初一上册数学知识点与基础训练

合集下载

七年级上册人教版数学知识点

七年级上册人教版数学知识点

七年级上册人教版数学知识点七年级上册人教版数学知识点概述一、数与代数1. 有理数的运算- 正数和负数的概念- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小- 绝对值的概念和性质- 有理数的近似和有效数字2. 整式的加减- 单项式和多项式的定义- 合并同类项- 去括号法则- 因式分解的初步概念3. 一元一次方程- 方程的概念和方程的解- 解一元一次方程的基本步骤- 应用题的解决方法二、几何1. 图形的初步认识- 点、线、面、体的概念- 直线、射线、线段的特点- 角的概念和分类(如:锐角、直角、钝角)2. 相交线与平行线- 相交线的性质- 平行线的定义和性质- 平行公理及其推论3. 平面图形的认识- 四边形的种类和特点(如:正方形、长方形、平行四边形)- 面积的计算方法(长方形、正方形、三角形)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形统计图和折线统计图2. 概率- 随机事件的概念- 可能性的初步认识- 简单事件发生的可能性计算四、解题方法和策略1. 逻辑思维的培养- 理解问题,分析条件- 明确目标,制定解题步骤- 检查和验证答案的正确性2. 题目类型的识别- 应用题、证明题、计算题的解题技巧- 常见题型的解题模板和方法以上是七年级上册人教版数学的主要知识点概述。

这些知识点构成了学生数学学习的基础,对于培养学生的逻辑思维能力、解决实际问题的能力以及为后续学习打下坚实的基础至关重要。

教师和家长应引导学生通过练习和实际应用来巩固和深化这些知识点,从而提高学生的数学素养。

人教七上数学知识点

人教七上数学知识点

人教七上数学知识点
人教版七年级上册数学知识点有:
1.有理数:包括正数、负数、整数、分数、有理数、数轴、相反数等。

2.
3.代数式:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

4.
5.整式与分式:
① 单项式:由数和字母的乘积组成的代数式叫做单项式。

② 多项式:几个单项式的和,叫做多项式。

③ 升幂排列与降幂排列:把多项式按x的指数从大到小的顺序排列,叫做
降幂排列。

把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

④ 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

⑤合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

初一上册数学重要知识点

初一上册数学重要知识点

初一上册数学重要知识点
以下是 8 条初一上册数学重要知识点:
1. 正负数呀,这可太重要啦!像温度计上的刻度,有零上和零下,正负数不就跟这一样嘛!比如,今天赚了 100 元可以表示为+100,赔了 50 元
那就是-50 喽!
2. 有理数的运算绝对是基础中的基础啊!这不就像搭积木,一块一块地堆起来嘛。

算一下3+(-2)等于多少?就像你手里有 3 个苹果,别人拿走了2 个,不就剩下 1 个嘛!
3. 单项式和多项式,哎呀,就像是单词和句子呀!3x 就是一个单项式,那
3x+2y 不就是个多项式嘛!例如,买一支笔 3 元,买一个本 2 元,那买 x
支笔和 y 个本不就得花 3x+2y 元嘛!
4. 同类项合并,这就好比整理玩具呀,把一样的放在一起。

比如 2x 和 3x
是同类项,合并起来就是 5x 呀,这多简单呀,是不是?
5. 一元一次方程,哇塞,就像是解一个谜题一样刺激呢!比如小明比小红大3 岁,小明今年 x 岁,小红今年 10 岁,那 x-3=10 不就是个一元一次方程嘛,快算出小明几岁呀!
6. 有理数的混合运算可要小心哦,就像走迷宫,一步错可能就出不来啦!计算一下2×[3+(-4)],得仔细算呀!
7. 整式的乘法,这就像变魔术一样神奇呀!(x+2)(x-3)展开会得到什么呢?快来试试吧!
8. 角度的度量,就跟看时钟一样嘛!时针转一圈是 360 度,那一个小格是多少度呢?想想就有意思!
我觉得呀,初一上册数学这些知识点真的都好重要呀,掌握了它们,数学学习可就轻松多啦!。

人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册知识点归纳总结及典型试题汇总

最新人教版七年级数学上册知识点归纳总结及典型试题汇总(共16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--人教版七年级数学上册期末总复习(学)第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;(是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数; a >0 a 是正数; a <0 a 是负数; a ≥0a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ;(3)相反数的和为a+b=0 a 、b 互为相反数. (4)相反数的商为 .(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,,以上数据表示与标准质量的差,绝对值越小,越接近标准。

七年级上册数学基础训练答案

七年级上册数学基础训练答案

选择题1、两个互为相反数的有理数相乘,积为()A、正数B、负数C、零D、负数或零考点:有理数的乘法。

分析:1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同零相乘,都得0.2、两个互为相反数的数有两种情况,一正一负或都为0.解答:解:∵正数的相反数为负数,负数的相反数为正数,根据异号两数相乘得负,∴积为负.又∵0的相反数是0,∴积为0.故选D点评:本题考查了有理数的乘法法则.注意互为相反数的数有两种情况.2、绝对值不大于4的整数的积是()A、16B、0C、576D、﹣1考点:有理数的乘法;绝对值。

专题:计算题。

分析:先找出绝对值不大于4的整数,再求它们的乘积.解答:解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4.,所以它们的乘积为0.故选B.点评:绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.3、五个有理数的积为负数,则五个数中负数的个数是()A、1B、3C、5D、1或3或5考点:有理数的乘法。

分析:多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.解答:解:五个有理数的积为负数,负数的个数是奇数个,则五个数中负数的个数是1、3、5.故选D.点评:本题考查了有理数的乘法法则.4、现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当x<0时,|x|=﹣x;④当|x|=﹣x时,x<0.其中正确的说法是()A、②③B、③④C、②③④D、①②③④考点:有理数的乘法;绝对值。

分析:根据0乘以任意数都得0和0的绝对值还是0知,①④错误.解答:解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误;②正确;③正确;④当|x|=﹣x时,x≤0,错误.故选A.点评:本题主要考查了绝对值的定义及有理数的乘法法则.有理数这一部分应该时时刻刻考虑到一个特别的数字0.5、某校期末统一考试中,A班满分人数占2%,B班满分人数占4%,那么满分人数()A、A班多于B班B、A班与B班一样多C、A班少于B班D、不能比较考点:有理数的乘法。

