3.用列举法表示下列集合.(1)x|x 2-2x -8=0}.(2)x|x 为不大于10的正偶数}.(3)a|1≤a<5,a∈N}.(4)169A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭∣ (5)(x ,y)|x∈1,2},y∈1,2}}.参考答案一、单选题1.B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B2.C解析:先确定集合A 中元素,再由真子集个数的计算公式,即可得出结果.详解: 因为{}{}1,101A x x x Z =≤∈=-,,,所以满足条件B A 的集合B 的个数为3217-=,故选:C .3.C解析:利用列举法表示集合A ,确定集合A 中元素的个数,进而可求得集合A 的非空子集个数.详解:{}{}140,1,2,3A x Z x =∈-<<=,集合A 中共4个元素,因此,集合A 的非空子集个数是42115-=.故选:C.4.C解析:直接根据含有n 个元素的集合,其子集个数为2n ,真子集为21n -个;详解:解:因为集合{,,}a b c 含有3个元素,故其真子集为3217-=个故选:C5.A解析:根据自然数集以及有理数集的含义判断数与集合关系. 详解:N表示自然数集,在A中,0∈N,故A正确;在B中,27N∉,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误.故选A.点睛:本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.6.A解析:5221a==⨯+,结合集合A,即可得出结果.详解:5221a A==⨯+∈.故选:A点睛:本题考查元素和集合的关系,考查学生对基本概念的理解,属于基础题.7.B解析:直接根据∅中没有任何中元素,∅是{}∅的元素,且是{}0的真子集即可判断.详解:∵∅中没有任何中元素,0∉∅,故①错误;{}∅∈∅,故②正确;{}0≠∅,故③错误.故正确的只有②.故选:B.点睛:本题考查命题真假的判断,考查元素与集合、空集和单元素集合{}0关系等基础知识,是基础题.8.A解析:根据元素和常用数集之间的关系,直接判定,即可得出结果.详解:R R,即①正确;Q 为有理数集,故14Q ∈,即②错; Z 为整数集,故1.5Z ∉,即③错;故,正确的个数为1个.故选:A.点睛:本题主要考查元素与集合之间关系的判定,属于基础题型.9.D解析:解出方程组的解,然后用集合表示.详解:因为()()229x y x y x y -==+-,将1x y +=代入得,得9x y -=.210x y x y x ++-==,解得5x =.代入得4y =-.所以方程组2219x y x y +=⎧⎨-=⎩的解集(){}5,4-. 故选:D.点睛: 本题考查集合的表示,考查用列举法表示方程组解的集合,注意解的表示形式,属于基础题.二、填空题1.0x ≠且2x ≠解析:根据集合的元素的互异性列出不等式,解之即得.详解:由集合元素的互异性可得2x x x -≠,解得0x ≠且2x ≠.故答案为:0x ≠且2x ≠.2.(0, 2)解析:只要解不等式2121a a +<+即得.详解:由题意2121a a +<+,解得02a <<,即a 的取值范围是(0,2).故答案为(0,2).点睛:本题考查集合的创新问题,解题中需要理解新概念,转化为旧知识.如本题转化为解不等式2121a a +<+.3.{}1,3--解析:求出方程的解,用列举法表示出即可.详解:由2430x x ++=解得1x =-或3-,2430x x +∴+=的解集为{}1,3--.故答案为:{}1,3--.点睛:本题考查列举法表示集合,属于基础题.4.0或98解析:由题意,集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论,即可得到答案.详解:因为集合2A {x |ax 3x 20,x R,a R}=-+=∈∈有且只有一个元素,当a 0=时,2ax 3x 20-+=只有一个解2x 3=,当a 0≠时,一元二次方程有重根,即98a 0=-=即9a 8=.所以实数a 0=或98.点睛:本题主要考查了集合中元素个数的判定与应用,其中根据题意把集合A 中只有一个元素,转化为方程2320ax x -+=只有一个解,分类讨论求解是解答的关键,着重考查了转化思想,及分类讨论数学思想的应用.5.2018解析:若不等式组120161x x a -≥⎧⎨+⎩的解集中有且仅有有限个数,则12017a -=,进而得到答案. 详解:解12016x -≥得:2017x ≥,解1x a +≤得:1x a ≤-,若12017a -<,则不等式的解集为空集,不满足条件;若12017a -=,则不等式的解集有且只有一个元素,满足条件,此时2018a =;若12017a ->,则不等式的解集为无限集,不满足条件;综上可得:2018a =,故答案为:2018点睛:本题主要考查集合中元素的个数,同时考查了不等式组的解法,属于简单题.三、解答题1.D C解析:集合表示两条直线的交点,解得交点得到集合关系.详解:集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示直线21x y -=与直线45x y +=交点的集合, 即{(1,1)}D =. D C点睛:本题考查了集合表示的意义,集合的包含关系,意在考查学生对于集合的理解和掌握.2.(1) 11,42A ⎧⎫=-⎨⎬⎩⎭(2) {0,1}B = 解析:(1)由题,将12x =代入方程中,进而得到8a =-,再解得方程,并用列举法表示解的集合即可;(2)当0a =时,解得12x =-,即为一个解,当0a ≠时,令0∆=,求解即可详解:(1)∵12A ∈, ∴12是方程2210ax x ++=的根, ∴21121022a ⎛⎫⨯+⨯+= ⎪⎝⎭,解得8a =-, ∴方程为28210x x -++=, ∴112x =,214x =-,此时11,42A ⎧⎫=-⎨⎬⎩⎭(2)若0a =,则方程为210x +=,解得12x =-,此时A 中仅有一个元素,符合题意;若0a ≠,A 中仅有一个元素,那440a ∆=-=,即1a =,方程有两个相等的实根,即121x x ==- ∴所求集合{0,1}B =点睛:本题考查列举法表示集合, 考查由元素的个数求参数,考查分类讨论的思想,考查解方程,属于中档题.3.(1){4,-2};(2){2,4,6,8,10};(3){1,2,3,4};(4){1,5,7,8};(5){(1,1),(1,2),(2,1),(2,2)}解析:根据题意,列举出集合中所有的元素,即可求得结果.详解:(1)2280x x--=,解得4x=或2-,故x|x2-2x-8=0}={4,-2};(2)x|x为不大于10的正偶数}={2,4,6,8,10};(3)a|1≤a<5,a∈N},故1,2,3,4a=,则a|1≤a<5,a∈N}={1,2,3,4};(4)169A x N Nx⎧⎫=∈∈⎨⎬-⎩⎭∣={1,5,7,8};(5)(x,y)|x∈1,2},y∈1,2}}={(1,1),(1,2),(2,1),(2,2)}点睛:本题考查用列举法表示集合,属简单题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(49)
1.1 集合的概念一、单选题1.集合24{|}M x x a b a Z b Z ==+∈∈,,,{}84,,N y y c d c Z d Z ==+∈∈,则( ) A .M NB .M N ⋂=∅C .M N ⊆D .N M ⊆答案:D解析:分别化简两集合得知集合M 为偶数集,集合N 为4的整数倍的数组成的集合,故N M ⊆.详解:()22x a b =+,当a Z b Z ∈∈,时,2+a b 可以取到所有整数,所以集合M 由所有偶数组成;同理由()42y c d =+知集合N 由所有4的整数倍的数组成. 因此N M ⊆. 故选:D.2.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-= B .{(-1,3)} C .{3,-1} D .{-1,3}答案:B解析:由题意知,集合A 代表点集,解方程组即可求解. 详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)}, 故选:B.3.下列关系中正确的是( )A .0∈∅B QC .0N ∈D .{}1(0,1)∈答案:C解析:根据空集是不含有任何元素的集合,得到A B 不正确; 由元素与集合的关系,得到D 不正确,即可求解. 详解:由题意,A 中,空集是不含有任何元素的集合,所以不正确;Q 不正确; 根据元素与集合的关系,{}1(0,1)∈不正确, 又由0是自然数,所以0N ∈,故选C. 点睛:本题主要考查了元素与集合的关系,着重考查了分析问题和解答问题的能力,属于基础题.4.已知方程()()()2221236660x x b x x b x x b -+-+-+=的所有解都为自然数,其组成的解集为{}12345,,,,A x x x x x =,则123b b b ++的值不可能为( )A .13B .14C .17D .22答案:A解析:当123,,b b b 分别取0,5,9时,{}0,6,1,5,3A =,12314b b b ++=,排除B , 当123,,b b b 分别取0,8,9时,{}0,6,2,4,3A =,12317b b b ++=,排除C , 当123,,b b b 分别取5,8,9时,{}1,5,2,4,3A =,12322b b b ++=,排除D ,故选A. 5.如果集合{|42,}S x x n n ==+∈N ,{|42,}T x x k k ==-∈Z ,则( ) A .S T B .T SC .S T =D .S T ⋂=∅答案:A解析:利用列举法,表示出两个集合的若干个元素,根据元素特征即可判断两个集合的关系. 详解:因为{|42,}S x x n n ==+∈N 则{2,6,10,14}S =⋅⋅⋅{|42,}T x x k k ==-∈Z则{6,2,2,6,10,14}T =⋅⋅⋅--⋅⋅⋅ 根据集合与集合的关系可知S T 故选:A 点睛:本题考查了集合与集合关系的判断,数集表示的意义,属于基础题. 6.下列元素与集合的关系表示正确的是( ) ①1-∈N *Z ;③32∈Q;④π∈Q A .①② B .②③C .①③D .③④答案:B解析:根据相关概念直接判断元素与集合关系. 详解:①1-不是正整数,∴1-∈N *错误;Z 正确; ③32是有理数,∴32Q ∈正确; ④π是无理数,∴π∈Q 错误; ∴表示正确的为②③. 故选:B 点睛:本题考查元素与集合关系,考查基本分析判断能力,属基础题.7.若{}22111a a ∈++,,,则a =( )A .2B .1或-1C .1D .-1答案:D解析:讨论212a +=和12a +=两种情况,计算并验证得到答案. 详解:当212a +=时,1a =±,当1a =时,集合为{}1,2,2不满足互异性,舍去,当1a =-时,集合为{}1,2,0,满足;当12a +=时,1a =,不满足互异性,舍去. 故选:D . 点睛:本题考查了根据元素和集合的关系求参数,意在考查学生的计算能力. 8.点的集合(){},0M x y xy =≥是指 A .第一象限内的点集 B .第三象限内的点集.C .第一、第三象限内的点集D .不在第二、第四象限内的点集.答案:D解析:0xy ≥指x 和y 同号或至少一个为零,结合象限的概念可得结果. 详解:0xy ≥指x 和y 同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.即不为第二、第四象限内的点,故选D . 点睛:本题主要考查对集合的概念和表示的理解,属于基础知识的考查.9.设P 是一数集,且至少含有两个数,若对任意,a b P ∈,都有a b +、-a b 、ab 、a P b∈(除数0b ≠),则称P 是一个数域,例如有理数集Q 是数域,数集{,}F a a b Q =+∈也是数域,则下列命题:① 整数集是数域;② 若有理数集Q M ⊆,则数集M 必为数域;③ 数域必为无限集;④ 存在无穷多个数域;其中正确的命题的序号( ) A .①②④ B .②③④ C .③④ D .②④答案:C解析:根据题中定义,结合特殊值法逐一判断即可. 详解:①例如a=1,b=2,除法为12Z ∉不满足条件,故①不正确;②若MM ,则集合M 就不是数域,②不正确;③因为数域中的元素可以任意取两个,进行连续的四则运算,可产生无数个元素,所以数域必为无限集,③正确;④因为任意两个数,即可产生一个数域,故数域有无穷多个,④正确; 故选择:C . 二、填空题1.有下列各组对象: (1)某校的年轻教师;(2)被5除余数是2的所有整数; (3)著名数学家; (4)直线l 上的所有点;(5)大于1且小于2的所有有理数.其中能构成集合的对象有_________(填写序号)答案:(2)(4)(5).解析:可看出(1)所说的“某校”和(3)所说的“著名”都不能确定,从而都不能构成集合的对象.而(2)(4)(5)所说的对象是可确定的,能构成集合的对象. 详解:(1)“某校”不确定,不能构成集合的对象;(2)”被5除余数是2的所有整数”是确定的,可以构成集合的对象; (3)“著名”是不确定的,不能构成集合的对象; (4)“直线l 上的所有点”是确定的,能构成集合的对象;(5)“大于1且小于2的所有有理数”是确定的,能构成集合的对象. 故答案为:(2)(4)(5). 点睛:本题考查元素是否可以构成集合的判断,注意确定性的应用,属简单题. 2.设三元集合,,1b a a ⎧⎫⎨⎬⎩⎭={}2,,0a a b +,则20142015a b +=___________ . 答案:解析:试题分析:集合,且,,则必有,即,此时两集合为,集合,,,当时,集合为,集合,不满足集合元素的互异性.当时, ,集合,满足条件,故201420151,0,1a b a b =-=∴+=,因此,本题正确答案是:.考点:集合相等的定义.3.已知非空集合{}|1A x ax ==,则a 的取值范围是____________. 答案:0a ≠ 详解: 略4.设集合A 、B 都是U =1,2,3,4}的子集,若(∁U A)∩(∁U B)=2},(∁U A)∩B=1},且A 中含有两个元素,则A =________.答案:{}3,4解析:根据集合的定义与性质,结合题意,写出集合A 的元素即可. 详解:解:集合A ,B 都是全集{}1,2,3,4U =的子集,(){}1UA B =,1A ∴∉,又()(){}2U U A B =,2A ∴∉,A 中元素有2个.{}3,4A ∴=故答案为:{}3,4 点睛:本题考查了集合的定义与运算问题,是中档题.5.给出下列说法:①平面直角坐标系中,第一象限内的点组成的集合为(){},0,0x y x y >>;20y +=的解集为{}2,2-;③集合{}21,y y x x =-∈R 与{}1,y y x x =-∈R 是不相等的.其中正确的是______(填序号).答案:①③解析:根据题意,结合集合的表示方法,逐项判定,即可求解,得到答案. 详解:对于①中,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(),x y ,所以①正确;20y +=的解为22x y =⎧⎨=-⎩,解集为(){}2,2-或()2,2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=-⎩⎪⎪⎩⎭,所以②不正确;对于③中,集合{}{}21,1y y x x y y =-∈=≥-R ,集合{}1,y y x x =-∈=R R ,这两个集合不相等,所以③正确. 点睛:本题主要考查了集合的表示方法及其应用,其中解答中熟记集合的表示方法——列举法、描述法,以及集合表示方法的改写是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 三、解答题1.用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.答案:答案见解析.解析:由于(1)(3)表示的集合都是无限集,所以利用描述法表示,(2)表示的是有限的5个元素,所以利用列举法表示 详解:解:(1){(,)|0,0}x y x y <<,它是无限集;(2){}2,0,2,4,6,8-,共有6个元素,是有限集; (3){|107,}x x k k Z =+∈,它是无限集. 点睛:此题考查了集合的表示方法,属于基础题.2.已知集合A 有三个元素:3a -,21a -,21a +,集合B 也有三个元素:0,1,x . (1)若3A -∈,求a 的值; (2)若2x B ∈,求实数x 的值;答案:(1)0a =或1-;(2)1x =-.解析:(1)根据元素的确定性和互异性可得33a -=-或213a -=-,即可求解; (2)根据元素的确定性列方程,再检验互异性即可求解. 详解:(1)由3A -∈且211a +≥, 所以213a +≠-当33a -=-时,可得0a =,此时{}3,1,1A =--符合题意, 当213a -=-时,可得1a =-,此时{}4,3,2A =--符合题意, 所以0a =或1-,(2)若2x B ∈,则20x =或21x =或2x x =,解得:0x =或1x =或1x =-, 由元素互异性可得:0x ≠且1x ≠,所以1x =- 3.用描述法表示下列集合:(1)比1大又比10小的实数组成的集合; (2)不等式342x x +≥的所有解; (3)到两坐标轴距离相等的点的集合.答案:(1){}|110x R x ∈<<;(2){}|4x x ≥-;(3)(){},|x y y x =±. 解析:用描述方法逐项表示可得答案. 详解:(1)根据描述用不等式表示出即可,可以表示成{}|110x R x ∈<<. (2)先表示成{}|342x x x +≥,解不等式即{}|4x x ≥-.(3)到两坐标轴距离相等的点在坐标轴的角平分线上,即y x =,或y x =-,可以表示成(){},|x y y x =±.。
