三相电机正反转控制电路
电机正反转控制电路附实际接线图
电机正反转控制电路附实际接线图The Standardization Office was revised on the afternoon of December 13, 2020三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故。
三相异步电动机正反转控制电路原理
三相异步电动机正反转控制电路原理一、引言二、三相异步电动机的结构与工作原理三相异步电动机由转子和定子组成。
转子是通过绕在铁心上的绕组与定子的磁场相互作用而转动的,定子则是通过交流电源提供的电流产生磁场。
在正常工作时,通过交流电源提供的三相交流电,定子上的绕组产生旋转磁场,转子中的导体感受到磁场的作用力而转动起来。
正转控制电路实际上是控制定子绕组的相序,使得定子产生一个顺时针方向的旋转磁场。
这样,转子中的导体就会被磁场的作用力吸引,产生转动。
电源通过接触器K1、K2分别接通R、S两相的接线板,使得电流通过电动机的两个定子绕组。
K3、K4是控制按钮,按下按钮K3和K4,使得接触器K1、K2动作。
当K1闭合,S相接通;当K2闭合,R相接通。
这样,电动机的两个定子绕组就可以依次接通,形成一个顺时针方向的旋转磁场。
电源通过接触器K1、K2分别接通R、S两相的接线板,使得电流通过电动机的两个定子绕组。
K4、K5是控制按钮,按下按钮K4和K5,使得接触器K1、K2动作。
当K1闭合,R相接通;当K2闭合,S相接通。
这样,电动机的两个定子绕组就可以依次接通,形成一个逆时针方向的旋转磁场。
而按钮K5可以将定子绕组的相序进行交换,使得电动机的旋转方向发生变化。
五、结论通过设计相应的正反转控制电路,可以实现三相异步电动机的正反转。
正转控制电路主要通过控制定子绕组的相序,使得定子产生一个顺时针方向的旋转磁场;反转控制电路则通过交换定子绕组的相序,使得电动机的旋转方向发生变化。
这些电路主要由电源、接触器、热继电器、控制按钮、接线板和电动机等组成。
三相电机正反转控制电路
三相电机正反转控制电路是通过改变电机电源的相序来实现的。
下面是一个简单的三相电机正反转控制电路的示例:
1. 电路图:
* 主电路电源进断路器QS,然后到KM1,到热继电器FR到电机。
* KM2主电路改变其中两项的相序从而改变电机转向。
2. 实物图配合电路图:
* 合上电源电源导入KM1----KM2主触点,同时到停止常闭,到启动按钮常开。
* 正转:按下启动按钮SB2接触器得电吸合,接触器主触点闭合,辅助触点闭合接触器自锁,电机正转运行。
同时接触器KM1常闭断开,此时即便按下启动按钮SB3也无法启动KM2。
* 停止:按下停止按钮SB1整个电路失电。
* 反转:按下启动按钮SB3接触器KM2得电吸合,接触器KM2主触点辅助触点闭合,同时常闭断开形成了对KM1互锁。
电机反转运行,停止按线停止按钮,接触器失电。
整个电路失电。
3. 工作原理:
* 主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
* 为确保两个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
在线路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源。
这两
正向启动过程对辅助常闭触头就叫联锁或互锁触头。
以上示例仅供参考,实际电路可能会因具体需求而有所不同。
建议咨询专业电工以获取更准确的信息。
三相异步电动机双重联锁正反转控制线路
定义
双重联锁正反转控制线路是一种 通过双重联锁保护实现电动机正 反转的控制线路。
特点
具有较高的安全性和稳定性,能 够有效地避免误操作和意外事故 的发生。
工作原理
工作原理
通过两个接触器KM1和KM2的常闭触点和互锁触点实现双重联锁,控制电动机 的正反转。当需要改变电动机的旋转方向时,只需改变接触器的状态即可。
感谢您的观看
三相异步电动机双重 联锁正反转控制线路
目录
• 双重联锁正反转控制线路的概述 • 电路组成与元件作用 • 双重联锁正反转控制线路的工作过程 • 双重联锁正反转控制线路的优缺点 • 双重联锁正反转控制线路的故障排除与维
