基础复习(一):数与式试题

合集下载

数与式练习基础复习

数与式练习基础复习

基础复习(一):数与式试题一、选择题:1.无理数-3的相反数是( ) A .- 3 B . 3 C .13 D .-132.(2010.十堰)-3的绝对值是( )A .13B .-13C .3D .3.- 13的倒数是( )A .-3B .3C .- 13D .134.计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)55.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1076.(2010.十堰))据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2009年蓄水至175米水位后库容量,将4947.66亿用科学记数法表示为( ) A .4.94766×1013 B .4.94766×1012 C .4.94766×1011 D .4.94766×1010 7.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字 8.下列运算正确的是( ) A .(3xy 2) 2=6xy 4 B .2x -2=14x2 C .(-x ) 7÷(-x ) 2=-x 5 D .(6xy 2) 2÷3 xy =29.下列运算中正确的是( ) A .a 3a 2=a 6 B .(a 3)4= a 7 C .a 6 ÷ a 3 = a 2 D .a 5 + a 5 =2 a 5 10.下列运算中结果正确..的是( ) A .3a +2b =5ab B .5y -3y =2 C .-3x +5x =-8x D .3x 2y -2x 2y =x 2y 11.使分式2x +12x -1无意义的x 的值是( )A .x =-12B .x =12C .x ≠-12D .x ≠1212.函数11y x =-的自变量x 的取值范围是( )A .x ≠0B .x ≠1C .x ≥1D .x ≤1 13.化简1111--+x x ,可得( )A.122-x B.122--xC.122-xxD.122--xx14.211a a aa--÷的结果是( )A .1aB .aC .a -1D .11a -15. 函数y =x -2+31-x 中自变量x 的取值范围是( )A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3 16.若代数式21--x x 有意义,则x 的取值范围是( )A .x >1且x ≠2B .x ≥1C .x ≠2D .x ≥1且x ≠2 17.函数12yx=-中,自变量x 的取值范围是( )(A)x >2 (B)x ≠2 (C)x <2 (D)x ≠018.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,七层二叉树的结点总数为( ) A.63 B.64 C.127 D.12819.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )A .4n 枚B .(4n -4)枚C .(4n +4)枚D .n 2枚二、填空题20. 把温度计显示的零上5℃用+5℃表示,那么零下…?第一个“口” 第二个“口” 第三个“口”第n 个“口”…一层二叉树 二层二叉树 三层二叉树21. 若a <0,化简23______.a a--=22.计算:(-2010) 0+|-1|=___________.23.分解因式a 2-a= ; 4x 2-25=______________; a 2-4b 2=y y x 92-=_______________.24. 下列因式分解:①324(4)x x x x-=-;②232(2)(1)aa a a -+=--;③222(2)2a a a a --=--;④2211()42x x x ++=+.其中正确的是_______.(只填序号)25.计算4133m m m -+++=26.当x 时,二次根式3x -在实数范围内有意义 27.化简:483-=; 27-12+43=______________. 28.若a 、b 为两个连续的整数,且a <15<b ,则a +b = . 三、解答题(本大题共6个小题,每小题10分,共60分)29计算:(1). 01243⎛⎫-+- ⎪⎝⎭. (2).|2-|o 2o 12s in 30(3)(ta n 45)-+--+(3).22)12(45sin 31-+-+︒--.(4).60tan 2-—)14.3(-π+2)21(--1221+(5). 30(2)|5|(32)2s in 30-+---+︒ (6).1022)2010()2(|4|--+---(7).|23|60cos 221)2010(10--+⎪⎭⎫ ⎝⎛---π30.化简:(1).22142a aa+-- (2).2a —(a —1) +a 2—1a +131.先化简,再求值: (1).6)6()3)(3(2+---+a a a a ,其中12-=a(2).2a(a+b)-(a+b) 2,其中3a =,5b = (3).111222---++a a aa a,其中a =3+1.(4).211(1)(2)11x x x -÷+-+-,其中6x =.(5).)21(222222abbaabb a ba+-÷+-,其中32+=a ,32-=b 。

中考数学一轮复习-专题1-数与式(含答案)

中考数学一轮复习-专题1-数与式(含答案)

⎨( x < 0)《数与式》考点 1 有理数、实数的概念 【知识要点】1、实数的分类:有理数,无理数。

2、实数和数轴上的点是 对应的,每一个实数都可以用数轴上的 来表示,反过来,数轴上的点都表示一个 。

3、 叫做无理数。

一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如 的无理数都可以写成根号的形式(如π)。

【典型考题】1、把下列各数填入相应的集合内: ),也不是所有 - 7.5, 15, 4,, 2 , 3 38, π, 0.25, 0.1 5 有理数集{},无理数集{ }正实数集{}2、在实数- 4,数3 , 0,2- 1,64,, 1中,共有 27个无理3、在3,-3.14,- 2, sin 45︒, 34 中,无理数的个数是4、写出一个无理数 【复习指导】,使它与 的积是有理数解这类问题的关键是对有理数和无理数意义的理解。

