6八年级 上平面直角坐标系练习题

合集下载

第5章 平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优

第5章 平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优

第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 .12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 .13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 .14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 .15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 .16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 .18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 .19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( , ).20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( , ).第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)参考答案与试题解析一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:∵点A(1,2)的横坐标和纵坐标均为正数,∴点A(1,2)在第一象限.故选:A.2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)【答案】C【解答】解:点P的坐标是(2,1),则点P关于y轴对称的点的坐标是(﹣2,1),故选:C.3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【答案】D【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【答案】C【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【答案】C【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)【答案】A【解答】解:如图,设△ABC的外心E(4,t),则CE=5﹣t,EM=t﹣2,∵EC=AE,∴5﹣t=,解得t=,可得结论.故选:A.二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 (2,﹣3) .【答案】见试题解答内容【解答】解:点A(2,3)关于x轴的对称点的坐标是(2,﹣3),故答案为:(2,﹣3).12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 (3,150°) .【答案】(3,150°).【解答】解:∵点D与圆心的距离为3,射线OD与x轴正方向之间的夹角为150°,∴点D的坐标为(3,150°).故答案为:(3,150°).13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 2 .【答案】见试题解答内容【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 6 .【答案】6.【解答】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD∥OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 (3,240°) .【答案】见试题解答内容【解答】解:如图所示:点C的坐标表示为(3,240°).故答案为:(3,240°).16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 (﹣2,﹣1) .【答案】见试题解答内容【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 (3,2) .【答案】见试题解答内容【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 (5,1) .【答案】见试题解答内容【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( 1 , ﹣2 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( ﹣2 , 3 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.。

八年级数学上第三章第二节《平面直角坐标系》复习题

八年级数学上第三章第二节《平面直角坐标系》复习题

第二节《平面直角坐标系》复习题作者:李老师答题者:2017.9.1一.选择题1.在平面直角坐标系中,点A(-2,3)位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,下列各点在第四象限的是( )A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)3.点M(1,2)关于x轴对称的点的坐标为( )A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)4.下列说法正确的是( )A.若点P是直角坐标系中x轴上一点,且坐标为(a,b),那么a=0B.若点P是直角坐标系中y轴上一点,且坐标为(a,b),那么a=0C.若点P的横坐标为0,那么点P一定在x轴上D.若点P的坐标为(a,b),只要a、b中有一个为0,点P就一定在y轴上5.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如果P(a,b)的坐标满足a×b=0,则P点在( )A.在x轴上B.在y轴上C.在原点D.在坐标轴上8.在第二象限内,点M(a,b)到y轴的距离为( )A.aB.bC.-aD.-b9.矩形ABCD的顶点A、B、C、D按顺时针方向排列,若在平面直角坐标系内,B、D两点对应的坐标分别是(2,0),(0,0),且A、C两点关于y轴对称,则点C的坐标是( )A.(1,1)B.(1,-1)C.(1,-2)D.10.若点P(m,2)与点Q(3,n)关于原点对称,则m、n的值分别是( )A.-3,2B.3,-2C.-3,-2D.3,211.在平面直角坐标系中,点P(-1,1)关于x轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在平面直角坐标系中,点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A1,则点A和A1的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向轴方向平移1个单位长度13.若A的坐标为(3,0),B的坐标为(0,2),C的坐标为(x0,y0),以O、A、B、C四点确定矩形的四个顶点,则( )A.x0=3,y0=2B.x2=2,y0=3C.x0=-3,y0=-2D.x0=-2,y0=-314.若点P的坐标是(0,3),则距P 3个单位长的点Q的坐标是( )A.(0,0)B.(0,6)C.(0,0)或(0,6)D.无法确定15.A和B是平行于x轴的一条直线上的不同两点,记A的坐标为(x1,y1),B的坐标为(x2,y2).则必有( )A.x1=x2B.y1=y2C.x1=y1D.x2=y216.下列语句中不正确的是( )A.在平面内,两条互相垂直的数轴的垂足是原点B.若a≠b,则(a,b)和(b,a)是两个不同点的坐标C.点A(2,0)在横轴上,点B(0,-2)在纵轴上D.仅有两条互相垂直的直线,不能组成平面直角坐标系17.如右图所示,下列说法中正确的是( )A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同D.C与D的纵坐标相同18.如右图所示,OABC为一菱形,且OA=OC=AC=2,则点B坐标为( )A.(2,) B.(3,) C.(,2)D.(,3)19.x轴上的点到点A(-1,1)和点B(2,3)的距离之和的最小值是( )A.5B.+C.1+3D.+20.若点M(x,-4)位于点A(0,8)和点B(-4,0)连线的延长线上,则x等于( )A.-2B.-6C.-8D.621.如果点P(x,-y)在第二象限,Q(x+y,-xy)在( )A.第一象限B.第二象限C.第三象限D.第四象限22.若点P(2x-1,3x+2)是x轴上的点,则( )A.x=1/2B.x=-1/2C.x=-2/3D.x=-3/223.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限24.若+(b+2)2=0,则点M(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限25.若点P(a,-5)与Q(-3,b)是同一点,则a、b的值分别为( )A.-3,-3B.-3,-5C.-5,-5D.-5,-326.若点P(m,-2)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限27.如右图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样的点P共有( )A.2个B.4个C.6个D.8个二.填空题28.在平面内,两条互相垂直且有_____________的数轴组成____________________.29.点P(2,-6)横坐标是____,纵坐标是_____,到x轴的距离是____,到y轴的距离是____.30.x轴上点的纵坐标为____,y轴上点的横坐标为_____.31.平面直角坐标系内任意两点M(x1,y1)、N(x2,y2)的距离公式为____________________.32.平面直角坐标系内有A(2,-6)、B(-4,3)两点,则AB的距离为________.33.过点A(1,-5)且垂直于y轴的直线交y轴于点B,则B点坐标为__________.34.已知点M(3,1/2m)关于原点对称的坐标在第三象限,那么m的取值范围是_________.35.已知点P到x轴的距离为3,到y轴的距离为2,则在平面直角坐标系中这样的点P有_____个,它们的坐标分别为____________________,它们分别所在的象限为____________________.36.若ab<0,a<0,则点P(a,b)在第象限内.37.已知点A(3,a),点B(b,-4)都在第一、三象限的角平分线上,则a+b= .38.已知点M在第二象限,它的横坐标与纵坐标的和为1,点M的坐标可以是_______.(写出一个符合条件的即可)40.以A(3,0)为圆心,以1.5为半径画圆,那么这个圆与x轴的交点坐标为_______.41.若点(-2,m)在第二象限内两条坐标轴夹角的平分线上,则m=____,若点B(-n,5)在第一象限内两条坐标轴夹角平分线上,则n=_____.42.如图1所示,△ABC是一个正三角形,B的坐标为(2,0),将△ABC沿AC边平移,使A点到C点,△ABC变换为△DCE,则它们的点对应坐标分别为A______,B______,C______,D______,E______.43.已知点A(4,x),B(y,-3),若AB∥x轴.且线段AB的长为5,则x= ,y= .44.已知点M在y轴上,点P(3,-2),若线段MP=5,则M的坐标是.45.如图2所示,若菱形OABC的对角线AC=10,且AC与x轴成30°角,则菱形的面积是.46.若ab<0,a<0,则点P(a,b)在第象限内.47.如图3所示,△ABO为等腰三角形,边AB=4,∠ABO=30°,则点A的坐标是,点B的坐标是.48.在平面直角坐标系内,如果点P(3a-9,1-a)在第三象限内,且横坐标、纵坐标都是整数,则P的坐标是.49.已知点M(3p-15,3-p)是第三象限的整点(横纵坐标均为整数),则点M的坐标为.50.如右图所示,图中不规则四边形ABCD的面积是.51.已知点P(x,y)在第三象限,且| x|=1 ,|y|=2,则点P关于原点对称点的坐标为.52.已知a<0,那么点P(-a2-2,2-a)关于x轴的对称点P/在第象限.53.将平行四边形ABCD的对角线交点与直角坐标系的原点重合,且点A、B的坐标分别为(-2,-1),(0.5,-1),则点C和D的坐标分别为____________________.54.点P(a+5,a-2),到x轴的距离为,则a= .55.若点P(a,b)位于y轴左方,x轴下方,且=3.| b-1|=4,则P的坐标为.56.点A(x,x)到原点的距离是2,则x= .57.如右图,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点_________.三.解答题58.写出图4中A、B、C、D四点坐标,并说明你发现的规律.59.写出图5中△ABC各顶点的坐标,并求出此三角形的面积.60.如图6所示,已知ABCD的对角线AC、BD相交于坐标原点O,AC与x轴夹角∠COF=30°,DC∥横轴,AC=8,BD=6,求平行四边形四个顶点的坐标.61.在一次敌我双方交战中,我军已经找到了坐标(2,-4)和(2,4)的两个敌军据点,并且知道敌军的主力部队的坐标为(5,5),除此之外不知道其他信息.我军欲一举歼灭敌军主力,如何确定直角坐标系找到敌军主力部队?62.如图所示,已知正三角形的边长为3,在下列建立的平面直角坐标系中,求出各顶点的坐标.63.根据指令[S,A](S≥0,0°<A<360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离S,现在机器人在平面直角坐标系的原点,且面对x轴的负方向,为使其移动到点(2,-2),应下的指令是什么?64.如图8所示,在平面直角坐标系中有A(-3,4),B(-1,2),O为原点.求(1)OA的长;(2)求S△AOB.。

八年级数学平面直角坐标系考点专项练习(含答案)

八年级数学平面直角坐标系考点专项练习(含答案)