护 • 双重联锁正反转控制线路的发展趋势与展
望
01
双重联锁正反转控制线 路的概述
定义与特点
用于接通或断开主电路,是整个 电路的电源入口。
三相异步电动机
作为被控制对象,实现电动机的正 反转运行。
接触器
用于控制电动机的启动和停止,通 过主触点连接电动机的三相电源。
控制电路
01
02
03
按钮开关
用于发出控制指令,常分 为启动、停止、正转和反 转等按钮。
继电器
用于接收控制信号并传递 给接触器,控制电动机的 启动和停止。
熔断器
作为电路的短路保护,当 电路发生短路故障时,熔 断器会熔断,切断电路。
双重联锁保护
机械联锁
通过机械结构实现正反转接触器的互锁,防止同时接通正反 转接触器,从而避免电动机正反转同时运行造成损坏。
电气联锁
通过继电器实现正反转接触器的互锁,当一个接触器接通时 ,相应的继电器触点会断开另一个接触器的控制回路,确保 不会同时接通正反转接触器。
三相电机互锁电路正反转控制电气原理
三相电机互锁电路正反转控制电气原理该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
三相电机互锁电路正反转控制电气原理该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 三相电机互锁电路正反转控制电气原理can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相电机互锁电路正反转控制电气原理。
电机正反转控制电路及实际接线图
在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,电机开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。
为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。
三相异步电动机正反转控制电路要点
复习相关知识
自锁控制电路原理图
按 动 图 中
按 钮 叙 述 自 锁 控 制 过 程
新 授:
一、倒顺开关正反转控制电路 二、接触器联锁正反转控制电路 三、按钮联锁正反转控制电路 四、双重联锁正反转控制电路
§6-4 三相异步电动机的正反转控制电路
思考:如何改变三相异步电动机的转向?
三相异步电动机的转向取决于通入 定子绕组中三相交流电的相序。
KM2
§6-4 三相异步电动机的正反转控制电路
二、接触器联锁正反转控制电路
L1 L2 L3
×××
Q
操作步骤: ① 合闸。 ② 正转起动。 ③ 正转停止。
④ 反转起动。 ⑤ 反转停止。
KM1
FR
M 3~
KM2
SB3
SB1
KM1
SB2 KM2
KM1 FR
KM2
§6-4 三相异步电动机的正反转控制电路
电动机M起动
KM1联锁触头分断对KM2联连续正转
锁
§6-4 三相异步电动机的正反转控制电路
四.按钮、接触器双重联锁正反转控制电路
工作原理:
(2)反转控制
按下 SB2
SB2常闭触头先分断 KM1线圈失电 电动机
KM1自锁触头分 M K断KMM11主联触锁头触分头断恢复闭失合电
SB2常开触头后闭合
KM2线圈 KM2自锁触头闭合自锁 电动机M起动
§6-4 三相异步电动机的正反转控制电路
电动机定子接线盒
电源
L1 L2 L3 3~
星
形
U1
V1 W1
W2
U2 V 2
(Y) 联 接
U1 V1 W1 W2 U2 V2
L1 3L~2 L3
三相电机正反转控制电路
三相电机正反转控制电路
控制电路采用3个继电器实现,如图所示:
在控制电路中,通过闸刀S1来控制三相电机的通电与否,开关S通过控制继电器的吸合来控制电机的正反转。
三个继电器分别把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,以及把三相电源和电动机的定子绕组按反相序L3、L2、L1连接,使电动机可以实现正反两个方向上的运行。
当S1通电时,三相电机的定子绕组按顺相序L1、L2、L3连接,默认为正转;当把S闭合时,三个继电器j1、j2、j3均吸合,三相电机的定子绕组按顺相序L3、L2、L1连接,三相电机反转。