浙教版七年级上册初一数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版七年级上册初一数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版七年级上册初中数学全册知识点梳理及重点题型巩固练习有理数的意义【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数1.(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元【思路点拨】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【答案】C【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【总结升华】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.举一反三:【:有理数的意义 356786概念的应用例3(1)】【变式1】(2015•太仓市模拟)一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克 B.50.3千克 C.49.7千克 D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1)这8名男生有百分之几达到标准?(2)他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:5100%62.5% 8⨯=;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类【:有理数的意义 356786 概念的应用例2】3.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数.D .正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;(C)不对,当a为负数或0时,则a-为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,⨯,⨯,⨯【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【答案】正整数: 1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;负分数: -3.88,7 23 -;分数:0.0708,3.14159265,,-3.88,723-; 非负数: 1,0.0708, 3.14159265,0,;非正数:-700, -3.88, 0, 723- 【解析】 【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数. 举一反三:【变式】(2014秋•惠安县期末)在有理数、﹣5、3.14中,属于分数的个数共有 个.【答案】2.类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n 组应该有种子是 粒. 【答案】(12+n )【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关. 举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是:【答案】-3【变式2】观察下列有规律的数:,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】901 【巩固练习】一、选择题1. (2014•甘肃模拟)下列语句正确的( )个 (1)带“﹣”号的数是负数;(2)如果a 为正数,则﹣a 一定是负数; (3)不存在既不是正数又不是负数的数; (4)0℃表示没有温度.A. 0B. 1C. 2D. 3 2.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数3.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( ) A .前进-18米的意义是后退18米 B .收入-4万元的意义是减少4万元 C .盈利的相反意义是亏损D .公元-300年的意义是公元后300年 4.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 ( ) A .甲站的东边70千米处 B .甲站的西边20千米处 C .甲站的东边30千米处 D .甲站的西边30千米处 5.在有理数中,下面说法正确的是( )A .身高增长cm 2.1和体重减轻kg 2.1是一对具有相反意义的量B .有最大的数C .没有最小的数,也没有最大的数D .以上答案都不对6.下列各数是正整数的是 ( )A .-1B .2C .0.5D . 2二、填空题 1.(2014秋•朝阳区期末)如果用+4米表示高出海平面4米,那么低于海平面5米可记作 . 2.在数中,非负数是______________;非正数是 __________.3.把公元2008年记作+2008,那么-2008年表示 . 4.既不是正数,也不是负数的有理数是 . 5.(2016春•温州校级期中)如果向东行驶10米,记作+10米,那么向西行驶20米,记作 _________米.6.是整数而不是正数的有理数是 .7.既不是整数,也不是正数的有理数是 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米. 三、解答题1.说出下列语句的实际意义.(1)输出-12t (2)运进-5t (3)浪费-14元 (4)上升-2m (5)向南走-7m2.(2014秋•晋江市期末)下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置. ﹣28%,,﹣2014,3.14,﹣(+5),﹣0.3.(2015秋•赣州校级期末)随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”,记录数据如下表:时间 第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km ) ﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8 (1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2,3,-4,5,-6,7,-8, , ,... ,...(2)-1,21,-31,41,51-,61,71-, , ,... ,... 【答案与解析】一、选择题1.【答案】B【解析】(1)带“﹣”号的数不一定是负数,如﹣(﹣2),错误;(2)如果a 为正数,则﹣a 一定是负数,正确; (3)0既不是正数也不是负数,故不存在既不是正数又不是负数的数此表述错误; (4)0℃表示没有温度,错误. 综上,正确的有(2),共一个.2.【答案】C【解析】0既不是正数也不是负数,但0是整数,是偶数,是自然数. 3. 【答案】D【解析】D 错误,公元-300年的意义应该是公元前300年. 4. 【答案】 C【解析】画个图形有利于问题分析,向东50千米然后再向西20千米后显然此时汽车在甲站的东边30千米处. 5.【答案】C【解析】A 错误,因为身高与体重不是具有相反意义的量;B 错误,没有最大的数也没有最小数;C 对. 6. 【答案】B 二、填空题1.【答案】﹣5米2.【答案】0.5,100,0,112;122-,0,-45 【解析】正数和零统称为非负数,负数和零统称为非正数,零既不是正数也不是负数. 3.【答案】公元前2008年【解析】正负数表示具有相反意义的量. 4.【答案】0【解析】既不是正数也不是负数的数只有零. 5.【答案】-20.【解析】解:∵向东行驶10米,记作+10米,∴向西行驶20米,记作﹣20米, 故答案为:﹣20.6.【答案】负整数和0【解析】整数包括正整数和负整数,又因为不是正数,所以只能是负整数和0. 7.【答案】负分数【解析】不是整数,则只能是分数,又不是正数,所以只能是负分数. 8.【答案】10,10.03,9.98【解析】03.002.010+-表示的数的范围为:大于-(100.02),而小于(10+0.03),即大于9.98而小于10.03.三、解答题1. 【解析】(1)输出-12t 表示输入12t ;(2)运进-5t 表示运出5t ; (3)浪费-14元表示节约14元; (4)上升-2m 表示下降2m ; (5)向南走-7m 表示向北走7m.提示:“-”表示相反意义的量. 2.【解析】3.【解析】 解:(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米;(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.4.【解析】(1)9,-10,…,2011,…(2)111 ,,...,,... 892011 --数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2015•宜宾)﹣的相反数是()A.5 B. C.﹣ D.-5【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】B【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【:数轴和相反数例1(1)~(7)】【变式1】填空:(1) -(-2.5)的相反数是;(2) 是-100的相反数;(3)155-是的相反数;(4) 的相反数是-1.1;(5)8.2和互为相反数.(6)a和互为相反数 . (7)______的相反数比它本身大, ______的相反数等于它本身.【答案】(1)-2.5;(2)100;(3)155;(4)1.1;(5)-8.2;(6)-a;(7)负数, 0 .【:数轴和相反数例2】【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多【答案】B3.(2016•泰安模拟)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【思路点拨】考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【总结升华】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭(2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)【答案】 (1)112233⎛⎫--=⎪⎝⎭(2)-(+5)=-5 (3)-(-0.25)=0.25(4)1122⎛⎫+-=-⎪⎝⎭(5)-[-(+1)]=-(-1)=1 (6)-(-a)=a【解析】(1)123⎛⎫-- ⎪⎝⎭表示123-的相反数,而123-的相反数是123,所以112233⎛⎫--=⎪⎝⎭;(2)-(+5)表示+5的相反数,即-5,所以-(+5)=-5;(3)-(-0.25)表示-0.25的相反数,而-0.25的相反数是0.25,所以-(-0.25)=0.25;(4)负数前面的“+”号可以省略,所以1122⎛⎫+-=-⎪⎝⎭;(5)先看中括号内-(+1)表示1的相反数,即-1,因此-[-(+1)]=-(-1)而-(-1)表示-1的相反数,即1,所以-[-(+1)]=-(-1)=1;(6)-(-a)表示-a的相反数,即a.所以-(-a)= a【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:∴312.5101 2.5344-<-<-<<<< 【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小. 举一反三:【变式1】(2014秋•埇桥区校级期中)有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0 【答案】D【:数轴和相反数 例4(2)】 【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,3类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数. 【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=. 【答案与解析】解:由题意A 、B 两点到原点的距离都是:1142248÷=而a <b ,所以128a =-,128b =.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称.举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】(1)±5,提示:要注意两种情况,原点左右各一个点;(2)5,提示:画出数轴,容易看出-3和3之间的整数是-2,-1,0,1,2共5个.【巩固练习】一、选择题1.(2015•江阴市模拟)﹣5的相反数是( ) A .5 B .-5 C .±5 D .﹣2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点 3.(2016•呼和浩特)互为相反数的两个数的和为( ) A .0 B .﹣1 C .1 D .24.如图,有理数a ,b 在数轴上对应的点如下,则有( ).(A)a >0>b (B)a >b >0 (C)a <0<b (D)a <b <0 5. 一个数比它的相反数小,这个数是( ) A.正数 B.负数 C.非正数 D.非负数 6. 如果0a b +=,那么,a b 两个数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数 二、填空题1.________________的两个数,叫做互为相反数;零的相反数是________.2.(2015春•岳池县期中)若3a ﹣4b 与7a ﹣6b 互为相反数,则a 与b 的关系为 .3.(2016•岳阳)如图所示,数轴上点A 所表示的数的相反数是 .4.数轴上离原点5个单位长度的点有______个,它们表示的数是 ,它们之间的关系是 . 5.化简下列各数: (1)23⎛⎫--= ⎪⎝⎭________ ;(2)45⎛⎫-+= ⎪⎝⎭________ ;(3){[(3)]}-+-+=________. 【:数轴和相反数 例4(5)】6.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为__________. 三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.(2014秋•孟津县期中)已知:a 是﹣(﹣5)的相反数,b 比最小的正整数大4,c 是最大的负整数.计算:3a+3b+c 的值是多少?3.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭4.已知3m-2与-7互为相反数,求m 的值.【答案与解析】一、选择题 1.【答案】A 2.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】A【解析】解:互为相反数的两个数的和为0.故选:A .4. 【答案】C5. 【答案】B【解析】因为一个负数的相反数是一个正数,负数小于正数,所以选B 6. 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b +=. 二、填空题1. 【答案】只有符号不同,零 【解析】相反数的定义2.【答案】a=b.【解析】∵3a ﹣4b 与7a ﹣6b 互为相反数,∴3a ﹣4b+7a ﹣6b=0,∴a=b. 3.【答案】2.【解析】解:数轴上点A 所表示的数是﹣2,﹣2的相反数是2,故答案为:2.4. 【答案】两个,±5,互为相反数5. 【答案】24;;335-【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,;若“-”个数为奇数个时,化简结果为负.6. 【答案】- b <-1<0<-a<1.三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2. 【解析】∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1,=﹣1.3.【解析】(1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,将化简后的数表示在数轴上,由图可得: -(+3.6) <53⎛⎫-+ ⎪⎝⎭<245⎛⎫-- ⎪⎝⎭<-(-54).4.【解析】依题意:3m-2=7,故m=3.绝对值及有理数的大小比较(基础)【学习目标】1.借助数轴理解绝对值的概念,知道|a|的绝对值的含义; 2.会求一个数的绝对值,并会用绝对值比较有理数的大小; 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 【要点梳理】 要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 解:方法1:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2.已知一个数的绝对值等于2009,则这个数是________.【思路点拨】若一个数的绝对值是正数,则此数有两个,且互为相反数. 【答案】2009或-2009.【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来. 举一反三:【变式1】(2015•镇江)已知一个数的绝对值是4,则这个数是 . 【答案】±4.【:绝对值比大小 356845 典型例题3】【变式2】如果|x |=2,那么x =_____ _ ; 如果|-x |=2,那么x =______. 如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 . 【答案】2-2+或;2-2+或;1或3;x>3或x<-3.类型二、绝对值非负性的应用3.(2015•乐山期末)若|x ﹣2|与|y+3|互为相反数,则x+y= .【思路点拨】由|a |≥0即绝对值的非负性可知,|x ﹣2|≥0,|y+3|≥0,而它们的和为0.所以|x ﹣2|=0,|y+3|=0.由此算出结果. 【答案】-1.【解析】∵|x﹣2|与|y+3|互为相反数, ∴|x﹣2|+|y+3|=0, ∴x﹣2=0,y+3=0, 解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1. 故答案为:﹣1.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a =b =…=m =0.类型三、有理数的大小比较4.(2016春•上海校级月考)比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答. 【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8, ∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<. 【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【:绝对值比大小 356845 典型例题2】 【变式】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38______-1.384;-π______-3.14.【答案】>;=;>;>;<.【巩固练习】 一、选择题 1.(2015.常州)-3的绝对值是( ). A . 3 B .-3 C .13 D .13- 2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数.3.下列各式错误的是( ).A .115533+=B .|8.1|8.1-=C .2233-=-D .1122--=- 4.(2016•娄底)已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q5.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|6.若|a | + a =0,则a 是( ).A. 正数B. 负数C.正数或0D.负数或0二、填空题7.若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________.8.已知| x |=2,| y |=5,且x >y ,则x =________,y =________.9.满足3.5≤| x | <6的x 的整数值是___________.10.(2015•大邑县模拟)在﹣2.1,﹣2,0,1这四个数中,最小的数是 .11.数a 在数轴上的位置如图所示.则|a-2|= .12.已知4334x x -=-,则x 的取值范围是________.三、解答题13.(2014秋•娄底期末)若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.14.(2016春•桐柏县期末)若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?15.比较3a-2与2a+1的大小.【答案与解析】一、选择题。