无理数与有理数的根本区别在于能否用既约分数来表示。

考点 2 数轴、倒数、相反数、绝对值 【知识要点】 1、若a ≠ 0 ,则它的相反数是 ,它的倒数是 。

0 的相反数是 。

2、一个正实数的绝对值是 ;一个负实数的绝对值是 ; 0 的绝对值是。

| x |= ⎧( x ≥ 0)⎩3、一个数的绝对值就是数轴上表示这个数的点与 的距离。

【典型考题】1、 的倒数是- 11;0.28 的相反数是。

22、如图 1,数轴上的点 M 所表示的数的相反数为M4 8 13 2 32723- 15bc > ac3、(1 - m )2 + | n + 2 |= 0 ,则m + n 的值为4、已知| x |= 4,| y |= 1 ,且 xy < 0 ,则 x的值等于2 y5、实数a , b , c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有()c ba • • •① b + c > 0 ② a + b > a + c -2 -1 0 1③ ab 2> ac 3 A.1 个 B.2 个 C.3 个 D.4 个图 26、①数轴上表示-2 和-5 的两点之间的距离是 数轴上表示 1 和-3 的两点之间的距离是 。

初三中考数学数与式

初三中考数学数与式

第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。

专题1.数与式(解析版)

专题1.数与式(解析版)

2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。

2023年中考数学专题复习—— 专项训练(一、二)数与式+方程(组)与不等式(组)

2023年中考数学专题复习—— 专项训练(一、二)数与式+方程(组)与不等式(组)

