七年级期末复习5-7章
【初中生物】七年级上册生物期末复习知识点总结大全
【初中生物】七年级上册生物期末复习知识点总结大全七年级上册生物期末复习知识点总结大全第一单元生物和生物圈一、生物的特征:1、生物的生活需要营养2、生物能展开体温3、生物能排出体内产生的废物4、生物能对外界提振作出反应5、生物能生长和繁殖6、由细胞形成(病毒除外)二、调查的一般方法步骤:明晰调查目的、确认调查对象、制订合理的调查方案、调查记录、对调查结果展开整理、编写调查报告三、生物的分类按照生活环境分后:陆生生物、水生生物按照形态结构分:动物、植物、其他生物按照用途分后:作物、家禽、家畜、宠物四、生物圈是所有生物的家1、生物圈的范围:大气圈的底部:可以飞翔的鸟类、昆虫、细菌等水圈的大部:距海平面150米内的水层岩石圈的表面:就是一切陆生生物的“立足点”2、生物圈为生物的生存提供了基本条件:营养物质、阳光、空气和水,适宜的温度和一定的生存空间3、环境对生物的影响(1)非生物因素对生物的影响:光、水分、温度等【光对鼠妇生活影响的实验】探究的过程、对照实验的设计(2)生物因素对生物的影响:最常见的是捕食关系,还有竞争关系、合作关系4、生物对环境的适应环境和影响生物对环境的适应p19的例子生物对环境的影响:植物的蒸腾作用调节空气湿度、植物的枯叶枯枝腐坏后可以调节土壤肥力、动物粪便改进土壤、蚯蚓松土5、生态系统的概念:在一定地域内,生物与环境所形成的统一整体叫生态系统。
一片森林,一块农田,一片草原,一个湖泊,等都可以看作一个生态系统。
6、生态系统的共同组成:生物部分:生产者、消费者、分解者非生物部分:阳光、水、空气、温度7、如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。
8、植物就是生态系统中的生产者,动物就是生态系统中的消费者,细菌和真菌就是生态系统中的分解者。
9、生物圈是最大的生态系统。
人类活动对环境的影响有许多是全球性的。
10、生态系统的类型:森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等11、物质和能量沿着食物链和食物网流动的。
七下数学-平面图形的认识专项训练
期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D . 2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角3、要求画ABC 的边AB 上的高.下列画法中,正确的是( )A .B .C .D . 4、下面不能组成三角形的三条线段是( )A .a =b =100cm ,c =1cmB .a =b =c =3cmC .a =2cm ,b =3cm ,c =5cmD .a =2cm ,b =4cm ,c =5cm5、已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°6、如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠47、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( ) A .50°B .45°C .35°D .30°8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S =△,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A .∠A =∠C +∠E +∠FB .∠A +∠E ﹣∠C ﹣∠F =180°C .∠A ﹣∠E +∠C +∠F =90°D .∠A +∠E +∠C +∠F =360°10、如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.12、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为()A .6B .8C .10D .1213、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.14、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.17、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.三、解答题19、如图所示,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,EG 平分∠BEF ,FG 平分∠DFE ,(1)若∠AEF =50°,求∠EFG 的度数.(2)判断EG 与FG 的位置关系,并说明理由.20、已知:如图EF CD ∥,∠1+∠2=180°.(1)试说明GD CA ∥;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC ∠,=12ACG ∠, 所以=,所以AB //CD ( ).23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC按照某方向经过一次平移后得到△A ' B 'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A ' B 'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )24、如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .①如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数;②如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BED 的度数(用含有α,β的式子表示).28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.期末复习:7章 平面图形的认识(二)2021-2022学年苏科版七年级数学下册(答案)一、选择题1、下列各组图形可以通过平移互相得到的是( )A .B .C .D .【答案】C2、如图所示,下列结论中正确的是()A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角【答案】.B解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C、∠1和∠4是同位角,故本选项错误;D、∠3和∠4是邻补角,故本选项错误;故选:B.3、要求画ABC的边AB上的高.下列画法中,正确的是()A.B.C.D.【答案】C4、下面不能组成三角形的三条线段是()A.a=b=100cm,c=1cmB.a=b=c=3cmC.a=2cm,b=3cm,c=5cmD.a=2cm,b=4cm,c=5cm【答案】C【解析】解:A、因为1+100>100,所以能构成三角形,故A不符合题意;B、因为3+3>3,所以能构成三角形,故B不符合题意;C、因为2+3=5,所以不能构成三角形,故C符合题意;D、因为2+4>5,所以能构成三角形,故D不符合题意.故选:C.∥,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分5、已知直线m n别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【答案】D∥,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.因为m n6、如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠3=∠4【答案】C解:A .由∠1=∠2可判断AD ∥BC ,不符合题意;B .∠BAD =∠BCD 不能判定图中直线平行,不符合题意;C .由∠BAD +∠ADC =180°可判定AB ∥DC ,符合题意;D .由∠3=∠4可判定AD ∥BC ,不符合题意;故选择:C .7、如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是( )A .50°B .45°C .35°D .30°如图,,∵直线a ∥b ,∴∠3=∠1=60°.∵AC ⊥AB ,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选D .8、如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABC S △,则DEF 的面积等于( )A .22cmB .24cmC .26cmD .28cm【答案】A解:∵S △ABC =16cm 2,D 为BC 中点,∴S △ADB =S △ADC =12S △ABC =8cm 2,∵E 为AD 的中点,∴S △CED =12S △ADC =4cm 2,∵F 为CE 的中点,∴S △DEF =12S △DEC =2cm 2;故选:A .9、如图,AB ∥CD ,则∠A 、∠C 、∠E 、∠F 满足的数量关系是( )A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°【答案】B延长AE、FC交于点G,过G作GH//CD,∵AB//CD,GH//CD,∴AB//GH//CD,∴∠A+∠AGH=180°,∠F=∠FCD,∴∠AEF=∠AGH+∠FGH+∠F=180°-∠A+∠FCD+∠F,整理得:∠A+∠AEF-∠FCD-∠F=180°,故选B.10、如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是()A.①②③B.①②④C.①③④D.①②③④【答案】A①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.二、填空题11、一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为_____.【答案】14解:设这个多边形的边数为n.(n﹣2)×180°+360°=2520°.解得:n=14.故这个多边形的边数为14.故答案为:14.12、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.12【答案】.C解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选C.13、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.∴,解:如图,12180∠+∠=︒,a b∴∠=︒-∠=︒,故答案为:110︒.∠=︒,5370370∴∠=∠=︒,4180511014、将一块直角三角板的直角顶点放在长方形直尺的一边上,如143∠=,那么∠2的度数为______ 【答案】.47如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故答案为47°.15、如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.16、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =___°.∵MF //AD ,FN //DC ,∴∠BMF =∠A =100°,∠BNF =∠C =70°.∵△BMN 沿MN 翻折得△FMN ,∴∠BMN =12∠BMF =12×100°=50°,∠BNM =12∠BNF =12×70°=35°.在△BMN 中,∠B =180°-(∠BMN +∠BNM )=180°-(50°+35°)=180°-85°=95°.故答案为:9517、某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了米. 解:机器人转了一周共360度,360°÷45°=8,共走了8次,机器人走了8×1=8米.18、如图,已知AD ∥CE ,∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠AFC 的余角等于2∠ABC 的补角,则∠BAH 的度数是______.