2024年人教版七年级上册数学第八单元课后基础训练(含答案和概念)

2024年人教版七年级上册数学第八单元课后基础训练(含答案和概念)

2024年人教版七年级上册数学第八单元课后基础训练(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √3C. √3D. √34. 如果|a|=5,那么a的值可以是()A. 5B. 5C. 3D. 35. 有理数的乘法中,2×()的结果是()A. 2B. 2C. 0D. 46. 计算:(2)×(3)的结果是()A. 6B. 6C. 5D. 57. 下列各式中,正确的是()A. |3|=3B. |3|=3C. |3|=3D. |3|=38. 如果a、b为有理数,且a+b=0,那么a与b的关系是()A. 相等B. 互为倒数C. 互为相反数D. 无关9. 下列各式中,结果为负数的是()A. (3)×(3)B. 3×3C. |3|×3D. |3|×(3)10. 有理数的除法中,6÷()的结果是()A. 2B. 2C. 0D. 3二、判断题:1. 相反数的意义是两个数相加等于0。

()2. 互为相反数的两个数的绝对值相等。

()3. |a|=a对所有有理数a都成立。

()4. 两个负数相乘,结果一定是正数。

()5. 任何有理数的平方都是正数。

()6. 任何有理数的立方都是正数。

()7. 0的相反数是0。

()8. 互为相反数的两个数在数轴上关于原点对称。

()9. 两个正数相乘,结果一定是负数。

()10. 两个负数相除,结果一定是正数。

()三、计算题:1. 计算:4 + 72. 计算:5 (3)3. 计算:3 × 64. 计算:4 ÷ 25. 计算:|5|6. 计算:|8|7. 计算:(3 5) × 28. 计算:4 + 3 × 29. 计算:5 ÷ (5)10. 计算:2 × (3) + 411. 计算:8 ÷ 4 212. 计算:|7| |3|13. 计算:5 × (2) + 814. 计算:4 6 ÷ 215. 计算:3 × (2) × (1)16. 计算:9 ÷ (3) ÷ 317. 计算:5 + |7|18. 计算:2 × (3) 4 ÷ 219. 计算:|4 + 3| × 220. 计算:8 + 4 × (2)四、应用题:1. 小华从家出发向东走了100米,然后又向西走了50米,此时小华离家多远?2. 一个温度计显示温度下降了5℃,然后又上升了3℃,现在的温度比原来低了多少℃?3. 一辆汽车每升油可以行驶15公里,如果这辆汽车行驶了90公里,它消耗了多少升油?4. 小明有10元钱,他买了一个3元钱的铅笔,然后又买了一个5元钱的笔记本,他还剩下多少钱?5. 一个水池可以容纳1000升水,现在水池里有600升水,如果每分钟向水池中注入20升水,需要多少分钟才能注满水池?6. 一个班级有40名学生,其中有18名女生,那么男生有多少名?7. 一本书的原价是80元,现在打8折出售,小明买这本书需要支付多少钱?8. 一辆自行车原价是600元,现在降价200元出售,降价的百分比是多少?9. 一个长方形的长是10厘米,宽是5厘米,这个长方形的面积是多少平方厘米?10. 一个水果店进了20千克苹果,如果每千克苹果可以卖10元,这些苹果总共可以卖多少钱?三、计算题答案:1. 32. 83. 184. 25. 56. 87. 48. 69. 110. 1011. 712. 413. 214. 715. 616. 117. 218. 519. 220. 12四、应用题答案:1. 50米2. 2℃3. 6升4. 2元5. 20分钟6. 22名7. 64元8. 33.33%9. 50平方厘米10. 200元1. 有理数的加法:涉及正负数的加法,以及相反数的概念。