八年级数学平面直角坐标系考点专项练习类型一确定点的位置1.如图QM1-1,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()图QM1-1A.(2,3)B.(0,3)C.(3,2)D.(2,2)2.张茜想在中国地图上准确地找到合肥市市政府的位置,下面能够快速准确确定合肥市位置的是()A.北京的西南方向上B.北纬31.5°C.北纬31.5°、东经117°D.东经117°3.如图QM1-2,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为.图QM1-2图QM1-34.如图QM1-3,A在南纬30°、东经120°的位置,B在的位置,C在的位置(用经纬度表示).5.图QM1-4是某学校的平面示意图,借助刻度尺、量角器,解决如下问题:(1)教学楼位于校门的北偏东多少度的方向上?到校门的图上距离约为多少厘米?实际距离呢?(2)某楼位于校门的南偏东约为75°的方向上,到校门的实际距离约为200米,说出这一地点的名称;(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置应如何表示?(10,5)表示哪个地点的位置?图QM1-46.如图QM1-5,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(),B→C(),C→D();(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置.图QM1-5类型二坐标系内点的坐标特征7.若m是任意实数,则点P(m,1-2m)一定不在 ()A.第一象限B.第二象限C.第三象限D.第四象限8.已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a的值为()A.1B.2C.3D.09.在平面直角坐标系中,已知A(-2,1),B(3,1),C(1,-2),D(-2,-2)四个点.(1)线段AB,CD有什么位置关系?并说明理由;(2)顺次连接A,B,C,D四点,得到梯形ABCD,求出它的面积.类型三图形在坐标系内的平移10.已知△ABC在平面直角坐标系中的位置如图QM1-6所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是()A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)图QM1-6图QM1-711.如图QM1-7所示,三架飞机P,Q,R保持编队飞行,某时刻它们在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)的位置,则飞机Q,R的位置Q',R'分别为()A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)12.小华用直角坐标系描述一个风景区的几个景点的位置,其中猴山与狮子园的坐标分别为(-4,3),(-2,2),他感到这样建立直角坐标系不方便,于是将坐标原点先向左平移4个单位,然后再向上平移1个单位,则移动后猴山与狮子园的坐标分别为.13.把点M向右平移2个单位,再向下平移3个单位得点N(1,1),则点M的坐标是.14.如图QM1-8,在平面直角坐标系中,将线段AB平移至线段CD的位置,连接AC,BD.(1)直接写出图中相等的线段、平行的线段;(2)已知A(-3,0),B(-2,-2),点C在y轴的正半轴上,点D在第一象限内,且S△ACO=5,求点C,D 的坐标.图QM1-815.如图QM1-9,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经过平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A,C,A1,C1的坐标;(2)求出以A,C,A1,C1为顶点的四边形的面积.图QM1-9类型一有关坐标系的易错题16.点P(-2,-5)到x轴的距离是()A.-2B.-5C.2D.517.已知点P(a+8,a-5)在坐标轴上,则a的值是.18.已知x轴上一点A(3,0),点B在y轴上,连接AB所得的△AOB的面积为6,求点B的坐标.类型二有关坐标系的创新题符合上述条件的点P的坐19.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个..标:.20.已知平面直角坐标系中有6个点:.A(3,3),B(1,1),C(9,1),D(5,3),E(-1,-9),F-2,-12请将上述的6个点分成两类,并写出同类点具有而另一类点不具有的一个特征(特征不能用否定形式表达).类型三有关坐标系的规律探究题21.如图QM1-10,在平面直角坐标系中,一个点从A(a1,a2)出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此一直运动下去,则a2014+a2015+a2016的值为()图QM1-10A.1006B.1007C.1509D.151122.如图QM1-11,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上,已知OA2=1,则OA2018的长为.图QM1-1123.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图QM1-12),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…,A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…,B n,图形与x轴负半轴的交点依次记作C1(-3,0),C2(-7,0),…,C n,图形与y轴负半轴的交点依次记作D1(0,-4),D2(0,-8),…,D n,发现其中包含了一定的数学规律.请根据你发现的规律解决下列问题:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n.图QM1-12期末复习1.D2.C3.(3,2)4.北纬30°、西经60°北纬60°、西经90°5.解:(1)教学楼位于校门的北偏东约为40°的方向上,图上距离约为2.1 厘米,实际距离约为210米.(2)位于校门的南偏东约为75°的方向上,到校门的实际距离约为200米的地点是实验楼.(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置表示为(2,9),(10,5)表示旗杆的位置.6.解:(1)+3,+4 +2,0 +1,-1 (2)9(3)P 的位置如图所示.7.C 8.B9.解:(1)AB ∥CD.理由:∵A (-2,1),B (3,1),∴点A ,B 的纵坐标相同,∴AB ∥x 轴.同理,CD ∥x 轴.∴AB ∥CD.(2)∵AB=5,CD=3,AD=3,∴梯形ABCD 的面积等于(5+3)×3÷2=12.10.B 11.A 12.(0,2),(2,1) 13.(-1,4) 14.解:(1)AB=CD ,BD=AC ,AB ∥CD ,BD ∥AC. (2)∵A (-3,0),∴OA=3. 设OC=x ,∵S △ACO =5,∴12×3x=5,解得x=103,∴点C 的坐标为0,103, ∴点A 向右平移3个单位,向上平移103个单位得到点C. -2+3=1,-2+103=43,故点D 的坐标为1,43. 15.解:(1)△A 1B 1C 1如图所示, A (-3,2),C (-2,0),A 1(3,4),C 1(4,2).(2)如图,连接AA 1,CC 1,S△AC1A1=12×7×2=7,S△AC1C=12×7×2=7,∴四边形ACC1A1的面积为7+7=14.16.D17.5或-818.解:由题意知,直角三角形AOB的面积为6,而|OA|=3,所以|OB|=4.因为点B在y轴上,所以点B的坐标为(0,-4)或(0,4).19.答案不唯一,如(-3,1)20.解:答案不唯一,如点A,B,C,D为一类,它们都在第一象限,点E,F为另一类,它们都在第三象限;或点A,C,E为一类,它们的横坐标与纵坐标的关系是x·y=9,点B,D,F为一类,它们的横坐标与纵坐标的关系是2y=x+1.21.D22.2201623.(1)(9,0)(0,10)(-11,0)(0,-12)(2)(4n-3,0)(0,4n-2)(-4n+1,0)(0,-4n)。

第六章-平面直角坐标系测试卷

第六章-平面直角坐标系测试卷

3)A B C D (第17题)图3相帅炮《平面直角坐标系》一、选择题1、若点A (m ,n )在第三象限,则点B (|m |,n )所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、(3,3)B 、(-3,3)C 、(-3,-3)D 、(3,-3)3、点P (x ,y ),且xy <0,则点P 在( ) A 、第一象限或第二象限 B 、第一象限或第三象限C 、第一象限或第四象限D 、第二象限或第四象限4、如图,与图1中的三角形相比,图2中的三角形发生的变化是( )A 、向左平移3个单位长度B 、向左平移1个单位长度C 、向上平移3个单位长度D 、向下平移1个单位长度5、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A 、(1,-2) B 、(-2,1) C 、(-2,2) D 、(2,-2) 6、若点M (x ,y )的坐标满足x +y =0,则点M 位于( )A 、第二象限B 、第一、三象限的夹角平分线上C 、第四象限D 、第二、四象限的夹角平分线上7、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( ) A 、将原图形向x 轴的正方向平移了1个单位 B 、将原图形向x 轴的负方向平移了1个单位C 、将原图形向y 轴的正方向平移了1个单位D 、将原图形向y 轴的负方向平移了1个单位8、点P (x -1,x +1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限二、填空题9、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。

10、如果点M (a +b ,ab )在第二象限,那么点N (a ,b )在第________象限。

八年级数学上册 第11章 平面直角坐标系 单元测试卷(沪科版 2024年秋)

八年级数学上册 第11章 平面直角坐标系 单元测试卷(沪科版 2024年秋)