人教a版·数学·高一必修1课时作业1集合的含义
所以1-121+12=13∈A .故当13∈A 时,集合中的其他元素为2,-3,-12.|能力提升|(20分钟,40分)11.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz 的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M【解析】 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.【答案】 D12.集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t ∈A ,则t 的值为________.【解析】 因为y =-x 2+1≤1,且y ∈N ,所以y 的值为0,1,即集合A 中的元素为0,1,又t ∈A ,所以t =0或1.【答案】 0或113.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值.【解析】 因为a ∈A 且3a ∈A ,所以{ a <6,3a <6,解得a <2.又a ∈N ,所以a =0或1.14.定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且a b ∈A (b ≠0)”的集合A 为“闭集”.试问数集N ,Z ,Q ,R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【解析】 数集N ,Z 不是“闭集”,数集Q ,R 是“闭集”.例如,3∈N,2∈N ,而32=1.5∉N ;3∈Z ,-2∈Z ,而3-2=-1.5∉Z ,故N ,Z 不是闭集. 由于两个有理数a 与b 的和,差,积,商,即a ±b ,ab ,a b (b ≠0)仍是有理数,故Q 是闭集.同理R 也是闭集.。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)
1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。
人教A版高中数学必修一1.1 集合的概念专练(含解析)(158)
1.1 集合的概念一、单选题1.下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数 答案:B解析:根据集合定义与性质一一判断即可. 详解:A 中对象不确定,故错;B 中对象可以组成集合;C 中视力比较好的对象不确定,故错;D 中相差很小的对象不确定,故错. 故选:B2.若用列举法表示集合27(,)2y x A x y x y ⎧⎫-=⎧⎪⎪=⎨⎨⎬+=⎩⎪⎪⎩⎭,则下列表示正确的是( ) A .{1,3}x y =-= B .{(-1,3)} C .{3,-1} D .{-1,3}答案:B解析:由题意知,集合A 代表点集,解方程组即可求解. 详解:由272y x x y -=⎧⎨+=⎩可得13x y =-⎧⎨=⎩, 用列举法表示为:{(-1,3)}, 故选:B.3.已知集合{1}A x Nx k =∈<<∣,集合A 中至少有3个元素,则( ) A .3k > B .3k ≥ C .4k > D .4k ≥答案:C解析:由集合A 中至少有3个元素,即可得到k 的取值范围. 详解:解:{1}A x Nx k =∈<<∣且集合A 中至少有3个元素,4k ∴>.故选:C.4.设数集31{|},{|}43M x m x m N x n x n =≤≤+=-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{|}x a x b ≤≤的“长度”,那么集合M∩N 的“长度”的最小值是 A .13B .23C .112D .512答案:C 详解:试题分析:根据题意,M 的长度为34,N 的长度为13,当集合M∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M∩N 的长度的最小值是31114312+-=,故选C . 考点:新定义;集合运算5.已知集合{|21,}A x x m m ==-∈Z ,{|2,}B x x n n ==∈Z ,且123,,x x A x B ∈∈,则下列判断不正确的是( ) A .12x x A ⋅∈ B .23x x B ⋅∈ C .12x x B +∈ D .123x x x A ++∈答案:D解析:集合A 表示奇数集,集合B 表示偶数集,所以12,x x 是奇数,3x 是偶数,奇数加奇数为偶数可判断D 选项错误. 详解:集合A 表示奇数集,集合B 表示偶数集, ∴12,x x 是奇数,3x 是偶数,∴12x x ⋅为奇数,23x x ⋅为偶数,12x x +为偶数,123x x x ++为偶数. 故选:D 点睛:本题考查元素与集合的关系,解题的关键是充分运用奇数、偶数相加或相乘的性质,属于基础题.6.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为A .12- B .0或12C .1-D .1-或12-答案:D解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解. 详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解,当10,1a a +==-时,方程为220,1x x -+==,满足题意; 当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-, 所以1a =-或12a =-. 故选:D. 点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题. 7.下列关系正确的是( ) A .3∈y|y=x 2+π,x∈R} B .(a ,b)}=(b ,a)} C .(x ,y)|x 2-y 2=1}(x ,y)|(x 2-y 2)2=1} D .x∈R|x 2-2=0}=答案:C解析:试题分析:2{y |y x x R}{y |y }ππ∈≥=+,=, ∵3<π,∴23{y |y x π∉=+}. (a ,b)}与(b ,a)}中元素不相同, ∴(a,b)}与(b ,a)}不一定相等.(x ,y)|(x 2-y 2)2=1}=(x ,y)|x 2-y 2=1或x 2-y 2=-1}, ∴C 是正确的.x∈R|x 2-2=0}=2,-2}≠.考点:元素与集合、集合与集合的关系 点评:此类问题要先确定集合,再进行判断. 8.集合3,x ,x 2–2x}中,x 应满足的条件是( ) A .x≠–1B .x≠0C .x≠–1且x≠0且x≠3D .x≠–1或x≠0或x≠3答案:C解析:利用集合元素的互异性求解. 详解:集合3,x ,x 2–2x}中,x 2–2x≠3,且x 2–2x≠x,且x≠3, 解得x≠3且x≠–1且x≠0, 故选:C .9.下列关系中*102Q R N Z π∈∈∈①,③④,正确的个数是( ) A .1 B .2 C .3 D .4答案:B解析:根据元素与集合的关系进行判断. 详解:解:对于①:12是一个有理数,Q 是有理数集,12Q ∴∈;故①正确.R 是实数集;R ;故②正确.对③:0是一个自然数,但不是正整数,*N 是正整数集,*0N ∴∉;故③错误. 对于④:π是实数但不是整数,Z 是整数集,Z π∴∉; 故④错误; 故正确的有2个 故选:B . 点睛:本题主要考查元素与集合的关系,属于基础题 10.下列四个集合中,不同于另外三个的是( ) A .{}2y y = B .{}2x = C .{}2D .{}2440x x x -+=答案:B解析:选项A ,C ,D 中元素都是实数2,而选项B 中元素为等式2x =,即可得到答案. 详解:对选项A ,{}{}22y y ==,元素为实数2; 对选项B ,{}2x =,元素为等式2x =; 对选项C ,{}2,元素为实数2;对选项D ,{}{}24402x x x -+==,元素为实数2.故选:B 点睛:本题主要考查集合的概念,属于简单题. 二、填空题1.已知集合A=1,2,3,4,5,6,7},则集合{|,,,}2x B x x a b a A b A N +==⨯∈∈∈中元素的个数为_____.答案:15解析:试题分析:B 表示任取的两个元素a ,b (a ,b 可以相同)之积为偶数的集合,又1×6=2×3,3×4=2×6,1×4=2×2,所以集合B 的元素的个数为11124333315C C C C ++-=.故答案是:15.考点: 元素与集合关系的判断.2.已知集合{}2|210,A x ax x x R =++=∈的子集只有两个,则a 的值为 .答案:0或1 详解:因为集合{}2|210,A x ax x x R =++=∈的子集只有两个,所以中只有一个元素,0a =合题意, 4401a a ∆=-=⇒=,所以.3.2{|420}A x ax x =-+=至多有一个元素,则a 的取值范围是___________.答案:{|2a a 或0}a =解析:由集合A 为方程的解集,根据集合A 中至多有一个元素,转化为方程至多有一个解求解. 详解:当0a =时,方程2420ax x -+=,即为12x =,1{}2A =,符合题意; 当0a ≠时,因为2420ax x -+=至多有一个解, 所以△1680a =-, 解得2a ,综上,a 的取值范围为:2a 或0a =. 故答案为:{|2a a 或0}a =. 点睛:本题主要考查集合元素的个数以及方程的解,还考查了分类讨论思想,属于基础题. 4.用描述法表示被4除余3的正整数集合:______.答案:x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式. 详解:设该数为x ,则该数x 满足x =4n+3,n∈N; ∴所求的正整数集合为x|x =4n+3,n∈N}. 故答案为:x|x =4n+3,n∈N}. 点睛:本题主要考查集合的表示方法,属于基础题.5.数集{}22,a a a -中a 的取值范围是___________()a ∈R .答案:(,0)(0,3)(3,)-∞⋃⋃+∞解析:由集合的互异性可得22a a a ≠-,计算可得a 不能取得的取值,再表示出a 的取值范围即可. 详解:由集合的互异性可知,22(3)0a a a a a ≠-⇒-≠,所以0a ≠且3a ≠, 故(,0)(0,3)(3,)a ∈-∞⋃⋃+∞. 故答案为:(,0)(0,3)(3,)-∞⋃⋃+∞. 点睛:本题主要考查集合中元素的互异性,最后的答案可以写成集合或者区间的形式. 三、解答题1.已知集合A =x∈R|ax 2+2x +1=0},其中a∈R.若1是集合A 中的一个元素,请用列举法表示集合A.答案:1,13A ⎧⎫=-⎨⎬⎩⎭解析:把1代入方程求得a ,然后再解方程得解集. 详解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a×12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =-13,1}.故答案为:1,13⎧⎫-⎨⎬⎩⎭.点睛:本题考查集合的概念,属于简单题. 2.已知3,⎛⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==. 点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解. 3.已知集合{|37},{|210}A x x B x x =≤<=<<,求()()R R ()(),,R R A B A B A B A B ⋃⋂⋂⋃,.答案:(){|2R A B x x ⋃=≤或10},(){|3R x A B x x ⋂=<或7}x ,(){|23R A B x x ⋂=<<或710}x <,(){|2R A B x x ⋃=或37x <或10}x解析:直接根据交集,并集和补集的运算法则得到答案. 详解:{|210},{|37}A B x x A B x x ⋃=<<⋂=≤<,{|3RA x x =<或 7}x ≥,{|2RB x x =≤或10}x ≥,(){|2R A B x x ∴⋃=≤或10},(){|3R x A B x x ≥⋂=<或7}x ≥,(){|23R A B x x ⋂=<<或710}x ≤<,(){|2R A B x x ⋃=≤或37x ≤<或10}x ≥.点睛:本题考查了交并补的混合运算,意在考查学生的计算能力. 4.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(A,B 是两个不同定点); (2){|3}P PO cm =(O 是定点)答案:(1)线段AB 的垂直平分线;(2)以点O 为圆心,3cm 长为半径的圆. 解析:(1)PA PB =指平面内到,A B 距离相等的点的集合; (2)3PO cm =指平面内到定点O 的距离为3cm 的点的集合. 详解:(1) PA PB =指平面内到,A B 距离相等的点的集合,这样的点在线段AB 的垂直平分线上,即集合的点组成的图形是线段AB 的垂直平分线;(2) 3PO cm =指平面内到定点O 的距离为3cm 的点的集合,这样的点在以O 为圆心,以3cm 为半径的圆上,即集合的点组成的图形是以点O 为圆心,3cm 长为半径的圆. 点睛:本题考查描述法表示集合,是基础题. 5.用区间表示下列的集合{|12}x x -<≤ 1{|}6x x -≤<- {|7}x x < {}|3x x ≥ {} 5|2x x ≤≤答案:(12]-,;[61)-,;(7)-∞,;[3)+∞,;[2]5, 解析:由集合的意义及区间的定义直接写出每个集合的区间表达形式. 详解:{|12}x x -<≤的区间表达为(12]-,; 1{|}6x x -≤<-的区间表达为[61)-,; {|7}x x <的区间表达为(7)-∞,; {}|3x x ≥的区间表达为[3)+∞, ; {} 5|2x x ≤≤的区间表达为[2]5,. 点睛:本题考查集合与区间的转换,属于基础题.。
高中数学必修一人教A版1.1 集合的概念解答题练习(含解析)