部编数学七年级上册必刷基础练【1.11.2正数和负数及有理数】(解析版)必刷精编讲义(人教版)含答案

部编数学七年级上册必刷基础练【1.11.2正数和负数及有理数】(解析版)必刷精编讲义(人教版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第一章《有理数》1.1-1.2 正数和负数及有理数知识点1:正数和负数【典例分析01】(2021秋•望城区期末)若盈余60万元记作+60万元,则﹣60万元表示( )A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损解:若盈余60万元记作+60万元,则﹣60万元表示亏损60万元,故选:B .【变式训练1-1】(2022•青县二模)热爱运动的琪琪坚持每天晚上健步走半小时并记录步数,他每天以3000步为标准,超过的记作正数,不足的记作负数.下表是本周内琪琪健步走步数情况的记录:星期一二三四五六日步数/半小时+221+260﹣50﹣105﹣115+104(1)本周内琪琪健步走步数最多的一天比最少的一天多走了 375 步;(2)本周内琪琪平均每天健步走的速度约为 102 步/分钟(结果保留整数).解:(1)∵﹣115<﹣105<﹣50<0<104<221<260,∴260﹣(﹣115)=375(步),故答案为:375;(2)×(3000+)=×(3000+45)=×3045≈102(步/分钟),故答案为:102.【变式训练1-2】(2021秋•义乌市期末)小明原有生活费50元,现靠勤工俭学的收入支付生活费,下面是小明一周内每天生活费的增减情况表(增加为正,减少为负,单位:元):星期一二三四五六日增减+7﹣2+12﹣60﹣1+6(1)求星期二结束时,小明有生活费多少元?(2)在这一周内,小明的生活费最多的一天比最少的一天多多少元?解:(1)50+7﹣2=55(元);答:星期二结束时,小明有生活费55元;(2)∵50+7=57(元),57﹣2=55(元),55+12=67(元),67﹣6=61(元),61+0=61(元),61﹣1=60(元),60+6=66(元),且55<57<60<61<66<67,∴67﹣55=12(元),答:在这一周内,小明的生活费最多的一天比最少的一天多12元.【变式训练1-3】(2021秋•和平县期末)某出租车沿南北方向行驶,从A地出发,晚上到达B地.规定向北为正方向.行驶记录如下(单位:km):+18、﹣9、+7、﹣14、﹣6、+13、﹣6,①B地在A地的什么位置?②若出租车每行驶1km耗油1升,求该天共耗油多少升?③若出租车起步价为7元,起步里程为3千米(包括3千米),超过部分每千米1.2元,则该天车费多少元?解:(1)(+18)+(﹣9)+(+7)+(﹣14)+(﹣6)+(+13)+(﹣6)=18﹣9+7﹣14﹣6+13﹣6=3(千米),∵规定向北为正方向,∴B地在A地的北边3km处,答:B地在A地的北边3km处;(2)|+18|+|﹣9|+|+7|+|﹣14|+|+6|+|+13|+|﹣6|=18+9+7+14+6+13+6=73(千米),∵出租车每行驶1km耗油1升,∴该天共耗油73×1=73(升),答:该天共耗油73升;(3)∵这七次每次的行驶路程都大于3km,∴每次的计费方式都是起步价+超过3km的费用,∴则该天车费=7×7+(73﹣3×7)×1.2=111.4(元),答:该天车费为111.4元.知识点2:有理数【典型分析02】(2021秋•新田县期末)下列各数中属于负整数的是( )A.0B.3C.﹣5D.﹣1.2解:A、0为整数,故选项不符合题意;B、3为负正整数,故选项不符合题意;C、﹣5为负整数,故选项符合题意;D、﹣1.2为负分数,故选项不符合题意.故选:C.【变式训练2-1】(2021秋•鼓楼区校级月考)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤﹣不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数.其中错误的说法的个数为( )A.6个B.5个C.4个D.3个解:①根据有理数的大小关系,﹣1<0,故0不是最小的整数,那么①错误.②0是有理数,但0既不是正数,也不是负数,那么②错误.③正整数、负整数、正分数、负分数、0统称为有理数,那么③错误.④非负数包括0和正数,那么④错误.⑤根据无理数的定义,是无理数,那么⑤错误.⑥根据有理数的定义,是有理数,那么⑥错误.综上:错误的有①②③④⑤⑥,共6个.故选:A.【变式训练2-2】(2021秋•怀宁县期中)三个互不相等的有理数,既可以表示为1,a+b,a,也可以表示为0,,b,则b= 1 .解:(1)∵三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,,b的形式,∴这两个数组的数分别对应相等.∴a+b与a中有一个是0,与b中有一个是1,但若a=0,会使无意义,∴a≠0,只能a+b=0,即a=﹣b,于是=﹣1.只能是b=1,于是a=﹣1,故答案为:1.【变式训练2-3】(2021秋•洛江区期中)把下列各数填在相应的大括号内:﹣5,﹣,﹣12,0,0.3,﹣3.14,+1.99,+6,.(1)正数集合:{ 0.3,+1.99,+6, …};(2)分数集合:{ ﹣,0.3,﹣3.14,+1.99, …}.解(1)正数集合:{ 0.3,+1.99,+6,…};(2)分数集合:{﹣,0.3,﹣3.14,+1.99,…}.故答案为:0.3,+1.99,+6,;﹣,﹣3.14,+1.99,.【变式训练2-4】(2020秋•宁波期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式,由于0.=0.7777…,设x=0.7777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,7.=7+0.=7+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)基础训练(1)0.= ,8.= ;(2)将0.化为分数形式,写出推导过程.迁移应用(3)0.5= ;(注:0.5=0.153153…)探索发现(4)若已知0.1428=,则2.8571= .解:(1)0.==,8.=8+0.=8+=,故答案为:,;(2)将0.化为分数形式,由于0.=0.646464…,设x=0.646464…①,则100x=64.6464…②,②﹣①得99x=64,解得x=,于是得0.=;(3)类比(1)(2)的方法可得,0.==,故答案为:;(4)∵0.1428=,∴714.8571=×1000,∴0.8571=×1000﹣714=,∴2.8571=+2=,故答案为:.知识点3:数轴【典型分析03】(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点 A 离原点的距离较近(填“A”或“B”).解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.【变式训练3-1】(2022•东明县二模)数轴上的点B到原点的距离是6,则点B表示的数为( )A.12或﹣12B.6C.﹣6D.6或﹣6解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.【变式训练3-2】(2021秋•绵阳期末)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC=2AB,则点B表示的数为( )A.﹣1B.1C.D.解:∵A、C两点到原点的距离相等,且AC=8,∴A表示﹣4,C表示4,∵AC=8,BC=2AB,∴AB=,∴点B表示的数为﹣4+.故选:D.【变式训练3-3】(2021秋•镇江期末)如图,在一条可以折叠的数轴上,A、B两点表示的数分别是﹣7,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且AB=2,则C点表示的数是 ﹣1 .解:设点C表示的数为x,则AC=x﹣(﹣7)=x+7,BC=3﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+7﹣(3﹣x)=2.解得:x=﹣1.故答案为:﹣1.【变式训练3-4】(2021秋•望城区期末)为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?解:(1)∵+3﹣8+13+15﹣10﹣12﹣13﹣17=﹣29,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米;(2)出租车司机小王这天上午行驶的路程是:|+3|+|﹣8|+|+13|+|+15|+|﹣10|+|﹣12|+|﹣13|+|﹣17|=91,∴耗油为91×0.4=36.4(升),答:这天上午出租车共耗油36.4升.【变式训练3-5】(2021秋•长汀县校级月考)解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家 7.5 千米?(3)货车每千米耗油0.08升,这次共耗油多少升?解:(1)如图:(2)从数轴上可看出,小明家距小彬家有7.5个单位,所以是7.5千米;(3)一共行驶的路程为:|+3|+|+2.5|+|﹣10|+|4.5|=20(千米),所以共耗油20×0.08=1.6(升).知识点4:相反数【典型分析04】(2021秋•临江市期末)若a+2的相反数是﹣5,则a= 3 .解:由题意得:a+2=5,a=3,故答案为:3.【变式训练4-1】(2021秋•毕节市期末)下列各对数中,互为相反数的是( )A.﹣(+1)和+(﹣1)B.﹣(﹣1)和+(﹣1)C.﹣(+1)和﹣1D.+(﹣1)和﹣1解:A、﹣(+1)=﹣1,+(﹣1)=﹣1,不是相反数,故此选项不符合题意;B、﹣(﹣1)=1,+(﹣1)=﹣1,是相反数,故此选项符合题意;C、﹣(+1)=﹣1,不是相反数,故此选项不符合题意;D、+(﹣1)=﹣1,不是相反数,故此选项不符合题意;故选:B.【变式训练4-2】(2021秋•渌口区期末)下列两个数互为相反数的是( )A.(﹣)和﹣(﹣)B.﹣0.5和C.π和﹣3.14D.+20和﹣(﹣20)解:A、﹣(﹣)=,因为﹣+≠0,所以﹣与﹣(﹣)不是互为相反数,故此选项不符合题意;B、因为﹣0.5+=0,所以﹣0.5与是互为相反数,故此选项符合题意;C、因为π+(﹣3.14)=0.0015926……,故此选项不符合题意;D、﹣(﹣20)=20,因为+20+20=40,因此+20和﹣(﹣20)不是互为相反数,故此选项不符合题意;故选:B.【变式训练4-3】(2021秋•播州区期中)已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m= ﹣3 ,n= 3 .解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.知识点5:绝对值【典型分析05】(2022•广东)|﹣2|=( )A.﹣2B.2C.D.解:根据绝对值的意义:|﹣2|=2,故选:B.【变式训练5-1】(2022•二道区模拟)下列各组数中,互为相反数的是( )A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.【变式训练5-2】(2022•泰州)若x=﹣3,则|x|的值为 3 .解:∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【变式训练5-3】(2019秋•海淀区校级期中)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空: ﹣4 ﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是 0或﹣4 ;(3)设满足上面特征的等式最左边的数为y,则y的最大值是 4 ,此时的等式为 4﹣1=﹣|﹣2+2|+3 .解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,|x+2|=2,∴x=0或﹣4,故答案为0或﹣4;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.【变式训练5-4】(2019秋•新抚区校级期中)已知m、n为整数,且|m﹣2|+|m﹣n|=1,求m+n的值.解:分两种情况:①当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.②当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n的值为2或3或5或6.知识点6:非负数的性质:绝对值【典型分析06】(2021秋•黔南州月考)若|x﹣1|+|y+3|=0,则y﹣x+的值是( )A.B.C.D.解:∵|x﹣1|≥0,|y+3|≥0,∴x﹣1=0,y+3=0,∴x=1,y=﹣3,∴y﹣x+=﹣3﹣1+=﹣3,故选:A.【变式训练6-1】(2021秋•长汀县校级月考)若|x﹣3|+|y+3|=0,则x﹣y= 6 .解:∵|x﹣3|+|y+3|=0,而|x﹣3|≥0,|y+3|≥0,∴x﹣3=0,y+3=0,则x=3,y=﹣3,x﹣y=3+3=6.故答案为:6.【变式训练6-2】(2019秋•崇川区校级月考)已知|3x﹣2|+|y﹣4|=0,求|6x﹣y|的值.解:由题意得,3x﹣2=0,y﹣4=0,解得x=,y=4,所以,|6x﹣y|=|6×﹣4|=|4﹣4|=0,即|6x﹣y|的值是0.【变式训练6-3】(2018秋•石鼓区校级月考)已知|a﹣3|与|2b﹣4|互为相反数.(1)求a与b的值;(2)若|x|=2a+4b,求x的相反数.解:(1)∵|a﹣3|与|2b﹣4|互为相反数,∴|a﹣3|+|2b﹣4|=0,∴a﹣3=0,2b﹣4=0,解得a=3,b=2;(2)∵a=3,b=2,∴|x|=2a+4b=2×3+4×2=14,∴x=±14,∴x的相反数为﹣14或14.知识点7:有理数大小比较【典型分析07】(2021秋•翠屏区校级期中)将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,解:如图所示:故.【变式训练7-1】(2022•仁怀市校级模拟)在2,0,﹣1,﹣2四个数中最大的数是( )A.2B.0C.﹣1D.﹣2解:∵﹣2<﹣1<0<2,∴在2,0,﹣1,﹣2四个数中最大的数是2.故选:A.【变式训练7-2】(2021秋•闽侯县期末)在﹣1,0,3,﹣5这四个数中,最大的数是( )A.﹣1B.0C.3D.﹣5解:∵﹣5<﹣1<0<3,∴在﹣1,0,3,﹣5这四个数中,最大的数是3.故选:C.【变式训练7-3】(2021秋•阳东区期末)下列四个数中:①0;②﹣;③5;④﹣1.最小的数是 ④ .(填序号)解:∵﹣1<﹣<0<5,∴所给的四个数中:①0;②﹣;③5;④﹣1,最小的数是④.故答案为:④.【变式训练7-4】(2021秋•六盘水期中)画出数轴,并解决下列问题:(1)把4,﹣3.5,,,0,2.5表示在数轴上.(2)请将上面的数用“<”连接起来;(3)观察数轴,写出绝对值不大于4的所有整数.解:(1)如图所示:(2)由(1)可得:;(3)由(1)可得,绝对值不大于4的整数有﹣4、﹣3、﹣2、﹣1、0、1、2、3、4。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