八年级数学上册 第11章 平面直角坐标系 单元测试卷(沪科版 2024年秋) 一、选择题(本大题共10小题,每小题4分,满分40分)题序1 2 3 4 5 6 7 8 9 10 答案1.根据下列描述,能够确定一个点的位置的是( )A .省博物馆东侧B .体育馆东面看台第2排C .第5节车厢,28号座位D .学校图书馆前面2.如图,小明从点O 出发,先向西走40 m ,再向南走30 m 到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的是( )A .点AB .点BC .点CD .点D(第2题) (第3题)3.冰壶是在冰上进行的一种竞赛项目,被喻为冰上的“国际象棋”.如图是红、黄两队某局比赛投壶结束后冰壶的分布图,以冰壶大本营内的中心点为原点建立平面直角坐标系,按照规则,更靠近原点的壶为本局胜方,则胜方最靠近原点的壶位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.把点(3,-2)先向右平移3个单位,再向上平移4个单位得到的点的坐标是( )A .(6,2)B .(2,-6)C .(6,-6)D .(-2,-2)5.若点P (2a -3,2-a )在x 轴上,则点P 的坐标为( )A .(1,0) B.⎝ ⎛⎭⎪⎫12,0 C .(0,1) D.⎝ ⎛⎭⎪⎫0,12 6.若点A 到x 轴的距离是3,到y 轴的距离是5,且点A 在第三象限,则点A 的坐标是( )A .(-3,5)B .(-5,3)C .(-3,-5)D .(-5,-3)7.如图,平面直角坐标系中的三角形的面积是()A.4 B.6 C.5.5 D.5(第7题)(第10题)8.在方格纸上有A,B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为(2,5).若以点A为原点建立平面直角坐标系,则点B的坐标为() A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)9.三角形ABC在经过某次平移后,顶点A(-1,m+2)的对应点为A1(2,m-3),若此三角形内任意一点P(a,b)经过此次平移后对应点为P1(c,d),则a+b -c-d的值为()A.8+m B.-8+m C.2 D.-210.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1),点A4(6,3),…,按照这样的规律下去,点A2 024的坐标为()A.(3 035,1 011) B.(3 036,1 011)C.(3 035,1 013) D.(3 036,1 013)二、填空题(本大题共4小题,每小题5分,满分20分)11.点A(4,-3)到y轴的距离为________.12.在平面直角坐标系中,点A(3,4),B(-1,b),当线段AB最短时,b的值为________.13.在平面直角坐标系中,若点P(2-m,7-2m)在第二象限,则整数m的值为________.14.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0).例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(-1,5),则它的“3级关联点”的坐标为________;(2)若点P(m-1,2m)的“-3级关联点”P′位于坐标轴上,则点P′的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.如图是某市部分建筑简图,请建立合适的平面直角坐标系,并写出人民体育馆、市民广场、高铁南站的位置坐标.(第15题)16.如图,方格图中每个小正方形的边长为1个单位,点A,B,C都是格点.(1)画出三角形ABC向右平移2个单位,再向下平移1个单位后的三角形A′B′C′;(2)若P(m,n)是AB边上一点,则点P按(1)中平移后对应的点P′的坐标为____________.(第16题)四、(本大题共2小题,每小题8分,满分16分)17.已知点A(-3,2a-1),点B(-a,a-3).(1)若点A在第二、四象限角平分线上,求点A的坐标.(2)若线段AB∥x轴,求线段AB的长度.18.在边长为1个单位的小正方形组成的网格中建立如图所示的平面直角坐标系,四边形ABCD是格点四边形(顶点为网格线的交点).(第18题)(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断地平移,每次平移1个单位.其行走路线如图所示.(第19题)(1)填写下列各点的坐标:A4(______,______),A10(________,______),A15(________,________);(2)写出点A2 024的坐标;(3)指出蚂蚁从点A2 023到点A2 024的平移方向.20.如图,在三角形ABC中,三个顶点分别为A(0,-2),B(2,-3),C(4,0).(1)将三角形ABC先向左平移5个单位,再向上平移3个单位,得到三角形A′B′C′,直接写出三角形A′B′C′三个顶点的坐标,并在图中的直角坐标系中画出三角形A′B′C′;(2)设点P在y轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.(第20题)六、(本题满分12分)21.在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在如图所示的网格区域(含边界)上按要求画整点三角形.(1)在图①中画一个三角形P AB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图②中画一个三角形P AB,使点P,B的横坐标的平方的和等于它们纵坐标的和的4倍.(第21题)七、(本题满分12分)22.在平面直角坐标系中,给出如下定义:点A到x轴、y轴距离的较小值称为点A的“短距”,当点P的“短距”等于点Q的“短距”时,称P,Q两点为“等距点”.(1)点B(7,-27)的“短距”为________;(2)若点P(5,m-1)的“短距”为3,求m的值;(3)若C(-2,k),D(4,3k-5)两点为“等距点”,求k的值.八、(本题满分14分)23.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a, 0),点C的坐标为(0,b),且a,b满足a-8+|b-12|=0,点B在第一象限内,点P从原点出发,以每秒2个单位的速度沿着O→A→B→C→O的路线平移.(1)点B的坐标为__________;当点P平移5 s时,点P的坐标为____________.(2)在平移过程中,当点P平移11 s时,求三角形OPB的面积.(3)在(2)的条件下,坐标轴上是否存在点Q,使三角形OPQ与三角形OPB的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.(第23题)答案一、1.C 2.B 3.D 4.A 5.A 6.D 7.B 8.A 9.C10.D 点拨:观察题图可得,点A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n -1(3n -1,n -1);A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1).因为2 024是偶数,且2 024=2n ,所以n =1 012,所以A 2 024(3 036,1 013),故选D. 二、11.4 12.4 13.314.(1) (2,14) (2)⎝ ⎛⎭⎪⎫165,0或(0,-16) 点拨:由题意知,点P (m -1,2m )的“-3级关联点”为P ′(-3(m -1)+2m ,m -1+(-3)×2m ).①当P ′位于x 轴上时,m -1+(-3)×2m =0,解得m =-15,所以-3(m -1)+2m =165,所以P ′⎝ ⎛⎭⎪⎫165,0.②当P ′位于y 轴上时,-3(m -1)+2m =0,解得m =3,所以m -1+(-3)×2m=-16,所以P ′(0,-16).综上所述,点P ′的坐标为⎝ ⎛⎭⎪⎫165,0或(0,-16). 三、15.解:如图所示.人民体育馆坐标为(-2,3),市民广场坐标为(0,0),高铁南站坐标为(-1,-3).(答案不唯一)(第15题)16. 解:(1)如图,三角形A ′B ′C ′即为所求.(第16题)(2)(m +2,n -1)四、17.解:(1)因为点A (-3,2a -1)在第二、四象限角平分线上,所以-3+2a -1=0,解得a =2,所以A (-3,3).(2)因为线段AB ∥x 轴,所以2a -1=a -3,解得a =-2,所以A (-3,-5),B (2,-5),则AB =2-(-3)=2+3=5.18.解:(1)点A (4,1),B (0,0),C (-2,3),D (2,4).(2)四边形ABCD 的面积为4×6-12×2×3-12×1×4-12×2×3-12×1×4=14.五、19.解:(1)2;0;5;1;7;0 (2)A 2 024(1 012,0).(3)蚂蚁从点A 2 023到点A 2 024的平移方向是向右.20.解:(1)A ′(-5,1),B ′(-3,0),C ′(-1,3).如图,三角形A ′B ′C ′即为所求.(第20题)(2)因为三角形ABP 与三角形ABC 的面积相等, 所以12×AP ×2=4×3-12×1×2-12×2×3-12×2×4,所以AP =4.因为A (0,-2),所以点P 的坐标为(0,2)或(0,-6).六、21.解:(1)如图①.(答案不唯一)(2)如图②.(答案不唯一)(第21题)七、22.解:(1)7(2)因为点P (5,m -1)的“短距”为3,且5>3,所以|m -1|=3,解得m =4或m =-2.(3)点C 到x 轴的距离为|k |,到y 轴的距离为2,点D 到x 轴的距离为|3k -5|,到y 轴的距离为4,当|k |>2时,2=|3k -5|,则3k -5=2或3k -5=-2,解得k =73或k =1(舍去).当|k |≤2时,|k |=|3k -5|,则k +3k -5=0或k =3k -5,解得k =54或k =52(舍去).综上,k 的值为73或54.八、23.解:(1)(8,12);(8,2)(2)当点P平移11 s时,平移的路程为11×2=22,因为OA=8,AB=12,所以PB=22-8-12=2,所以P(6,12),所以S三角形OPB =12×2×12=12.(3)存在. 点Q的坐标为(0,4)或(0,-4)或(2,0)或(-2,0).。

苏科版八年级上第5章《平面直角坐标系》综合测试卷(有答案)

苏科版八年级上第5章《平面直角坐标系》综合测试卷(有答案)

11.已知平面直角坐标系中有三个点 A(2,4) , B(2,0) , C(a,0) .若 ABC 的面积为 10,
则 a .
12.已知以点 C(a,b) 为圆心,半径为 r 的圆的标准方程为 (x a)2 (y b)2 r 2 .例如:以点
14.在平面直角坐标系中,线段 MN 的两个端点的坐标分召明是 M (4,1) , N(0,1) ,将
线段 MN 平移后得到线段 M ' N ' (点 M , N 分别平移到点 M ', N ' 的位置).若点 M ' 的坐标
续以点 A, B,C 为对枷中心重复前面的操作,依次得到点 P4 , P5 , P6 ,...,则点 P2017 的坐
标是 .
18.如图,点 A, B 的坐标分别为 (0,3) , (4,6) ,点 P 为 x 轴上的一个动点.若点 B 关于直线
二、填空(每题 2 分,共 20 分)
9.在平面直角坐标系中,若点 M (1,3) 与点 N(x,3) 之间的距离是 5,则 x 的值是 .
10.已知点 P(a 1,a 5) 在第二象限,且到 y 轴的距离为 2,则点 P 的坐标为 .
A. (3,2) B. (3,2) C. (3,2) D. (3,2)
6.如图,动点 P 从 (0,3) 出发,沿如图所示的方向运动,每当碰到长方形的边时反弹,反弹
时反射角等于入射角,当点 P 第 2 018 次碰到长方形的边时,点 P 的坐标为( )
个顶点的坐标分别为 A(3,4) , B(5,2) , C(2,1) .
(1)画出 ABC 关于 y 轴对称的 A1B1C1 ;
(2)画出将 ABC 绕原点 O 按逆时针方向旋转 90º得到的 A2 B2C2 .

初二平面直角坐标系经典综合练习题

初二平面直角坐标系经典综合练习题

初二独立练习 2016.3.6满分100分第一卷(60分)一、选择题:(每题2分,共20分)1.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有( )A.1个 B.2个 C.3个 D.4个2.已知点A (2,-2),如果点A 关于x 轴的对称点是B ,点B 关于原点对称点是C ,那么点C 的坐标是( )A.(2,2)B.(-2,2)C.(-1,-1)D.(-2,-2)3.若点P(m -1, m )在第二象限,则下列关系正确的是( )A.10<<mB.0<mC.0>mD.1>m4.如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)5. 已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 若点P (x,y )的坐标满足xy=0(x ≠y),则点P ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上7. 如图,在平面直角坐标系中,平行四边形OABC 的顶点O 、A 、C 的坐标分别是(0,0)、(5,0)、(2,3),则顶点B 的坐标是( ) A 、(3,7) B 、(5,3) C 、(7,3) D 、(8,2)8. 线段CD 是由线段AB 平移得到的.点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)9. 已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( )A. 3B. - 3C.6 D. ±310.如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为 ( )A.(3,2)B.(6,2)C.(6,4)D.(3,5)二、填空题:(每题2分,共20分)yC F BO G A E x11.已知两点()()632121,、,P P ,那么21P P 长为 ; 12.点A(5,7-)到原点的距离是13.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则点 A 坐标是 ;14.已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________.15.当b=______时,点B(3,|b-1|)在第一.三象限角平分线上.16. 如果点P (m+3,m+1)在直角坐标系的x 轴上,则点P 的坐标为_________17.点A (-3,4),点B 在坐标轴上,且AB=5,那么点B 坐标为18. 如果点A (0,0),B (3,0),点C 在y 轴上,且ABC ∆的面积是5,C 点坐标为 .19.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点的坐标(0,4),B 点的坐标(-3,0),则C 点的坐标是 .20. 如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是 .三、解答题:21.对于边长为6的正△ABC ,建立适当的直角坐标系,并在图上标明各个顶点的坐标.22.如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1,而纵坐标不变后得到的图案;(4分)(2)在同一方格纸中,在y 轴的右侧,将原小金鱼图案上所有的点的坐标以相同的规律进行变化,使图案的形状不变,并且对应线B C A x(第22题图) 第19题。