1.1 集合的概念1.用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.2.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.3.用列举法表示下列集合(1)由大于3且小于10的所有整数组成的集合(2)方程290x的所有实数解组成的集合4.用列举法表示下列集合:(1)满足-2≤x≤2且x∈Z的元素组成的集合A;(2)方程(x-2)2(x-3)=0的解组成的集合M;(3)方程组281x yx y+=⎧⎨-=⎩的解组成的集合B;(4)15的正约数组成的集合N.5.已知集合M中含有三个元素2,a,b,集合N中含有三个元素2a,2,b2,且两集合相等,求a,b的值.6.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.7.已知集合4,3A xZ x N x ⎧⎫=∈∈⎨⎬-⎩⎭,试用列举法表示集合A .8.已知集合A 满足条件:①1A ∉;②若a A ∈,则11A a ∈-. (1)若2A ∈,求集合A ;(2)若a A ∈,求证:11A a -∈;(3)在集合A 中的元素能否只有一个实数?若有,求出此集合;否则,请说明理由;9.用区间表示下列的集合 {|12}x x -<≤ 1{|}6x x -≤<- {|7}x x < {}|3x x ≥ {} 5|2x x ≤≤10.由2a ,2a -,4所组成的集合记为A.(1)是否存在实数a ,使得A 中只含有一个元素?若存在,求出a 的值,若不存在,说明理由;(2)若A 中只含有两个元素,求a 的值.11.已知集合A 中含有两个元素a-3和2a-1.(1)若-3是集合A 中的元素,试求实数a 的值;(2)-5能否为集合A 中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.12.已知A=x|x 2+px+q=x},B=x|(x-1)2+p(x-1)+q=x+1},当A=2}时,求集合B .13.用列举法表示下列集合(1)x∈N*|x 是15的约数}(2)x|x 2﹣2x ﹣8=0}(3)x|x 为不大于10的正偶数}(4)a|1≤a<5,a∈N}(5)A =x∈N|169-x∈N} (6)(x ,y )|x∈1,2},y∈1,2}}.14.已知2{1,0,}x x ∈,求实数x 的值.15.已知3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.16.集合论是德国数学家康托尔于19世纪末创立的,当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念,关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”,请你查阅相关资料,用简短的报告阐述你对这些评价的认识.17.已知集合M 满足:1,2}⫋M ⊆1,2,3,4,5},写出集合M 所有的可能情况.18.已知集合A =x∈R|ax 2+2x +1=0},其中a∈R.若1是集合A 中的一个元素,请用列举法表示集合A.19.用列举法表示下列集合:(1){}2|9A x x ==;(2){}|12B x N x =∈≤≤ ;(3){}2|320C x x x =-+=.20.已知集合{}22,A y y x x x ==-∈R ,{}226,B y y x x x ==-++∈R .(1)求A B ;(2)若集合A ,B 中的元素都为整数,求A B .(3)若集合A 变为{}22,A x y x x x ==-∈R ,其他条件不变,求A B ;(4)若集合A ,B 分别变为(){}2,2,A x y y x x x ==-∈R ,(){}2,26,B x y y x x x ==-++∈R ,求A B .参考答案1.①*{|2,}x x n n N =∈; ②2,{|3}x x n n N =+∈;③{(,)|0}x y xy =. 解析:描述法表示集合即为{}()x p x ,()p x 为元素的性质,根据这个概念写出集合即可. 详解:①偶数可用2,x n n Z =∈表示,当x 为正偶数时,*n N ∈,所以正偶数集可表示为*{|2,}x x n n N =∈.②设被3除余2的数为x ,则32,x n n Z =+∈,但元素为正整数,故32,x n n N =+∈,所以被3除余2的正整数集合可表示为2,{|3}x x n n N =+∈.③坐标轴上的点(,)x y 的特点是横、纵坐标中至少有一个为0,即0xy =,故坐标轴上的点的集合可表示为{(,)|0}x y xy =.点睛:本题考查描述法表示集合,数集与点集,属于基础题.2.存在,a =-3.解析:由题意知9∈A,则2a -1=9或a 2=9,解出a ,利用题干条件和集合的互异性逐一判断a 的取值,可求出结果.详解:∵9∈A,∴2a-1=9或a 2=9,若2a -1=9,则a =5,此时A 中的元素为-4,9,25;B 中的元素为9,0,-4, 显然-4∈A 且-4∈B,与已知矛盾,故舍去.若a 2=9,则a =±3,当a =3时,A 中的元素为-4,5,9;B 中的元素为9,-2,-2, B 中有两个-2,与集合中元素的互异性矛盾,故舍去.当a =-3时,A 中的元素为-4,-7,9;B 中的元素为9,-8,4,符合题意. 综上所述,满足条件的a 存在,且a =-3.点睛:本题考查已知集合中的元素求参数,考查集合中元素的互异性,同时也考查了分类讨论的思想,属于基础题.3.(1){}4,5,6,7,8,9;(2){}3,3-.解析:(1)用列举法,直接写出结果;(2)先解方程,即可得出对应的集合.详解:(1)由大于3且小于10的所有整数组成的集合为{}4,5,6,7,8,9;(2)解方程290x 得3x =±, 所以方程290x 的所有实数解组成的集合为{}3,3-.点睛:本题主要考查列举法表示集合,属于基础题型.4.(1) -2,-1,0,1,2}(2) M =2,3}(3) B =(x ,y)|(3,2)} (4) N =1,3,5,15}解析:(1)根据题意,得到2,1,0,1,2x =--,即可表示集合A ;(2)求解出方程的根,即可表示集合M ;(3)求解方程组的解(3,2),即可表示集合B ;(4)找到15的正约数,即可表示集合N .详解:(1)22,x x ≤≤∈Z -,2,1,0,1,2x ∴=--, {}2,1,0,1,2A =--;(2)解方程()()2230x x --=2∴和3是方程的根, {}2,3M ∴=;(3)解方程组281x y x y +=⎧⎨-=⎩得32x y =⎧⎨=⎩()(){},3,2B x y ∴=;(4)15的正约数有1,3,5,15四个数字,{}1,3,5,15N ∴=.点睛:本题考查集合的列举法,区分点集和数集,属于简单题.5.a =0,b =1或a =14 ,b =12详解:试题分析:根据集合相等的条件:元素完全相同,建立方程即可得到a ,b 的值,要注意检验是否符合集合元素的互异性.试题解析:由题意,得或 解得或或经检验,a =0,b =0不合题意;a =0,b =1或a =,b =合题意.所以,a =0,b =1或a =,b =.6.1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可.详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.7.{}1,2,4,5,7解析:根据Z 和N 的含义,可采用列举法,列举出所有方程求得结果.详解: 43Z x ∈-且x ∈N ∴32x -=-或31x -=-或31x -=或32x -=或34x -= x ∴=1或2或4或5或7 {}1,2,4,5,7A ∴=本题正确结果:{}1,2,4,5,7点睛:本题考查集合元素的求解,关键是能够熟练掌握常用数集的表示法.8.(1)11,,22⎧⎫-⎨⎬⎩⎭;(2)略;(3)否,理由见解析 解析:(1)利用a A ∈则11A a∈-,依次代入2a =和1a =-即可求得全部元素,从而得到集合A ;(2)由a A ∈得11A a ∈-,进而得到1111A a∈--,整理可得结果;(3)假设集合A 中只有一个元素,则11a a=-,方程无解,可知假设错误,得到结论. 详解:(1)2A ∈ 1112A ∴=-∈- 11112A ∴=∈+ 又12112=- 11,,22A ⎧⎫∴=-⎨⎬⎩⎭ (2)由a A ∈得:11A a ∈-,则1111A a∈-- 又1111111111a a a a a a a a--====------ 11A a ∴-∈ (3)假设集合A 中只有一个元素 a A ∈,则11A a ∈- 11a a ∴=-,方程无解 ∴假设错误,即集合A 中的元素不能只有一个实数点睛:本题考查集合与元素关系的应用,对于元素的求解,可采用循环代入的方式求得全部元素.9.(12]-,;[61)-,;(7)-∞,;[3)+∞,;[2]5, 解析:由集合的意义及区间的定义直接写出每个集合的区间表达形式.详解:{|12}x x -<≤的区间表达为(12]-,; 1{|}6x x -≤<-的区间表达为[61)-,; {|7}x x <的区间表达为(7)-∞,; {}|3x x ≥的区间表达为[3)+∞, ; {} 5|2x x ≤≤的区间表达为[2]5,. 点睛:本题考查集合与区间的转换,属于基础题.10.(1)存在,2a =-(2)2a =或1a =解析:(1)由题意可利用224a a =-=即可求得满足条件的实数a ;(2)由题意可得224a a =-≠,或242a a =≠-,或224a a -=≠,分别解得即可得出答案. 详解:(1)存在,理由如下:由题意知若A 中只含有一个元素,则这三个数相等,即224a a =-=, 由24a -=解得2a =-.此时24a =,所以符合条件.故当2a =-时,A 中只有一个元素.(2)由题意可知,这三个数中必有两个数相等即有224a a =-≠,或242a a =≠-,或224a a -=≠若224a a =-≠,解得1a =;若242a a =≠-,解得2a =;若224a a -=≠,无解;综上可得,当2a =或1a =时,集合A 中只含有两个元素.点睛:本题考查了集合元素性质的应用,属于一般难度的题.11.(1)实数a 的值为0或-1;(2)-5不能为集合A 中的元素;答案见解析.解析:(1)由-3是集合A 中的元素,可得所以-3=a-3或-3=2a-1,即可求得a 的值,并检验是否满足集合的互异性,即可得答案(2)假设-5是集合A 中的元素,可得a-3=-5,或2a-1=-5,解出a 的值,并检验是否满足集合的互异性,即可得答案.详解:(1)因为-3是集合A 中的元素,所以-3=a-3或-3=2a-1.解得0a =或1a =-,当a=0时,此时集合A 含有两个元素-3,-1,符合要求;当a=-1时,此时集合A 中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a 的值为0或-1.(2)若-5为集合A 中的元素,则a-3=-5,或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性; 当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性.综上,-5不能为集合A 中的元素.点睛:本题考查集合确定性、互异性的应用,考查分析理解的能力,属基础题.12.解析:先由2x =是方程2x px q x ++=的解可得34p q =-⎧⎨=⎩,故2{|(1)3(1)41}B x x x x =---+=+,从而解方程即可.详解:当{2}A =时,方程2x px q x ++=有两个相等的实根为2,所以2422(1)40p q p q ++=⎧⎨∆=--=⎩,解得34pq=-⎧⎨=⎩,所以2{|(1)3(1)41}B x x x x=---+=+,由2(1)3(1)41x x x---+=+,即2670x x-+=,得3x=所以{3B=.故答案为:{3.点睛:本题考查列举法表示集合,考查解方程,考查运算能力.属于较易题.13.解析:(1)1,3,5,15};(2)﹣2,4};(3)2,4,6,8,10};(4)1,2,3,4};(5)1,5,7,8};(6)(1,1),(1,2),(2,1),(2,2)}.(1)根据x是15的约数列举;(2)根据x2﹣2x﹣8=0的根列举;(3)根据x为不大于10的正偶数列举;(4)根据1≤a<5且a∈N列举;(5)根据x∈N且169-x∈N列举;(6)根据|x∈1,2},y∈1,2}列举;详解:(1)x∈N*|x是15的约数},列举法表示为1,3,5,15}(2)x|x2﹣2x﹣8=0},列举法表示为﹣2,4}(3)x|x为不大于10的正偶数},列举法表示为2,4,6,8,10} (4)a|1≤a<5,a∈N},列举法表示为1,2,3,4}(5)A=x∈N|169-x∈N},列举法表示为1,5,7,8}(6)(x,y)|x∈1,2},y∈1,2}}.列举法表示为(1,1),(1,2),(2,1),(2,2)}点睛:本题主要考查集合的表示方法,属于基础题.14.1-解析:由元素与集合的关系,分类讨论21x=、20=x、2x x=三种情况,得出x的值,再由集合中元素的性质去验证,进行取舍,得出结果.详解:因为2{1,0,}x x ∈所以21x =或20=x 或2x x =解得1x =±或0x =由集合元素的互异性可知0x ≠且1x ≠所以,1x =-点睛:本题考查了元素与集合之间的关系,集合的性质等基本知识,考查了理解辨析能力和逻辑推理能力,属于一般题目.15.1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.16.见解析解析:集合论是现代数学的基础,已渗透到数学的所有领域.详解:集合论,是数学的一个基本的分支学科,研究对象是一般集合.集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数).从这个意义上说,集合论可以说是整个现代数学的基础.点睛:本题考查了对于集合论的一些认识,意在考查学生的理解应用能力.17.1,2,3},1,2,4},1,2,5},1,2,3,4},1,2,3,5},1,2,4,5},1,2,3,4,5}解析:根据子集与真子集的定义,即可求解.详解:由题意可以确定集合M 必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有3个元素:1,2,3},1,2,4},1,2,5};含有4个元素:1,2,3,4},1,2,3,5},1,2,4,5};含有5个元素:1,2,3,4,5}.故满足条件的集合M 为1,2,3},1,2,4},1,2,5},1,2,3,4},1,2,3,5},1,2,4,5},1,2,3,4,5}.点睛:本题考查集合间的关系,属于基础题.18.1,13A ⎧⎫=-⎨⎬⎩⎭解析:把1代入方程求得a ,然后再解方程得解集.详解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a×12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =-13,1}. 故答案为:1,13⎧⎫-⎨⎬⎩⎭. 点睛:本题考查集合的概念,属于简单题.19.(1){}3,3- ;(2) {}1,2;(3){}1,2.解析:(1)解方程29x =即可;(2)根据x ∈N 求解;.(3)接方程2320x x -+=即可;详解:(1)由29x =得3x =±,,因此{}{}2|93,3A x x ===-.(2)由x ∈N ,且12x ≤≤,,,得1,2x =,因此{}{}|121,2B x N x =∈≤≤=.(3)由2320x x -+=得1,2x =,.因此{}{}2|3201,2C x x x =-+==.点睛:本题主要考查集合的表示方法以及一元二次方程的解法,还考查了运算求解的能力,属于基础题.20.(1){}17A B y y ⋂=-≤≤(2){}1,0,1,2,3,4,5,6,7A B =-(3){}7A B y y ⋂=≤(4)()(){}3,3,1,3A B =-解析:(1)将二次函数配方,得到其二次函数的值域,从而求得A B ;(2)由于集合A ,B 中的元素都为整数,所以题意就是求(1)中所得的A B 中的整数元素,可得解;(3)集合A 表示的是二次函数22,y x x x =-∈R 的定义域,所以得A =R ,再求A B ;(4)集合A 、B 表示的是二次函数图象上的点,求A B 实际上是求这两个二次函数的交点,联立其方程可得解.详解:(1)∵()222111y x x x =-=--≥-,()2226177y x x x =-++=--+≤, ∴{}1A y y =≥-,{}7B y y =≤,∴{}17A B y y ⋂=-≤≤.(2)由已知,得{}1A y y =∈≥-Z ,{}7B y y =∈≤Z , 所以{}17A B y y ⋂=∈-≤≤Z∴{}1,0,1,2,3,4,5,6,7A B =-.(3)由已知,得A =R ,{}7B y y =≤,∴{}7A B y y ⋂=≤.(4)由22226y x x y x x ⎧=-⎨=-++⎩,得2230x x --=,解得3x =或1x =-.∴33x y =⎧⎨=⎩,或13x y =-⎧⎨=⎩, ∴()(){}3,3,1,3A B =-.故得解.点睛:本题考查集合的交集运算,求解的关键是理解集合中的元素具体含义,特别是分清集合表示的是点集还是数集,属于基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(60)