解:设∠BAF =x °,∠BCF =y °∵∠BCF =∠BCG ,CF 与∠BAH 的平分线交于点F∴∠HAF =∠BAF =x °,∠BCG =∠BCF =x °,∠BAH =2x °,∠GCF =2y °,如图,过点B 作BM ∥AD ,过点F 作FN ∥AD∵AD∥CE;∴AD∥FN∥BM∥CE∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°∴∠AFC=(x+2y)°,∠ABC=(2x+y)°∵∠AFC的余角等于2∠ABC的补角∴90﹣(x+2y)=180﹣2(2x+y);解得:x=30;∴∠BAH=60°故答案为:60°.三、解答题19、如图所示,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,(1)若∠AEF=50°,求∠EFG的度数.(2)判断EG与FG的位置关系,并说明理由.【答案】(1)25°;(2)EG⊥FG解:(1)∵AB∥CD;∴∠EFD=∠AEF=50°∵FG平分∠DFE;∴∠EFG=12∠DFE=12×50°=25°(2)EG⊥FG理由:∵AB∥CD;∴∠BEF+∠EFD=180°∵EG平分∠BEF,FG平分∠DFE;∴∠GEF=12∠BEF,∠GFE=12∠DFE∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°∴∠G=180°-(∠GEF+∠GFE)=90°;∴EG⊥FG20、已知:如图EF CD∥,∠1+∠2=180°.(1)试说明GD CA∥;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【答案】解:(1)∵EF CD∥;∴∠1+∠ECD=180°又∵∠1+∠2=180°;∴∠2=∠ECD ;∴GD CA ∥;(2)由(1)得:GD CA ∥,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.21、如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.【答案】(1)DE ∥BC ;(2)72°解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.22、如图,直线AE 、CF 分别被直线EF 、AC 所截,已知∠1=∠2,AB 平分∠EAC ,CD 平分∠ACG ,将下列证明AB //CD 的过程及理由填写完整.证明:因为∠1=∠2,所以//(),所以∠EAC =∠ACG (),因为AB 平分∠EAC ,CD 平分∠ACG ,所以=12EAC∠,=12ACG∠,所以=,所以AB//CD().证明:因为∠1=∠2,所以AE∥CF(同位角相等,两直线平行),所以∠EAC=∠ACG(两直线平行,内错角相等),因为AB平分∠EAC,CD平分∠ACG,所以∠3=12∠EAC,∠4=12∠ACG,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).故答案为:AE;FG;同位角相等,两直线平行;两直线平行,内错角相等;∠3;∠4;∠3;∠4;内错角相等,两直线平行.23、画图并填空:如图,在12×8 的方格纸中,每个小正方形的边长都为1 ,△ABC 的顶点都在方格纸的格点上,将△ABC 按照某方向经过一次平移后得到△A' B'C ' ,图中标出了点C 的对应点C ' .(1)请画出△A' B'C ' ;(2)利用方格纸,在△ABC 中画出AC 边上的中线BD 和BC 边上的高AE ;(3)点F 为方格纸上的格点(异于点B ),若S ∆ACB =S ∆ACF ,则图中格点F 共有个.(请在方格纸中标出点F )解:(1)如图,△A'B'C'为所作;(2)如图,BD、AE为所作;(3)若S△ACB=S△ACF,则图中格点F共有5个,如图.故答案为5.24、如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.25、已知,直线AB∥CD(1)如图(1),点G为AB、CD间的一点,联结AG、CG.若∠A=140°,∠C=150°,则∠AGC的度数是多少?(2)如图(2),点G为AB、CD间的一点,联结AG、CG.∠A=x°,∠C=y°,则∠AGC的度数是多少?(3)如图(3),写出∠BAE、∠AEF、∠EFG、∠FGC、∠GCD之间有何关系?直接写出结论.【答案】(1)70°;(2)∠AGC=(x+y)°;(3)∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.解:(1)如图,过点G作GE∥AB,∵AB∥GE,∴∠A+∠AGE=180°(两直线平行,同旁内角互补).∵∠A=140°,∴∠AGE=40°.∵AB∥GE,AB∥CD,∴GE∥CD.∴∠C+∠CGE=180°(两直线平行,同旁内角互补).∵∠C=150°,∴∠CGE=30°.∴∠AGC=∠AGE+∠CGE=40°+30°=70°.(2)如图,过点G作GF∥AB∵AB∥GF,∴∠A=AGF(两直线平行,内错角相等).∵AB∥GF,AB∥CD,∴GF∥CD.∴∠C=∠CGF.∴∠AGC=∠AGF+∠CGF=∠A+∠C.∵∠A=x°,∠C=y°,∴∠AGC=(x+y)°.(3)如图所示,过点E作EM∥AB,过点F作FN∥AB,过点G作GQ∥CD,∵AB∥CD,∴AB∥EM∥FN∥GQ∥CD.∴∠BAE=∠AEM,∠MEF=∠EFN,∠NFG=∠FGQ,∠QGC=∠GCD(两直线平行,内错角相等).∴∠AEF=∠BAE+∠EFN,∠FGC=∠NFG+GCD.∵∠EFN+∠NFG=∠EFG,∴∠BAE+∠EFG+∠GCD=∠AEF+∠FGC.26、将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.解:(1)图1中,2∠A=∠1+∠2,理由是:∵延DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;(2)2∠A=∠2,如图∠2=∠A+∠EA′D=2∠A,故答案为:2∠A=∠2;(3)如图2,2∠A=∠2﹣∠1,理由是:∵延DE折叠A和A′重合,∴∠A=∠A′,∵∠DME=∠A′+∠1,∠2=∠A+∠DME,∴∠2=∠A+∠A′+∠1,即2∠A=∠2﹣∠1.27、阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【答案】(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 28、已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒, 故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠; (3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠, 又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒, 22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒, //AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒, 28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.。
七年级地理上册复习资料
七年级地理上册期末复习资料第一章让我们走进地理第一节我们身边的地理知识(课本2—5页)1、“地理”一词最早出现于公元前5世纪的《易经•系辞》中。
2、以风车而著名的国家是荷兰。
3、人类的活动不能随心所欲,它受到地理环境的影响和制约的影响。
4、阿拉伯人的传统服装多是身穿白色长袍,头戴白色长袍,这种打扮的原因是反射阳光、抵挡风沙。
第一章让我们走进地理第二节我们怎样学地理(课本6—12页)1、在地图的家族中分为两类包括:自然地图和社会经济地图。
自然地图包括地形图、气候图、水文图、植被图等社会地图包括工业图、农业图、商业图、交通图、人口分布图等。
2、每幅地图上都具备的要素包括:比例尺、方向、图例和注记。
3、地图上的方向:①有指向标的地图,指向标箭头一般指向北方;②没有指向标的地图,通常采用“上北下南,左西右东”来确定方向。
③在有经纬网的地图上,根据经纬线判断方向,经线指示南北方向,纬线指示东西方向。
4、比例尺:就是图上距离与实地距离之比。
公式:比例尺=图上距离:实地距离;①比例尺是个分数式,分母越大比例尺就越小。
现有①1:1000和②1:2000两个比例尺,较大比例尺是__①____,较小比例尺是_②______。
②所画地图范围越大(如中国地图),内容就越简略,选用比例尺越小,③所画地图范围越小(如北京地图),内容就越详细,选用比例尺越大。
④比例尺的三种表示方式:文字式、数字式、线段式。
5、图例和注记:判断常用图例:(教材第10页)第二章地球的面貌第一节认识地球(课本16—27页)1、①历史上首次实现了人类环绕地球一周航行的航海家是西班牙(国)的麦哲伦;②地球的真实形状是一个两极略扁、赤道略鼓的不规则球体。
2、地球有多大:赤道周长约为4万千米,地球的平均半径为6371千米;地球的表面积为5.1亿平方千米。
3、赤道是指在与南极、北极距离相等的地方画的圆圈。
赤道把地球平分成南、北两个半球。
4、经线和纬线(横纬竖经)5、南北纬及南北半球的划分①0 º赤道以北称北纬,用“N”表示;赤道以南称南纬,用“S”表示。
上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)
上课用---新浙教版七年级下数学知识点汇总(期末复习宝典)第1章平行线在同一平面内,两条直线的位置关系只有两种:相交与平行。
平行线的定义为:在同一平面内,不相交的两条直线叫做平行线,用符号“∥”表示。
为什么要有“在同一平面内”这个条件?因为平行线只存在于同一平面内,如果不在同一平面内,两条直线可能会相交。
平行线的基本事实是:经过直线外一点,有且只有一条直线与这条直线平行。
为什么要经过“直线外”一点?因为如果经过直线上的点,会有无数条直线与这条直线平行。
用三角尺和直尺画平行线的方法是:一贴,二靠,三推,四画。
需要注意的是,作图题要写出结论。
同位角、内错角、同旁内角是判断平行线关系的重要概念。
在判断过程中,需要画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线。
同位角在截线的同旁,被截线的同一侧;内错角在截线的异侧,被截线之间;同旁内角在截线的同旁,被截线之间。
练时需要填写正确的角对应关系。
平行线的判定有多种方法:同位角相等、内错角相等、同旁内角互补、平行线的定义、平行于同一条直线的两条直线平行、在同一平面内,垂直于同一条直线的两条直线互相平行。
在练中需要根据给定条件判断两条直线是否平行。
平行线的性质包括同位角相等、内错角相等、同旁内角互补。
在练中需要根据已知条件计算未知角度。
图形的平移是指一个图形沿某个方向移动,在XXX的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移。
平移不改变图形的形状、大小和方向,且一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
在描述一个图形的平移时,必须指出平移的方向和距离。
练:已知△ABC和其平移后的△DEF,点A的对应点是D,点B的对应点是E,线段AC的对应线段是DF,线段AB的对应线段是DE,平移的方向是从△ABC到△DEF的方向,平移的距离是未知。
若AC=AB=5,BC=4,平移的距离是3,则CF=4,DB=5,AE=3,四边形AEFC的周长是14.折叠问题:1)如图,将一张纸条ABCD沿EF折叠,若折叠角∠XXX°,则∠1=64°。
人教版七年级上册地理期末复习知识点提纲(实用,必备!)