2023年中考数学专题复习—— 专项训练(一)——数与式一、选择题1. -2022的倒数是( ) A .2022B .12022C .12022-D .-20222. 下列实数是无理数的是( ) A .2-B .16C .9D .113. 如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D第3题图4. 下列式子为最简二次根式的是( ) A 2(2)a b +B 12aC 13D 105. 已知8x =10,2y =4,则23x +2y 的值为( ) A .40 B .80C .160D .2406. x有意义,则x 的取值范围为( ) A .5x ≠B .0x >C . 0x 且5x ≠D .0x7. 寒假期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:4+,0,5+,3-,2+,则这5天他共背诵汉语成语( ) A .38个 B .36个 C .34个 D .30个 8. 2|2|0a b a -+-=,则2a b +的值是( ) A .4B .6C .8D .109. 已知51x =,51y =,则代数式32()x xy x x y --的值是( )A .2B 5C .4D .2510. 设a ,b 是实数,定义一种新运算:2*()a b a b =-.下面有四个推断:①**a b b a =;②222(*)*a b a b =;③()**()a b a b -=-;④*()**a b c a b a c +=+.其中所有正确推断的序号是( ) A .①③ B .①② C .①③④ D .①②③④二、填空题11. 13-的绝对值是 .12. 伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到 450 000 000人,将数据450 000 000用科学记数法表示为 . 13. 分解因式:34a a -= .14. 若单项式32m x y 与3m n xy +是同类项,则2m n +的值为 . 15. 计算221y x x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是 .16. 如图是由大小相同的线段组成的一系列图案,第1个图案由5条线段组成,第2个图案由8条线段组成,第3个图案由12条线段组成,……按此规律排列下去,则第2022个图案由 条线段组成.第16题图三、解答题 17. 计算:2022120221263345(2)2-⎛⎫++︒-- ⎪⎝⎭.18. 先化简,再求值:(1)22(1)2(23)y y y y y +--+,其中1y =-;(2)(2)(2)2(2)x y x y x x y -+--,其中1x =,12y =-.19. 计算: (1)121850322(2)2(56)(56)(51)--.20. 先化简,再求值:2224114422a a a a a a ⎛⎫--÷ ⎪-+--⎝⎭,其中1a =-.21. 在数轴上,四个不同的点A ,B ,C ,D 分别表示数a ,b ,c ,d ,且a b <,c d <. (1)如图①,M 为线段AB 的中点,①当点M与原点重合时,用等式表示a与b的关系为;②直接写出点M表示的数为(用含a,b的代数式表示);(2)如图②,已知a b c d+=+,①若A,B,C三点的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为.(用“<”连接)①②第21题图专项训练(二) ——方程(组)与不等式(组)一、选择题1. 下列方程是一元一次方程的是()A.5x+1﹣2=0 B.3x﹣2y=0 C.x2﹣4=6 D.25 x=2. 如果a <b ,那么下列各式中正确的是( ) A .a ﹣1>b ﹣1B .2a <2b C .﹣a <﹣b D .﹣a +5<﹣b +53. 一元二次方程220x x -=的解是( ) A .0x =B .10x =,22x =C .10x =,212x =D .2x =4. 某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为( ) A .25a ax x +=+ B .25a ax x+=+ C .52a ax x+=+ D .52a ax x=++ 5. 某党支部响应“精准扶贫”政策,为一贫困户送去种植所需的甲、乙两种树苗.已知乙树苗每棵的价格比甲树苗每棵的价格贵20元,购买72棵乙树苗的价格恰好与购买120棵甲树苗的价格相同,则甲树苗每棵的价格是( ) A .40元B .30元C .15元D .10元6. 二元一次方程组()43713x y ax a y +⎧+-⎪⎨⎪⎩=,=的解中,x 与y 的值相等,则a =( )A .1B .2C .3D .47. 有大小两种货车,2辆大货车与3辆小货车一次共可运货15.5吨,5辆大货车与6辆小货车一次共可运货35吨,则每辆小货车一次可运货( ) A .2吨B .2.5吨C .3吨D .3.5吨8. 设a ,b 是方程x 2+2x-20=0的两个实数根,则a 2+3a+b 的值为( ) A .-18 B .21 C .-20 D .189. 已知关于x 的不等式组0320x a x -⎧⎨-⎩>,>的整数解共有3个,则a 的取值范围是( )A .﹣2≤a <﹣1B .﹣2<a ≤1C .﹣2<a <﹣1D .a <﹣110. 小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了2a =,1c =,解出其中一个根是1x =.他核对时发现所抄的b 比原方程的b 值小1,则原方程的根的情况是( ) A .没有实数根 B .有两个不相等的实数根C .另一个根是1x =-D .有两个相等的实数根二、填空题11. 某学校组织500名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少10人.若设到植物园的人数为x 人,依题意,可列方程为 .12. 如图,小雨把不等式3x +1>2(x ﹣1)的解集表示在数轴上,则阴影部分盖住的数字是 .第12题图13. 已知二元一次方程组23,23,x y x y +=⎧⎨+=⎩则x +y = .14. 不等式组420312+12x x x -⎧⎪⎨-⎪⎩≥,>的最大整数解是 .15. 当x 的值是 时,代数式58x x --和428xx--的值互为相反数. 16. 