1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
人教A版数学必修一作业1-集合的概念与表示(答案).docx
作业1 集合的概念与表示(答案)班级___________ 姓名__________主要学点:集合的含义,元素与集合的关系,列举法和描述法,常用数集的记法,集合相等1.下列说法不正确的是 ( )A . *0N ∉B .Z ∈-5 C. Q ∈31 D. R ∉-3 答案:D 解析:3-是实数,其它都正确。
2. 以下对象的全体不能构成集合的个数是 ( )(1)我班的高个子同学 (2)2009年中国GDP 最高的城市(3)我市中考分数580以上的同学 (4)中国古代四大发明(5)我国的大河流 (6)大于3的偶数A .2 B.3 C.4 D.6答案:A 解析:(1) (5)的元素不确定,错误。
3.已知某个四边形的边长可构成集合M={a ,b ,c ,d},那么此四边形可能是 ( )A .矩形B .菱形 C.等腰梯形 D.直角梯形答案:D 解析:根据集合的元素互异性。
4.方程组⎩⎨⎧=-+=+-032042y x y x 的解集是 ( )A . }2,1{- B. )2,1(- C. )}2,1{(- D . }2,1{-==y x答案:C 解析:解得2,1=-=y x ,用列举法表示为C 。
5.设2231+=x ,π23+=y ,集合{},M m m a a Q b Q ==+∈∈,那么,x y 与集合M 的关系是 ( )A .,x M y M ∈∈B .,x M y M ∈∉C .,x M y M ∉∈D .,x M y M ∉∉答案:B 解析:2232231-=+=x ,23π+=y ,对比系数可得。
6.集合{|2, P x x k k ==∈Z },若对任意的, a b P ∈都有*a b P ∈,则运算*不可能...是( )A .加法B .减法C .乘法D .除法 答案:D 解析:两个偶数的和、差、积仍为偶数,其商却不一定为偶数。
7.下列集合与集合},42|{2R x x x y y M ∈+-==相等的是 ( )A. },42|{2Z x x x y y P ∈+-==B. },42|),{(2R x x x y y x Q ∈+-==C. },42|{2R x x x y x S ∈+-==D. }1,12|{-≤+-==t t x x T 答案:D 解析:集合M 表示抛物线上所有点的纵坐标值的集合,与D 相同。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(29)
1.1 集合的概念1.集合{1,A =2,3,4,5},(){,|B x y x A =∈,y A ∈,}y A x∈,则集合B 所含元素个数为( ) A .3 B .6 C .8 D .10答案:D解析:由集合{1,A =2,3,4,5},(){,|B x y x A =∈,y A ∈,}y A x ∈,利用列举法能求出集合B 所含元素个数. 详解:集合{1,A =2,3,4,5},(){,|B x y x A =∈,y A ∈,}y A x∈,(){1,2B ∴=,()1,3,()1,4,()1,5,()2,4,()1,1,()2,2,()3,3,()4,4,()5,5},∴集合B 所含元素个数为10.故选D . 点睛:本题考查集合中元素个数的求法,考查集合性质等基础知识,考查运算求解能力,是基础题.2.已知集合(){}22,2,,A x y x y x Z y Z =+<∈∈,则A 中元素的个数为( )A .3B .4C .5D .6答案:C解析:集合A 的元素代表圆内部的点,逐一写出满足条件的点的坐标,即可得到结论 详解:(){}22,2,,A x y xy x Z y Z =+<∈∈22{(,)|2x y x y =+<,x ,}{y Z ∈=(1,0)-,(0,1)-,(0,0),(0,1),}(1,0), 共5个元素,是平面直角坐标系中5个点. 故选:C . 点睛:本题考查集合的表示以及点与圆的位置关系,解题时需注意集合A 的元素为两坐标均为整数的点,本题属于基础题.3.若集合A =}{1x ax ≥是包含-2的无限集,则a 的取值范围是( ) A .12a >- B .12a ≥-C .12a <-D .12a ≤-答案:D解析:将2-代入1ax ≥可解得. 详解:因为集合A=}{1x ax ≥是包含-2的无限集,所以2A -∈, 所以21a -≥,所以12a ≤-.此时集合{|2}A x x =≤-满足题意. 故选D . 点睛:本题考查了元素与集合的关系,属于基础题. 4.方程组3,26x y x y -=⎧⎨+=⎩的解集是( )A .{3,0}x y ==B .{3}C .{(3,0)}D .{(,)|(3,0)}x y答案:C解析:解方程组可求得,x y ,根据解为有序实数对可得到结果. 详解:由326x y x y -=⎧⎨+=⎩得:30x y =⎧⎨=⎩方程组的解为有序实数对 ∴方程组的解集为(){}3,0 故选:C 点睛:本题考查二元一次方程组的解的集合表示,关键是明确方程组的解为有序实数对.5.设59{137}U A B =,,,,,,为U 的子集,若{}{}3)7U A B C A B ==,(,()}()19{U U C A C B =,,则下列结论正确的是 A .5,5A B ∉∉ B .5,5A B ∉∈ C .5,5A B ∈∉ D .5,5A B ∈∈答案:C解析:根据{}()()()19U U U C A C B C A B ==,,得出{3,5,7}A B =,依次判断选项即可选出答案. 详解:因为{}()()()19U U U C A C B C A B ==,,所以{3,5,7}A B =.即:集合A 、B 中至少有一个集合含有5. A 选项:5,5A B ∉∉,错误.B 选项:5,5A B ∉∈,{}5)7UC A B =∈(,不符合题意.D 选项:5,5A B ∈∈,{}53A B ∈=,不符合题意. 故选:C 点睛:本题考查集合的交,并,补集的运算,认真审题是解决本题的关键,属于简单题. 6.集合{}3M x x k k Z ==∈,, {}31P x x k k Z ==+∈,,{}31Q x x k k Z ==-∈,,若 a M ∈,b P ∈,c Q ∈,则a b c +-∈A .M P ⋃B .PC .QD .M答案:C解析:设13a k =,231b k =+,331c k =-(123,,k k k Z ∈),计算a b c +-可得. 详解:由题意设13a k =,231b k =+,331c k =-(123,,k k k Z ∈),则123123331(31)3(1)1a b c k k k k k k +-=++--=+-+-,而1231k k k Z +-+∈, ∴a b c Q +-∈. 故选:C . 点睛:本题考查集合的概念,考查元素与集合的关系,题中在设,,a b c 时,不能设成3a k =,31b k =+,31c k =-(k Z ∈),这样设,,,c a b 是相邻的三个整数,但,,a b c 不一定相邻.7.下列表示正确的是 A .0N ∈ B .12N ∈C .R π∉D .0.333Q ∉答案:A解析:要判断表示是否正确,掌握N 、R 和Q 各数集的定义,并能够用正确的符号表示元素和集合的关系. 详解:对于A ,0是自然数,所以0N ∈,故A 正确;对于B ,12是分数,但不满足12N ∈,故B 不正确;对于C ,π是无理数,属于实数,即有R π∈,故C 不正确; 对于D ,0.333是有理数,即有0.333Q ∈,故D 不正确; 故选:A点睛:本题考查了判断元素和集合之间的关系是否正确,需要熟练掌握各数集的范围,而且能够用属于符号正确表示元素和集合之间的关系,本题较为简单.8.设集合0M =,1,{}0,1N =﹣,那么下列结论正确的是( ) A .M =∅ B .M N ∈C . M ND .N ⫋M答案:C解析:利用集合与集合的关系直接求解. 详解:∵集合0M =,1,{}0,1N =﹣, ∴M N . 故选:C 点睛:本题考查集合的关系的判断,考查子集定义等基础知识,考查运算求解能力,是基础题.9.方程组2219x y x y +=-=⎧⎨⎩的解集是( )A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-答案:D解析:解出方程组的解,然后用集合表示. 详解:因为()()229x y x y x y -==+-,将1x y +=代入得,得9x y -=.210x y x y x ++-==,解得5x =.代入得4y =-.所以方程组2219x y x y +=⎧⎨-=⎩的解集(){}5,4-. 故选:D. 点睛:本题考查集合的表示,考查用列举法表示方程组解的集合,注意解的表示形式,属于基础题. 10.已知A 中元素x 满足x =3k -1,k∈Z,则下列表示正确的是( ) A .-1∉A B .-11∈A C .3k 2-1∈A D .-34∉A答案:C解析:判断一个元素是不是集合A 的元素,只要看这个元素是否满足条件31,x k k Z =-∈;判断一个元素是集合A 的元素,只需令这个数等于31k -,解出k ,判断k 是否满足k Z ∈,据此可完成解答. 详解:当0k =时,311k -=-,故1A -∈,故选项A 错误; 若11A -∈,则1131k -=-,解得103k Z =-∉,故选项B 错误; 令23131k k -=-,得0k =或1k =,即231k A -∈,故选项C 正确; 当11k =-时,3134k -=-,故34A -∈,故选项D 错误; 故选C. 点睛:该题是一道关于元素与集合关系的题目,解题的关键是掌握集合的含义. 11.已知集合{0,2}A =,则下列关系表示错误的是( ). A .0A ∈ B .{2}A ∈C .A ∅⊆D .{0,2}A ⊆答案:B解析:由元素与集合、集合与集合的关系逐项判断即可得解. 详解:因为集合{0,2}A =,所以0A ∈,{2}A ⊆,A ∅⊆,{0,2}A ⊆, 故B 错误. 故选:B.12.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A C B = A .2} B .2,3}C .-1,2,3}D .1,2,3,4}答案:D解析:先求A C ,再求()A C B . 详解:因为{1,2}A C =, 所以(){1,2,3,4}A C B =. 故选D . 点睛:集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.13.已知集合{}21,1A a a =++,且2A ∈,则实数a 的取值是( )A .1或-1B .-1C .1D .-1或0答案:B解析:根据元素与集合的关系求解. 详解:∵2A ∈,∴12a +=或212a +=,若12a +=,则1a =,此时212a +=,不合题意,舍去, 若212a +=,1a =±,其中1a =不合题意. ∴1a =-. 故选:B. 点睛:本题考查元素与集合的关系,解题时要注意检验,是否符合集合的定义.符合集合元素的性质.14.已知集合A=1,2,3,4,5},B=(x ,y )|x∈A,y∈A,x <y ,x+y∈A},则集合B 中的元素个数为( ) A .2 B .3C .4D .5答案:C解析:理解集合B 中元素的特点,可以列举出它的所有元素. 详解:因为x∈A,y∈A,x <y ,x+y∈A,所以集合{(1,2),(1,3),(1,4),(2,3)}B =,共4个元素,故选C. 点睛:本题主要考查集合的表示方法,明确代表元素的含义是确定集合元素的首要条件. 15.已知集合A=0,1,2},B=z|z=x+y ,x∈A,y∈A},则B=( ) A .0,1,2,3,4} B .0,1,2} C .0,2,4}D .1,2}答案:A解析:因为0,1,2,1,2,3,2,3,4x y += ,所以B=0,1,2,3,4},选A.16.已知集合{}1,0,1A =-,则集合{|,}B x y x A y A =+∈∈中元素的个数是( ) A .1 B .3C .5D .9答案:C解析:由已知,x A y A ∈∈,可得x y +的值,进而得出集合B 中元素的个数.集合{}{|,}2,1,0,1,2B x y x A y A =+∈∈=-- 则集合B 中元素的个数是5个 故选:C17.若集合{}210x ax x -+=中只有一个元素,则实数a 的值为( )A .14B .0C .4D .0或14答案:D解析:分0a =和0a ≠两种情况讨论,结合集合{}210x ax x -+=中只有一个元素可求得实数a 的值. 详解:当0a =时,{}{}{}210101x ax x x x -+==-==,合乎题意;当0a ≠时,关于x 的方程210ax x -+=有两个相等的实根,则140a ∆=-=,解得14a =. 综上所述,0a =或14. 故选:D.18.已知集合{|12}A x x =-<<,}{0,1B =,则( ) A .B A ∈ B .A BC .B AD .A B =答案:C解析:根据集合关系直接求解即可得答案. 详解:根据集合真子集的定义得:对任意的x B ∈,均有x A ∈,存在0x A ∈,使得0x B ∉,故B A .故选:C.19.集合{}1,2,3A =的非空真子集的个数是( ) A .5 B .6 C .7 D .8答案:B解析:根据真子集的定义,写出集合A 所有的非空真子集即可求解. 详解:非空真子集分别是{}1,{}2,{}3,{}12,,{}13,,{}23,;20.下列对象能构成集合的是A.高一年级全体较胖的学生B.30,45,cos60,1sin sinC.全体很大的自然数D.平面内到ABC∆三个顶点距离相等的所有点答案:D解析:根据集合的互异性、确定性原则判断即可.详解:对于A,高一年级较胖的学生,因为较胖学生不确定,所以不满足集合元素的确定性,故A 错误;对于B,由于如130cos602sin==,不满足集合元素的互异性,故B错误;对于C,全体很大的自然数,因为很大的自然数不确定,所以不满足集合元素的确定性,故C猎误;对于D,平面内到ABC∆三个顶点距离相等的所有点,可知这个点就是ABC∆外接圆的圆心,满足集合的定义,D正确,故选D.点睛:本题主要考查集合的性质,属于基础题.集合的主要性质有:(1)无序性;(2)互异性;(3)确定性.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(55)