人数版七律级上跚地理期末复习知识点提纲第一章第一节地球和地球仪1、地球的形状:速垫(赤道回各蓝、两极赂盛的不规则球体)2、地球形状的认识过程:王匮撞左--太阳月亮形状猜测一麦哲伦环球航行一地球的卫星照片〈天困地方后猜球,实践要靠全球游,卫星上天终得证,蓝色星球古!llft黑传〉首次证实地球球体的事件:麦哲伦船队的环球航行;确证地球是球体的事件:地球的卫星照片:生活中能证明地球是球你的例子:①始得高,看得远:②远处是来的帆船,总是先看见梳籽,后看见船身:③且食现象。
3、地球的大小:平均半径旦旦千米、赤道j司长鱼互干米、表丽积且_ft平方千米(6371451,半径阎长表面积,名称单位分仔细〉4、地球仪的定义:为了便于看到地球的全貌,人们仿照撞萃的形状,按照一定的些组把它缩小,制作了地球的模型地球仪。
5、地球仪的作用:①便于知道地球的面貌,了解地球表面各种地理事物的恃征及分布②借助地球仪演示地球的直转和金转6、地球仪上点和线地输s地球臼转铀〈但也鞠〉商银g地输与地球表面相交的雨点中.与北极对应的点.是地球上的最前点.地球仪上的点和钱7、赤道定义.在地球仪上,与商、北极距离组莹的大囚圈。
8、纬线定义:所有与赤道圭宜的圆圈。
9、纬线的特点:北银z地抽与地然表面相交的两点中.对着北辍星方向的点.是地球上的艰北点.10、纬度:长度不相等,赤道是最大的纬线圈(约1纬线的形状是4万千米);由赤道向两极缩短,在南I I蜀,到两极编为北两极缩成一点|点赤道的纬度是旦二,是纬度的起始线;,向北向南各划分2立度。
赤道以北为韭纬,最大90°;赤道以南为直纬,最大90。
:北纬用字母“N”表示,南纬用字母气”表示:北极点的纬度为盟二且,南极点的纬度为盟二三。
11、纬度的判读相互平行度数向北变大为韭纬,度数后边标注字岛扯皮数向南变大为直盏,度数后边标注字[j:皇;12、纬度的大小与纬线长度的关系:纬度数值越小,纬线的长度越盖:南北纬度数相同的纬线,长度蛊坦固。
七年级科学上(华师大版)第七章生物多样性期末复习
第七章生物多样性期末复习班级姓名学号一. 概念回顾1. 生物多样性包括、和三个层次。
2. 物种的概念:,. 骡不是一个;因为。
3. 在地球上,物种最丰富的自然环境是、和。
4. 形成生物多样性的原因:,。
5. 地球上生物物种数大惊人,其中已被描述的物种就有多万种,加上未命名物种最终可达到万种以上。
6. 生物多样性不仅体现在生上,还体现在的差异性上。
7.人种又称种族,是指在体质形态上具有某些共同的人群。
全世界的人都属于同一个物种,其理由是。
8.地球上的人有四种血型分别是:型、型、型、型。
人最多是型,最少的是型。
9.品种是指来自同一祖先,具有为人类需要的某种经济性状的栽培植物或家养动物的群体。
品种是人类的产物。
10.保护生物多样性主要是保护及其。
11.大熊猫被称为中国的国宝,这是因为大熊猫是一种的动物,大熊猫数量下降的根本原因是和,我国为保护大熊猫采取、和等措施。
12.生物多样性的意义:生物多样性为人类的生存提供了。
13.保护生物多样性要将保护和保护结合起来,要将保持、恢复和重建生物多样性和结合起来。
设立是较为有效的保护措施,另一措施是对生物物种进行,如建立、、和等。
14.濒临灭绝的哺乳动物、、。
濒临灭绝的鸟类、。
野生珍稀植物、。
15.生物是人类在重要资源,人类应该在保护生物多样性的前提下合理利用。
16.食用生物分和两类。
食物是人类生存的基本物质条件之一。
直接或间接来自。
二、练习强化1.生物多样性是指()A、物种多样性B、遗传多样性C、生态系统多样性D、以上都是2. 下列选项中不属于同一物种的是()A、黑色雄猫和白色雌猫B、黑色雄猫和黑色雌狗C、白色雌猫和灰白色小猫D、灰色雌狗和黄色雄狗3.马和驴能交配产生后代,说明()A、它们是同一物种B、是两个物种C、骡也是一个种D、是三个物种4.下列物种最丰富的自然环境是()A、热带雨林B、湖泊C、海洋D、温带森林5.形成新物种的一个重要的原因是()A、地理隔离B、食物变化C、天敌出现D、环境改变6.地球上的生物已被描述的有()A、50万种B、150多万种C、200多万种D、500多万种7.动物界中种类最多的是()A、哺乳类B、昆虫C、鱼类D、两栖类8.我国生物多样性面临威胁的主要原因是()A、生存环境的改变和破坏B、掠夺性的开发和利用C、环境污染D、外来物种入侵9.在四川省建立的卧龙自然保护区是为了保护()A、大熊猫B、金丝猴C、丹顶鹤D、朱鹮10.我国特产的栖息于淡水中的一种爬行动物,目前处于灭绝边缘的是()A、白鳍豚B、扬子鳄C、大鲵D、海豚11.下列关于生物多样性意义的叙述中正确的是()A、人类食物几乎全部取自于各类生物B、许多动、植物都可以作为药材入药C、大量的工业原料也来自生物D、以上都是12.1992年在里约热内卢召开的联合国环境与发展大会上通过了()A、《保护生物多样性条约》B、《中国生物多样性保护行动计划》C、《中国自然保护纲要》D、《中华人民共和国森林法》13.造成野生动、植物濒危和灭绝的主要原因是()A、自然选择B、人类对野生动植物的开发利用C、物种退化D、人类对野生动植物的过度狩猎或采伐,对栖息地环境的污染和改变14.下列哪项不是自然保护的好方法()A、建立自然保护区B、移地保护C、有计划的合理利用资源D、禁止采伐和捕捞15.保护生物多样性就是要保护()A、遗传多样性B、物种多样性C、生态系统多样性D、以上都是16.白种人、黄种人、黑种人他们属于()A、一个物种B、三个物种C、不同物种D、两个物种17.警察用来确定犯罪嫌疑人身份的依据可以是()A、身高B、体重C、脸部特征D、指纹18.地球上人的血型中,最少的血型是()A、A型B、B型C、O型D、AB型19.下列属于同一性状的是()A、兔的长毛和短毛B、玉米的黄粒和圆粒C、棉纤维的长和粗D、马的白毛和鼠的黑毛20.2001年2月12日,科学家向全世界公布了人类基因组的图谱,有六个国家参与这一人类基因组计划,除美、英、法、德、日外,还有()A、中国B、韩国C、俄罗斯D、意大利21.关于红富士苹果和国光苹果的说法错误的是()A、是不同的物种B、是不同的品种C、具有不同的性状特征D、具有共同的祖先22.下列不属于野生生物资源价值的是()A、工业原料B、科学研究C、药用价值D、野生生物数量太多,不利于生态平衡23.我国苔鲜植物,蕨类植物和种子植物共有3万多种,居世界第三位。
七年级下数学期末复习重点、难点、易错点
七年级下数学期末复习重点、难点、易错点第五章 相交线与平行线邻补角:有一条公共边和公共顶点和两个互补的角,叫做邻补角。
对顶角:有一个公共端点一个角的两边是另一个角两边的反向延长线线. 性质:对顶角相等。
垂线:1。
当两直线相交,有一个夹角为90°时这两条直线垂直. a ⊥b 读做a 垂直于b2.两直线相交构成四个夹角相等,两直线互相垂直。
其中一条直线叫做另一条直线的垂线.垂直性质:过一点有且仅有一条直线,与以已知直线垂直。
【这一点可以是直线上一点,也可是直线外一点】在同一平面内线与线的位置关系:相交和平行 【垂直是特殊的相交,重合暂不讨论】 平行线定义:在同一平面内永不相交的两条直线。
记作a ∥b 读作:a 平行于b平行线公理:平行线公理,经过直线外,有且仅有一条(平行线)直线于已知直线平行。
平行线性质:如果两直线都与第三条平行,那么这两条直线也互相平行。
● 平行的判定:1。
同位角相等,两直线平行。
2。
内错角相等,两直线平行 3。
同旁内角互补,两直线平行。
4。
平行于同一直线的两直线平行 5. 垂直于同一直线的两直线平行6. 同一平面内,不相交的两条直线互相平行● 平行线的性质:1. 两直线平行,同位角相等.2. 两直线平行,内错角相等。
3. 两直线平行,同位角互补 命题、定理1. 命题:判断一件事情的语句叫命题。
2. 命题的结构,命题由题设(已知事项或条件)和结论(由已知事项推出的事项)两部分组成。
{两点之间的距离:连接两点的线段的 长度 叫做两点间的距离。
两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的垂线段,叫做这两条平行线的距离.平行线间的距离,处处相等。
任何命题都可以改写成“如果……那么……”的形式,如果后面是题设,那么后面是结论。
平移:错误!平移不改变物体的大小 错误!平移前后对应点的直线相等且互相平行。
公理 定义定理 推论真命题第六章 实数1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括:正整数、零、负整数。
湘教版七年级地理上册期末复习知识点
七年级上册地理知识总结(湘教版)第一章让我们走进地理1.我国最早出现“地理”一词的文献是《易·系辞》。
2.西方第一本以“地理”命名的《地理学》专著的作者是古希腊学者埃拉托色尼。
3.帮助荷兰人发展的功臣是风车。
4.阿拉伯人服装的特点是白色长袍,作用防沙隔热,阿拉伯人的着装与当地的气候有关5.现存世界上最古老的地图是苏美尔人刻在泥板上的原始地图。
6.地图分为自然地图和社会经济地图。
(课本7页)7.地图家族的新成员是电子地图。
8.地图的三要素是方向、比例尺、图例和注记。
9.地图上的方向有东、南、西、北四个基本方向,在此基础上又分出东北、西北、东南、西南共八个方向。