该电路以弱电(12V直流电)控制强电(三相电源),方便简洁,安全性高。
附:
继电器参考资料
SRD-09VDC-SL-C。
三相异步电动机的正反转控制线路
KM1
FR UV W
M 3~
FR
SB1 KM2
SB2 KM1 SB3 KM2
KM2
KM1
KM1
KM2
模拟实验室连接接触器联锁正反转控制电路
L1 L2 L3 按钮
交流接触器 热继电器
电动机
线圈
热继电器动断 触头接线柱
模拟实验室连接接触器联锁正反转控制电路
L1 L2 L3 按钮
交流接触器 热继电器
电动机
KM1
FU2 KH
SB1
KM2
KM1
KM2
SB2
SB3
KH
UV W
M 3~
KM2 KM1
KM1 Kቤተ መጻሕፍቲ ባይዱ2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
FU2
L1
L2
L3
按下SB2, SB2动断触头断 开,对KM2联锁
KM1
SB2动合触头闭 合, KM1线圈得电
KH
UV W
M 3~
KH
SB1
KM2
L1
L2
L3
KM1
按下SB1,使KM1线 圈失电,各触头复位
KH
UV W
M 3~
KH
SB1
KM2
KM1
KM2
SB2
SB3
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1 L1 L2 L3
松开SB1
KM1
FU2 KH
SB1
KM2
KM1
KM2
SB2
SB3
KH
UV W
M 3~
电动机
电机正反转控制电路附实际接线图
三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,电机开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。
为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。
plc三相异步电动机正反转控制电路
plc三相异步电动机正反转控制电路PLC(可编程逻辑控制器)是一种常用于工业自动化领域的控制设备,而三相异步电动机则是工业中常用的电动机类型之一。
在工业生产中,正反转控制电路是对三相异步电动机进行控制的基本需求之一。
本文将详细介绍PLC三相异步电动机正反转控制电路的原理和实现方法。
一、PLC三相异步电动机正反转控制电路的原理三相异步电动机是一种常见的工业电动机,其正反转控制是工业生产过程中最基本的控制需求之一。
PLC作为一种灵活可编程的控制器,可以实现对三相异步电动机的正反转控制。
PLC三相异步电动机正反转控制电路的原理如下:1. 通过PLC控制输出信号,将其连接到三相异步电动机的控制回路中。
2. 通过PLC程序编写,对输出信号进行逻辑控制,实现正反转控制。
3. 根据控制信号的不同,调整电动机的相序和频率,使其实现正转或反转。
二、PLC三相异步电动机正反转控制电路的实现方法PLC三相异步电动机正反转控制电路的实现方法主要包括以下几个步骤:1. 硬件连接:将PLC的输出端口与三相异步电动机的控制回路连接起来,确保信号可以正常传输。
具体连接方式根据PLC设备和电动机的接口类型而定,一般包括连接线路和插头等。
2. PLC程序设计:通过PLC的编程软件,编写控制程序实现正反转功能。
PLC的编程软件一般采用图形化编程语言,如梯形图(Ladder Diagram)、功能块图(Function Block Diagram)等。
在程序中,需要根据输入信号的状态判断电动机的运行状态,并根据需要输出控制信号实现正转或反转。
3. 电动机控制逻辑设计:根据具体的控制需求,设计电动机的控制逻辑。
一般而言,通过判断电动机的启动信号、停止信号和反转信号的状态,来实现对电动机的正反转控制。
例如,当启动信号为1时,输出正转信号;当停止信号为1时,输出停止信号;当反转信号为1时,输出反转信号。
通过逻辑组合和判断,实现电动机的正反转控制。
电机正反转控制电路工作原理
电机正反转控制电路工作原理
电机正反转控制电路可以将电机的旋转方向进行控制,实现正转和反转的切换。