1.1 集合的概念一、单选题1.已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .302.设集合{|11,}A x x a x =-<-<∈R ,{|15,}B x x x =<<∈R ,若A B =∅,则实数a 的取值范围是( ) A .06a ≤≤B .2a ≤或4aC .0a ≤或6a ≥D .24a ≤≤3.已知集合{}21,21,1P a a =-+-,若0P ∈,则实数a 的取值集合为( )A .1,12⎧⎫--⎨⎬⎩⎭B .{}1,1-C .1,12⎧⎫-⎨⎬⎩⎭D .1,1,12⎧⎫--⎨⎬⎩⎭4.已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 的取值范围( )A .[]1,1-B .[1,)(,1]+∞-∞-C .[]{}1,10-D .{}[)1,,10(]+∞-∞-5.设集合{}0A x x =>,则( ) A .A φ∈B .1A ∉C .1A ∈D .1A ⊆6.点的集合(){},0M x y xy =≥是指 A .第一象限内的点集 B .第三象限内的点集.C .第一、第三象限内的点集D .不在第二、第四象限内的点集.7.集合{}21,A x x x Z =-<<∈中的元素个数为( ) A .1B .2C .3D .48.对集合1,5,9,13,17}用描述法来表示,其中正确的是( ) A . x |是小于18的正奇数} B .{}|41,5x x k k Z k =+∈<且C .{}|43,,5x x s s N s =-∈≤且D .{}|43,,5x x s s N s *=-∈≤且9.设{}1,2,3,4P =,{}4,5,6,7,8Q =,定义(){},|,,P Q a b a P b Q a b *=∈∈≠,则P Q *中元素的个数为( ) A .4 B .5 C .19 D .20二、填空题1.如果{}{},1,2a b =,则a b=_______.2.已知集合A =a +2,(a +1)2,a 2+3a +3},且1∈A,则2017a 的值为_________. 3.定义集合运算:{}|,,A B z z xy x A y B ⊗==∈∈,设,,则集合A B ⊗的所有元素之和为______________.4.列举法表示方程()22x 2a 3x a 3a 20-++++=的解集为______.5.已知x R ∈,[]x 表示小于x 的最大整数,{}[]x x x =-,令{}{}M x 0x 100,1x =≤≤=,则M 中元素之和为________. 三、解答题1.已知集合{2,5,12}A x x =-+,且3A -∈,求x 的值.2.设2y x ax b =-+,{}|0A x y x =-=,{|0}B x y ax =-=,若{3,1}A =-,试用列举法表示集合B .3.已知由实数组成的集合A ,1A ∉,又满足:若x A ∈,则11A x∈-. (1)设A 中含有3个元素,且2,A ∈求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由;(3) A 中含元素个数一定是*3()n n N ∈个吗?若是,给出证明,若不是,说明理由.参考答案一、单选题 1.C 详解: 因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.考点:1.集合的相关知识,2.新定义题型.2.C解析:由题意可得{|11,}A x a x a x R ,∵11a a +>-,∴A ≠∅,又A B =∅,用数轴表示集合A 、B ,即可求出结果. 详解:由11x a -<-<得11a x a -<<+.∵11a a +>-,∴A ≠∅,用数轴表示集合A 、B 如图所示,或由数轴可知,11a +≤或15a -≥,所以0a ≤或6a ≥.故选:C. 点睛:本题主要考查了集合间的子集关系,以及数形结合的应用,属于基础题. 3.C解析:分别令210a +=和210a -=,求得a 后,验证是否满足集合元素的互异性即可得到结果. 详解:当210a +=时,12a =-,此时2314a -=-,满足题意; 当210a -=时,1a =或1-;若1a =,213a +=,满足题意;若1a =-,211a +=-,不满足互异性,不合题意;∴实数a 的取值集合为1,12⎧⎫-⎨⎬⎩⎭.故选:C . 点睛:本题考查根据元素与集合关系求解参数值的问题,易错点是忽略求得参数值后,需验证集合中元素是否满足互异性. 4.D解析:将问题转化为方程220ax x a -+=至多只有一个根,对a 分0a =和0a ≠两种情况讨论,即可求解. 详解:解:由题意,原问题转化为方程220ax x a -+=至多只有一个根,当0a =时,方程为20x -=,解得0x =,此时方程只有一个实数根,符合题意; 当0a ≠时,方程220ax x a -+=为一元二次方程, 所以2440a ∆=-≤,解得1a ≤-或1a ≥.综上,实数a 的取值范围为{}(][,11),0-∞-+∞. 故选:D . 5.C解析:由10,>可判断1A ∈,进而得解. 详解:集合{}0A x x =>,10,1A >∴∈故选: C 点睛:本题考查元素与集合的关系,是基础题. 6.D解析:0xy ≥指x 和y 同号或至少一个为零,结合象限的概念可得结果. 详解:0xy ≥指x 和y 同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点.即不为第二、第四象限内的点,故选D . 点睛:本题主要考查对集合的概念和表示的理解,属于基础知识的考查. 7.B解析:表示出集合A 中的元素,即可得出个数. 详解:{}{}21,1,0A x x x Z =-<<∈=-, ∴集合A 中有2个元素.故选:B. 点睛:本题考查集合元素个数的求解,属于简单题. 8.D解析:对照四个选项一一验证:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,即可判断; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且即可判断; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且即可判断;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且即可判断.详解:对于A : x |是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,,故A 错误; 对于B :{}{}|41,53,1,5,9,13,17x x k k Z k =+∈<=-且,故B 错误; 对于C :{}{}|43,,53,1,5,9,13,17x x s s N s =-∈≤=-且,故C 错误;对于D :{}{}|43,,51,5,9,13,17x x s s N s *=-∈≤=且,故D 正确.故选:D 9.C解析:采用列举法,分别列举1a =、2、3、4时,集合P Q *中的元素,即可求解. 详解:当1a =时,集合P Q *中元素为()1,4,()1,5,()1,6,()1,7,()1,8共5个, 当2a =时,集合P Q *中元素为()2,4,()2,5,()2,6,()2,7,()2,8共5个, 当3a =时,集合P Q *中元素为()3,4,()3,5,()3,6,()3,7,()3,8共5个, 当4a =时,集合P Q *中元素为()4,5,()4,6,()4,7,()4,8共4个, 所以集合P Q *中共有555419+++=个, 故选:C.二、填空题 1.12或2解析:根据已知条件可得出a 、b 的值,即可得出结果. 详解:因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 2.1解析:对集合A 中的元素分情况讨论,结合集合中元素的互异性可求得结果. 详解:当a +2=1时,a =-1,此时有(a +1)2=0,a 2+3a +3=1,不满足集合中元素的互异性; 当(a +1)2=1时,a =0或a =-2,当a =-2,则a 2+3a +3=1,舍去,经验证a =0时满足;当a 2+3a +3=1时,a =-1或a =-2,由上知均不满足,故a =0,则2017a =1. 故答案为:1 3.54解析:试题分析:由新定义运算可知集合A B ⊗中所有的元素是由集合,中的元素的乘积得到的,所有元素依次为0,4,5,8,10,12,15,求和得54 考点:新定义集合问题4.{}a 1,a 2++解析:根据题意,求出方程的解,用集合表示即可得答案. 详解:根据题意,方程()22x 2a 3x a 3a 20-++++=变形可得()()x a 1x a 20⎡⎤⎡⎤-+-+=⎣⎦⎣⎦,有2个解:1x a 1=+,2x a 2=+, 则其解集为{}a 1,a 2++; 故答案为{}a 1,a 2++. 点睛:本题考查集合的表示方法,关键是求出方程的解,属于基础题. 5.5050解析:本题首先可根据题意确定集合{}0,1,2,3,4,,100M =,然后根据等差数列求和公式即可得出结果. 详解:因为{}[]x x x =-,0x 100≤≤,{}1x =, 所以集合{}0,1,2,3,4,,100M =, 则M 中元素之和为010001210010150502, 故答案为:5050. 点睛:本题考查求集合中所有元素的和,能否确定集合中包含的元素是解决本题的关键,考查等差数列求和公式,考查推理能力与计算能力,是中档题.三、解答题 1.1-或8-解析:由题意知A 集合中必有元素-3,则23x -=-或53x +=-,求得1x =-或8x =-,分别代入集合A 验证是否能构成集合. 详解:∵3A -∈,∴23x -=-或53x +=-,∴1x =-或8x =-.当1x =-时,{3,4,12}A =-,满足集合元素的互异性,∴1x =-符合题意; 当8x =-时,{10,3,12}A =--,也满足集合元素的互异性,∴8x =-也符合题意. 综上,x 的值为1-或8-. 点睛:本题考查根据元素与集合的关系求参数,属于基础题.2.{33B =---+解析:将2y x ax b =-+带入集合A 的方程化简整理,由{3,1}A =-利用韦达定理求出参数,a b ,再利用一元二次方程的解法求解集合B. 详解:将2y x ax b =-+代入集合A 中的方程并整理得2(1)0x a x b -++=. 因为{3,1}A =-,所以方程2(1)0x a x b -++=的两根为-3,1,由韦达定理得311,31,a b -+=+⎧⎨-⨯=⎩解得3,3,a b =-⎧⎨=-⎩所以233y x x =+-.将233y x x =+-,3a =-代入集合B 中的方程并整理得2630x x +-=,解得3x =--或3x =-+{33B =---+.点睛:本题考查了集合的表示方法,准确的利用韦达定理求参数是解题的关键,属于一般难度的题.3.(1)12,1,2A ⎧⎫=-⎨⎬⎩⎭;(2)不存在这样的A ,理由见解析;(3)是,证明见解析.解析:(1)根据题意得,1112A =-∈-,()11112A =∈--,故11,,22A ⎧⎫=-⎨⎬⎩⎭; (2)假设集合A 是单元数集合,则210x x -+=,根据矛盾即可得答案; (3)根据已知条件证明x ,11x-,11x -是集合A 的元素即可.详解:解:(1)因为若x A ∈,则11A x∈-,2,A ∈, 所以1112A =-∈-,()11112A =∈--,12112A =-∈, 所以11,,22A ⎧⎫=-⎨⎬⎩⎭.(2)假设集合A 是仅含一个元素的单元素集合,则11x x=-,即:210x x -+=, 由于30∆=-<,故该方程无解, 所以A 不能是仅含一个元素的单元素集.(3)因为1A ∉,x A ∈,则11A x∈-,则1111111x A x x x-==-∈--, 所以111x Ax x =∈--,故该集合有三个元素,下证x ,11x-,11x -互不相等即可.假设11x x =-,则210x x -+=,该方程无解,故x ,11x-不相等, 假设11x x-=,则210x x -+=,该方程无解,故x ,11x -不相等,假设1111x x =--,则210x x -+=,该方程无解,故11x-,11x -不相等. 所以集合A 中含元素个数一定是*3()n n N ∈个. 点睛:本题考查集合与元素的关系,其中第三问解题的关键在于根据已知证明x ,11x-,11x -互不相等且属于集合A 即可.考查运算求解能力与逻辑推理能力,是中档题.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(21)
1.1 集合的概念一、单选题1.若集合{}210b a a a b a ⎧⎫=+⎨⎬⎩⎭,,,,,则20212020a b +的值为( ) A .0 B .1 C .1- D .1±2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-2C .78D 3.变量x 满足210x ,则x 的取值集合为 A .12x <B .12x >C .12x x ⎧⎫<⎨⎬⎩⎭D .12x x ⎧⎫>⎨⎬⎩⎭4.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1+A .4B .3C .2D .1 5.已知a=4,A=x|x≥3},则以下选项中正确的是( ) A .a A ∉ B .a∈A C .a}=A D .a ∉a} 6.下列写法正确的是( ).A .(){}00,1∈B .(){}10,1∈C .()(){}0,10,1∈D .(){}0,10,1∈7.下列选项能组成集合的是( ) A .兴趣广泛的同学 B .个子较高的男生 C .英文26个字母D .非常大的数8.下列说法不正确的是( ) A .*0∈NB .0∈NC .0.1∉ZD .2∈Q9.对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合{2,3,4,5}S =,定义集合(){},T f A A S A =⊆≠∅,则集合T 的元素的个数为( )A .11B .12C .13D .14二、多选题1.已知{}2A x x px q x =++=,()(){}2111B x x p x q x =-+-+=+,当{}2A =时,则集合B 中实数x可能的取值为( ) A .4B .3C .3D .42.当一个非空数集G 满足“如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,a G b∈”时,我们称G 就是一个数域,以下关于数域的说法:①0是任何数域的元素;②若数域G 有非零元素,则2019G ∈;③集合{}|2,P x x k k Z ==∈是一个数域;④有理数集是一个数域;⑤任何一个有限数域的元素个数必为奇数.其中正确的选项有 A .①② B .②③ C .③④ D .④⑤ 3.(多选题)若集合A=x|kx 2+4x+4=0,x∈R}只有一个元素,则实数k 的值为( )A .0B .1C .2D .34.设集合{},,A x x m m n N *==∈,若1x A ∈,2x A ∈,12x x A ⊕∈,则运算⊕可能是( )A .加法B .减法C .乘法D .除法5.给出下列关系:其中不正确的是( ) ①{}0∅⊆;②πQ ∈;③{}{}11,2∈;④0N ∉. A .① B .② C .③ D .④三、填空题1.已知集合A 含有两个元素a 和2a ,若1A ∈,则实数a 的值为________.2.已知集合()22,12516x y A x y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,(){},B x y y x ==,则A B 的元素个数为______个3.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______. 4.已知集合(){}(){},|21,,|3A x y y x B x y y x ==+==+,若a A ∈且a B ∈则a 为__________. 5.设*6N ,2A xx Z x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法表示A=____________.四、解答题1.用列举法表示下列集合: (1)6|,2x Z x Z x ⎧⎫∈∈⎨⎬-⎩⎭; (2)(x ,y)|y =3x ,x∈N 且1≤x<5}.2.用适当的方法表示下列集合. (1)小于5的自然数构成的集合; (2)直角坐标系内第三象限的点集; (3)偶数集.3.已知集合{}2221,,M x x a a b a b Z ==+-=∈(1)证明:若x M ∈,则1x x+是偶数; (2)设m M ∈,且132m <<,求实数m 的值;(3)设n A ∈M 2(3n ≤<+的n 的值.参考答案一、单选题 1.C解析:由集合相等和集合中元素的互异性,可得出结果. 详解:由题意可知0a ≠,0,0∴=∴=b b a,21a ∴=且1a ≠,1a ∴=-2021202020212020(1)01+=-+=-a b故选:C 2.D解析:由题意知a 应为无理数,故a 选D. 3.D解析:解不等式210x ->得到12x >,写成集合的形式即为D 的形式. 详解:解不等式210x ->得到12x >,写成集合的形式,则得到选项为D.故选D. 点睛:本小题考查一元一次不等式的解法,考查解集要写成集合的形式.属于基础题. 4.C解析:①②③都可以写成m a =+的形式,验证,a b 的平方验证,判断. 