初一上册数学知识点及基础训练完整版

初一上册数学知识点及基础训练完整版

合用文档第一章有理数8、有理数加法法规(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同 0 相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的地址,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加也许先把后两个数相加,和不变。

表达式:( a+b)+c=a+( b+c)9、有理数减法法规减去一个数,等于加这个数的相反数。

表达式:a-b=a+ ( -b )10、有理数乘法法规两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同 0 相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的地址,积相等。

表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,也许先把后两个数相乘,积相等。

表达式:( ab) c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式: a( b+c) =ab+ac11、倒数1除以一个数 ( 零除外 ) 的商,叫做这个数的倒数。

若是两个数互为倒数,那么这两个数的积等于 1。

12、有理数除法法规:两数相除,同号得负,异号得正,并把绝对值相除。

0 除以任何一个不等于0 的数,都得0.13、有理数的乘方:求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。

a n中, a 叫做底数( base number ), n 叫做指数( exponent )。

依据有理数的乘法法规能够得出:负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0 的任何正整数次幂都是0。

14、有理数的混杂运算序次(1)“先乘方,再乘除,最后加减”的序次进行;(2)同级运算,从左到右进行;合用文档( 3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

七年级数学上上册知识点总结及练习题(含答案)

七年级数学上上册知识点总结及练习题(含答案)

人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】一、选择题。

1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。

人教版初中数学七年级上册全册知识梳理及练习(基础版)(家教补习复习专用)

人教版初中数学七年级上册全册知识梳理及练习(基础版)(家教补习复习专用)