10.地图上的方向有不同的表达方式:①有指向标的地图,用指向标来确定方向,指向标箭头指向北方;②没有指向标的地图,用上北下南,左西右东来确定方向;③经纬网地图,经线指示南北方向,纬线指示东西方向。
11.在野外,确定方向的方法:指南针定向;北极星定向;太阳定向;太阳和手表定向12.比例尺就是图上距离与实际距离之比。
13.比例尺大小的比较:分子为1,分母小的比例尺大,分母大的比例尺小。
14.图幅相同时,比例尺大,表示的范围小,内容详;比例尺小,表示的范围大,内容略。
15.比例尺的三种表达方式:数字式、文字式、线段式。
16.收集地理信息的便捷途径是:访问互联网站17.图例是地图上表示各种地理事物的符号。
注记是说明地理事物的名称和数字。
18.识记课本P10的图例表。
第二章地球的面貌1.地球是一个两极稍扁,赤道略鼓的不规则球体。
地球的表面积约为5.1亿平方千米,赤道周长约为4万千米,地球的平均半径为6371千米。
2. 地球上最长的纬线是赤道,赤道也叫0°纬线。
纬度向北向南各有90°,分别用N和S表示。
0°经线又叫本初子午线,向东向西各有180°,分别用E和W表示。
3.赤道既是南北纬度的分界线,也是南北半球的分界线。
【北师大版】2020年春七年级下册数学:第五章-生活中的轴对称-章末复习(含答案)
期末复习(五) 生活中的轴对称01 知识结构生活中的轴对称⎩⎪⎪⎨⎪⎪⎧轴对称现象⎩⎪⎨⎪⎧轴对称图形两个图形成轴对称轴对称的性质⎩⎪⎨⎪⎧对应点所连的线段被对称轴垂直平分对应线段相等,对应角相等简单的轴对称图形⎩⎪⎨⎪⎧等腰三角形的性质线段垂直平分线的性质角平分线的性质利用轴对称进行设计本章知识在考试中涉及的考点主要有:识别轴对称图形,运用轴对称的性质求线段或角,运用等腰三角形、线段垂直平分线或角平分线的性质求三角形中的角度和边长,证明三角形中相关角度或边长之间的关系等. 02 典例精讲【例1】 下列轴对称图形中,对称轴条数最多的是(D)【思路点拨】 选项A ,B ,C 的图形中分别有1条对称轴;而选项D 的图形中有4条对称轴,在几个备选项中对称轴最多.【方法归纳】 本题考查轴对称图形及对称轴的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,其中这条直线叫做对称轴.轴对称图形是针对一个图形本身而言,成轴对称是对两个图形而言,注意他们的本质区别.【例2】 (黄冈中考)如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为36°.【思路点拨】 根据垂直平分线的性质可得边相等,再由等腰三角形的性质得角相等.【方法归纳】 此题主要借助等腰三角形的性质、线段垂直平分线的性质及三角形内角和定理等几何知识来求解. 【例3】 如图1,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△A BC 中,∠ACB 是直角,∠B =60°,AD ,CE 分别是∠BAC,∠BCA 的平分线,AD ,CE 相交于点F.请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】首先按题意要求完成画图(作出全等三角形),易联想到全等三角形的性质、判定及角平分线的性质等相关知识,为解决后面的问题提供了探究的途径和方法.【解答】画图略.(1)FE与FD之间的数量关系为FE=FD.(2)FE=FD仍然成立.理由:在AC上截取AG=AE,连接FG.因为∠BAD=∠DAC,AF为公共边,所以△AEF≌△AGF.所以∠AFE=∠AFG,FE=FG.因为∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,所以∠DAC+∠FCA=60°.所以∠AFE=∠CFD=∠AFG=60°.所以∠CFG=60°.又因为∠FCA=∠DCE,FC为公共边,所以△CFG≌△CFD.所以FG=FD.所以FE=FD.【方法归纳】本例是一道设计新颖的几何结论探究性试题,旨在考查学生应用所学知识解决三角形有关问题的综合能力.解决此类问题重点抓住全等三角形的判定和性质及角平分线的性质解题.【例4】如图,有一条小船及A,B两点,如果该小船先从点A航行到达岸边l的点P处补货后,再航行到点B,但要求航程最短,试在图中画出点P的位置.【思路点拨】题目要求航程最短,就是在岸边l上找一点P,使点P到A,B的距离之和最短.只要找出A点关于l的对称点A′,连接A′B,A′B与l的交点就为所求的P点.【解答】(1)作出点A′,使点A′与点A关于直线l成轴对称.(2)连接A′B交直线l于点P,则点P为所求,如图所示.【方法归纳】由轴对称性质可知AP=A′P,要使AP+PB的和最小,即A′P+PB的和最小,于是求出点P的位置的问题,转化为“两点之间,线段最短”的问题.03整合集训一、选择题(每小题3分,共30分)1.(龙东中考)下列交通标志图案是轴对称图形的是(B)2.如图所示的轴对称图形中,对称轴最多的是(B)3.若等腰三角形的顶角为50°,则它的底角是(C)A.20° B.50°C.65° D.80°4.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是(D)A.△ABD≌△ACDB.AF垂直平分EGC.∠B=∠CD.DE=EG5.(凉山中考)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为(C)A.30° B.45°C.60° D.75°6.如图,已知五边形ABCDE和五边形A1B1C1D1E1关于直线MN对称,点B到直线MN的距离是3,则下列说法中正确的是(B)A.点A1到MN的距离是3B.点B1到MN的距离是3C.点C1到MN的距离是3D.点D1到MN的距离是37.(丹东中考)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为(D)A.70°B.80°C.40°D.30°8.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,BC为折痕,若BE是∠A′BD的平分线,则∠CBE的度数为(C)A.65° B.115°C.90° D.75°9.下列说法不正确的是(D)A.角平分线上的点到这个角两边的距离相等B.线段垂直平分线上的点到这条线段两个端点的距离相等C.圆有无数条对称轴D.等腰三角形的对称轴是底角平分线所在直线10.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(D)A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每小题4分,共20分)11.在方正黑体字:“幸、福、开、阳”中,是轴对称图形的字是幸.12.如图,在△ABC中,AB=AC,点D为BC边中点,∠BAD=20°,则∠CAD=20°.13.如图,△ABC与△A1B1C1关于某条直线成轴对称,则∠A1=75°.14.如图,D,E为AB,AC的中点,将△ABC沿线段DE折叠,点A落在点F处,若∠B=50°,则∠BDF=80°.15.(河南中考)如图,在△ABC中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为105°.三、解答题(共50分)16.请作出图中四边形ABCD 关于直线a 的轴对称图形,要求:不写作法,但必须保留作图痕迹.解:如图所示,四边形A′B′C ′D′即为所求.17.(6分)已知:如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F ,∠BFE 与∠D 相等吗?并说明理由.解:∠BFE=∠D. 理由:因为AB =AC , 所以∠B=∠C. 因为DE⊥BC,所以∠BEF=∠DEC=90 °. 在△BEF 和△CDE 中,因为∠B=∠C,∠BEF =∠DEC, 所以∠BFE=∠D.18.如图,在四边形ABCD 中,AD ∥BC ,把△BCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若∠DB C =15°,求∠BOD 的度数.解:因为AD∥BC,∠DBC =15°,所以∠BDO=15 °. 由折叠可知,∠DBC =∠DBO. 所以∠BDO=∠DBO=15 °. 又因为三角形内角和为180 °, 所以∠BOD=180 °-2∠DBO =180 °-2×15 ° =150 °.19.(10分)某中学七(2)班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后回到C 处,请你在图上帮助他设计一条行走路线,使其所走的总路程最短.解:①分别作点C 关于OA ,OB 的对称点M ,N ;②连接MN ,分别交OA 于点D ,OB 于点E ,则C→D→E→C 为所求的行走路线.图略.20.(12分)如图所示,已知AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D. (1)求∠DBC 的度数;(2)若△DBC 的周长为14 cm ,BC =5 cm ,求AB 的长.