详解:①当1a +时,可得1,a b π==,这与,a b Q ∈矛盾,3=3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,1a∴+,可得11,2a b==-,都是有理数,所以正确,④2426 =+=而(22222a a b+=++,,a b Q∈,(2a∴+是无理数,M中的元素,只有②③是集合M的元素.故选:C点睛:本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型. 5.B解析:根据元素与集合的关系求解.详解:因为4≥3,所以a∈A.故选:B点睛:本题主要考查元素与集合的关系,属于基础题.6.C解析:可判断0∉(0,1)},1∉(0,1)},(0,1)∉0,1},(0,1)∈(0,1)}.详解:由元素与集合的关系知,(0,1)}中的元素为集合故0∉(0,1)},1∉(0,1)},(0,1)∉0,1},(0,1)∈(0,1)};故选:C.【点评】本题考查了元素与集合的关系的判断及有序数对与数的区别,属于基础题.7.C解析:根据集合中元素的确定性,逐项分析可得.详解:对于A ,兴趣广泛的标准不明确,不能组成集合; 对于B ,个子较高的标准不明确,不能组成集合; 对于C ,英文26个字母能组成集合;对于D ,非常大的标准不明确,不能组成集合. 故选C . 点睛:本题考查了集合中元素的确定性,属于基础题. 8.A解析:根据元素与集合的关系以及常见数集的符号表示即可得出选项. 详解:*N 为正整数集,则*0∉N ,故A 不正确;N 为自然数集,则0∈N ,故B 正确; Z 为整数集,则0.1∉Z ,故C 正确;Q 为有理数集,则2∈Q ,故D 正确;故选:A 点睛:本题考查了常见数集的符号表示,需熟记符号所表示的数集,属于基础题. 9.B解析:分别考虑集合A 为单元素集、双元素集、三元素集、四元素集,然后分别计算出()f A 的取值,由此确定出集合T 中的元素的个数. 详解:当集合A 为单元素集时,可取{}{}{}{}2,3,4,5,此时()f A 可取2,3,4,5;当集合A 为双元素集时,可取{}{}{}{}{}{}2,3,2,4,2,5,3,4,3,5,4,5,此时()f A 可取5,6,7,8,9; 当集合A 为三元素集时,可取{}{}{}{}2,3,4,2,3,5,2,4,5,3,4,5,此时()f A 可取9,10,11,12, 当集合A 为四元素集时,可取{}2,3,4,5,此时()f A 可取14,综上可知()f A 可取2,3,4,5,6,7,8,9,10,11,12,14,共12个值,所以T 的元素个数为12, 故选:B. 点睛:本题考查集合中的新定义问题,对学生的理解与分析问题的能力要求较高,难度较难.解答新定义的集合问题,首先要明确集合中表示元素的含义,其次才是解答问题.二、多选题 1.BC解析:由条件可知方程2x px q x ++=有两个相等的实根,并且2x =,列式求,p q 的值,再代入集合B ,求方程的实数根. 详解:由{}2A =,得方程2x px q x ++=有两个相等的实根,且2x =.从而有()2422140p q p q ++=⎧⎪⎨--=⎪⎩解得34p q =-⎧⎨=⎩ 从而()(){}213141B x x x x =---+=+.解方程()()213141x x x ---+=+,得3x =± 故选:BC 点睛:本题考查集合元素与一元二次方程实数根的关系,重点考查计算能力,属于基础题型. 2.AD解析:利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证. 详解:①当a b =时,由数域的定义可知, 若,a b G ∈,则有a b G -∈,即0G ∈, 故①是真命题;②当0a b =≠时,由数域的定义可知, 若,a b G ∈,则有a G b∈,即1G ∈, 若1G ∈,则112G +=∈,则213G +=∈,则120182019G +=∈,故②是真命题; ③当2,4a b ==时,12a G b=∉,故③是假命题; ④若,a b Q ∈,则,,a b a b ab Q +-∈,且0b ≠时,aQ b∈,故④是真命题; ⑤0G ∈,当b G ∈且0b ≠时,则b G -∈,因此只要这个数不为0就一定成对出现,所以有限数域的元素个数必为奇数,所以⑤是真命题. 故选:AD .点睛:本题考查学生对新定义题型的理解和把握能力,理解数域的定义是解决该题的关键,题目着重考查学生的构造性思维,一定要读懂题目再入手,没有一个条件是多余的,是难题. 3.AB解析:根据给定条件按方程kx 2+4x+4=0的类型分类讨论求解即得. 详解:集合A 中只有一个元素,即方程kx 2+4x+4=0只有一个根, 当k=0时,方程为一元一次方程,只有一个根,当k≠0时,方程为一元二次方程,若只有一个根,则∆=16-16k=0,即k=1, 所以实数k 的值为0或1. 故选:AB 4.AC解析:先由题意设出111x m =,222x m =,然后分别计算12x x +,12x x -,12x x ,12x x ,即可得解. 详解:由题意可设111x m =,222x m =,其中1m ,2m ,1n ,2n N *∈, 则()1212x x m m +=+)12n n +,12x x A +∈,所以加法满足条件,A 正确;())121212x x m m n n -=--,当12n n =时,12x x A -∉,所以减法不满足条件,B 错误;)12121211213x x m m n n m n m n ==+,12x x A ∈,所以乘法满足条件,C正确;12x x =,当()11220m n m n λλ==>时,12x A x ∉,所以出发不满足条件,D 错误. 故选:AC. 5.BCD解析:根据空集是任何集合的子集,即可判断①;由于π是无理数,而Q 表示有理数集,即可判断②;根据集合间的关系及元素和集合的关系,即可判断③;由于0是自然数,N 表示自然数集,即可判断④;从而可判断得出答案. 详解:解:①由于空集是任何集合的子集,则{}0∅⊆正确,故①正确; ②因为π是无理数,而Q 表示有理数集,∴πQ ∉,故②不正确;③由于{}1和{}1,2均为集合,故{}{}11,2∈不正确,故③不正确; ④因为0是自然数,N 表示自然数集,∴0N ∈,故④不正确. 故选:BCD.三、填空题 1.1-解析:根据集合A 含有两个元素a 和2a ,且1A ∈,分类讨论,集合元素的互异性,即可求解. 详解:由题意,集合A 含有两个元素a 和2a ,且1A ∈,若1a =,则21a =,此时集合A 中两元素相同,与元素的互异性矛盾,故1a ≠; 若21a =,则1a =-或1a = (舍去),此时集合A 中两元素为1,1-,故1a =-. 综上所述1a =-,即实数a 的值为1-. 故答案为:1- 点睛:本题主要考查了元素与集合的关系,以及集合元素的互异性的应用,其中解答中熟记元素与集合的关系,以及合理利用元素的互异性判定是解答的关键,着重考查推理与运算能力. 2.2解析:画出曲线和函数图像,根据交点个数即可判断A B 的元素个数. 详解:集合()22,12516x y A x y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,(){},B x y y x ==, 画出椭圆的曲线及函数图像如下图所示:由图像可知,两个曲线有2个交点,因而A B 有2个元素, 故答案为:2. 点睛:本题考查了利用数形结合法求集合交集个数,属于基础题. 3.1解析:根据两个集合的相等关系,可求得,a b 的值,即可得解. 详解:由题意可知,两个集合相等,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,由0a ≠所以只能是0b a=,即0b =,所以{}{}2,0,1,,0a a a =,由集合互异性可知1a ≠,则21a =,解得1a =-,符合题意, 所以20142015101a b +=+=, 故答案为:1. 点睛:本题考查了集合相等的应用,由集合互异性和相等求参数,属于基础题. 4.(2,5)解析:由213y x y x =+⎧⎨=+⎩,解方程组即可求出a 的值.详解:解:由213y x y x =+⎧⎨=+⎩,可得2,5x y ==.故a 为(2,5),故答案为(2,5).点睛:本题考查集合的含义,考查学生的计算能力,比较基础.5.{}4,1,0,1-- 解析:62x-为正整数且x 也为整数,可知2x -能够被6整除,逐个正因数计算即可. 详解: 由题意得,*6N ,2x Z x ∈∈-,故62x -为6的正因数,所以61,2,3,62x =-,故26,3,2,1x -=,故4,1,0,1x =--,列举法得出答案{}4,1,0,1--.故答案为{}4,1,0,1--.点睛:本题主要考查对因数的理解以及集合中的常用集合表示,N 表示自然数,*N 表示正自然数,即正整数.Z 表示整数.四、解答题1.(1)-4,-1,0,1,3,4,5,8};(2)(1,3),(2,6),(3,9),(4,12)}. 解析:根据条件,求出集合的所有元素,然后列举法表示即可.详解:(1)因为6,2Z x Z x∈∈-,所以2x -是6的因数, 则21,2,3,6x -=,即x =1,3,4,0,-1,5,-4,8.所以原集合可用列举法表示为-4,-1,0,1,3,4,5,8};(2)因为x∈N 且1≤x<5,所以x =1,2,3,4,其对应的y 的值分别为3,6,9,12.所以原集合可用列举法表示为(1,3),(2,6),(3,9),(4,12)}.2.(1){0,1,2,3,4};(2){(,)|0,0}x y x y <<;(3){|2,}x x k k Z =∈.解析:(1)用列举法表示集合,自然数集{}0,1,2,3,4,5N =; (2)用描述法表示集合,第三象限内上点横纵坐标都小于零;(3)用描述法表示集合,能被2整除的整数叫偶数.详解:(1){}0,1,2,3,4;(2){(,)|0,0}x y x y <<;(3){|2,}x x k k Z =∈点睛:本题考查了用不同方法表示集合,其时用描述法表示集合时,也不是唯一的一种表示方法,比如本题的偶数集也可以表示为{|22,},{|22,}x x k k Z x x k k Z =-∈=+∈等等,再有本题的第一个集合也可以用描述法进行表示:{|04},{|05}x N x x N x ∈≤≤∈≤<等等.3.(1)证明见解析;(2)1m =;(3)证明见解析;3n =+解析:(1)将x a =+1x x+化简即可判断;(2)设m a =+,2221,,a b a b -=∈Z .由(1)可知12m a m +=,即5256a <<,1a =或2a =.再分别代入2221,,ab a b -=∈Z ,验证是否符合题意即可;(3)设2,na b 且2221,,a b a b -=∈Z 322n ()(3432a b b a =-+-代入2221,,a b a b -=∈Z 化简可得结论,等式同时除以3+可得324≤<,得1m =,可得结果.详解:(1)证明:若x M ∈,则x a =+2221,,a b a b -=∈Z .所以1x a x =++a =+222a a a b=-++-因为2221,a b -=所以原式2a a a =+-=.因为a ∈Z .所以2a ∈偶数.原式得证(2)因为m M ∈,且132m <<则1123m <<,所以5156m m<+<设m a =+,2221,,a b a b -=∈Z .由(1)可知12m a m +=,即5256a << 所以1a =或2a =.当1a =时,代入2221,,a b a b -=∈Z 可得0b =此时1m a =+=,满足132m <<,所以1m =成立当2a =时,代入2221,,a b a b -=∈Z 解得2b =±, 不满足b ∈Z ,所以不成立;综上,可知1m =(3)证明:因为n M ∈,所以可设2,na b 且2221,,a b a b -=∈Z 2(2)(322)322322(322)(322)na b a b ()(3432a b b a =-+-代入2221,,a b a b -=∈Z 得:22(34)2(32)a b b a ---22229241629124a ab b b ab a ⎡⎤=-+--+⎣⎦2221a b =-=()(),34,32a b Z a b Z b a Z ∈∴-∈-∈M 成立, 原式得证2(3n ≤<+,不等式同时除以3+可得324≤< 由(2)可知,在132m <<范围内,1m =,即3n =+点睛:本题主要考查集合与元素之间的关系,考查了函数与方程思想的应用,同时考查了不等式的解法,同时考查了计算能力,体现数学运算,逻辑推理等数学学科素养,属于难题.。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)(3)
1.1 集合的概念1.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②*0N ∈;③集合{}2| 1 y y x =-与集合(){}2,| 1 x y y x =-是同一个集合;④空集是任何集合的真子集.A .0个B .1个C .2个D .3个答案:A解析:根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.详解:对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N *,错误;对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合(x ,y )|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选A .点睛:本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.2.设集合{|4},M x x a =≥= )A .a M ∈B .a M ∉C .{}a M ∈D .{}a M ∉答案:B 解析:首先确定是元素与集合的关系,然后根据4的大小关系即可完成判断. 详解: 因为4>a M ∉,故选:B.点睛:本题考查元素与集合的关系,难度较易.元素与集合的关系只有两种:属于和不属于,集合与集合之间不存在属于关系.3.下列能构成集合的是( )A .中央电视台著名的节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .香港的高楼答案:C解析:根据集合的定义可直接确定结果.详解:构成集合的元素具有确定性 ,,A B D ∴中没有明确标准,不符合集合定义,C 正确故选:C点睛:本题考查集合的定义,属于基础题.4.集合{}|(31)(4)0x Z x x ∈--=可化简为( )A .13⎧⎫⎨⎬⎩⎭ B .{}4 C .1,43⎧⎫⎨⎬⎩⎭ D .1,43⎧⎫--⎨⎬⎩⎭答案:B解析:通过解方程,根据Z 的含义进行求解即可.详解:解方程(31)(4)0x x --=,得121,43x x ==,因为x ∈Z ,所以{}|(31)(4)0x Z x x ∈--={}4=,故选:B5.下列各组对象中能构成集合的是( )A B .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品答案:C解析:根据集合中元素的确定性,即可得解.详解:选项A 、B 、D 中集合的元素均不满足确定性,只有C 中的元素是确定的,满足集合的定义,故选:C.点睛:本题考查了集合中元素的特征,考查了集合中元素的确定性,是概念题,属于基础题.6.设集合A=x|x 2–4≤0},B=x|2x+a≤0},且A∩B=x|–2≤x≤1},则a=( )A .–4B .–2C .2D .4答案:B解析:由题意首先求得集合A,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.详解:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.点睛:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.7.下列各组中的M 、P 表示同一集合的是①{}3,1M =-,(){}3,1P =-;②(){}3,1M =,(){}1,3P =; ③{}21M y y x ==-,{}21P t t x ==-; ④{}21M y y x ==-,(){}2,1P x y y x ==-. A .