如图,在Rt △ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 从A 点开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2 cm/s 的速度移动.点P ,Q 分别从点A ,B 同时出发,经过 秒,△PBQ 的面积等于8 cm 2.第16题图 三、解答题17. 关于x 的分式方程:223422mx x x x -=--+. (1)当3m =时,求此时方程的解;(2)若这个关于x 的分式方程无解,试求m 的值.18. 阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 【问题】解方程:2224250x x x x +++=. 【提示】可以用“换元法”解方程.22(0)x x t t +=,则有222x x t +=. 原方程可化为2450t t +-=. 【续解】19.(2021·滨州)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.(1)求该商品每次降价的百分率;(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?20. 某手机专卖店的一张进货单上有如下信息:A 款手机进货单价比B 款手机多800元,花38 400元购进A 款手机的数量与花28 800元购进B 款手机的数量相同. (1)求A ,B 两款手机的进货单价分别是多少元? (2)某周末两天销售单上的数据如表所示:求A ,B (3)根据(1)(2)所给的信息,手机专卖店要花费28 000元购进A ,B 两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.参考答案专项训练(一)一、选择题(每小题3分,共30分)1.C2.D3.B4.D5.C6.C7.A8.D9.D 10.A 二、填空题(每小题4分,共24分)11.1312.84.510⨯ 13.(2)(2)a a a +-14.2 15.1x y- 16.7078 三、解答题(共46分)17.(6分) 解:原式2022113222⎛⎫=+---⨯ ⎪⎝⎭1312=+122=. 18. (每小题5分,共10分)解:(1)原式3232246y y y y y =+-+-3256y y y =-+-. 当1y =-时,原式()()()3215161=1+5+6=12=--+⨯--⨯-. (2)原式222442x y x xy =--+22342x y xy =--+.当1x =,12y =-时,原式2211314+21311522⎛⎫⎛⎫=-⨯-⨯-⨯⨯-=---=- ⎪ ⎪⎝⎭⎝⎭.19. (每小题5分,共10分)解:(1)原式==(2)原式()565251=---+1(625)=---1625=--+725=-+.20. (10分)解:原式2(2)(2)11(2)2(2)a a a a a a ⎡⎤+-=+÷⎢⎥---⎣⎦21(2)22a a a a a +⎛⎫=+⋅- ⎪--⎝⎭3(2)2a a a a +=⋅-- 23a a =+.当1a =-时,原式2(1)3(1)132=-+⨯-=-=-. 21. (10分)解:(1)①0a b += ②2a b+ (2)①因为a b c d +=+,所以b d c a -=-.所以DB AC =. 又c d <,所以点D 在数轴上的位置表示如下:②a c d b <<<专项训练(二)一、选择题(每小题3分,共30分)1. A2. B3. C4. B5. B6. B7. B8. D9. A 10. A 二、填空题(每小题4分,共24分)11. x +(2x ﹣10)=500 12. ﹣3 13. 2 14. ﹣4 15. 3 16. 2或4 三、解答题(共46分)17.(10分) 解:(1)把3m =代入方程,得2323422x x x x +=--+.解得5x =-. 检验:当5x =-时,(2)(2)0x x +-≠, 所以原方程的解为5x =-.(2)去分母,得2232mx x x ++=-()(),即(m -1)x =-10. 当m -1=0时,整式方程无解,即m =1时,原方程无解. 当m -1≠0时,解得x =101m-. 因为这个关于x 的分式方程无解,所以x =2或x =-2. 当x =2时,101m -=2,解得m =-4;当x =-2时,101m-=-2,解得m =6. 综上所述,m 的值为1或-4或6.18.(10分) 解:移项,得24=5t t +.配方,得()2+2=9t .解得11t =,2-5t =. 因为220t x x =+,所以221t x x =+.则有221x x +=.配方,得2(1)2x +=.解得112x =-+,212x =- 经检验,原方程的解为112x =-+212x =-.(注:没有检验不扣分)19.(12分)解:(1)设该商品每次降价的百分率为x.根据题意,得60(1-x)2=48.6.解得x1=0.1,x2=1.9(舍去).答:该商品每次降价的百分率是10%.(2)设第一次降价售出a件,则第二次降价售出(20-a)件.根据题意,得[60(1-10%)-40]a+(48.6-40)×(20-a)≥200.解得a≥5527.因为a为整数,所以a的最小值是6.答:第一次降价至少售出6件后,方可进行第二次降价.20.(14分)解:(1)设B款手机的进货单价是x元,则A款手机的进货单价是(x+800)元.根据题意,得3840028800800x x=+.解得x=2400.经检验,x=2400是原方程的解.则x+800=2400+800=3200.答:A款手机的进货单价是3200元,B款手机的进货单价是2400元.(2)设A款手机的销售单价是a元,B款手机的销售单价是b元.根据题意,得5840100,6741100.a ba b+=⎧⎨+=⎩解得3700,2700.ab=⎧⎨=⎩答:A款手机的销售单价是3700元,B款手机的销售单价是2700元.(3)设购进A款手机m部,B款手机n部.根据题意,得3200m+2400n=28 000.化简,得4m+3n=35.因为m,n都是正整数,所以2,9mn=⎧⎨=⎩或5,5mn=⎧⎨=⎩或8,1.mn=⎧⎨=⎩即有三种进货方案:方案一:购买A款手机2部,B款手机9部,利润是(3700-3200)×2+(2700-2400)×9=3700(元);方案二:购买A款手机5部,B款手机5部,利润是(3700-3200)×5+(2700-2400)×5=4000(元);方案三:购买A款手机8部,B款手机1部,利润是(3700-3200)×8+(2700-2400)×1=4300(元).因为3700<4000<4300,所以选择方案三获得的总利润最高.。