人教版初中数学平面直角坐标系精选课时练习(含答案)6

人教版初中数学平面直角坐标系精选课时练习(含答案)6
38.1<d<11+ 5 .
39.-3 40.(﹣1,1). 41.(﹣a,b+4) 42.0<a<3 43.-1 或-4
44. 6,0 或 6,0
45. m 2
46.(0,﹣5)
47.(-1,3 3 )或(-1,-3 3 ),S△ABC=9 3 .
48.(1,4). 49.(1)图见详解; (2)(-2,-1);
(3) 9 .
50.(1)详见解析;(2)见解析.
答案第 2页,总 2页
A. 39
B. 2 10
C. 41
D. 42
11.若点 M(a﹣2,2a+3)是 y 轴上的点,则 a 的值是( )
A.2
3
B.﹣
2
C.﹣2
3
D.
2
12.点 M 为第二象限内的点,且到 x 轴距离为 5,到 y 的距离为 3,则点 M 的坐标为
()
A. 3,5
B. 5,3
C. 3,5
D. 3, 5
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.若点 P(m,1)在第二象限内,则点 Q(﹣m,0)在( )
A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半轴上
7.下列选项中与所给的函数表格对应的函数图像是( )
A.
B.
C.
D.
8.点 A ( 1, 2 )所在的象限是( )
A.第一象限
35.如图,点 A 的坐标是 ____________.
36.已知线段 AB∥x 轴,且 AB=4,若点 A 的坐标为(﹣1,2),则点 B 的坐标为_____. 37.若点 P(m,-m+3)关于原点的对称点 Q 在第三象限,那么 m 的取值范围是__________. 38.在直角坐标系中,点 E(10,0),F(0,5),A(﹣1,0),D(0,2),四边形 ABCD 为菱形,且点 B、C 在第二象限,向右平移菱形 ABCD,平移的距离为 d,当点 B 在△EOF 边及内部时,d 的范围是_____.

第六章平面直角坐标系基础训练题

第六章平面直角坐标系基础训练题

第六章平面直角坐标系基础训练题一、填空题1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。

2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。

点A 关于x 轴对称的点的坐标为3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。

4、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a 。

5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。

6、线段CD 是由线段AB 平移得到的。

点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。

7、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。

8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。

9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。

10、A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。

11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。

12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;13、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。

14、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。

线段PQ 的中点的坐标是________________。

平面直角坐标系典型练习题

平面直角坐标系典型练习题

平面直角坐标系典型练习题平面直角坐标系典型练习题一.选择题(共6小题)1.(2010•遵义)在一次“寻宝”人找到了如图所示的两个标志点A (2,3),B (4,1),A ,B 两点到“宝藏”点的距离都是,则“宝藏”点的坐标是( )A . (1,0)B . (5,4)C . (1,0)或(5,4)D . (0,1)或(4,5)2.(2009•济南)在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:1、f (a ,b )=(﹣a ,b ).如:f (1,3)=(﹣1,3);2、g (a ,b )=(b ,a ).如:g (1,3)=(3,1);3、h (a ,b )=(﹣a ,﹣b ).如:h (1,3)=(﹣1,﹣3). 按照以上变换有:f (g (2,﹣3))=f (﹣3,2)=(3,2),那么f (h (5,﹣3))等于( )A . (﹣5,﹣3)B . (5,3)C . (5,﹣3)D . (﹣5,3)3.(2008•枣庄)如图,点A 的坐标为(1,0),点B 在直线y=﹣x 上运动,当线段AB 最短时,点B 的坐标为( )A . (0,0)B . (,﹣)C . (,﹣)D . (﹣,)4. 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是( )A . (16,16)B . (44,44)C . (44,16)D . (16,44)5.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为( )A.(14,44)B.(15,44)C.(44,14)D.(44,15)6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)二.填空题(共2小题)7.(2011•江津区)如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC 沿AC所在直线翻折,点B落在点E处.则E点的坐标是_________.8.(2008•沈阳)在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有_________个.三.解答填空题(共2小题)9.(2008•铜仁地区)如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.(1)当A点在原点时,则原点O到点B的距离OB=_________;(2)当OA=OC时,则原点O到点B的距离OB=_________.10.如图所示,分别写出各点的坐标为:A_________,B_________,C_________,D_________,E_________,F_________,O_________.四.解答题(共20小题)11.(2011•安徽)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(_________,_________),A3(_________,_________),A12(_________,_________);(2)写出点A n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.12.(2010•杭州)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.13.(2008•温州)如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.14.(2008•荆州)已知点P(a+1,2a﹣1)关于x轴的对称点在第一象限,求a的取值范围.15.(2006•南京)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.16.(2006•湖州)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=_________时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=_________时,四边形ABDC的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=_________,n=_________(不必写解答过程);若不存在,请说明理由.17.(2005•杭州)在平面直角坐标系内,已知点A(2,1),O为坐标原点.请你在坐标轴上确定点P,使得△AOP 成为等腰三角形.在给出的坐标系中把所有这样的点P都找出来,画上实心点,并在旁边标上P1,P2,…,P K的坐标(有k个就标到P K为止,不必写出画法).18.(2002•贵阳)若点M(1+a,2b﹣1)在第二象限,则点N(a﹣1,1﹣2b)在第_________象限.19.一个动点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动(即(0,0)→(0,1)→(1,1)→(1,0)→…),且每秒移动一个单位,那么第100秒时动点所在位置的坐标是_________.20.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是_________,B4的坐标是_________;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是_________,B n的坐标是_________.21.(1)如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是_________.(2)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第100个点的坐标为_________.22.若式子有意义,则点P(a,b)在第_________象限.23.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出运动1秒钟时,A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.24.若A(2x﹣5,6﹣2x)在第四象限,求x的取值范围.25.已知点A(x,y)在第四象限,它的坐标x,y满足方程组,并且x﹣y≤5,求k 的整数解.26.如图,一个机器人从O点出发,向正东方向走3m,到达A1点,再向正北走6m到达A2点,再向正西走9m 到达A3点,再向正南走12m,到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是_________.27.解答下列各题(1)已知点P(a﹣1,3a+6)在y轴上,求点P的坐标;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围.28.如图,在直角坐标系中,设一动点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…则x1+x2+…+x99+x100=_________.29.已知:如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1).(1)继续填写:A6(_________,_________),A7(_________,_________),A8(_________,_________),A9(_________,_________).A10(_________,_________),A11(_________,_________),A12(_________,_________),A13(_________,_________).(2)写出点A2010(_________,_________),A2011(_________,_________).30.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?平面直角坐标系典型练习题参考答案与试题解析一.选择题(共6小题)1.(2010•遵义)在一次“寻宝”人找到了如图所示的两个标志点A (2,3),B (4,1),A ,B 两点到“宝藏”点的距离都是,则“宝藏”点的坐标是( )A . (1,0)B . (5,4)C . (1,0)或(5,4)D . (0,1)或(4,5)考点: 坐标确定位置。

第6章《平面直角坐标系》单元测试

第6章《平面直角坐标系》单元测试

第六章《平面直角坐标系》单元测试班级: 姓名: 得分:一、填空题(每空3分,共30分)1.电影票上“4排5号”,记作(4,5),则“5排4号”记作.2. 点P(-3,-2)在第象限.3.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1,-2),“相”位于点(3,-2),则“炮”的坐标为 .4. 点A在x轴上,位于原点右侧,距离坐标原点5个单位长度,则此点的坐标为.5.点P(-3,-5)到x轴距离为,到y轴距离为.6.将点A(-3,-1)向右平移2个单位得到点A′,则A′的坐标是.7.点P在第四象限,且横坐标与纵坐标的和为5,则点P坐标为(写一个即可).8.在平面直角坐标系内,把点P(-2,3)先向左平移2个单位长度,再向上平移4个单位长度后,得到的点的坐标是__________.9.若点P(m-2,m+1)在x轴上,P到原点距离为.10.如图,将边长为1的正方形OAPB沿x轴正方向边连续翻转2012次,点P依次落在点P1,P2,P3,P4……P2012的位置,则P2012的横坐标x2012=.二.选择题(每小题4分,共40分)11.课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A、(5,4)B、(4,5)C、(3,4)D、(4,3)12.下列各点中,在第二象限的点是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)13.如果点P(5,y)在第四象限,则y的取值范围是()A、y<0B、y>0C、y≤0D、y≥0(第10题)小刚小军小华(第11题)图3相帅炮(第3题)14.如图,下列说法正确的是( )A 、A 与D 的横坐标相同B 、C 与D 的横坐标相同 C 、B 与C 的纵坐标相同 D 、B 与D 的纵坐标相同 15.已知点A (-3,2),B (3,2),则A ,B 两点相距( )A、3个单位长度 B、4个单位长度 C、5个单位长度 D、6个单位长度16.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A 、(3,0)B 、(0,3)C 、(3,0)或(-3,0)D 、(0,3)或(0,-3) 17.点P 位于x 轴下方y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A 、(4,2)B 、(-2,-4)C 、(-4,-2)D 、(2,4) 18.点P (m +3,m +1)在x 轴上,则点P 坐标为( )A 、(0,-2)B 、(2,0)C 、(4,0)D 、(0,-4) 19.将某图形的横坐标都减去2,纵坐标不变,则该图形( )A 、向右平移2个单位B 、向左平移2个单位C 、向上平移2个单位D 、向下平移2个单位 20.若点P (x ,y )的坐标满足xy =0(x ≠y ),则点P 在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上 三、解答题(每题10分,共50分)21.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.yxODCB A(第14题)体育场 文化宫市场宾馆火车站 医院超市(第21题)22.图中标明了李明同学家附近的一些地方. ⑴ 写出学校和邮局的坐标.⑵ 某星期日早晨,李明同学从家里出发,沿着(-1,2)、(1,0)、(2,1)、(2,-2)、(-1,-2)、(0,-1)的路线转了一下,又回到家里,写出他路上经过的地方. ⑶ 顺次连结李明在⑵中经过的地点,你能得到什么图形?23.如图,将三角形ABC 向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A 1B 1C 1. (1)画出三角形A 1B 1C 1,并写出点A 1、B 1、C 1的坐标. (2)求三角形A 1B 1C 1面积.xy-3 -2 -1 O 1 2 -1 -2 4 3 2 1糖果店家邮局 学校汽车站姥姥家宠物店 消防站3 4 公园(第22题)游乐场 xyCBA-1-2 -3 -4 -5 12 3 4 054 32 1-2 -1 -4 -3 -5 5 (第23题)6 -66 724.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3.(1)观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是 ,B 4的坐标是 .(2)若按第(1)题找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是 ,B n 的坐标是 .25.在平面直角坐标系,横坐标,纵坐标都为整数的点称为整点.观察下图中每一个正方形(实线)四条边上的整点的个数.(1)画出由里向外的第四个正方形,在第四个正方形上有多少个整点?(2)请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有多少个? (3)探究点(-4,3)在第几个正方形的边上?(-2n ,2n )在第几个正方形边上(n 为正整数).yx81 7 1 6 1 5 1 4 1 3 12 1 1 1 0 1 9 8 7 6 5 43 2 1 0 54 3 2 1BA A 2 A 1 A 3B 2B 1B 3(第24题)xyO-5 -4 -3 -2 -1 1 2 3 4 5 -1-2 -3 -4 32 1(第25题)25.(1)图略,由内到外规律,第1个正方形边上整点个数为4个,第2个正方形边上整点个数为8个,第3个正方形边上整点个数为12,第4个正方形边上整点个数为16个.(2)第n个正方形边上的整点个数为4n个,所以第20•个正方形的边上整点个数为4×20=80(个).(3)第7个正方形边上,第4n个正方形边上.(│-2n│+│2n│=4n).。