解:(1)因为AB =AC , 所以∠ABC=∠C. 因为∠A=40 °,所以∠ABC=180 °-40 °2=70 °.因为MN 是AB 的垂直平分线, 所以DA =DB.所以∠DBA=∠A=40 °.所以∠DBC=70 °-40 °=30 °.(2)因为MN 垂直平分AB ,所以DA =DB.△DBC 的周长为BD +DC +BC =DA +DC +BC =AC +BC. 因为△DBC 的周长为14 cm ,BC =5 cm , 所以AC =14-5=9(cm ). 所以A B =9 cm .21.(12分)如图1所示,在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点N ,交BC 或BC 的延长线于点M.(1)如图1所示,若∠A=40°,求∠NMB 的大小;(2)如图2所示,如果将(1)中的∠A 的度数改为70°,其余条件不变,再求∠NMB 的大小; (3)你发现了什么规律?写出猜想,并说明理由.解:(1)因为AB =AC ,所以∠B=∠ACB.所以∠B=12(180 °-∠A)=12(180 °-40 °)=70 °.又因为∠BNM=90 °,所以∠NMB=90 °-∠B=90 °-70 °=20 °. (2)同理可得:∠NMB=35 °.(3)猜想规律:等腰三角形一腰的垂直平分线与底边或底边延长线的夹角等于顶角的一半,即∠NMB=12∠A.理由:因为AB =AC ,所以∠B=∠C=12(180 °-∠A).因为∠BNM =90 °,所以∠NMB=90 °-∠B=90 °-12(180 °-∠A)=12∠A .故∠NMB=12∠A.。
人教版七年级数学下册考点及典型题型总复习
七年级数学人教版下学期期末总复习资料第五章 相交线与平行线一、知识回顾:1、 如果A ∠与B ∠是对顶角,则其关系是:2、 如果C ∠与D ∠是邻补角,则其关系是: 如果α∠与β∠互为余角,则其关系是⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩定义_____________________________1 过一点____________________2 垂直性质 2 连接直线外一点与直线上各点的所有线段中,___________最短 3、点到直线距离是:__________________两点间的距离是:_________________ 两平行线间的距离是指:_____________________________________________4、在同一平面内,两条直线的位置关系有_____种,它们是_____________5、平行公理是指:_________________________如果两条直线都与第三条直线平行,那么_________________________________6、平行线的判定方法有:①、 ②、__________________________________③、___________________________________ 7、平行线的性质有: ①、___________________________________②、___________________________________ ③、___________________________________8、命题是指____________________________每一个命题都可以写成_______________的形式,“对顶角相等”的题设是_______________________,结论是 ___________9、平移:①定义:把一个图形整体沿着某一_____移动_______,图形的这种移动,叫做平移变换,简称平移②图形平移方向不一定是水平的87654321DCBA③平移后得到的新图形与原图形的_________和________完全相同 ④新图形中的每一点与原图形中的对应点的连线段________且_________ 二、练习:1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160° 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角图 1 图 2图34、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图6 5、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80° B.左转80° C.右转100° D .左转100°6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )DBAC 1ABCDEF21OA.42138、;B.都是10 ;C.42138、或4210、;D.以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题;B.②、③是正确命题;C.①、③是正确命题;D.以上结论皆错9、下列语句错误的是()A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等10、如图7,a b∥,M N,分别在a b,上,P为两平行线间一点,那么123∠+∠+∠=()A.180B.270C.360D.540图711、如图8,直线a b∥,直线c与a b,相交.若170∠=,则2_____∠=.图8 图9图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______14、如图11,已知a b∥,170∠=,240∠=图11 图12 图1315、如图12所示,请写出能判定CE ∥AB 的一个条件 . 16、如图13,已知AB CD //,∠α=____________ 17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( )若∠DAB+∠ABC=1800,则 ∥ ( )②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数.19、已知:如图AB∥CD,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD,交AB于H ,∠AGE=500,求:∠BHF 的度数.20、观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角;(3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角21、已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.HGF EDC BA321DCB AABCDO123EFF21GEDCBA第六章平面直角坐标系一、知识回顾:1、平面直角坐标系:在平面内画两条___________、____________的数轴,组成平面直角坐标系2、平面直角坐标系中点的特点:①坐标的符号特征:第一象限(),++,第二象限(),第三象限()第四象限()已知坐标平面内的点A(m,n)在第四象限,那么点(n,m)在第____象限②坐标轴上的点的特征:x轴上的点______为0,y轴上的点______为0;如果点P(),a b在x轴上,则b=___;如果点P(),a b在y轴上,则a=______如果点P()5,2a a+-在y轴上,则a=__ __,P的坐标为()当a=__时,点P(),1a a-在横轴上,P点坐标为()如果点P(),m n满足0mn=,那么点P必定在__ __轴上③象限角平分线上的点的特征:一三象限角平分线上的点___________________;二四象限角平分线上的点______________________;如果点P(),a b在一三象限的角平分线上,则a=_ ____;如果点P(),a b在二四象限的角平分线上,则a=____ _如果点P(),a b在原点,则a=___ __=__ __已知点A(3,29)b b-++在第二象限的角平分线上,则b= ______④平行于坐标轴的点的特征:平行于x轴的直线上的所有点的______坐标相同,平行于y轴的直线上的所有点的______坐标相同如果点A(),3a-,点B()2,b且AB x()2,m(),6n-y(),x y x y(),a b-,x y()2,3--x y()7,0-x y()2,5x y-x y x y xy(1,2)-y x(),2x y-()3,x y+______,______x y==(4,3)(4,5)-()/2,3P-(2,2)-1(3,5)P(2,3)-(4,2)--()1,1-3a(1) 点P在x轴上,则P点坐标为;(2) 点P在第二象限,并且a为整数,则P点坐标为;(3) Q 点坐标为(3,-6),并且直线PQ ∥x 轴,则P 点坐标为 . 2.如图的棋盘中,若“帅”位于点(1,-2)上, “相”位于点(3,-2)上,则“炮”位于点___ 上.3.