九年级数学总复习总结《数与式》测试题

九年级数学总复习总结《数与式》测试题

九年级数学总复习《数与式》测试题一、选择题(每题4分,共32分)1.实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )A .2a +bB .2aC .aD .b 2.下列计算中,正确的是( )A .33x x x =∙ B .3x x x -= C .32x x x ÷= D .x x x += 3.若2与a 互为倒数,则下列结论正确的是( )。

A 、21=a B 、2-=a C 、21-=a D 、2=a 4.计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2 (D )m 3 5.代数式2346x x -+的值为9,则2463x x -+的值为( ) A .7 B .18C .12D .96.2007年10月中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。

已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A 、3.84×410千米 B 、3.84×510千米 C 、3.84×610千米D 、38.4×410千米7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-; B .)1)(4(432-+-=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-。

8.下列等式正确的是( )(A )x b a x b x a )(-=- (B )942188+=+ (C )b a b a +=+22 (D )b a b a +=+2)( 二、填空题(每题4分,共40分)9.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:10. 用“”定义新运算:对于任意实数a ,b ,都有a b=b 2+1。

数与式专项练习题

数与式专项练习题

数与式专项练习题数与式专项练习题(⼀)⼀、选择题1.16的平⽅根是()A.4 B.-4 C.±4 D.162.下列说法正确的是()A.-4 表⽰-4的平⽅根B.4的平⽅根是2 C.2是4的平⽅根D.16 的平⽅根是±4 3.下列说法中,错误的是()A.15是(-15)2的算术平⽅根B.15是(-15)2的平⽅根C.-15是225的算术平⽅根D.-15是225的平⽅根4.下列各式:①±16 =±4,②-(49)=-23,③(-5)2=5,④(-4)(-9) =6,⑤a2=a(a<0),⑥(-16 )2=16,其中表⽰⼀个数的算术平⽅根的是( )A.①②③B.④⑤⑥C.③④D.②⑤5.若⼀个数的算术平⽅根与它的⽴⽅根的值相同,则这个数是()A.1 B.0和1 C.0 D.⾮负数6.在数-16,0,(-2.5)2,(-3)-2中,有平⽅根的数共有( )A.1个B.2个C.3个D.4个7.下列说法中,正确的是( )A.⼀个数的正的平⽅根是算术平⽅根B.⼀个⾮负数的⾮负平⽅根是算术平⽅根C.⼀个正数的平⽅根是算术平⽅根D.⼀个不等于0的数的正的平⽅根是算术平⽅根8.若a是(-3)2的平⽅根,则3a =( )A.-3 B.3+3 C.33 或-33 D.3和-3⼆、填空题1.正数a的平⽅根有个,⽤符号表⽰可以写成,它们互为.2.35 是的⽴⽅根, 的⽴⽅根是-3.3.若a≠0,则a4的平⽅根有个,它们是.4.⽴⽅根是它本⾝的数是.5.平⽅根是它本⾝的数是.6.若a的⼀个平⽅根是b,那么它的另⼀个平⽅根是,若b是a的⼀个平⽅根,则a的平⽅根是.7.0.36的算术平⽅根是,3的算术平⽅根是.1、求下列各数的平⽅根.(1)121(2)25(3)694(4)02、对于代数式2x+9,当x 为何值时①有两个平⽅根,且这两个平⽅根互为相反数②只有⼀个平⽅根③没有平⽅根3、已知|x+y -4|+x-y+10 =0.求x ,y 的值.4、若33y-1 和31-2x 互为相反数,则x y 的值是多少?数与式专项练习题(⼆)⼀、选择题1.下列各式中,⼀定是⼆次根式的是()A.-4 B .32a C .x 2+1 D.x-12.在代数式a -1-2a+a 2 中,若a =5,则此代数式的值为() A .-1 B .1 C .9 D .11 3.在下列各式中,计算正确的是( )A .1000 =10B .10-2×24 =20 6C .614×179=254×169 =54 ×49 =59D .(-4)2-(-3)2 =(4+3)(4-3) =74.把x+32x+6 分母有理化得( )A .12 2x+6B .122x -6 C .2x+6 D.2x -65.下列各式为最简⼆次根式的是( ) A .80 B .x5C .a 3+b 2D .a 3+2a 2b 6.下列各组根式中,不为同类根式的是( ) A .9a 2b 与16bx 2 B .c b ab 3c 5 与abD .a+1 与2a 2+4a+27.当x<0时,则-6x 3 的化简结果是()A.-x 6x B .-x -6x C .x 6x D.x -6x 8.等式(2-x)(x -2) =2-x ·x-2 成⽴的条件是()9.m mn ÷nm n ×nm的化简结果为( ) A .n m mn B .mn mn C .mn D .mn mn10.若x>y ,则根式(y -x)1x -y化简的结果是() A . x+y B .-x -y C .-y -x D .x -y 11.如果-a(x 2+1) 是⼆次根式,那么() A .a ≤0 B .a ≥0 C .x<0 D .x>0 12.计算:(2-3)2 +(3-2)2 的结果是( )A .0B .2( 3 - 2 )C .2( 2 - 3 )D .2( 5 - 6 ) 13.若1≤x ≤5,那么(x -1)2 +|5-x|等于( ) A .6-2x B .2x -6 C .4 D .-4 ⼀、填空题1x 的取值范围是. 25,则x =,y 30.524 =,=. 4.计算:627 ·(-2 3 )=,-645 ·(-48 )=,-415÷710=. 5.N 为正整数,当n =时,a n-3 为最简根式.6.若最简根式5x+1 与2x+7 是同类⼆次根式,则x =. 7.当1x-1 =.三、计算:(1)ab ·2b a ·(-a b )·(-1ab)(2)(32 ·113 ÷38 25 )÷(30 ×32 223 ×18 )-(613-40.5 ) (4)(2 3 +3 2 - 6 )(2 3 -3 2 - 6 )四、已知3(2a-b)2+|a|-3a+3=0,求a ,b 的值.五、已知a -1的绝对值是其相反数,a+1的绝对值是其本⾝.试求2a 2-6a+9 +|2a+3|的值.数与式专项练习题 (三)⼀、选择题1.下列各数3-8 ,57 ,0.131131113,2564,0.121212…, 3 ,其中⽆理数有()A.1个 B .2个 C .3个 D .4个 2.有如下命题,其中错误的是()①⼀个实数的平⽅根是正数②⼀个实数的算术平⽅根⼀定是正数③⼀个实数的⽴⽅根不是正数就是负数④任何⾮负数都可以开n 次⽅(n 是⼤于1的整数)A .①②③B.①②④C.②③④D.①③④ 3.下列四个数中,为有理数的是()A.30.00016 B.30.8 C.π2 D.3-1 ·0.09 4.若式⼦x-2 +31-13x 有意义,则x 的取值范围是()A.x ≥2 B.x ≤3 C.2≤x ≤3 D.以上都不对5.⼀个⾃然数的算术平⽅根是a ,则它后⾯的⼀个⾃然数的算术平⽅根是()A.a+1 B. a +1 C. a+1 D. a 2+1 6.下列命题中,正确的是()A. a 的值⼀定是⽆理数B.算术平⽅根⼀定是正数C.-x 为有理数,必有x ≤0且-x ⼀定是完全平⽅数D.⼀个正数的⽴⽅根必⼩于它的平⽅根⼆、填空题1.当x 时,x+1 在实数范围内有意义,当x 时,3x 在实数范围内有意义. 2. 3 -2的相反数是,绝对值是.3.|3-π|+(π-4)2 = .4.填不等号:①当0a ;② 5 2.7;③-π-3.1416;④10-311 05.π,227 ,- 2 ,3.14,0.6,9 ,0.3333…,0.1010010001…这⼋个数中的⽆理数是.6.已知a 是⼩于3+ 5 的整数且|2-a|=a -2,则a 的所有可能值是.1.⽐较下列各组数的⼤⼩.(1)1.732与 3 (2)4-17 与2- 32、求x 的取值范围.代数式1-12x +3x -5 有意义.代数式3-x x -1有意义.3、计算:-0.25 ÷(-12 )4·(-1)12 +(213 -1.75) ÷1214 (481 )2-(11 -319 )0+| 5 -3|-617294、若a>0,⽐较a 与1a 的⼤⼩数与式专项练习题(四)⼀、选择题(每⼩题3分,共24分)1、64的算术平⽅根是()A 、4B 、±8C 、8D 、-8 2、数3.14,2,π,0.323232…,71,9中,⽆理数的个数为() A 、2个 B 、3个 C 、4个 D 、5个 3、下列⼆次根式中,与3是同类⼆次根式的是() A 、18 B 、33 C 、30 D 、300 4、与数轴上的点⼀⼀对应的是()A 、有理数B 、整数C 、⽆理数D 、实数 5、下列各式正确的是()A 、1823232-=?-=-B 、()12255102-=÷- C 、()()()()6329494=--=-?-=-- D 、532=+6、要使式⼦32+x 有意义,字母x 的取值范围是() A 、0≥x B 、23≥x C 、23-≥x D 、2B 、1C 、0或1D 、0和±1 8、圆的⾯积增加为原来的100倍,则它的半径是原来的()⼆、填空题(每空2分,共20分) 1、当x 时,⼆次根式121-x 有意义。