沪科版数学八年级上册《第11章平面直角坐标系》单元测试卷含答案(2套).doc

沪科版数学八年级上册《第11章平面直角坐标系》单元测试卷含答案(2套).doc

第11章达标检测卷(120分,90分钟)题号— 二 三 总分得分一、选择题(每题4分,共40分)1. (2015-金华)点P(4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2. 如果点P(m+3, 2m+4)在y 轴上,那么点P 的坐标是( )A. (-2, 0)B. (0, -2)C. (1, 0)D. (0, 1)3. 在平面直角坐标系中,将三角形各点的纵坐标都减去一3,横坐标保持不变,所得 图形与原图形相比()A.向上平移了 3个单位B.向下平移了 3个单位C.向右平移了 3个单位D.向左平移了 3个单位4. 仲考•昭通)已知点P(2a-1, 1-a)在第一象限,则a 的取值范围在数轴上表示正确 的是()5. 三角形DEF 是由三角形ABC 平移得到的,点A(-l, 一4)的对应点为D(l, —1), 则点B(l, 1)的対应点E,点C(-l, 4)的对应点F 的坐标分别为()(2, 2), (3, 4) B. (3, 4), (1, 7)C.・(一2, 2), (1, 7)D. (3, 4), (2, -2)6. 如图,若在象棋棋盘上建立平面直角坐标•系,使“将”位于点(0, -1), “象”位 于点(2, -1),则“炮”位于点()A 0 0.5 13(0,1) A (3』)A(2t 0) ”(第7题)B\ (a, 2)D⑵7)5)O 丨⑷(0,0) 3(9,;)(第9 题)7如图,己知点A, B的坐标分别为(2, 0), (0, 1),若将线段AB平移至A】B】,贝0 a + b的值为()A. 2B. 3C. 4D. 58.已知正方形ABCD的边长为3,点A在原点,点B在x轴正半轴上,点D在y轴负半轴上,则点C的坐标是()A. (3, 3)B. (一3, 3)C. (3, —3)D.(―3, —3)9.如图,已知四边形ABCD的四个顶点的坐标分别为A(0, 0), B(9, 0), C(7, 5), D(2, 7),将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形的面积为()A. 40B. 42C. 44D. 4610.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位..... 以此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2吋,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A. (66, 34)B. (67, 33)C. (100, 33)D. (99, 34)二、填空题(每题5分,共20分)11.若电影票上“4排5号”记作(4, 5),则“5排4号”记作_______________ .12.(2015<东)如果点M(3, x)在第一象限,则x的取值范围是___________ .13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1, 0),安化县城所在地用坐标表示为(一3, -1),那么南县县城所在地用坐标表示为_____________ .14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2)……按这样的运动规律,经过第2 016次运动后,动点P的坐标是 ________________ .三、解答题(15〜17题每题6分,22题10分,其余每题8分,共60分)15・如图,试写出坐标平面内各点的坐标.16.(1)如果点A(2m, 3-n)在第二象限内,那么点n—4)在第几象限?⑵如果点M(3m+1, 4—m)在第四象限内,那么m的取值范围是多少?17.已知点M(3a-2, a+6).试分别根据下列条件,求出M点的坐标.⑴点M在x轴上;(2)点N(2, 5),且直线MN〃x轴;⑶点M到x轴、y轴的距离相等.18.李明设计的广告模板草图如图所示(单位:米),李明想通过电话征求陈伟的意见,假如你是李明,你将如何把这个图形告知陈伟呢?19.如图,一长方形住宅小区长400 m,宽300 m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50加为1个单位,建立平面直角坐标系.住宅小区内和附近有5处违章建筑,它们分别是A(3, 3.5), B(-2, 2), C(0, 3.5), D(-3, 2),玖一4, 4).在坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不•在小区内.20. 平面直角坐标系中的任意一点Po (xo ,yo )经过平移后的对应点为Pi (x 0 + 5, y 0+3),若将三角形AOB 作同样的平移,在如图所示的坐标系中画出平移后得到的三角形 A'O'B',并写出点A ,的坐标.<y1 1 T 厂 11 1 1r ~i I 1 1 _ _ 1 _ . J 1 1 11 1 1I 1 1 I I I 1 1 1 1 11 1 1I 1 1 i I l 1 1 ------ 1 L ■・ 1 1 ! : : 17 i i i i i 1 1 11 1 11 1 1 i i i i i i 1 L -. ::\0 :1 :: 1111r --1I ___1 1 1 1 1 1 i i i i i i ■" 1 1 .• J 1 1 • • r • "i" • r • ■ 1 1 1 ""T " "i" " 1 " * i i i 1 1 _1 1 1 11 1 1I1 I i i i • • r •• r • • 1 1 1 1. A. ""T * "I" ■ T ■ ■ l 1 1 A 1 .1(笫19题)(第20题)21・如图,已知四边形ABCD,则四边形ABCD的面积是多少?22.如图,长方形OABC中,0为平面直角坐标系的原点,A点的坐标为(4, 0), C点的坐标「为(0, 6),点B在第一象限内,点P从原点出发,以每秒2个单位的速度沿着O—A—B—C—O 的路线移动.(1)写出点B的坐标;(第21题)(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位时,求点P移动的时间.如C ------------ Bo\ A (第22 题)答案—、1^42.B点拨:y轴上点的横坐标为0,所以m+3=0,解得m=—3, 2m+4=—6+4 =一2,所以P(0, -2).3. 4[2a-l>0,4.C点拨:根据题意得:八解得0.5<a<l.[1—a>0,5. B6.A7.A8.C9.B点拨:将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形可以看成是由原四边形平移得到的,面积不会改变.所以只要求出四边形ABCD的面积即可.过点D作DE丄x 轴于E,过点C作CF丄x轴于F,则E(2, 0), F(7, 0),所以AE=2, EF= 5, BF=2, DE=7, CF=5.所以S 四边形ABCD=S三角形DAE+S梯形DEFC+S三角形CBF=*X2X7+*X(7 + 5)X5+*X2X5=7+30+5=42.10.C点拨:由题意得,每3步为一个循环组依次循环,且一个循环组内向右走3个单位,向上走1个单位,因为100-3 = 33……1,所以走完第100步,为第34个循环组的第1步,所处位置的横坐标为33X3+1 = 100,纵坐标为33X 1=33,所以棋子所处位置的坐标是(100, 33).故选C.本题考查了坐标确定位置,点的坐标的变化规律,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.在1至100这100个数中:(1)能被3整除的有33个,故向上走了33个单位,(2)被3除,余数为1的数有34个,故向右走了34个单位,(3)被3除,余数为2的数有33个,故向右走了66个单位,故一共向右走了34+66=100(个)单位,向上走了33个单位.二、11.(5, 4) 12.x>0 13.(2, 4)14.(2 016, 0)点拨:本题运用了从特殊到一般的思想.根据图中点P的坐标变化规律,可以看出:①点P的横坐标依次为1, 2, 3, 4,…,即点P的横坐标等于运动•次数,所以第2 016次运动后,点P的横坐标是2 016;②点P的纵坐标依次是1, 0, 2, 0, 1, 0, 2, 0,…,即每运动四次一个循环,因为2016-4=504,所以第2 016次运动后,点P 的纵坐标与第4次运动后的纵坐标相同.所以经过第2 016次运动后,点P的坐标为(2 016, 0).三、15•解:由题图可知:A(-5, 0), B(0, -3), C(5, -2), D(3, 2), E(0, 2), F(-3, 4).2m<0,16.解:(1)根据点A在第二象限可知解得m<0, n<3,则m—1<0, n~43—n>0,<0,所以点B在第三象限.[3m+l>0,(2)因为点M(3m+I, f)在第四象限,所以匸*°,解得心,所以m的取值范围是m>4.17.解:⑴因为点M[在x轴上,所以a+6=0,解得a=—6.当a=—6吋,3a—2 = 3X(-6)-2=-20,因此点M 的坐标为(-20, 0).「(2)因为直线MN〃x轴,所以点M与点N的纵坐标相等,所以a+6 = 5,解得a=-l. 当a= —l 时,3a—2 = 3X(—l)—2=—5,所以点M 的坐标为(一5, 5).(3)因为点M到x轴、y轴的距离相等,所以|3a—2| = |a+6|,所以3a—2=a+6或3a— 2+a+6=0,解得a=4 或a= —1.当a=4 时,3a—2=3X4—2=10, a+6=4+6=10,此时,点M 的坐标为(10, 10);当a=-l 时,3a-2=3X( — 1)一2=—5, a+6=-l+6=5, 此时,点M的坐标为(一5, 5).因此点M的坐标为(10, 10)或(一5, 5).18.解:把图形放到直角坐标系中,用点的坐标的形式「告诉陈伟即可.如,这个图形的各顶点的坐标是(0, 0), (0, 5), (3, 5), (3, 3), (7, 3), (7, 0).点拨:方法不唯一.19.解:如图,在小区内的违章建筑有B, D,不在小区内的违章建筑有A, C, E.y(第19题)20.解:根据点Po%, yo)经过平移后的对应点为Pi(x°+5, y°+3),可知三角形AOB 的平移规律为:向右平移了5个单位,向上平移了3个单位,如图所示:点A,的坐标是(2, 7).21.解:由题图可知,A(0, 4), B(3, 3), C(5, 0), D(—1, 0).过B点分别作x轴、y轴的垂线,垂足分别为F, E.则S四边形ABCD=S三弁WADO+S三和形ABE+S三角形BCF+S正方形OFBE=^X 1 X4+㊁X3X 1+㊁X3X2 + 3X3=15寺.C 1BP0 4 X(笫22题)22.解:⑴点B的坐标为(4, 6).(2)当点P移动了4秒时,点P的位置如图所示,此时点P的坐标为(4, 4).(3)设点P移动的时间为x秒,当点P在AB上时,由题意得,92x=4+5,解得x=2;当.点P在0C上时,由题意得,2x=2X(4+6)—5,解得9 J5所以,当点P到x轴的距离为5个单位时,点P移动了㊁秒或迈■秒•(第20题)第11章平面直角坐标系单元培优测试卷(考试时间:90分钟满分:100分)班级:_________ 姓名:_________________________一、填空题(本大题共10小题,,每小题3分,满分30分)1.在平而直角坐标屮,已知点A(a, b)在第二角限,则点3(/皿历在( ).A.第一象限B.第二象限C.第三彖限D.第四象限2.若点P (°, 67-2)在第四象限,则a的取值范围是( )A. ~2<a<0B. 0<a<2C. a>2D. a<03.已知直角坐标系内有一点M (G,b),..且aZ?二0,则点M的位置一定在( )A.原点上B.无轴上C・y轴上 D.坐标轴上4.根据下列表述,能确定位置的是( )A.体「育馆内第2排B.校园内的北大路C.东经118°,北纬68。