点)1,2(A 关于x 轴的对称点'A 的坐标是 ;点)3,2(B 关于y 轴的对称点'B 的坐标是 ;点)2,1(-C 关于坐标原点的对称点'C 的坐标是 .4.已知点P 在第四象限,且到x 轴距离为52,到y 轴距离为2,则点P 的坐标为_____.5.已知点P 到x 轴距离为52,到y 轴距离为2,则点P 的坐标为 .6. 已知),(111y x P ,),(122y x P ,21x x ≠,则⊥21P P 轴,21P P ∥ 轴;7.把点),(b a P 向右平移两个单位,得到点),2('b a P +,再把点'P 向上平移三个单位,得到点''P ,则''P 的坐标是 ;8.在矩形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标为 ; 9.线段AB 的长度为3且平行与x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为_____.10.线段AB 的两个端点坐标为A(1,3)、B(2,7),线段CD 的两个端点坐标为C(2,-4)、D(3,0),则线段AB 与线段CD 的关系是( )A.平行且相等B.且不相等 三、解答题:1.已知:如图,)3,1(-A ,)0,2(-B ,)2,2(C ,求△ABC 的面积.2.已知:)0,4(A ,),3(y B ⑴ 求点C 的坐标;⑵ 若10=∆ABC S ,求点B 的坐标.xy O1AC1B3.已知:四边形ABCD各顶点坐标为A(-4,-2),B(4,-2),C(3,1),D(0,3).(1)在平面直角坐标系中画出四边形ABCD;(2)求四边形ABCD的面积.(3)如果把原来的四边形ABCD各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少4.已知:)1,0(A,)0,2(B,)3,4(C.⑴求△ABC的面积;⑵设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.5.如图,是某野生动物园的平面示意图. 建立适当的直角坐标系,写出各地点的坐标,并求金鱼馆与熊猫馆的实际距离.6.如图,平移坐标系中的△ABC,使AB平移到1A置,再将111CBA∆向右平移3个单位,得到22BA∆画出222CBA∆,并求出△ABC到222CBA∆第七章 三角形一、知识回顾:二、练习:1.一个三角形的三个内角中 ( ) A 、至少有一个钝角 B 、至少有一个直角 C 、至多有一个锐角 D 、 至少有两个锐角2.下列长度的三条线段,不能组成三角形的是 ( )A 、a+1,a+2,a+3(a>0)B 、 3a,5a,2a+1(a>0)C 、三条线段之比为1:2:3D 、 5cm ,6cm ,10cm 3.下列说法中错误的是 ( )A 、一个三角形中至少有一个角不少于60°B 、三角形的中线不可能在三角形的外部C 、直角三角形只有一条高D 、三角形的中线把三角形的面积平均分成相等的两部分 4.图中有三角形的个数为 ( )A 、 4个B 、 6个C 、 8个D 、 10个5.如图,点P 有△ABC 内,则下列叙述正确的是( )A 、︒=︒y xB 、x °>y °C 、x °<y °D 、不能确定第(4)题EDCB A第(6)题DCBA第(5)题P y 0x 0CBA⎧⎪⎨⎪⎩⎧⎨⎩⎧⎪⎨⎪⎩定义:由不在______三条线段______所组三角形 成的图形表示方法:_________________________三角形两边之和_____第三边三角形三边关系三角形两边之差_____第三边中线________________三角形的三条重要线段高线________________三角形角平分线____________内角和__三角形的内角和与外角和多边形⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎩⎪⎪⎪⎪⎩__________1________外角性质2________外角和____________三角形面积:______________________________三角形具有____性,四边形__________性多边形定义_______________________________多边形n 边形内角和为__________多⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎩边形外角和为____从n 边形一个顶点可作出_____条对角线定义:__________________________________能用一图形镶嵌地面的有_________________平面镶嵌能用两种正多边形镶嵌地面的有_____和___________和_______;_______和_____________⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪6.已知,如图,AB∥CD,∠A=700,∠B=400,则∠ACD=()A、 550B、 700C、 400D、 11007.下列图形中具有稳定性有()A、 2个 B 、 3个 C、 4个 D、 5个8.一个多边形内角和是10800,则这个多边形的边数为()A、 6B、 7C、 8D、 99.如图所示,已知△ABC为直角三角形,∠C=90,若烟图中虚线剪去∠C,则∠1+∠2 等于()A、90°B、135°C、270°D、315°第(9)题第(10)题10. 如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90°B、130°C、270°D、315°11.用正三角形和正方形能够铺满地面,每个顶点周围有______个正三角形和_____个正方形。
七年级数学(下)期末复习知识点整理
期末复习二:第五章相交线与平行线知识点概括 一、相交线1、如图1若a 、b 相交,∠1与∠2互为 ,∠1与∠3互为 , 与∠3互为补角的有 。
2、如果∠α与∠β是对顶角,那么一定有∠α ∠β;反之如果∠α=∠β,那么∠α与∠β 对顶角。
3、如果∠α与∠β互为邻补角,则一定有∠α+∠β= °;反之如果∠α+∠β=180°,则∠α与∠β一定互为 ,∠α与∠β (是、不一定是、不是)邻补角。
二、垂直 ?1、如图2,若AB 与CD 相交于点O ,且∠ = °,则AB 与CD 垂直,记作AB CD ,垂足为 。
2、垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)3、垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
如图3,线段PA 、PB 、PC 最短的是 。
(4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如图3点P 到直线a 的距离是 。
5、垂线的画法。
三、三线八角1、两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。
如图,直线b a ,被直线l 所截同位角:内错角:同旁内角:三线八角也可以成模型中看出。
同位角是 型;内错角是 型;同旁内角是 型。
2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。
—例如:a b】l12 3 45 6 7 \ 8) D 23 4 如图,判断下列各对角的位置关系: ⑴∠1与∠2;( )⑵∠1与∠7;( )A BC D O —PABC图3a % 12 图1a b-四、平行线的判定与性质1、平行线的概念:在,的两条直线叫做平行线,直线a与直线b互相平行,记作。
2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:3、平行公理――平行线的存在性与惟一性经过,有且只有与这条直线平行`4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行几何语言:#5、两直线平行的判定方法:判定1:相等,两直线平行判定2:相等,两直线平行判定3:,两直线平行几何符号语言:∵∠3=∠2∴()∵∠1=∠2∴()∵∠4+∠2=180°∴()<判定4:垂直于同一直线的两直线平行。
苏科版七年级生物上册期末专题复习:第7章《能量的释放与呼吸》试题精选
苏科版七年级生物上册期末专题复习:第7章《能量的释放与呼吸》试题精选一.选择题(共29小题)1.(2019秋•苏州期末)蔬菜、水果放在冰箱冷藏柜中贮存时间会更长,其主要原因是低温条件下()A.有利于细菌、霉菌等微生物的生长和繁殖B.可降低水分的蒸发C.呼吸作用弱,有机物消耗少D.抑制光合作用2.(2019秋•扬中市期末)下列方法中,有利于改善植物根的呼吸作用的是()①松土②锄草③施肥④浇水A.①②B.①③C.③④D.②④3.(2019秋•淮安区期末)植物体进行呼吸作用的时间是()A.只在白天B.只在光下C.在白天和黑夜4.(2019秋•清江浦区期末)山东烟台的红富士苹果口感好、甜度高,家家户户都愿意贮存一些在冬天食用。