中考数学复习《数与式》考点及测试题(含答案)

中考数学复习《数与式》考点及测试题(含答案)

中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

2023初中数学数与式复习 题集附答案

2023初中数学数与式复习 题集附答案

2023初中数学数与式复习题集附答案一、数与式基本概念1. 请计算下列数的乘积:a) 15 × 6b) 31 × 2c) 8 × 12答案:a) 15 × 6=90b) 31 × 2=62c) 8 × 12=962. 请计算下列数的商:a) 30 ÷ 5b) 56 ÷ 7c) 84 ÷ 6答案:a) 30 ÷ 5=6b) 56 ÷ 7=8c) 84 ÷ 6=143. 将下列数相加,并写出结果的最简形式:a) 1/2 + 1/4b) 3/4 + 2/3c) 5/6 + 2/5答案:a) 1/2 + 1/4=3/4b) 3/4 + 2/3=17/12c) 5/6 + 2/5=37/30二、数与式的转化1. 请将下列描述转化为代数式:a) 一个数减去5的结果等于9。

b) 一个数乘以3再加上7等于22。

c) 两个数的和减去6等于12。

答案:a) x - 5 = 9b) 3x + 7 = 22c) x + y - 6 = 122. 请将下列代数式转化为描述:a) x + 3 = 10b) 2y - 5 = 7c) 3x + 2y = 15答案:a) 一个数加3等于10。

b) 两倍的一个数减去5等于7。

c) 两个数的三倍加上两倍等于15。

三、数学方程1. 解方程:2x + 5 = 13答案:2x + 5 = 132x = 13 - 52x = 8x = 42. 解方程:3(x + 2) = 21答案:3(x + 2) = 213x + 6 = 213x = 21 - 63x = 15x = 53. 解方程:4x - 3 = 25答案:4x - 3 = 254x = 25 + 34x = 28x = 7四、数的应用1. 某书店共卖出了300本书,其中数学书占总量的1/4。