(完整版)平面直角坐标系练习题

(完整版)平面直角坐标系练习题

(完整版)平面直角坐标系练习题完整版平面直角坐标系练题1. 题目描述在平面直角坐标系中,给定以下几个坐标点:A(2, 4)B(6, 3)C(0, 0)D(-2, -5)请根据上述坐标点,解答以下问题。

2. 问题解答2.1. 问题一计算直线AB的斜率。

答案:直线AB的斜率可以通过以下公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)分别为直线上的两个坐标点。

将AB的坐标点代入公式中:斜率 = (3 - 4) / (6 - 2) = -1/42.2. 问题二计算线段CD的长度。

答案:线段CD的长度可以通过以下公式计算:长度= √((x2 - x1)^2 + (y2 - y1)^2)其中,(x1, y1)和(x2, y2)分别为线段的两个端点坐标。

将CD的坐标点代入公式中:长度= √((-2 - 0)^2 + (-5 - 0)^2) = √(4 + 25) = √292.3. 问题三判断点C是否在直线AB上。

答案:要判断点C是否在直线AB上,可以计算点C到直线AB的距离,并判断距离是否为0。

直线AB的一般式方程为:Ax + By + C = 0其中,A、B、C分别为直线AB的系数。

将直线AB的坐标点(2, 4)和(6, 3)代入一般式方程中,可以得到:2x + 4y + C = 06x + 3y + C = 0解得 C = -16点C的坐标为(0, 0),将其代入一般式方程,可以得到:2(0) + 4(0) + (-16) = -166(0) + 3(0) + (-16) = -16距离为0,因此点C在直线AB上。

2.4. 问题四如果将坐标系的原点移动至点A,点C的坐标变为多少?答案:将坐标系的原点移动至点A后,坐标点的变化需要根据移动的向量来计算。

移动的向量为向量AD,可以通过以下公式计算:向量AD = 点D的坐标 - 点A的坐标将D(-2, -5)和A(2, 4)代入公式中:向量AD = (-2 - 2, -5 - 4) = (-4, -9)点C移动后的坐标可以通过以下公式计算:点C的新坐标 = 点C的原坐标 + 向量AD将C(0, 0)和向量AD(-4, -9)代入公式中:点C的新坐标 = (0 + (-4), 0 + (-9)) = (-4, -9)因此,将坐标系的原点移动至点A后,点C的坐标变为(-4, -9)。

(完整版)八年级数学平面直角坐标系测试题

(完整版)八年级数学平面直角坐标系测试题

《平面直角坐标系》练习题一、选择题(4分×6=24分)1.点A(4,3-)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2)B、(3,3-)-)C、(2,3-)D、(2,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A 在x轴上B在y轴上C是坐标原点D 在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A 第2排第4列B 第4排第2列C 第2列第4排D不好确定6.线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A、A1(0,5-),B1(3-) B 、A1(7,3),B1(0,5),8-C、A1(4,5-)B1(-8,1)D、A1(4,3)B1(1,0)二、填空题(1分×50=50分)7.分别写出数轴上点的坐标:-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限 10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

11.如图,写出表示下列各点的有序数对:A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );I ( , )12.根据点所在位置,用“+”“-”或“0”填表:11109876543113111098741-113.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标(,);将点)5-向左平移3个单位长度,2(-可得到对应点(,);将点)5,2(+向上平移3单位长度可得对应点(,);将点)5,2(-向下平移3单位长度可得对应点(,)。

平面直角坐标系练习题

平面直角坐标系练习题

平面直角坐标系练习题1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣42.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<04.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是.12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是.13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第象限.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是.17.在平面直角坐标系中,点P(m2+1,﹣3)在第象限.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.函数练习题一:平面直角坐标系答案1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣4【解答】解:∵点P的坐标为(﹣3,﹣4),∴点P到y轴的距离为:|﹣3|=3.故选:B.2.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<0【解答】解:由题意得:,解得:0<a<2,故选:A.4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)【解答】解:如图所示:则“兵”位于(﹣3,2).故选:B.5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)【解答】解:∵点P(x,y)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∵点P到x轴的距离为5,∴点P的纵坐标是﹣5,∴点P的坐标(3,﹣5);故选:A.6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)【解答】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2分钟,将向左运动,(2,2)表示粒子运动了6=2×3分钟,将向下运动,(3,3)表示粒子运动了12=3×4分钟,将向左运动,...于是会出现:(44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动,∴在第2021分钟时,粒子又向下移动了2021﹣1980=41个单位长度,∴粒子的位置为(44,3),故选:B.7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)【解答】解:A、(﹣3,5)在第二象限,不符合题意;B、(1,﹣2)在第四象限,不符合题意;C、(﹣2,﹣3)在第三象限,符合题意;D、(1,1)在第一象限,不符合题意,故选:C.8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)【解答】解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0 解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故选:C.9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【解答】解:如图所示:市场的位置是(5,3),故选:D.10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是(0,﹣5).【解答】解:∵P(m+3,2m+1)在y轴上,∴m+3=0,解得m=﹣3,即2m+1=﹣6+1=﹣5.即点P的坐标为(0,﹣5).故答案为:(0,﹣5).12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是(﹣5,).【解答】解:∵|x|=5,∴x=5或﹣5,∵xy<0,y=,∴x=﹣5,∴点P的坐标为(﹣5,).故答案为:(﹣5,).13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为4或﹣1.【解答】解:∵M(3a﹣2,a+6),若点M到两坐标轴的距离相等,∴|3a﹣2|=|a+6|,∴3a﹣2=a+6或3a﹣2=﹣(a+6),∴a=4或a=﹣1,故答案为4或﹣1.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第三象限.【解答】解:∵点P(1﹣a,1+b)在第四象限,∴1﹣a>0,1+b<0,∴a<1,b<﹣1,∴a﹣1<0,b<0,∴(a﹣1,b)在第三象限,故答案为:三.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=﹣2.【解答】解:由点P(a+5,2a+1)点在第二、四象限的角平分线上,得a+5+2a+1=0,解得a=﹣2,故答案为:﹣2.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是(3,4)或(﹣3,4).【解答】解:∵点P(a,b)到x轴的距离是4,到y轴的距离是3,∴a=±3,b=±4,∵|a﹣b|=b﹣a,∴b﹣a>0,则b>a,当b=4,则a=±3,当b=﹣4,a的值不合题意,故点P的坐标是:(3,4)或(﹣3,4).故答案为:(3,4)或(﹣3,4).17.在平面直角坐标系中,点P(m2+1,﹣3)在第四象限.【解答】解:因为m2+1≥1,所以点P(m2+1,﹣3)在第四象限.故答案为:四.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.【解答】解:如图,描出点A(﹣3,4)、B(﹣3,3)、C(3,﹣3)、D(3,4),19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣=7.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.【解答】解:(1)依题意,得:,解得a=﹣2;则b=﹣3.所以A(0,﹣2),B(﹣3,0);(2)设P(x,0),由题意知,|x+3|×2=6.解得x=3或x=﹣9.所以点P的坐标(3,0)或(﹣9,0).。