新人教版七年级上册数学全册知识点及巩固练习题有理数的意义【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数1.(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元【思路点拨】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【答案】C【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【总结升华】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.举一反三:【有理数的意义】【变式1】(2015•太仓市模拟)一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克 B.50.3千克 C.49.7千克 D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1)这8名男生有百分之几达到标准?(2)他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:5100%62.5% 8⨯=;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类【有理数的意义 356786 概念的应用例2】3.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数.D .正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;(C)不对,当a为负数或0时,则a-为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,⨯,⨯,⨯【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【答案】正整数: 1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;负分数: -3.88,7 23 -;分数:0.0708,3.14159265,,-3.88,7 23 -;非负数: 1,0.0708, 3.14159265,0,;非正数:-700, -3.88, 0, 723- 【解析】 【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数. 举一反三:【变式】(2014秋•惠安县期末)在有理数、﹣5、3.14中,属于分数的个数共有 个.【答案】2.类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n 组应该有种子是 粒. 【答案】(12+n )【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关. 举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是:【答案】-3【变式2】观察下列有规律的数:,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】901 【巩固练习】一、选择题1. (2014•甘肃模拟)下列语句正确的( )个 (1)带“﹣”号的数是负数;(2)如果a 为正数,则﹣a 一定是负数; (3)不存在既不是正数又不是负数的数; (4)0℃表示没有温度.A. 0B. 1C. 2D. 3 2.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数3.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( ) A .前进-18米的意义是后退18米 B .收入-4万元的意义是减少4万元 C .盈利的相反意义是亏损D .公元-300年的意义是公元后300年 4.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 ( ) A .甲站的东边70千米处 B .甲站的西边20千米处 C .甲站的东边30千米处 D .甲站的西边30千米处 5.在有理数中,下面说法正确的是( )A .身高增长cm 2.1和体重减轻kg 2.1是一对具有相反意义的量B .有最大的数C .没有最小的数,也没有最大的数D .以上答案都不对6.下列各数是正整数的是 ( )A .-1B .2C .0.5D . 2二、填空题 1.(2014秋•朝阳区期末)如果用+4米表示高出海平面4米,那么低于海平面5米可记作 . 2.在数中,非负数是______________;非正数是 __________.3.把公元2008年记作+2008,那么-2008年表示 . 4.既不是正数,也不是负数的有理数是 . 5.(2016春•温州校级期中)如果向东行驶10米,记作+10米,那么向西行驶20米,记作 _________米.6.是整数而不是正数的有理数是 .7.既不是整数,也不是正数的有理数是 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米. 三、解答题1.说出下列语句的实际意义.(1)输出-12t (2)运进-5t (3)浪费-14元 (4)上升-2m (5)向南走-7m 2.(2014秋•晋江市期末)下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置. ﹣28%,,﹣2014,3.14,﹣(+5),﹣0.3.(2015秋•赣州校级期末)随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”,记录数据如下表:时间 第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km ) ﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8 (1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2,3,-4,5,-6,7,-8, , ,... ,...(2)-1,21,-31,41,51-,61,71-, , ,... ,... 【答案与解析】一、选择题1.【答案】B【解析】(1)带“﹣”号的数不一定是负数,如﹣(﹣2),错误;(2)如果a 为正数,则﹣a 一定是负数,正确; (3)0既不是正数也不是负数,故不存在既不是正数又不是负数的数此表述错误; (4)0℃表示没有温度,错误. 综上,正确的有(2),共一个.2.【答案】C【解析】0既不是正数也不是负数,但0是整数,是偶数,是自然数. 3. 【答案】D【解析】D 错误,公元-300年的意义应该是公元前300年. 4. 【答案】 C【解析】画个图形有利于问题分析,向东50千米然后再向西20千米后显然此时汽车在甲站的东边30千米处. 5.【答案】C【解析】A 错误,因为身高与体重不是具有相反意义的量;B 错误,没有最大的数也没有最小数;C 对. 6. 【答案】B 二、填空题1.【答案】﹣5米2.【答案】0.5,100,0,112;122-,0,-45 【解析】正数和零统称为非负数,负数和零统称为非正数,零既不是正数也不是负数. 3.【答案】公元前2008年【解析】正负数表示具有相反意义的量. 4.【答案】0【解析】既不是正数也不是负数的数只有零. 5.【答案】-20.【解析】解:∵向东行驶10米,记作+10米,∴向西行驶20米,记作﹣20米, 故答案为:﹣20.6.【答案】负整数和0【解析】整数包括正整数和负整数,又因为不是正数,所以只能是负整数和0. 7.【答案】负分数【解析】不是整数,则只能是分数,又不是正数,所以只能是负分数. 8.【答案】10,10.03,9.98【解析】03.002.010+-表示的数的范围为:大于-(100.02),而小于(10+0.03),即大于9.98而小于10.03.三、解答题1. 【解析】(1)输出-12t 表示输入12t ;(2)运进-5t 表示运出5t ; (3)浪费-14元表示节约14元; (4)上升-2m 表示下降2m ; (5)向南走-7m 表示向北走7m.提示:“-”表示相反意义的量. 2.【解析】3.【解析】 解:(1)=50,50×30=1500(km ).答:小明家的小轿车一月要行驶1500千米; (2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.4.【解析】(1)9,-10,…,2011,…(2)111 ,,...,,...892011--数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如π.要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2015•宜宾)﹣的相反数是()A.5 B. C.﹣ D.-5【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】B【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【数轴和相反数例1(1)~(7)】【变式1】填空:(1) -(-2.5)的相反数是;(2) 是-100的相反数;(3)155-是的相反数;(4) 的相反数是-1.1;(5)8.2和互为相反数.(6)a和互为相反数 . (7)______的相反数比它本身大, ______的相反数等于它本身.【答案】(1)-2.5;(2)100;(3)155;(4)1.1;(5)-8.2;(6)-a;(7)负数, 0 .【数轴和相反数例2】【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多【答案】B3.(2016•泰安模拟)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【思路点拨】考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【总结升华】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭(2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)【答案】 (1)112233⎛⎫--=⎪⎝⎭(2)-(+5)=-5 (3)-(-0.25)=0.25(4)1122⎛⎫+-=-⎪⎝⎭(5)-[-(+1)]=-(-1)=1 (6)-(-a)=a【解析】(1)123⎛⎫-- ⎪⎝⎭表示123-的相反数,而123-的相反数是123,所以112233⎛⎫--=⎪⎝⎭;(2)-(+5)表示+5的相反数,即-5,所以-(+5)=-5;(3)-(-0.25)表示-0.25的相反数,而-0.25的相反数是0.25,所以-(-0.25)=0.25;(4)负数前面的“+”号可以省略,所以1122⎛⎫+-=-⎪⎝⎭;(5)先看中括号内-(+1)表示1的相反数,即-1,因此-[-(+1)]=-(-1)而-(-1)表示-1的相反数,即1,所以-[-(+1)]=-(-1)=1;(6)-(-a)表示-a的相反数,即a.所以-(-a)= a 【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:∴312.5101 2.5344-<-<-<<<< 【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小. 举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0 【答案】D【数轴和相反数 例4(2)】 【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,3类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数. 【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=. 【答案与解析】解:由题意A 、B 两点到原点的距离都是:1142248÷=而a <b ,所以128a =-,128b =.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称. 举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个. 【答案】(1)±5, 提示:要注意两种情况,原点左右各一个点;(2)5,提示:画出数轴,容易看出-3和3之间的整数是-2,-1,0,1,2共5个.【巩固练习】一、选择题1.(2015•江阴市模拟)﹣5的相反数是( ) A .5 B .-5 C .±5 D .﹣2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点 3.(2016•呼和浩特)互为相反数的两个数的和为( ) A .0 B .﹣1 C .1 D .24.如图,有理数a ,b 在数轴上对应的点如下,则有( ).(A)a >0>b (B)a >b >0 (C)a <0<b (D)a <b <0 5. 一个数比它的相反数小,这个数是( ) A.正数 B.负数 C.非正数 D.非负数 6. 如果0a b +=,那么,a b 两个数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数 二、填空题1.________________的两个数,叫做互为相反数;零的相反数是________.2.(2015春•岳池县期中)若3a ﹣4b 与7a ﹣6b 互为相反数,则a 与b 的关系为 .3.(2016•岳阳)如图所示,数轴上点A 所表示的数的相反数是 .4.数轴上离原点5个单位长度的点有______个,它们表示的数是 ,它们之间的关系是 . 5.化简下列各数:(1)23⎛⎫--=⎪⎝⎭________ ;(2)45⎛⎫-+=⎪⎝⎭________ ;(3){[(3)]}-+-+=________.【数轴和相反数例4(5)】6.已知-1<a<0<1<b,请按从小到大的顺序排列-1,-a,0,1,-b为__________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A、B、C、D的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c 的值是多少?3.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭(4)245⎛⎫-- ⎪⎝⎭4.已知3m-2与-7互为相反数,求m的值.【答案与解析】一、选择题1.【答案】A2.【答案】D【解析】A、B、C都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】A【解析】解:互为相反数的两个数的和为0.故选:A.4. 【答案】C5. 【答案】B【解析】因为一个负数的相反数是一个正数,负数小于正数,所以选B6. 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b +=. 二、填空题1. 【答案】只有符号不同,零 【解析】相反数的定义2.【答案】a=b.【解析】∵3a ﹣4b 与7a ﹣6b 互为相反数,∴3a ﹣4b+7a ﹣6b=0,∴a=b. 3.【答案】2.【解析】解:数轴上点A 所表示的数是﹣2,﹣2的相反数是2,故答案为:2.4. 【答案】两个,±5,互为相反数5. 【答案】24;;335-【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,;若“-”个数为奇数个时,化简结果为负. 6. 【答案】- b <-1<0<-a <1.三、解答题 1. 【解析】 (1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2. 【解析】∵a 是﹣(﹣5)的相反数,∴a=﹣5,∵b 比最小的正整数大4, ∴b=1+4=5,∵c 是最大的负整数, ∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1, =﹣15+15﹣1, =﹣1.3.【解析】(1)-(-54)=54 (2)-(+3.6)=-3.6 (3)5533⎛⎫-+=-⎪⎝⎭ (4)224455⎛⎫--= ⎪⎝⎭,将化简后的数表示在数轴上,由图可得: -(+3.6) <53⎛⎫-+ ⎪⎝⎭<245⎛⎫-- ⎪⎝⎭<-(-54).4.【解析】依题意:3m-2=7,故m=3.绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a与b在数轴上的位置如图所示,则a<b.2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数-数为0 正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a、b为任意数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,a<b;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小. 【典型例题】类型一、绝对值的概念1.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.(2015•毕节市)下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数 D. 最小的正整数是1 【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确. 【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3. 【变式2】(2015•镇江)已知一个数的绝对值是4,则这个数是 . 【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 . 【答案】6或-6类型二、比较大小3.(2016春•上海校级月考)比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答. 【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8, ∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<. 【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【绝对值比大小 356845 典型例题2】 【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A.-a<a<-1 B.-1<-a<aC.a<-1<-a D.a<-a<-1【答案】C类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可。