①B .②C .③D .④答案:C 解析:对四组集合逐一分析,可选出答案.详解:对于①,集合M 表示数集,集合P 表示点集,两个集合研究的对象不相同,故不是同一个集合;对于②,两个集合中元素对应的坐标不相同,故不是同一个集合;对于③,两个集合表示同一集合.对于④,集合M 研究对象是函数值,集合P 研究对象是点的坐标,故不是同一个集合. 故选:C.点睛:本题考查相同集合的判断,属于基础题.8.已知集合{21,}A xx x Z =-<≤∈∣,则集合A 中元素的个数为( ) A .0B .1C .2D .3答案:D 解析:根据x ∈Z 求得集合A ,从而判定出集合中元素个数.详解:{21,}{1,0,1}A x x x Z =-<≤∈=-∣,所以集合A 中元素的个数为3.故选:D.点睛:本题主要考查集合的表示法,意在考查学生的数学抽象的学科素养,属基础题.9.已知集合{}1,0,1A =-,(),|,,x B x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3B .4C .6D .9答案:B 解析:根据几何A 中的元素,可求得集合B 中的有序数对,即可求得B 中元素个数. 详解:因为x A ∈,y A ,x y∈N , 所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1.故选:B.点睛:本题考查集合中元素个数的求法,属于基础题.10.下列对象能构成集合的是( )A .2016年央视春节联欢晚会上的所有好看的节目B .我国从1991~2016年发射的所有人造卫星C .2015年夏季世界大学生运动会中的高个子女运动员D .5,4,4,7答案:B解析:对选项A ,“好看的节目”是不确定的,所以这些对象不能构成集合;对选项B ,满足集合元素的确定性,所以这些对象可以构成集合;对选项C ,“高个子”是不确定的,所以这些对象不能构成集合;对选项D ,含有相同的元素“4”,不满足集合元素的互异性,所以不能构成集合.详解:对选项A ,2016年央视春节联欢晚会上的所有好看的节目,“好看的节目”是不确定的,所以这些对象不能构成集合;对选项B ,我国从1991~2016年发射的所有人造卫星,满足集合元素的确定性,所以这些对象可以构成集合;对选项C ,2015年夏季世界大学生运动会中的高个子女运动员,“高个子”是不确定的,所以这些对象不能构成集合;对选项D ,5,4,4,7,含有相同的元素“4”,不满足集合元素的互异性,所以不能构成集合.故选:B点睛:本题主要考查集合的元素,意在考查学生对这些知识的理解掌握水平.11.已知集合2|10A x x ,则下列式子表示正确的有( )①1A ∈②{1}A -∈③A ∅∈④{1,1}A -⊆A .1个B .2个C .3个D .4个答案:B解析:先求出集合A 中的元素,然后逐项分析即可.详解:因为{}2|10{1,1}A x x =-==-,则1A ∈,所以①正确;{1}A -⊆,所以②不正确;A ∅⊆,所以③不正确;{1,1}A -⊆,所以④正确,因此,正确的式子有2个.故选:B.12.方程组31x y x y +=⎧⎨-=-⎩的解集不可以表示为( ) A .(x ,y)|31x y x y +=⎧⎨-=-⎩ } B .(x ,y)|12x y =⎧⎨=⎩} C .1,2}D .(1,2)}答案:C 解析:根据集合元素的特征进行判断求解可得结论.详解:由于方程组的解集中最多含有一个元素,且元素是一个有序实数对,所以A,B,D 符合题意,C 不符合题意.故选C .点睛:本题考查集合元素的特征,解题时要注意方程组的解的特点,属于基础题.13.已知集合={|1}A x x >-,{|2}B x x =<,则A∩B=A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅答案:C解析:本题借助于数轴,根据交集的定义可得.详解:由题知,(1,2)A B =-,故选C .点睛:本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.14.有下列说法:(1)与表示同一个集合; (2)由组成的集合可表示为{}1,2,3或{}3,2,1; (3)方程2(1)(2)0x x --=的所有解的集合可表示为{}1,1,2;(4)集合{}|45x x <<是有限集.其中正确的说法是A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对答案:C详解:试题分析:(1)不正确:0是数字不是集合,但{}00∈;(2)正确:集合元素满足无序性,即{}{}1,2,33,2,1=;(3)不正确:集合元素具有互异性,方程的解集应为{}1,2;(4)不正确:满足不等式45x <<的x 有无数个,所以集合{}|45x x <<是无限集.故C 正确.考点:1元素与集合的关系;2集合元素的特性.15.已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则A .8k >B .8k ≥C .16k >D .16k ≥ 答案:C详解: 试题分析:因为{}21log A x N x k =∈<<中到少有3个元素,即集合A 中一定有2,3,4三个元素,所以4216k >=,故选C.考点:1.集合的运算;2.对数函数的性质.16.下列四个集合中,是空集的是( )A .{}0B .{8x x >∣,且}5x <C .{}210x x ∈-=N ∣D .{}4x x >答案:B解析:根据空集的定义判断.详解:A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素.故选:B .17.下列说法中正确的有( )个:①很小的数的全体组成一个集合:②全体等边三角形组成一个集合;③{}R 表示实数集;④不大于3的所有自然数组成一个集合.A .1B .2C .3D .4答案:B解析:利用集合的元素的特征判断.详解:①很小的数不确定,不能组成一个集合,故错误:②全体等边三角形组成一个集合,故正确;③{}R 表示以实数集为元素的集合,不表示实数集,故错误;④不大于3的所有自然数是0,1,2,3,组成一个集合,故正确.故选:B18.已知集合M=1,2,3,4},N=1,3,6},P=M∩N,则P 的子集共有( )个.A .2B .4C .6D .8答案:B解析:先求P M N =⋂,根据子集个数公式计算结果.详解:集合M=1,2,3,4},N=1,3,6},{}1,3P M N ∴==,共2个元素, 所以P 的子集共有224=个.故选:B19.已知集合{}0,1,2A =,那么( )A .0A ⊆B .0A ∈C .1AD .{}0,1,2A ⋃答案:B解析:根据元素与集合的关系、集合与集合的关系判断即可.详解:由{}0,1,2A =,则0A ∈,{}1A ⊆故选:B20.已知集合(){}21220A x R a x x =∈+-+=,且A 中只有一个元素,则实数a 的值为 A .12-B .0或12C .1-D .1-或12-答案:D 解析:由条件可得方程()21220a x x +-+=只有一个实数解,对二次项系数是否为0,结合根的判别式,即可求解.详解:A 中只有一个元素,所以方程()21220a x x +-+=只有一个实数解, 当10,1a a +==-时,方程为220,1x x -+==,满足题意;当10,1a a +≠≠-时,148(1)840,2a a a ∆=-+=--==-,所以1a =-或12a =-.故选:D.点睛:本题考查集合的表示,以及对集合元素的理解,属于基础题.。
高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(46)
1.1 集合的概念一、单选题1.满足关系1,2}⊆A ⊆1,2,3,4,5}的集合的个数是( ) A .4 B .6 C .8 D .9答案:C解析:根据1,2}⊆A ⊆1,2,3,4,5}列举求解. 详解:因为1,2}⊆A ⊆1,2,3,4,5},所以A=1,2},A=1,2,3},A=1,2,4},A=1,2,5},A=1,2,3,4}, A=1,2,3,5},A=1,2,4,5},A=1,2,3,4,5},共8个, 故选:C2.已知集合{}2,1A =-,{}2,1B m m =--,且A B =,则实数m 等于( )A .2B .1-C .2或1-D .1-和2答案:C解析:令22m m -=,解出实数m 即可. 详解:令22m m -=,解得2m =或1- 故选:C3.集合1,3,5,7}用描述法表示出来应为 A .x|x 是不大于7的非负奇数} B .x|1≤x≤7} C .x|x∈N 且x≤7} D .x|x∈Z 且1≤x≤7} 答案:A解析:对四个选项逐一分析,由此得出正确选项. 详解:对于A 选项,集合的元素为1,3,5,7,符合题意.对于B 选项,集合的元素包括了小数,不符合题意.对于C 选项,集合的元素包括0不符合题意.对于D 选项,集合的元素包括2,4,6,不符合题意.综上所述,本小题选A.点睛:本小题主要考查集合的表示方法,考查列举法和描述法,属于基础题. 4.若集合,A B 中的元素都是非零实数,定义,,mA B x x m A n B n ⎧⎫⊗==∈∈⎨⎬⎩⎭,若{A a B ==,且A B ⊗中有4个元素,则a 的值为( )A .1B .12C .1或D .1或12答案:C解析:根据所给定义,求出A B ⊗中的所有元素,再分类讨论可得. 详解:解:{,2},2}A a B == 根据定义,,mA B x x m A n B n ⎧⎫⊗==∈∈⎨⎬⎩⎭,且A B ⊗中有4个元素,212==,212==,22a a =,当12a =时,解得2a =,A B ⎧⎪⊗=⎨⎪⎪⎩⎭不满足条件,当2a =a =2A B ⎧⎫⎪⎪⊗=⎨⎬⎪⎪⎩⎭满足条件,当2a=时,解得a =A B ⎧⎪⊗=⎨⎪⎪⎩⎭不满足条件,1=时,解得a =2A B ⎧⎪⊗=⎨⎪⎪⎩⎭不满足条件,=1a =,12A B ⎧⎫⎪⎪⊗=⎨⎬⎪⎪⎩⎭满足条件,=时,解得2a =,A B ⎧⎪⊗=⎨⎪⎪⎩⎭不满足条件, 故选:C . 点睛:本题考查集合中的新定义,分类讨论思想,属于基础题. 5.已知集合{|,A x x Z =∈且32Z x ⎫∈⎬-⎭,则集合A 中的元素个数为( ) A .1 B .2C .3D .4答案:D解析:根据整数与整除的方法枚举即可. 详解: 因为32Z x∈-,故23,1,1,3x -=--,即5,3,1,1x =-共四种情况.故集合A 中元素个数为4. 故选:D 点睛:本题主要考查了利用整除求解集合中元素的个数问题.属于基础题. 6.,{}1P a =,若21a P +∈,则a 可取的值有 A .0个 B .1个 C .2个 D .3个答案:C解析:由21a P +∈得到211a +=或21a a +=,解出a 的值后分别代入集合P 进行验证即可得到答案. 详解:由,{}1P a =,21a P +∈,得:211a +=或21a a +=, 若211a +=,解得0a =,此时{0,1}P =; 若21a a +=,解得1a =-,此时,1{}1P =-;. 综上,a 可取的值有2个. 故选:C. 点睛:本题主要考查集合中元素的特征,属于基础题. 7.方程组251x y x y +=⎧⎨-=⎩的解集不可以表示为( )A .25(,)1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭B .2(,)1x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭C .{}2,1D .2,1答案:C解析:由方程组判断集合为点集,结合选项判断C 错误. 详解:解方程组251x y x y +=⎧⎨-=⎩得:21x y =⎧⎨=⎩,方程组的解集是x ,y 的一对值,∴用集合表示为点集,∴选项A ,B ,D 是正确的;选项C 是数集,不正确,故选:C . 点睛:本题考查判断集合是否为同一集合,属于基础题.8.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为( ) A .3 B .4 C .5 D .6答案:B解析:先解集合中的不等式得x 的范围,再由x ∈N 可得结论 详解:由(3)(2)6x x --<得250x x -<,解得05x <<,又x N ∈,所以{1,2,3,4}A =,所以A 中有4个元素. 故选:B . 点睛:本题考查集合的概念,考查解一元二次不等式,掌握一元二次不等式的求解方法是解题关键.9.关于集合下列正确的是( ) A .0N ∈ B .R ∅∈ C .*N ∅∉ D .12Z ∈答案:A解析:根据数集表示的范围即可求解. 详解:N 表示自然数集,R 表示实数集,*N 表示正整数集,Z 表示整数集.对于A ,0N ∈正确.对于B ,集合与集合间不能用∈,所以B 错误. 对于C ,集合与集合间不能用∈,所以C 错误. 对于D ,12不是整数,所以D 错误. 故选: A 点睛:本题考查了数集的表示范围,元素与集合关系,属于基础题. 二、填空题1.已知A=x|x 2-x +a =0}=φ,则实数a 的取值范围是________.答案:14a >解析:试题分析:由题意得:方程20x x a -+=无实数解11404a a ∴∆=-∴ 考点:二次方程的根2.集合{|03,}x x x ∈Z ≤≤用列举法可以表示为___________.答案:{0,1,2,3}解析:直接利用列举法求解 详解:集合{|03,}x x x ∈=Z ≤≤{0,1,2,3}, 故答案为:{0,1,2,3}3.用符号“∈”或“∉”填空:(1)2_____N ;(2;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6答案:∈∉∉∈∉∈解析:N 为自然数集,Q 为有理数,Z 为整数集,R 为实数集,判断元素与集合之间的关系用相应的符号填写即可. 详解:(1)N 为自然数集,2是自然数,所以2N ∈;(2)Q Q ;(3)Z 为整数集,13是分数,所以13Z ∉;(4)R 表示实数集,所以3.14R ∈;(5) N 为自然数集,-3不是自然数,所以3N -∉;(6) Q 3=Q . 点睛:本题考查元素与集合之间的关系及常用数集,属于基础题.4.已知,x y R ∈,集合{(,)|0}x y xy α=≥,集合{(,)|}x y x y x y β=+=+,用推出关系表示αβ、的关系_________答案:αβ=解析:对||||||x y x y +=+两边平方后,变形可得答案. 详解:因为||||||x y x y +=+等价于22()(||+||)x y x y +=, 等价于222222||x y xy x y xy ++=++等价于||xy xy =, 等价于0xy ≥,所以αβ=. 故答案为:αβ=. 点睛:本题考查了等价转化思想,考查了绝对值的意义,考查了集合的相等,属于基础题. 5.已知集合A=1,2,a 2-2a},若3∈A,则实数a=______.答案:3或-1解析:根据3∈A 即可得出a 2-2a=3,解方程得到a 即可. 详解:∵3∈A,A=1,2,a 2-2a}, ∴a 2-2a=3, 解得a=-1或3 故答案为-1或3. 点睛:本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题. 三、解答题1.用适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量组成的集合; (3)不等式342x x ≥-的解集答案:(1){|4}y y ≥- (2){|0}x x ≠ (3)4|5x x ⎧⎫≥⎨⎬⎩⎭解析:(1)求二次函数的值域得到答案. (2)求反比例函数的定义域得到答案. (3)解不等式得到答案. 详解:(1)二次函数24y x =-的函数值为y ,∴二次函数24y x =-的函数值y 组成的集合为{}2|4,{|4}y y x x R y y =-∈=≥-.(2)反比例函数2y x=的自变量为x∴反比例函数2y x=的自变量组成的集合为{|0}x x ≠. (3)由342x x ≥-,得45x ≥,∴不等式342x x ≥-的解集为4|5x x ⎧⎫≥⎨⎬⎩⎭. 点睛:本题考查了集合的表示方法,意在考查学生对于集合表示方法的应用.2.当实数a 、b 满足什么条件时,集合{}0A x ax b =+=是有限集、无限集、空集?