初二数学期末复习优选作业——平面直角坐标系

初二数学期末复习优选作业——平面直角坐标系

初二数学期末复习优选作业——平面直角坐标系1.在平面直角坐标系内,点(2,10)M -在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若点N 在第二象限,且到x 轴的距离是1,到y 轴的距离是3,则点N 的坐标是( )A .(3,1)B .(3,1)--C .(1,3)-D .(3,1)-3.点(4,)A m m +在平面直角坐标系的x 轴上,则点A 坐标为( )A .(4,0)-B .(0,4)-C .(4,0)D .(0,4)4.用(2,4)-表示一只蚂蚁的位置,若这只蚂蚁先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只蚂蚁的位置是( )A .(1,6)B .(5,2)-C .(1,2)D .(2,1)5.过点(1,2)A -和(1,2)B --作直线,则直线(AB )A .与x 轴平行B .与y 轴平行C .与y 轴相交D .与x 轴、y 轴均相交6.下列语句:①点(3,2)与点(2,3)是同一个点;②点(0,2)-在x 轴上;③点(0,0)是坐标原点;④点(5,6)--到x 轴的距离为6.其中,正确的有( )A .0个B .1个C .2个D .3个 7.预备知识:线段中点坐标公式:在平面直角坐标系中,已知1(A x ,1)y ,2(B x ,2)y ,设点M 为线段AB的中点,则点M 的坐标为1212(,)22x x y y ++ 应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(1,1)-B .(2,4)-C .(2,1)-D .(1,4)-8.已知点(1,5)P a a -+到y 轴的距离为2,则点P 的坐标为 .9.点(6,8)A -到x 轴的距离为 ,到y 轴的距离为 ,到原点的距离为 .10.如果点(,)P x y 的坐标满足222x y xy +=,那么称点P 为和谐点.请写出一个和谐点的坐标: .11.如图,在平面直角坐标系中,(5,0)A ,(0,12)B ,P 是线段AB 上的一个动点,则OP 的最小值是 .12.如图,在平面直角坐标系中,已知点(2,4)A ,(1,2)B ,(5,2)C ,直线l 经过B ,C 两点的中点,则直线l 的表达式为_________________注:点(A A x ,)A y ,点(B B x ,)B y 两点的中点坐标公式是(2A B x x +,)2A B y y +. 13.已知点(24,1)P m m +-在y 轴上,求点P 的坐标并求出到原点的距离.14.已知点(2,1)A a b +,(2,2)B a b --.(1)若点A ,B 关于x 轴对称,求a ,b 的值;(2)若点A ,B 关于y 轴对称,求a b +的值.15.(1)若点(23,3)a a +-在第一、三象限的角平分线上,求a 的值;(2)已知点P 的坐标为(4,36)a a -+,且点P 到两坐标轴的距离相等,求点P 的坐标.16.已知点(2,28)P a a -+,点Q 的坐标为(1,5),直线//PQ y 轴;求出点P 的坐标.17. 如图,A (3,-2),B (3,-6)是某个轴对称图形上的两点,且互为对称点,已知此图形上有另点C (-2,1).(1)求点C 关于该图形对称轴对称的点的坐标;(2)求△ABC 的周长.18. 如图,在平面直角坐标系内,三角形A ′B ′C ′是由三角形ABC 平移得到,三角形ABC 内部一点P (a,b )随之平移后得到点P ′.(1)填空:点A 的坐标是_______;点A ′的坐标是________;点P ′的坐标是_______;(2)连接BB ′,'CC ,求四边形''BCC B 的面积.19.ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ,A ' .(2)若点(,)P a b 是ABC ∆内部一点,则平移后ABC ∆内的对应点P 的坐标为 .(3)ABC ∆的面积是 .(4)若在x 轴上存在一点Q ,使得3ABQ ABC S S ∆∆=,则点Q 的坐标为 .20.先阅读一段文字,再回答下列问题:已知在平面内两点坐标11(P x ,1)y ,22(P x ,2)y ,其两点间距离公式为22121212()()P x x y y P -+-例如:点(3,2)和(4,0)22(34)(20)5-+-同时,当两点所在的直线在坐标轴上或平行于x 轴或平行于y 轴距离公式可简化成1212||P x P x =-或1212||P y P y =-.(1)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为2,则A ,B 两点的距离为 ;(2)已知(3,5)A ,(4,4)B -,试求A ,B 两点的距离;(3)已知ABC ∆三个顶点坐标为(3,4)A ,(0,5)B ,(1,2)C -,请判断此三角形的形状,并说明理由.答案与解析一.选择题(共8小题)1.解:点(2,10)M-的横坐标大于0,纵坐标小于0,故点M所在的象限是第四象限,故选:D.2.解:N在第二象限,∴点N的横坐标小于0,纵坐标大于0;又点N到x轴的距离是1,即点N的纵坐标为1;点N到y轴的距离为3,即点N的横坐标为3-,∴点N的坐标是(3,1)-;故选:D.3.解:点(4,)A m m+在平面直角坐标系的x轴上,m∴=,∴点A的坐标为(4,0),故选:C.4.解:自点(2,4)-先水平向右爬行3个单位,然后又竖直向下爬行2个单位,此时这只蚂蚁的位置是(23,42)-+-,即(1,2),故选:C.5.解:设(,)D x y,由中点坐标公式得:732x+=,322y+=,1x∴=-,1y=,(1,1)D∴-,故选:A.6.解:(1,2)B,(5,2)C,∴线段BC的中点坐标为15(2+,22)2+,即(3,2),设直线l的解析式为y kx b=+,把(2,4)A,(3,2)分别代入得24 32k bk b+=⎧⎨+=⎩,解得28kb=-⎧⎨=⎩,∴直线l 的解析式为28y x =-+.故选:B .7.解:点(1,2)A -,(1,2)B --,∴直线:1AB x =-,直线1x =-与y 轴平行,∴直线//AB y 轴,故选:B .8.解:①点(3,2)与点(2,3)不是同一个点,横纵坐标不同,故此选项错误; ②点(0,2)-在y 轴上,故原说法错误;③点(0,0)是坐标系的原点,正确;④点(5,6)--到x 轴的距离为6,正确.故选:C .二.填空题(共5小题)9.解:点(3,10)P -到x 轴的距离为10,到y 轴的距离为|3|3-=. 故答案为:10,3.10.解:由点(6,8)A -可知,此点到x 轴的距离为|8|8=,到y 轴的距离为|6|6-=,到原点的距离为10.故答案为:8、6、10.11.解:2211211+=⨯⨯.故答案为:(1,1).12.解:当OP AB ⊥时,OP 的值最小.(5,0)A ,(0,12)B ,12OB ∴=,5OA =,13AB ∴===, ∴1122OA OBOB ABAB OP ⋅=⋅, 512601313OA OB OP AB ⋅⨯∴===. 故答案为:6013.13.解:点(1,5)P a a -+到y 轴的距离为2,|1|2a ∴-=,12a ∴-=或12a -=-,3a ∴=或1a =-当3a =时,12a -=,58a +=,当1a =-时,12a -=-,54a +=,点P 的坐标为(2,8)或(2,4)-,故答案为:(2,8)或(2,4)-.三.解答题(共6小题)14.解:根据题意,得:240m +=.解得2m =-;(0,3)P ∴-.故到原点的距离为:|3|3-=.15.解:(1)关于x 轴对称,横坐标不变,纵坐标互为相反数得:2221a b a b +=-⎧⎨-=-⎩,解得4535a b ⎧=-⎪⎪⎨⎪=-⎪⎩; (2)关于y 轴对称,则纵坐标不变,横坐标互为相反数得:2221a b a b +=⎧⎨-=⎩,解得4535a b ⎧=⎪⎪⎨⎪=⎪⎩. 得:75a b +=. 16.解:(1)点(23,3)a a +-在第一、三象限的角平分线上, 233a a ∴+=-,解得6a =-;(2)点P 的坐标为(4,36)a a -+,且点P 到两坐标轴的距离相等, 436a a ∴-=+或(4)(36)0a a -++=; 解得12a =-或5a =-, P ∴点坐标为9(2,9)2或(9,9)-. 17.解:(1)点Q 的坐标为(1,5),直线//PQ y 轴, 21a ∴-=,且285a +≠,解得:3a =,故2814a +=,则(1,14)P .(2)点P 到x 轴、y 轴的距离相等,228a a ∴-=+或2280a a -++=,解得:110a =-,22a =-,当10a =-时,212a -=-,2812a +=-,则(12,12)P --; 当2a =-时,24a -=-,284a +=,则(4,4)P -.综上所述:(12,12)P --或(4,4)-.18.解:(1)由图知点A 的坐标为(1,3)、点A '坐标为(3,1)-, 故答案为:(1,3)、(3,1)-;(2)由图知ABC ∆向左平移4个单位,再向下平移2个单位可得到△A B C ''', 则平移后△A B C ''内的对应点P '的坐标为(4,2)a b --, 故答案为:(4,2)a b --;(3)ABC ∆的面积为111231*********⨯-⨯⨯-⨯⨯-⨯⨯=. (4)设(,0)Q x ,则|2|BQ x =-, ∴1|2|3232x ⨯-⨯=⨯, 解得2x =-或6,∴点Q 的坐标为(2,0)-或(6,0),故答案为:(2,0)-或(6,0).19.解:(1)A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为2, A ∴,B 两点的距离为523-=;故答案为:3;(2)(3,5)A ,(4,4)B -,AB ∴=;(3)ABC ∆为等腰直角三角形.理由如下: (3,4)A ,(0,5)B ,(1,2)C -,AB ∴BC =AC = AB AC ∴=,222AB BC AC +=, ABC ∴∆为等腰直角三角形.。