请问,数学书的数量是多少本?答案:数学书的数量 = 300 × 1/4数学书的数量 = 75本2. 某班级一共有50名学生,其中男生占总人数的40%。

专题01 数与式(61题)(原卷版)

专题01 数与式(61题)(原卷版)
34.(2023·上海静安·统考二模) 的倒数是_______.
35.(2023·上海徐汇·统考二模)计算: =____.
36.(2023·上海嘉定·统考二模)1纳米=0.000000001米,则2.5纳米用科学记数法表示为________
37.(2023·上海徐汇·统考二模)已知f(x)= ,则 =_____.
38.(2023·上海嘉定·统考二模)方程 -x=1的根是_________.
39.(2023·上海闵行·统考二模)计算: ______.
40.(2023·上海黄浦·统考二模)冬季某日中午12时的气温是3 ,经过10小时后气温下降8 ,那么该时刻的气温是________ .
41.(2023·上海杨浦·二模)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,那么2兆=________.(用科学记数法表示)
59.(2023·上海崇明·统考二模)计算:
60.(2023·上海徐汇·统考二模)先化简: ,然后从 、 、0、2、3中选一个数代入求值.
29.(2023·上海静安·统考二模)计算: ______.
30.(2023·上海宝山·统考二模)分解因式: __________.
31.(2023·上海金山·统考二模)因式分解:a3-a=______.
32.(2023·上海闵行·统考二模)因式分解: __________.
33.(2023·上海崇明·统考二模) 的立方根是__________.
4.(2023·上海金山·统考二模) 的相反数为()
A. B.6C. D.
5.(2023·上海金山·统考二模)单项式 的系数是()
A. B.2C.3D.8

成都市初2023届数学基础知识专项训练题1 数与式(答案)

成都市初2023届数学基础知识专项训练题1 数与式(答案)

初2022届数学基础知识专项训练题参考答案(一)数与式一.选择题1.A2.B3.D4.B5.D6.B7.A8.B9.B 10.A 二.填空题11.(1)1;(2);(3)﹣1;12.﹣3a (m +2n )(m ﹣2n )13.014.615.2026;16.875三、解答题17.解:(π﹣2021)0﹣3tan30°+|1﹣|+()﹣2=1﹣3×+﹣1+4=1﹣+﹣1+4=4.18、解:(﹣1)÷=(﹣)÷=×==x ﹣2当x =2+时,原式=2+﹣2=.19.11,82x y ==,代数式的值为52;20.解:原式=÷[+]=÷=÷=•=,∵m 是已知两边分别为2和3的三角形的第三边长,∴3﹣2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,由分式有意义的条件可知:m ≠0、2、3,∴m =4,∴原式=.21.解:观察一列数可知:=,=,=,=,=,…按此规律排列下去,这列数中的第n 个数是:==.22.解:(1)∵AB=1,C1为AB的中点,∴C1B=AB=,∵C2为C1B的中点,∴C1C2=C1B=×=,以此类推,每取一次中点,线段的长度变为前一次的,∴C n-1∁n=∁n B=()n=,∴A∁n=AC﹣∁n B=1﹣;(2)结合图形,…+=AC1+C1C2+…+∁n B=A∁n,∴…+=1﹣;(3)∵△ABC面积为1,A1、B1分别为AC、BC两边的中点,=S△ABC=,∴S△A1B1C=3S△A1B1C=3×,∴S四边形ABB1A1=S△A1B1C=×=,同理S△A2B2C=3S△A2B2C=3×,∴S四边形A1B1B2A2…=3S△AnBnC=3×,以此类推S四边形An-1Bn-1BnAnS△AnBnC=,=S四边形ABB1A1+S四边形A1B1B2A2+…+S四边形An-1Bn-1BnAn+S△AnBnC=1,∵S△ABC即3×+3×+…+3×+=1,∴++…+=.。

(完整版)专题复习一数与式(学生)(最新整理)

(完整版)专题复习一数与式(学生)(最新整理)

1.等于(....2.的相反数等于(....)如图,在数轴上表示到原点的距离为....6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.下列各组数中,互为相反数的是( )A.2和B.-2和-C.-2和|-2| D.和8.计算:9.计算:10.观察下列等式,,,将以上三个等式两边分别相加得:.)猜想并写出:)直接写出下列各式的计算结果:①②)探究并计算:.在实数,,,,中,无理数有(...化简:=估计的运算结果应在( 到7之间B.7到8若,则估计的值所在的范围是(....比大的实数是(....计算的结果是比较大小:3 .如果,那么的算术平方根是化简=_________的算术平方根是计算:=已知,那么的值为计算:计算:计算:计算“的倍与的差的平方....若实数、互为相反数,则下列等式中恒成立的是(..化简的结果为....若,则的值为(....年的销售利润为,预计以后每年比上一年增长. . ..一组按规律排列的式子:,,,,(),其中第,第个式子是(为正整数).第个等式为.(是正整数).若互为相反数,则烟台)已知,求的值14.先化简,再求值:,其中,.()()(2)a b a b b b +-+-1a =-1b =.五、因式分解1.下列因式分解正确的是()A .;B .;x x x x x 3)2)(2(342++-=+-)1)(4(432-+-=++-x x x x C .;D .22)21(41x x x -=+-)(232y x y xy x y x xy y x +-=+-2.下列多项式中,能用公式法分解因式的是( )A . B . C . D .2x xy-2x xy+22x y-22x y+3.把分解因式得:,则的值为( )23x x c ++23(1)(2)x x c x x ++=++c。