答案:当0a ≠,b R ∈时,集合A 为有限集;当0a =,0b =时,集合A 为无限集;当0a =,0b ≠时,集合A 为空集,且为有限集解析:分0,a b R ≠∈,0,0a b ==和0,0a b =≠三种情况求解方程的根的情况,即可得到答案. 详解:当0,a b R ≠∈时,方程0ax b +=有唯一解bx a =-,此时集合{}b A a=-,集合A 为有限集; 当0a =,0b =时,0ax b +=有无穷多个解,集合A 为无限集; 当0a =,0b ≠时,0ax b +=无解,集合A 为空集,也为有限集. 点睛:本题主要考查了集合的表示方法,以及集合的分类,其中解答中分类讨论求解方程0ax b +=的根是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.已知集合{}2320,A xax x a R =-+=∈∣.问是否存在a ,使 (1)A 中只有一个元素; (2)A 中至多有一个元素;(3)A 中至少有一个元素.若存在,分别求出来;若不存在,说明理由.答案:(1)存在,0a =或98a =;(2)存在,0a =或98a ≥;(3)存在,98a ≤.解析:(1)考虑0a =和0a ≠两种情况,计算980a ∆=-=得到答案. (2)考虑A =∅或A 中只有一个元素,计算得到答案.(3)A 中至少有一个元素,即方程有解,考虑方程有一个解或者方程有两个解的情况,计算得到答案. 详解:(1)当0a =时,方程只有一解,即23x =; 当0a ≠,且980a ∆=-=,即98a =时,方程有两个相等的根,A 中只有一个元素. 综上所述:当0a =或98a =时,A 中只有一个元素. (2)A 中至多有一个元素,即A =∅或A 中只有一个元素. 由(1)可知0a =或98a =时A 中只有一个元素, 而980a ∆=-<,即98a >时方程无解,A 为空集, 综上所述:当0a =或98a ≥时,A 中至多有一个元素.(3)A 中至少有一个元素,即方程有解,0a ≠时,0∆≥,即98a ≤,其中98a =时,方程有两个相等的根,1243x x ==,43A ⎧⎫=⎨⎬⎩⎭.若98a <,方程有两个不相等的根,1x =,2x =,此时A =⎪⎪⎩⎭.0a =时,方程有根23x =,23A ⎧⎫=⎨⎬⎩⎭. 综上所述:98a ≤时,A 中至少有一个元素.点睛:本题考查了根据集合中元素的个数求参数,意在考查学生的计算能力和分类讨论能力.。
高中数学必修一人教A版1.1 集合的概念练习(含解析)(56)
1.1 集合的概念一、单选题1.给出下列关系式:①23Q ⊆;②{}210xx x ∅⊆++=∣;③{}2{(1,4)}(,)23x y y x x -⊆=--∣;④{2}[2,)xx <=+∞∣,其中正确关系式的个数是( ) A .0 B .1 C .2 D .32.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为(x ,y)|xy≤0,x∈R,y∈R}B .不等式x -1<4的解集为x<5}C .全体整数}D .实数集可表示为R 3.设集合,则A .B .C .D .4.设集合A 只含有一个元素a ,则下列各式正确的是A .0∈AB .a ∉AC .a∈AD .a =A 5.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .36.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合A B ※ 的所有元素个数为( )A .2B .3C .4D .57.已知关于x 的方程26(0)x x a a -=>的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,15 8.下列关系正确的是( )A .0N *∈B .Q π∈C .0∈∅D 2R9.设59{137}U A B =,,,,,,为U 的子集,若{}{}3)7U A B C A B ==,(,()}()19{U U C A C B =,,则下列结论正确的是 A .5,5A B ∉∉ B .5,5A B ∉∈ C .5,5A B ∈∉ D .5,5A B ∈∈二、填空题1.已知集合{}220A x R ax x =∈++=,若A 为单元素集合,则a =__________.2.已知集合{}220A x x x a =-+,且1A ∉,则实数a 的取值范围是________.3.若2∈–2x ,x 2–x},则x=___________. 4.已知集合A =x|125x-∈N,x∈N},则用列举法表示为__________________. 5.集合{}2340A x ax x =--=的子集只有两个,则a 值为____________.三、解答题1.若集合M={}31,x x m m Z =+∈P={}32,y y n n Z =+∈,x 0∈M,y 0∈P,求00x y 与集合M 、P 的关系2.用列举法表示下列集合: (1)不大于10的非负偶数集; (2)自然数中不大于10的质数集; (3)方程x 2+2x –15=0的解.3.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且两集合相等,求a ,b 的值.参考答案一、单选题 1.C解析:利用元素与集合的关系,集合与集合间的关系直接求解. 详解:对于①23Q ∈,元素与集合间的关系为属于关系,不是包含关系,故①错误; 对于②空集是任何集合的子集,故②正确;对于③,{}2{(1,4)}(,)23x y y x x -⊆=--∣点(1,4)-为抛物线223y x x =--上的点,故③正确; 对于④{2}[2,)xx <⊆+∞∣,故④错误; 所以正确的个数为2个. 故选:C. 2.D 详解:A. 第二、四象限内的点集可表示为(x ,y)|xy<0,x∈R,y∈R},故A 不正确;B. 不等式x -1<4的解集为{|5}x x <,故B 不正确;C. 全体整数}不用大括号即可,故C 不正确;D. 实数集可表示为R ,正确. 故选D.3.B解析:根据元素与集合的关系,可知是集合中的元素,则,故选B.4.C 详解:分析:根据集合A 的表示,判断出a 是A 的元素,根据元素与集合的关系,是属于与不属于,从而得到答案. 详解:集合{}A a =,a A ∴∈.故选C.点睛:在解决元素与集合的关系时,注意它们的关系只有“属于”与“不属于”两种.5.A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案. 详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0. 故选A . 点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题. 6.B解析:求出集合 A B ※ 的所有元素,即得解. 详解:当1,2x y ==时,1(12)1z =⨯-=-; 当1,3x y ==时,1(13)2z =⨯-=-; 当2,2x y ==时,2(22)0z =⨯-=; 当2,3x y ==时,2(23)2z =⨯-=-. 所以集合 A B ※ 的共有3个元素. 故选:B 点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平. 7.B解析:先去掉绝对值,转化为两个方程,针对方程根的情况进行讨论. 详解:解:关于x 的方程26(0)x x a a -=>等价于260x x a --=①,或者260x x a -+=②.由题意知,P 中元素的和应是方程①和方程②中所有根的和.0a >,对于方程①,()2(6)413640a a ∆=--⨯⨯-=+>.∴方程①必有两不等实根,由根与系数关系,得两根之和为6.而对于方程②,364a ∆=-,当9a =时,0∆=可知方程②有两相等的实根为3, 在集合中应按一个元素来记,故P 中元素的和为9;当9a >时,∆<0方程②无实根,故P 中元素和为6;当09a <<时,方程②中0∆>,有两不等实根,由根与系数关系,两根之和为6, 故P 中元素的和为12. 故选:B . 8.D解析:由元素与集合的关系逐个分析判断即可 详解:对于A ,因为0不是正整数,所以0N *∉,所以A 错误, 对于B ,因为π是无理数,所以Q π∉,所以B 错误,对于C ,因为空集是不含任何元素的集合,所以0∉∅,所以C 错误,对于DR ,所以D 正确, 故选:D 9.C解析:根据{}()()()19U U U C A C B C A B ==,,得出{3,5,7}A B =,依次判断选项即可选出答案. 详解:因为{}()()()19U U U C A C B C A B ==,, 所以{3,5,7}A B =.即:集合A 、B 中至少有一个集合含有5. A 选项:5,5A B ∉∉,错误.B 选项:5,5A B ∉∈,{}5)7UC A B =∈(,不符合题意.D 选项:5,5A B ∈∈,{}53A B ∈=,不符合题意. 故选:C 点睛:本题考查集合的交,并,补集的运算,认真审题是解决本题的关键,属于简单题.二、填空题 1.0或18解析:分0a =和0a ≠两种情况讨论,根据方程220ax x ++=只有一根可得出关于实数a 的等式,由此可解得实数a 的值. 详解:当0a =时,{}{}{}220202A x R ax x x x =∈++==+==-,合乎题意;当0a ≠时,要使A 为单元素集合,只需180a ∆=-=,解得18a =. 综上所述:0a =或18. 故答案为:0或18. 2.解析:令,由题意,得,解得.考点:元素与集合的关系.3.2解析:利用元素2和集合之间的关系,求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(一)集合的含义
A组基础巩固
1.下列说法正确的是()
A.某班中年龄较小的同学能够形成一个集合
B.由1,2,3和9,1,4组成的集合不相等
C.不超过20的非负数组成一个集合
D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素
解析:对于A项,“较小”没有明确的标准,所以A项不正确;对于B项,显然两个集合的元素完全相同,所以B项不正确;对于C项,由集合的概念可知,C项正确;对于D项,方程(x-1)(x+1)2=0的所有解构成的集合中有-1,1共2个元素,所以D项不正确,故选C.
答案:C
2.(2014·青岛高一检测)若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
解析:据集合中元素的互异性,可知a、b、c互不相等,故选D.
答案:D
3.下列各组集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.
A.①B.②
C.③D.以上都不对
解析:①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2,故选B.
答案:B
4.(2014·贵阳高一检测)有下列说法:
①集合N中最小的数为1;
②若-a∈N,则a∈N;
③若a∈N,b∈N,则a+b的最小值为2;
④所有小的正数组成一个集合.
其中正确命题的个数是()
A.0个B.1个
C.2个D.3个
解析:N中最小的数为0,所以①错;由-1
2∉N,且
1
2∉N可知②错;若a∈N,
b∈N,则a+b的最小值为0,所以③错;“小”的正数没有明确的标准,所以④错,故选A.
答案:A
5.(2014·温州高一检测)由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()
A.1 B.-2
C.6 D.2
解析:由题意,得a 2≠2-a 且a 2≠4,解得a ≠1,a ≠±2,故选C.
答案:C
6.(2014·
桂林高一检测)由实数x ,-x ,|x |,x 2,-3x 3所组成的集合中最多含( )
A .2个元素
B .3个元素
C .4个元素
D .5个元素
解析:∵x 2=|x |,-3x 3=-x ,|x |=±x ,∴由实数x ,-x ,|x |,x 2,-3x 3
所组成的集合中最多含有2个元素,故选A.
答案:A
7.(2014·
成都高一检测)已知集合P 中元素x 满足:x ∈N ,且2<x <a ,又集合P 中恰有三个元素,则整数a =__________.
解析:∵x ∈N ,且2<x <a ,集合P 中恰有三个元素,∴x 的值为3,4,5.又∵a ∈N ,∴a =6.
答案:6
8.(2014·石家庄高一检测)集合P 中含有两个元素分别为1和4,集合Q 中含
有两个元素1和a 2,若P 与Q 相等,则a =__________.
解析:由题意,得a 2=4,a =±2.
答案:±2
9.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为__________.
解析:由题意,知a ∈N ,a <6,且3a <6,故a =0或1.
答案:0或1
10.(2014·
福州高一检测)已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,求实数a +b 的值.
解析:∵集合A 中只有唯一的一个元素1,
∴⎩⎨⎧ a -b +1=0,Δ=b 2-4a =0.解得⎩⎨⎧ a =1,b =2.
∴a +b =3.
B 组 能力提升
11.(2014·
兰州高一检测)满足a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N 的有且只有2个元素的集合A 的个数是( )
A .0
B .1
C .2
D .3
解析:若a =0∈N ,则4-a =4∈N ,故A ={0,4},符合题意;
若a =1∈N ,则4-a =3∈N ,故A ={1,3},符合题意;
若a =2∈N ,则4-a =2∈N ,故A ={2},不合题意;
若a =3∈N ,则4-a =1∈N ,故A ={3,1},符合题意;
若a =4∈N ,则4-a =0∈N ,故A ={4,0},符合题意;
当a >4且a ∈N 时,均不符合题意.
综上,集合A 的个数是2,故选C.
答案:C
12.(2014·天津高一检测)集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t
∈A ,则t 的值为__________.
解析:由题意,知t ∈N 且t =-x 2+1≤1,故t =0或1.
答案:0或1
13.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且两集合相等,求a ,b 的值.
解析:由题意,得⎩⎨⎧ 2a =a ,b 2=b 或⎩⎨⎧
2a =b ,b 2=a . 解得⎩⎨⎧ a =0,b =0或⎩⎨⎧ a =0,b =1或⎩⎪⎨⎪⎧ a =14,b =12.
经检验,a =0,b =0不合题意;a =0,b =1或a =14,b =12合题意.
所以,a =0,b =1或a =14,b =12.
14.设P ,Q 为两个数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,求P +Q 中元素的个数.
解析:当a =0时,由b ∈Q 可得a +b 的值为1,2,6;
当a =2时,由b ∈Q 可得a +b 的值为3,4,8;
当a =5时,由b ∈Q 可得a +b 的值为6,7,11.
由集合元素的互异性可知,P +Q 中的元素为1,2,3,4,6,7,8,11,共8个.
15.(附加题·
选做) 已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证:
(1)3∈A .
(2)偶数4k -2(k ∈Z )不属于集合A .
证明:(1)令m =2∈Z ,n =1∈Z ,则x =m 2-n 2=4-1=3,所以3∈A .
(2)假设4k -2∈A ,则存在m ,n ∈Z ,使4k -2=m 2-n 2=(m +n )(m -n )成立. ①当m ,n 同奇或同偶时,m +n ,m -n 均为偶数,所以(m +n )(m -n )为4的倍数与4k -2不是4的倍数矛盾.
②当m ,n 一奇一偶时,m +n ,m -n 均为奇数,所以(m +n )(m -n )为奇数,与4k -2是偶数矛盾.
所以假设不成立.
综上,4k -2∉A .。