平面直角坐标系-学生版

平面直角坐标系-学生版

平面直角坐标系知识回顾:平面直角坐标系的定义:对称变化:牛刀小试:1.如图,在平面直角坐标系中,已知正方形网格的格点A的坐标为(-3,5),则它到x轴的距离是____,到y 轴的距离是____,到原点的距离是____.格点B,C的坐标分别为,C).若点D(-3,-4),则它到x轴的距离为__ __,到y轴的距离为__ __,到原点的距离为__ __.7(第1题)2.在平面直角坐标系中,点P(-2,-3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限例题精讲:1.(1)已知点P(3-m,m)在第二象限,则m的取值范围是()A. m>0B. m<0C. m>3D. 0<m<3(2)若y轴上的点M到x轴的距离为2.5,则点M的坐标为()A. (2.5,0)B. (0,-2.5)C. (0, 2.5)D. (0,2.5) 或(0,-2.5)(第1题)(3)如图,在第二象限内的点是()A.P1,P2,P3B.P1,P2C.P1,P3D.P12.(1)若点P(2-a,3a+6)到两坐标轴的距离相等,则点P的坐标为()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)(第2题)(2)如图,在平面直角坐标系中,已知点B,C在x轴上,AB⊥x轴于点B,DA⊥A B.若AD=5,点A的坐标为(-2,7),则点D的坐标为()A.(-2,2)B.(-2,12)C.(3,7)D.(-7,7)(3)已知点A(5,4),B(5,8),则线段AB的位置特征和AB的长度分别是()A.与x轴相交,AB=4B.与y轴相交,AB=3C.与x轴平行,AB=3D.与y轴平行,AB=43.在如图所示的平面直角坐标系中,写出点A,B,C,D,E,F的坐标.(第3题)3.(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标.(2)已知点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.4.在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(1)若点A 在y 轴上,求a 的值及点A 的坐标.(2)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.5.(1)在平面直角坐标系中,若点A (a ,-b )在第一象限,则点B (a ,b )在(D )A. 第一象限B. 第二象限C. 第三象限D. 第四象限(2)已知点P (x -2,x +3)在第一象限,则x 的取值范围是 .(3)已知点M ⎝⎛⎭⎫23|x |,12x +1在第一、三象限的角平分线上,则x = .(4)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点……则边长为8的正方形内部的整点个数为__ _.(第5题)6.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4……这样依次得到点A n(n为正整数).(1)若点A1的坐标为(2,1),则点A3的坐标为( ),点A2018的坐标为( ).(2)若点A2018的坐标为(-3,2),设点A1(x,y),求x+y的值.(3)设点A1的坐标为(a,b),若点A1,A2,A3,…,A n均在y轴的左侧,求a,b的取值范围.巩固练习:1.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为( ).2.如图,若小明家A的位置表示为(1,1),学校B的位置表示为(3,3),则工厂C的位置表示为((第2题)3.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②○(a,b)=(-a,-b);③□(a,b)=(a,-b).按照以上变换,例如:△(○(1,2))=(1,-2),则○(□(3,4))=( ).4.如图,若“士”所在位置坐标为(-1,-2),“相”所在位置的坐标为(2,-2),则“将”所在位置的坐标为( ).(第4题)5.在平面直角坐标系中,A,B,C三点的位置如图所示,若点A,B,C的横坐标之和为a,纵坐标之和为b,求a-b的值.,(第5题))能力提升:1.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),求a 与b 的数量关系.2.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有(A ) A .5个 B .6个 C .7个 D .无数个3.如图,长方形ABCD 的面积为8,点C 的坐标为(0,1),点D 的坐标为(0,3),则点A 的坐标为( ),点B 的坐标为( ).4.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 60的坐标是( ).(第4题)5.如图,在平面直角坐标系中,点A (0,1),B (2,0),C (4,3).(1)求△ABC的面积.(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.(第4题)6.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:点P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根据这个规律,求点P2018的坐标.7.如图,在平面直角坐标系中,O为坐标原点,在长方形OABC中,点A(10,0),C(0,4),D为OA 的中点,P为BC边上一点.若△POD为等腰三角形,求所有满足条件的点P的坐标.。

小学六年级坐标练习题

小学六年级坐标练习题

小学六年级坐标练习题坐标练习题是小学六年级数学学习中的重要内容,通过这种练习可以帮助学生更好地理解和运用坐标系,提高他们的逻辑思维和问题解决能力。

本文将为大家提供一些小学六年级的坐标练习题,希望能对你的学习有所帮助。

1. 基本坐标练习(1) 在坐标系上标出点A(3, 4),请问它位于哪个象限?解答:点A位于第一象限。

因为横坐标是正数3,纵坐标是正数4,所以点A的坐标满足第一象限的条件。

(2) 在坐标系上标出点B(-2, 5),请问它位于哪个象限?解答:点B位于第二象限。

因为横坐标是负数-2,纵坐标是正数5,所以点B的坐标满足第二象限的条件。

2. 坐标系运用练习(1) 在坐标系上标出点C(0, -3),然后向上平移2个单位,再向右平移3个单位,得到新的点C',请问C'的坐标是多少?解答:点C经过向上平移2个单位和向右平移3个单位后,得到新的点C',其坐标为(3, -1)。

(2) 在坐标系上标出点D(5, -2),然后将坐标轴进行旋转90度,得到新的坐标轴系,求点D在新坐标轴系下的坐标D'。

解答:将坐标轴逆时针旋转90度后,新的坐标系上的点D'的坐标为(-2, 5)。

3. 四象限综合练习(1) 在第一象限内随机选取一个点P,使得横坐标和纵坐标均大于3,请问这个点P的象限是哪一个?解答:由于点P的横坐标和纵坐标均大于3,所以点P位于第一象限。

(2) 在第一象限内随机选取一个点Q,使得横坐标小于0,纵坐标大于0,请问这个点Q的象限是哪一个?解答:由于点Q的横坐标小于0,纵坐标大于0,所以点Q位于第二象限。

4. 图形坐标练习(1) 平面直角坐标系上有一正方形ABCD,其中A(-2, -2),C(2, 2),请问BC边的中点坐标是多少?解答:BC边的中点坐标为(2, 0)。

(2) 平面直角坐标系上有一矩形EFGH,其中E(1, 3),F(4, 3),G(4, 1),请问矩形EFGH的面积是多少?解答:矩形EFGH的面积为6个单位的平方。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A o
y
x 平面直角坐标系练习题8上
姓名 班级
一、填空:
1、已知点A 的坐标是(-2,3),则它在第 象限。

2、已知点P 的坐标是(4,-6),则这个点到x 轴的距离是 。

3、当x= 时,点M (2x-4,6)在y 轴上。

4、点(1,-2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 。

5、若点A (a-1,a )在第二象限,则点B (a,1-a )在第 象限。

6、直角坐标系中,点A (2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为 。

7、已知点P (x,y )满足()02y 2x 2=++- ,则点P 的坐标是 。

8、△ABC 的三个顶点的坐标为A(-5,2)、B(1,2)、C(3,-1),则△ABC 的面积为 。

9、若某点向右平移2个单位,再向下平移3个单位后,所得的点是坐标原点,则这点的坐标是 。

10、当x= 时,点A (4,x+2)与B(-3,6-3x)的连线平行于x 轴。

二、选择题:
1、点A (0,-2)在( )
A 、x 轴上
B 、y 轴上
C 、第三象限
D 、第四象限 2、在直角坐标系中,点A (3,1)和点B (3,3),则线段AB 的中点坐标是( )
A 、(2,3)
B 、(3,2)
C 、(6,2)
D 、(6,4) 3、点A (-3,-4)到原点的距离为( )
A 、3
B 、4
C 、5
D 、7 4、已知点M 的坐标是(a,b ),点N 的坐标是(x ,y ),若MN 平行于y 轴,则( ) A 、a=x B 、b=y C 、a=y D 、b=x
5、若使△ABC 的三个顶点在直角坐标系中的纵坐标保持不变,横坐标增大3个单位,则△ABC 的平移方向是( )
A 、向左平移3个单位
B 、向右平移3个单位
C 、向上平移3个单位
D 、向下平移3个单位 6、已知点A(2x-4,x+2)在y 轴上,则x 的值等于( ) A 、2 B 、-2 C 、2或-2 D 、非上述答案 7、已知平行四边形三个顶点的坐标分别是(1,0),(2,-3),(3,0),那么第四个顶点的坐标不可能的是( ) A 、(2,3) B 、(4,-3) C 、(0,-3) D 、(2,0)
8、已知P(-2,3),点M 在x 轴上,且PM=5,那么点M 的坐标是( )
A 、(-6,0)
B 、(0,0)
C 、(-6,0)或 (0,0)
D 、(0,6) 9、如图点A(3,2),点B 在坐标轴上,且△AOB 为等腰三角形,那么这样的 三角形有( )个
A 、5
B 、6
C 、7
D 、8
10、已知点(a ,2),(0,-2),(-4,-2),(-5,2)是平行四边形的四个顶点,
那么a 的值是( )
A 、-1
B 、-9
C 、0
D 、-1或-9
三、解答题
1
将原图形的各个顶点的
2、已知点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x 轴对称,试判断点(s ,t )所在的象限。

3、把一个多边形截去一个角,得到的新多边形的内角和为1440o ,那么原多边形是几边形?
4、如图,梯形ABCD 中,BC ∥AD ,M 、N 分别是AD 、BC 的中点,且∠A +∠D=90o ,试求线段AD 、BC 和MN 之间满足的数量关系。

N M D
C B A
5、如图,△OAB 中,点A 的坐标为(4,0),点B 的坐标为(2,2),点P 从点A 出发,沿A→B→O 的方向以每秒个单位匀速运动,同时点Q 从点D (0,2)出发,沿y 轴正方向以每秒2个单位匀速运动,当点P 到达点O 时,两点同时停止运动,设运动的时间为t 秒. (1)求∠BAO 的度数.
(2)设△OPQ 的面积为S (平方单位),求S (平方单位)与时间t (秒)之间的关系式及自变量t 的取值范围.
6、已知,矩形ABCD 中,AB=10,BC=12,菱形EFGH 的三个顶点E 、F 、H 分别在边AB 、BC 、
DA 上,且AE=2,BF=a. ⑴求点G 到BC 的距离;
⑵当a 为何值时,菱形EFGH 变成正方形?
⑶当a 为何值时,点G 在CD 上?
H G F
E D
C
B A。

相关文档
最新文档