人教版初一数学上册知识点归纳总结及练习题

人教版初一数学上册知识点归纳总结及练习题

人教版初一数学上册知识点归纳总结及练习题本文介绍了有理数的基本概念和相关运算法则。

有理数是指能够写成p/q(p和q为整数且p不等于0)形式的数,包括正有理数、负有理数、零和整数。

其中,1、-1和0是三个特殊的数,它们将数轴分成四个区域,每个区域的数都有自己的特性。

数轴是一条直线,规定了三个要素,可以用来表示有理数的大小关系。

相反数是指符号相反的两个数,它们的和为0,而且它们的绝对值相等。

绝对值是一个非负数,表示数轴上某个数与原点的距离。

有理数的大小关系遵循一些基本规律,如正数永远比负数大,正数大于一切负数,两个负数比较时绝对值大的反而小等。

倒数是指乘积为1的两个数互为倒数,没有倒数的数为0.有理数加法的法则包括同号两数相加、异号两数相加和一个数与0相加等。

有理数加法的运算律包括交换律、结合律和分配律。

3.在数轴上,无论两个表示有理数的点靠近到什么程度,它们之间一定还存在另一个表示有理数的点。

4.若有理数a>b且|a|<|b|,则a一定是负数,b一定是正数。

5.两个非零有理数的和为零,则它们的商不能确定。

6.若一个数和它的倒数相等,则这个数只能是1或-1.7.如果|a|=-a,则a<0或a=0.8.(-2)^11+(-2)^10的值是-2048.9.16个矿泉水空瓶最多可以换成5瓶矿泉水。

10.正确的说法有3个:任何一个有理数都可以用数轴上的一个点来表示,数轴上的每一个点都表示一个有理数,每个有理数都有相反数。

11.这个数为负数。

12.正确的说法是B和C:几个有理数相乘,当正因数有奇数个时,积为负;几个有理数相乘,当负因数有奇数个时,积为负。

13.-3℃。

14.|a+2|等于2.单项式中所有字母指数的和称为单项式的次数,这与字母相关。

多项式是几个单项式的和。

多项式中包含的单项式的数量称为多项式的项数,每个单项式称为多项式的项。

多项式中最高次项的次数称为多项式的次数。

整式是代数式,但代数式不一定是整式。

七年级数学上册必考知识点

七年级数学上册必考知识点

七年级数学上册必考知识点数学是一门需要长期积累的学科,在初中阶段,各个年级的数学知识点都非常重要,因为它们会作为基础知识累积进入高中和大学。

在七年级数学上册中,有些知识点被认为是必考的,这篇文章将会详细介绍这些知识点。

一、数的性质在数学运算中,数的性质是非常重要的,因此七年级学生需要掌握以下数的性质:1. 零的性质:任何数和零相加,其结果仍为该数本身。

该知识点常用于简化运算。

2. 整数的比较大小:掌握整数之间的大小比较,这有助于解决大小关系的问题。

3. 分数的大小比较:掌握分数之间的大小比较,有助于解决比例和容积问题。

4. 负数的性质:了解负数的性质和运算规律,这有助于解决负数的乘除问题。

5. 小数的性质:掌握小数的大小比较和四则混合运算,这有助于解决小数和分数之间的转换问题。

二、正比例与反比例正比例和反比例是数学中的重要概念,这两个概念在七年级数学上册中也非常重要。

1. 正比例:两个数成正比例意味着它们的比值始终保持不变。

例如,如果三个苹果的价格是$2,那么六个苹果的价格就是$4。

2. 反比例:两个数成反比例意味着它们的乘积始终保持不变。

例如,如果三个人需要五天时间完成一项任务,那么六个人就只需要2.5天时间了。

三、图形的基本性质图形是数学中的重要概念,每个七年级的学生都应该掌握以下图形的基本性质:1. 三角形:掌握三角形的种类和性质,如等边三角形、等腰三角形、直角三角形等。

2. 四边形:掌握四边形的种类和性质,如平行四边形、矩形、正方形、菱形和梯形等。

3. 圆:掌握圆的基本概念和重要性质,如半径、直径、周长和面积等。

四、方程的解法方程是数学中的一种重要表示形式,七年级的学生需要掌握方程的基本解法。

1. 一元一次方程:掌握利用加减、乘除以及移项等方法解一元一次方程,这可以帮助学生解决很多实际问题。

2. 一元两次方程:掌握用配方法、公式法等解法解一元二次方程,这是高中阶段初步代数的基础。

总结在七年级数学上册中,数的性质、正比例与反比例、图形的基本性质和方程的解法都是非常重要的知识点,掌握这些知识点可以帮助学生更好地理解数学概念和应用方法,为高中数学打下坚实的基础。