其基本原理是通过改变电机的供电方式来改变电流的方向,从而使电机的旋转方向发生变化。
具体来说,当控制电路接通时,电源的正极通过一个开关连接到电机的一个端子上,而电源的负极则通过另一个开关连接到电机的另一个端子上。
当开关1闭合时,电机会正转;当开关2闭合时,电机会反转。
而当两个开关都断开时,电机则不会转动。
为了保证电机正反转的稳定性和可靠性,通常会使用一些辅助部件,如继电器、电容器和限流电阻等,来保护电路和延长电机的使用寿命。
总之,电机正反转控制电路是一种简单实用的电路,在机械、自动化、家电等领域广泛应用。
三相交流电动机正反转控制电路安装实训教案
三相交流电动机正反转控制电路安装实训教案一、实训目的1. 理解三相交流电动机的工作原理及正反转控制原理。
2. 熟悉三相交流电动机的控制电路元件及其作用。
3. 学会三相交流电动机的正反转控制电路的安装与调试方法。
4. 提高动手能力,培养工程实践能力。
二、实训原理1. 三相交流电动机的工作原理:三相交流电动机是利用三相交流电源产生的旋转磁场,使电机转子产生旋转,从而实现机械能转换的装置。
2. 正反转控制原理:通过改变三相交流电动机中电源相序,实现电动机的正反转控制。
三、实训器材1. 三相交流电动机一台(型号:X)2. 控制电路元件:按钮、开关、接触器、电线等。
3. 电源设备:三相交流电源(电压:XV,频率:XHz)4. 工具:螺丝刀、扳手、绝缘胶带等。
四、实训内容1. 学习三相交流电动机正反转控制电路的原理图及接线图。
2. 掌握三相交流电动机正反转控制电路的安装步骤。
3. 学会使用控制电路元件进行电动机的正反转控制。
4. 掌握电动机正反转控制电路的调试方法。
五、实训步骤1. 学习三相交流电动机正反转控制电路的原理图及接线图,理解各电路元件的作用。
2. 根据原理图及接线图,进行电动机正反转控制电路的安装,包括元件的选购、接线等。
3. 安装完成后,进行电路的检查,确保电路连接正确无误。
4. 开启电源,进行电动机的正反转控制,观察电动机运行情况,调试至正常运行。
5. 完成实训内容,清理工作现场,收拾器材。
注意事项:1. 实训过程中应严格遵守安全操作规程,确保人身及设备安全。
2. 操作电器设备时,确保手部干燥,避免触电事故的发生。
3. 实训过程中,如需帮助,请及时与指导老师联系。
六、实训评价1. 能正确识别并理解三相交流电动机正反转控制电路的原理图及接线图。
2. 能独立完成三相交流电动机正反转控制电路的安装,接线正确无误。
3. 能熟练操作控制电路,实现电动机的正反转控制。
4. 能对电动机正反转控制电路进行调试,确保电动机正常运行。
三相异步电动机正反转控制电路工作原理
三相异步电动机正反转控制电路工作原理1. 三相异步电动机的基本知识在工业中,三相异步电动机就像是个“工作马”,它负责带动各种机器、设备转起来,简直是个“劳模”。
那么,啥是三相异步电动机呢?简单来说,它是利用三相交流电的电磁场来运行的。
这个电机可以说是聪明的,依靠转子与定子之间的相互作用,产生旋转力矩,让机器运转得平平稳稳。
说白了,就是你给它电,它就给你转,谁也不耽误谁。
这玩意儿的工作原理,其实也挺简单的。
三相电源的变化会在定子里产生旋转的磁场,转子就被这磁场“吸引”着转动。
不过,它可是个“独立”个体,没事的时候,它也不会转,得等到电压来了,它才会乐呵呵地动起来。
这种电动机的好处就是省电、耐用,而且维护起来也相对简单,真是工业界的“老实人”。
2. 正反转控制的必要性接下来,我们得聊聊为啥要控制电动机的正反转。
想象一下,你的电动机像个“调皮捣蛋鬼”,有时候需要前进,有时候又得后退,这时候就得靠控制电路来帮忙了。
比如说,咱们在某些设备上,可能需要先把材料输送过去,之后再把空桶拉回来,这时候就得控制电动机的转向。
2.1 正转与反转的基本概念正转,顾名思义,就是电动机按照正常的方向转动;反转嘛,听起来就有点调皮,就是电动机反着转。
对于电动机来说,这两种转向是“人生”的重要选择。
就像一个人,有时候需要直奔目标,有时候又得打个弯儿绕一下,才能达到目的地。
2.2 控制电路的组成那么,正反转控制电路又是个啥呢?其实,这个电路的组成并不复杂。