过了一个冬天后,剩下的苹果甜度减淡,原因是()A.细菌入侵B.水分散失C.细胞死亡D.呼吸作用分解了部分有机物5.(2019秋•清江浦区期末)植物进行呼吸作用的重要意义是()A.为生命活动提供能量B.消耗氧气C.呼出二氧化碳6.(2019秋•常熟市期末)下列能进行呼吸作用的生物是()A.动物B.白天的植物C.晚上的植物D.以上生物都可以7.(2019秋•常熟市期末)下表是人体吸入气体和呼出气体成分含量的比较,分析后能得出的结论是()B.呼气时只呼出二氧化碳,不呼出氧气C.吸入的是氧气,呼出的是二氧化碳D.与吸入气体相比,呼出气体中氧气的比例低8.(2019秋•铜山区期末)冬季在大棚里种植蔬菜时,夜晚经常掀开一角通风,目的是()A.增加氧气含量。
促进植物呼吸作用B.降低大棚温度,减弱植物呼吸作用C.补充二氧化碳,促进光合作用D.补充二氧化碳,促进呼吸作用9.(2019秋•铜山区期末)荧火虫发光时,消耗的直接能源是()A.糖类B.热能C.ATP D.光能10.(2019秋•仪征市期末)储藏水果蔬菜时,往往向仓库中通入一定浓度的二氧化碳,或低温冷藏,主要目的是()A.消耗蔬菜水果中的有机物B.促进仓库内气体流动C.降低仓库的温度D.抑制蔬菜水果的呼吸作用11.(2019秋•东海县期末)如图是模拟胸部呼吸运动的示意图,下列叙述错误的是()A.图中1和4分别代表气管和膈B.A图演示呼气,B图演示吸气C.呼气时,膈肌收缩,胸廓容积变小D.吸气时,膈肌收缩,胸廓容积变大12.(2019秋•徐州期末)俗话说“食不言,寝不语”,吃饭时不能大声谈笑是有科学道理的,原因是()A.流经消化器官的血流量减少B.食物易误入气管C.消化液减少D.肺内压小于大气压13.(2019秋•赣榆区期末)人体的呼吸道具有净化空气的作用。
七年级地理上册期末复习知识点汇总(全)
七年级地理上册期末复习知识点汇总(全)地理七年级上册知识汇总第一章地球和地图第一节地球和地球仪地球是一个两极稍扁、赤道略鼓的椭球体,表面积5.1亿平方千米,最大周长4万千米,赤道半径6378千米,极半径6357千米,平均半径6371千米。
XXX率领的船队首次实现了人类环绕地球一周的航行。
第二节地球的运动地球运动绕太阳公转,自转地轴自西向东约24小时昼夜交替。
北半球与南半球的季节相反。
地球表面分为五个带:北寒带、北温带、热带、南温带、南寒带。
第三节地图地图是地球表面的缩影,可以用来表示地球的各种信息。
纬线是与地轴垂直并环绕地球一周的圆圈,赤道是最大的纬线圈;经线是连接南北两极并与纬线垂直相交的半圆,本初子午线是经度的起点。
纬度的变化规律是由赤道向南、北两极递增,最大的纬度是90度,在南极、北极。
经度的变化规律是由本初子午线向西、向东递增到180°。
东、西半球的分界线是20°W、160°E组成的经线圈。
第二章陆地和海洋第一节大洲和大洋地球表面的陆地和海洋构成了地球的地貌。
地球上有六大洲:亚洲、非洲、欧洲、南美洲、北美洲和大洋洲。
五大洋:太平洋、大西洋、印度洋、南极洋、北冰洋。
第二节海陆的变迁地球表面的陆地和海洋一直在不断变化,包括板块运动、地震、火山喷发等。
这些变化对人类的生产和生活都有着深远的影响。
第三章天气和气候第一节多变的天气天气是指短时间内大气的温度、湿度、风速、降水等自然现象。
天气的变化是不稳定的,受到气压、风向等多种因素的影响。
第二节气温和气温的分布气温是指大气中温度的高低。
气温的分布受到纬度、海拔、地形、气候等多种因素的影响。
第三节降水和降水的分布降水是指大气中水分凝结形成的雨、雪、雾、露、霜等自然现象。
降水的分布也受到多种因素的影响。
第四节世界的气候气候是指长时间内大气的温度、湿度、风向、降水等自然现象的平均状况。
世界上的气候多种多样,包括热带雨林气候、草原气候、地中海气候、温带海洋性气候、温带大陆性气候、寒带气候等。
第5章 人体的物质和能量来源于食物 期末知识点复习提纲 苏科版七年级上册生物
第5章人体的物质和能量来源于食物一、饮食与营养1.营养物质,指的是食物中对人有用的物质的物质,可以分为有机物和无机物两大类。
2.人体从食物中能获得哪些营养物质?(答案:糖类、脂肪、蛋白质、无机盐、水、维生素。
)3.哪些食物中含糖类、脂肪、蛋白质比较多?答案:在馒头、米饭、面条等谷类食品中含糖类较多;在食用油、肥肉和一些豆类食品含脂肪较多;在蛋、鱼、奶、瘦肉、豆制品等含蛋白质较多。
二、营养物质的作用1. 营养物质建造我们的身体⑴人体内含量最多的营养物质是什么?(答案:水是构成人体的重要物质,含量最多。
)⑵人体生长发育和组织更新都离不开的物质是什么?(答案:蛋白质是构成细胞不可缺少的成分)⑶儿童时期长期缺乏钙盐,易患佝偻病;缺锌导致智力发育慢。
2.营养物质给我们提供能量:⑴糖类是人体生命活动的主要能源,人体生命活动所需能量的70%以上由糖类氧化分解提供的;脂肪是人体重要的储能物质;蛋白质也可以提供人体能量。
⑵人们到了青春期,为什么饭量大大增加?(答案:青少年处于生长发育旺盛的时期,需要较多的营养物质来满足生长发育等生命活动的需要。
)⑶运动员为什么比其他人通常饭量大?(答案:运动员活动量大,每天消耗能量多他们所需的营养物质多。
)3.营养物质维持生命和健康⑴人体不可缺少的三类营养物质是什么?(答案:糖类、脂肪、蛋白质;)⑵人体内营养物质主要功能是什么?(答案:构建人体、提供能量、维持生命活动和健康。
)⑶平衡的营养物质对生长发育和维持正常的生命活动具有重要作用。
如人体缺碘盐会引起地方性甲状腺肿(大脖子病)。
⑷人体不能合成无机盐和大部分维生素,必须从食物中摄取。
⑸维生素:含量微少,既不建造我们的身体,也不给我们生命活动提供能量,但必不可少。
维生素A——夜肓症维生素B1——神经系统炎症和脚气病维生素B2——口角炎维生素B12——贫血维生素C——坏血病维生素D——软骨病4.验证食物含有能量⑴提出问题:不同食物给人体生命活动提供的能量不同吗?⑵作出假设:不同食物给人体生命活动提供的能量不同。
人教版数学七年级下学期期末总复习第7章《平面直角坐标系》易错题汇编(附解析)
第7章《平面直角坐标系》易错题汇编一.选择题(共10小题)1.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M 的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(﹣1,1)B.(3,1)C.(4,﹣4)D.(4,0)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)4.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.59.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)10.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)二.填空题(共4小题)11.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.12.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是.13.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=.14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.三.解答题(共2小题)15.如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.(1)当A点在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB.16.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a 的取值范围.试题解析1.在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M 的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(﹣1,1)B.(3,1)C.(4,﹣4)D.(4,0)解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴B的坐标为(﹣1,1).故选:A.3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(1,0)C.(﹣1,0)D.(3,0)解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B的对应点B1的坐标(﹣1,0).故选:C.4.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选:D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选:A.7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.9.