【中考数学总复习一轮】数与式基础练习(含答案)

【中考数学总复习一轮】数与式基础练习(含答案)

【中考数学总复习一轮】数与式基础练习一、单选题(共8道,每道10分)1.若整数满足条件且,则的值为;A.0或-1B.0C.-1D.0或-1或-2答案:A解题思路:,,而m+10,且取正整数,则的取值为0或-1 试题难度:三颗星知识点:平方根2.今年某市约有108000名应届初中毕业生参加中考,按四舍五入保留两位有效数字,108000用科学计数法表示为()A.0.10×106B.1.08×105C.0.11×106D.1.1×105答案:D解题思路:108000直接用科学技术发表示为1.08105,保留两位有效数字为1.1×105试题难度:三颗星知识点:科学记数法3.A.0B.1C.D.-答案:D解题思路:,,,试题难度:三颗星知识点:实数的综合运算4.估算的值()A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间答案:D解题思路:,,则原式试题难度:三颗星知识点:实数大小比较5.若x、y满足,则代数式:的值是多少?A.9B.10C.2D.0答案:B解题思路:,=,x=2,y=1,代入式子可得结果为10试题难度:三颗星知识点:代数式求值6.如果是一个完全平方式,则m= ;A.8B.-8C.0D.答案:D解题思路:=试题难度:三颗星知识点:完全平方公式7.已知,则分式的值为A.B.C.9D.0答案:A解题思路:,则y-x=3xy,===试题难度:三颗星知识点:分式的化简求值8.化简:,选你喜欢的a=1代入求值为A.1B.-1C.2D.-2答案:A解题思路:=,代入求值即得试题难度:三颗星知识点:分式的化简求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础复习(一):数与式试题
一、选择题:
1.无理数-3的相反数= 2.-3的绝对值是=
3.- 13
的倒数是= 4.计算(-2)×3的结果是 5.据报道,2014年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( )
A .1.3×104
B .1.3×105
C .1.3×106
D .1.3×107
6.据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2009年蓄水至175米水位后库容量,将4947.66亿用科学记数法表示为 (保留3个有效数字)
7.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).
A .精确到十分位,有2个有效数字
B .精确到个位,有2个有效数字
C .精确到百位,有2个有效数字
D .精确到千位,有4个有效数字
8.下列运算正确的是( )
A .(3xy 2) 2=6xy 4
B .2x
-2=14x 2 C .(-x ) 7÷(-x ) 2=-x 5 D .(6xy 2) 2÷3 xy =2 9.使分式2x +12x -1无意义的x 的值是 10.211a a a a
--÷的结果是 11. 函数y =x -2+3
1-x 中自变量x 的取值范围是( ) A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠3
12.若代数式2
1--x x 有意义,则x 的取值范围是( ) A .x >1且x ≠2 B .x ≥1 C .x ≠2 D .x ≥1且x ≠2
13.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,七层二叉树的结点总数为( )
A.63
B.64
C.127
D.128
14.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )
A .4n 枚
B .(4n -4)枚
C .(4n +4)枚
D .n 2枚
二、填空题 14. 把温度计显示的零上5℃用+5℃表示,那么零下2℃应表示为________℃.
15.分解因式)()(2x y y x x
-+-= ; 44416n m -=_____________;2+12+20x x = x 5y 5-2x 3y 3+xy =_______________.13
292+-n n = . 2212y x x -+--

? 第一个“口” 第二个“口” 第三个“口”
第n 个“口”

一层二叉树 二层二叉树 三层二叉树
三、解答题
16计算:(1) 22)12(45sin 3
01-+-+︒-- (2). 60tan 2-—0)14.3(-π+2)21(--1221+
.
17.化简:(1). 211(1)(2)11x x x -÷+-+- (2). )212(112a a a a a a +-+÷--.
18.先化简,再求值:
(1).6)6()3)(3(2+---+a a a a ,其中12-=a
(2).)21(22
2222ab b a ab b a b a +-÷+-,其中32+=a ,32-=b 。

(3).11
2132-÷⎪⎪⎭⎫
⎝⎛---x x x ,其中x 满足0322=--x x .
19. 已知:02322=-+b ab a ,求代数式ab b a a b b a 2
2+--的值。

相关文档
最新文档