主要是一些开关、接触器、继电器,还有控制线路。
简单地说,这些小家伙儿就像是一支“乐队”,各司其职,有的负责开启,有的负责关闭,有的则负责切换方向,真是热闹得很。
3. 控制电路的工作原理说到控制电路的工作原理,那就更有意思了!想象一下,你在一个舞会上,DJ控制着音乐,来调动大家的情绪。
电动机的控制电路也是如此,电流的流向就像是音乐的节拍,带动着电动机的“舞步”。
3.1 正转控制的实现当你想让电动机正转时,控制电路会通过接触器闭合相应的电路,电流顺利通过,让电动机高兴地“转”起来。
三相异步电机正反转控制电路原理
三相异步电机正反转控制电路原理了解三相异步电机的正反转控制电路?那真是有趣又富有挑战。
接下来,让我用一种轻松幽默的方式带你走进这个小小的电机世界吧!1. 电机的基本概念首先,什么是三相异步电机?你可以把它想象成一个调皮的小孩子,三个电相就像三个家长,在不停地给它“喂养”能量。
电机的转动就像是小孩子的跑跳,这可得靠电流的配合。
要知道,三相电机的“家长”是三相电源,这种电源能够给电机提供一个稳定的动力,让它像蹦跳的小兔子一样跑个不停。
电机的“正转”和“反转”其实就是调整电流的方向,让电机能够向前或者向后“奔跑”。
这就像是在玩儿一场“调皮”的游戏呢。
2. 正反转控制的原理2.1. 正转控制咱们先聊聊电机的正转吧。
电机正转,就好比小孩子玩游戏时往前跑。
为了让电机向前转,我们得确保电流按照正确的顺序进入电机。
三相电源中,电流顺序得对,电机才能正常转动。
就像你做饭时,得先把锅放在火上,再放油,最后才是放菜,要不然就全乱套了。
正转时,电机的定子绕组上的电流是按一定的顺序流动,这样它就会产生一个旋转的磁场,把电机的转子“推”起来,转动的方向就是正转啦。
2.2. 反转控制现在来说说反转。
电机的反转,就像是小孩玩儿游戏时突然掉头跑。
要实现反转,我们得调整电流的顺序,让它“逆流而上”。
这种调整可以通过更换电源线的连接方式来完成。
换句话说,就是把电机的三个电相线路互换位置。
这样,电流顺序改变了,磁场方向也会跟着变,电机的转子也就“调皮”地转向另一边了。
这种控制方式就像是在换脚跳舞,跳到另一边去,既简单又有趣。
3. 实现方法3.1. 手动控制手动控制正反转的方式就像是用手搅拌汤,自己动手操作。
你可以通过手动切换电机的接线来实现。
这需要使用几个开关,按下开关就能改变电机的转动方向。
不过这种方式有点儿麻烦,就像是拿着一根长长的搅拌棒,不太方便。
3.2. 自动控制为了避免手动操作的麻烦,自动控制就像是用电动搅拌器,一切都变得简单了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相电机正反转控制电路
教学目标:
1:熟悉三相电机的控制元件的作用。
2:能够学会分析三相电机的启动以及正传的控制原理。
3:能够学会分析三相电机正反转的控制原理。
4:学会动力电器识图的基本知识。
5:了解和认识现代电器控制技术中的新方法、新产品。
教学重难点:
1:三相电机正反转控制电路的分析
教材分析:
本节课的内容在本章中处于重要的地位,它是在前面章节中相关基础知识的一个运用和提高,也是为后面章节知识点做一个知识的铺垫。
学情分析:
作为职业高中的学生来说,学生的基础情况不是很好,这对于要求学生学好本节的内容有着一定的难度。
为了提高学生的学习兴趣,要在必要的理论知识的基础之上加强相关的实践教学。
教学器材:
演示器材多媒体课件
教学过程:
教学内容教师活动学生活动
结合以上课件介绍:
启动过程:SB2——KM(线圈)——M(电机启动)
停止过程:SB——KM(线圈)——M(电机停止)
也叫自保,是指三相交流接触器的常开触点与启动按钮相并联,在松开按钮后保持交流接触器一直保持通电状态。
讲述,在实际生活中除了电机的单向运行以为,经常我们还会遇
在该电路中由于采用了同直接启动不同的结构,就可以改变输入到电机的相位,从而实现了正反转的过程出示课件3
结合该课件介绍该控制电路的控制原理
出示课件4
提出思考题:该电路的控制过程是怎样的?
结合学生的回答加以评述。
作业::
板书设计:三相电机控制电路1直接启动
2自锁(电器自锁)
3正反转控制电路。