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)解:矩形的长宽分别为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲、乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.10.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.11.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).12.已知点A(m,﹣2),B(3,m﹣1),且直线AB∥x轴,则m的值是﹣1.解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故答案为:﹣1.13.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=﹣.解:∵点A(3a+5,a﹣3)在二、四象限的角平分线上,∴3a+5+a﹣3=0,∴a=﹣.故答案为:﹣.14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为45.解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.故答案为:45.15.如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.(1)当A点在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB.解:当A点在原点时,AC在y轴上,BC⊥y轴,所以OB=AB==2;(2)当OA=OC时,△OAC是等腰直角三角形AC=4,OA=OC=2.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,∵∠2+∠ACD=90°,∠3+∠ACD=90°,∴∠2=∠3,∵∠1=∠2=45°,∴∠3=45°,∴△CDB是等腰直角三角形,∵CD=BD,BC=2,CD=BD=.BE=BD+DE=BD+OC=3,OB==2.16.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第二象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a 的取值范围.解:(1)当a=﹣1时点M的坐标为(﹣1,2),所以M在第二象限.故答案为:二;(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,点M的坐标为(a,﹣2a),所以N点坐标为(a﹣2,﹣2a+1),因为N点在第三象限,所以,解得<a<2,所以a的取值范围为<a<2.。
初一数学复习计划
初一数学复习计划篇一:七年级数学期末复习计划(1)一、复习目标1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。
2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。
3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。
4、通过摸拟训练,培养学生考试的技能技巧。
二、复习重点1、第1章:有理数的运算。
2、第2章:整式的运算。
3、第3章:一元一次方程及应用题。
4.第4章:几何图形三、复习方式1、总体思想:分章复习,同时综合测试二次。
2、单元复习方法:教师先做统领全章。
收集各小组反馈的情况进行重点讲解,布置作业查漏补缺。
3、综合测试:教师及时认真阅卷,讲评找出问题及时训练、辅导。
四、时间安排第一阶段:章节复习12月16——20日:第一章、12月23日—27日:第二章;12月30-14年1月3日:第三章;1月6日--10日:第四章第二阶段:综合测试12月227日:综合测试1元月6日:综合测试2元月13.14.15日综合复习。
五、复习措施及注意事项(一)分单元复习阶段的措施:1、复习教材中的定义、概念、规则,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工,规范解题书写和作图能力的培养。
2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。
让学生自主发现问题,解决问题。
题目有层次,难度适中,照顾不同层次学生的学习。
3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。
(二)综合测试阶段的注意点1、认真分析前两年的统考试卷,基本把握命题思想,掌握重难点,侧重点,基本点。
2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。
人教版(七年级数学)-期末复习-5、6、7三章综合
期末复习---五、六、七三章综合班级:姓名:一、选择题:1、下面四个图形中,∠1与∠2是邻补角的是()12212121A B C D2、下列说法正确的是()A、对顶角角平分线互相垂直B、相等的角是对顶角C、同位角相等D、互为邻补角的两角和等于180°3、如右图,AB∥CD,那么∠A+∠C+∠AEC=()A、360°B、270°C、180°D、不确定4、要使正方体容器的容积增大到原来的2倍,应让它的边长增大到原来的________倍。
A、2 BCD、85、平面直角坐标系中,下列哪个点在第四象限 ( )A、(1,2)B、(1,-2)C、(-1,2)D、(―1,―2)6、从车站向东走400m,再向北走500m到小红家;从车站向北走500m,再向西走200m到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为()A、(400,500);(500,200)B、(400,500);(200,500)C、(400,500);(-200,500)D、(500,400);(500,-200)二、填空题:7、如图,BC⊥AC,CD⊥AB,AC=3,BC=4,AB=5,则点B到AC的距离是 _______;点C到AB的距离是_______;图中可以表示距离的线段有________条; DAC+BC>AB的依据是 ________________________________________;AB>BC的依据是_____________________________________________。
8、改写命题:对顶角相等。
如果____________________________那么_________________________________。
910、比较大小:27314,1212;11、如果()xx-=-ππ2,则x的取值范围是;若,则x = ____________.12、在1.414237,2π,3 3.141592653,0中,无理数有个。
七年级数学下册期末复习计划
七年级数学下册期末复习计划复习是为了更有效地提高学生的知识,拓宽学生的视野。
下面是店铺收集整理的七年级数学期末下册复习计划以供大家学习。
七年级数学下册期末复习计划(一)期末考试到了,我们又进入了紧张的复习阶段,为了使最后的复习踏实而有效,特制定了四轮复习法:第一轮:系统梳理各章知识点,并将对应知识点的典型题目出成试卷,考练结合。
在这部分以基础知识、基本题型为主,重点让学生回顾各章知识,形成知识网络,加强知识之间的联系。
约用三天的时间。
第二轮:综合练习,以考代练。
依据历年期末考试试卷及学生在分章节复习中出现的的问题进行综合测试。
难度偏低,以巩固各章知识,形成综合解题能力和增强学生自信心为主要目的。
在订正试卷中以学生自己改正,小组讨论和教师点拨的形式为主,充分发挥学生学习的主动性,培养纠错能力。
第三轮:查找典型错误,弥补知识漏洞。
主要针对学生在第二轮检测中出现的共性问题、典型性错误,再出综合小卷进行训练或进行简单的变式练习。
主要形式是穿插于第二轮复习中,判完每次测试卷,抽出典型问题,出成小卷子(适当变式,不增加难度),订正完试卷后作为课上练习。
每三张综合测试卷后再出一张典型错误的大卷子,进行测试。
本轮与第二轮用时六天。
第四轮:实战演练。
用历年期末考试卷进行期末模拟考试,并配以适量提高难度的综合性题目,使学生增加考试经验,积累解题方法。
本轮主要以提高为目的,甄别出能力型学生与基础型学生,分别进行不同学习方法和应试方法的指导。
相信通过以上四轮复习,一定能帮学生夯实基础提高能力,在期末考试中取得理想成绩。
七年级数学下册期末复习计划(二)一、复习目标:1.系统归纳整理本学期学过的知识点与数学思想和解题方法。
2.在自己经历过的解决问题活动中,遇到对自己具有挑战性的问题,要克服困难、找到解决问题的方法,及时进行知识规律,建构自己的知识框架,形成自己的解题思想和方法,锻炼自己的思维能力,提高解答技能和技巧。
3.通过本学期的数学学习,盘点自己的收获和体会,提高学好数学的兴趣和信心。