初一数学上册知识点归纳总结

初一数学上册知识点归纳总结

初一数学上册知识点归纳总结一. 数学基础知识1.1 数的分类自然数、整数、有理数、无理数等数的概念,包含有限数和无限数的概念。

1.2 数轴及相关符号数轴的概念,以及在数轴上数字的正负、大小关系,并着重说明了负数绝对值的概念。

1.3 算式和式子算式和式子的概念,关系及相互转化,同时着重说明方程的概念,以及如何解方程。

1.4 数的四则运算加、减、乘、除四种基本运算符号的概念和运算方法。

1.5 分数分数的概念,分母分子、真分数假分数的分类,以及分数的加减乘除等基本运算方法。

1.6 十进位制十进位制的概念,包括整数和小数的读法,以及如何进行进位和退位。

二. 图形的初步认识2.1 点、线、面三种基本几何要素的概念,以及“面积”和“周长”这两个概念。

2.2 角角的概念,角的度量单位及表示方法,以及常见角(如:直角、钝角、锐角)概念。

2.3 直线与平面图形如点、线段、射线、角、三角形、四边形、圆形等。

三. 各种力的初步认识了解都有哪些基本力,分别对应物体运动或静止时的效果。

四. 数据和图表4.1 统计数据关于平均数、中位数、众数、极差和标准差的概念和计算方法。

4.2 图表包括折线图、柱状图、饼状图、雷达图等。

五. 比例和相似5.1 比例及应用比例的概念及基本性质,比例的应用等。

5.2 相似相似的概念及基本性质,相似比的计算及其应用,类比的概念及其推广。

六. 线性方程组初步6.1 二元一次方程结题法主要是应用消元法和代入法进行问题求解。

6.2 解三元一次方程涉及三元一次方程组,需要先利用二元一次方程组的知识对其进行分解,再应用消元法或代入法的解法。

七. 坐标系初步了解笛卡尔坐标系及其基本性质,学会利用坐标系解决某些几何问题。

八. 实数初步了解实数的深刻意义和含义,学会利用实数解决各种数学问题。

九. 视频学习通过较为生动的视频讲解,帮助学生更好的掌握一些基本数学概念。

结语:初一数学上册知识点虽然不是很难,但是需要同学们认真掌握,理解其中的数学原理,这样才能打下数学学习的基础,为以后的数学学习打下更加坚实的基础。

基础训练七年级上册数学答案

基础训练七年级上册数学答案

基础训练七年级上册数学答案基础训练七年级上册数学答案一、选择题1. D2. C3. A4. B5. D6. C7. A8. B9. D 10. C二、填空题1. 102. 563. 404. 705. 1.36. 1457. 4/58. 6/359. 48 10. 0.2三、解答题1. 故事题解答:小明爸爸购买了一箱有4个盒子的苹果,每个盒子装10个,问:(1)一共买了几个苹果?答案:一共买了4个盒子×10个苹果=40个苹果。

(2)小明想买15个苹果,需要买几个盒子?答案:小明需要买15÷10=1.5个盒子,约等于2个盒子。

2. 计算题解答:(1)求下列各数的平均数。

10, 20, 30答案:平均数=(10+20+30)÷3=20。

(2)如果一个矩形的长是3厘米,宽是2厘米,那么这个矩形的面积是多少?答案:面积=长×宽=3厘米×2厘米=6平方厘米。

四、应用题1. 甲、乙两个数的和是30,乙、丙两个数的和是40,问:(1)甲、丙两个数的和是多少?答案:甲+乙=30,乙+丙=40,两式相加得:甲+2乙+丙=70。

将甲+乙=30和乙+丙=40代入,得甲+2×30-甲-40=70,解得甲+乙=35,甲+丙=70-35=35。

(2)乙、丙两个数的差是多少?答案:乙-丙=(乙+丙)-2丙=40-2丙。

将乙+丙=40和甲+2乙+丙=70代入,得40-甲=2×(甲+乙+丙)-70=2×35-70=0,解得甲=40。

代入乙+甲=30,得乙=-10。

所以乙-丙=40-(-10)=50。

七年级数学上册第1章《有理数》基础训练(人教版)

七年级数学上册第1章《有理数》基础训练(人教版)

1.2有理数课时1有理数知识点1(有理数的概念)1.给出下列说法:①0是整数;②﹣113是分数;③3.3不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的个数是()A.1B.2C.3D.42.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3D.﹣1.23.下列各数中,既是分数又是负数的是()A.23B.﹣0.2C.﹣3D.﹣π4.已知下列各数:0,﹣418,+1000,18,0.1010010001…(相邻两个1之间依次多一个0).其中为有理数的是____________.5.给出一个数﹣107.987及下列判断:①这个数不是分数,但是有理数;②这个数是负数,也是分数;③这个数与π一样,不是有理数;④这个数是一个负小数,也是负分数.其中正确判断的序号是__________.知识点2(有理数的分类)6.下列说法正确的是()A.3.14不是分数B.正整数和负整数统称为整数C.正数和负数统称为有理数D.整数和分数统称为有理数7.[2017河北秦皇岛青龙期末]下列说法正确的是()A.有理数是指整数、分数、正有理数、0、负有理数这五类数B.—个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都不对8.已知下列各数:﹣8,50,+9,﹣13,0.8.其中是正整数的数有()A.0个B.1个C.2个D.3个9.请按要求填出相应的两个有理数.(1)既是正数,也是分数:____________;(2)既不是负数,也不是分数:____________;(3)既不是分数,也不是非负数:____________.10.在下表适当的空格里画上“√”.11.把下列各数填人相应集合的括号内:+8.5,﹣3 ,0.35,0,3.14,12,﹣9,0.3,﹣2,10%.正有理数集合:{ …};负分数集合:{ …};非正整数集合:{ …};有理数集合:{ …}.参考答案1.C【解析】3.3是正数,故③错误;0是自然数,但0不是正数,故④错误;易知①②⑤正确.故选C.2.C【解析】①0既不是正数,也不是负数,2是正整数,﹣3是负整数,﹣1.2是小数.故选C.3.B【解析】23是分数,但不是负数;﹣0.2既是分数又是负数;﹣3是负数,但不是分数;﹣1是负数,但不是分数.故选B.4.0,﹣418,+1000,722【解析】0,﹣418,+1000,722都是有理数,因为0.101001000•••(相邻两个1之间依次多一个0)不是整数且不能化成分数,所以它不是有理数.5.②④【解析】﹣107.987是负数,是有限小数,从而也是分数,所以②④正确;因为﹣107.987是分数,也是有理数,所以①③错误.故正确判断的序号是②④.6.D【解析】正分数和负分数统称为分数,3.14属于正分数,故A错误;正整数、0和负整数统称为整数,故B错误;正有理数、0和负有理数统称为有理数,故C错误;整数和分数统称为有理数,故D正确.故选D.7.C【解析】选项A,因为有理数按整数和分数或按正有理数、0、负有理数进行分类,所以A错误;选项B,因为0是有理数,但0既不是正数,也不是负数,所以B错误;选项C,因为整数和分数统称为有理数,所以C正确,D错误.故选C.8.C【解析】在﹣8,50,+9,﹣13,0.8中,是正整数的数有50,+9,共2个.故选C.9.(1)0.3,12;(2)3,50;(3)﹣100,﹣12(此题答案不唯一)10.【解析】填表如下.11.【解析】正有理数集合:{+8.5,0.35,3.14,12,0.3,10%,…};负分数集合:{﹣325,…};非正整数集合:{0,﹣9,﹣2,…};有理数集合:{+8.5,﹣325,0.35,0,3.14,12,﹣9,0.3,﹣2,10%,…}。

2024七年级数学上册知识点

2024七年级数学上册知识点

2024七年级数学上册知识点一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如,5是正整数,-3是负整数,(1)/(2)是分数,0.25 = (1)/(4)是有限小数(属于分数),0.3̇=(1)/(3)是无限循环小数(属于分数)。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应。

例如,在数轴上表示2的点在原点右侧2个单位长度处,表示-1.5的点在原点左侧1.5个单位长度处。

- 利用数轴可以比较有理数的大小,右边的数总比左边的数大。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

例如,3和-3互为相反数,0的相反数是0。

- 互为相反数的两个数在数轴上位于原点两侧,且到原点的距离相等。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,|3| = 3,| - 5|=5。

- 绝对值的几何意义是数轴上表示这个数的点到原点的距离。

5. 有理数的加减法。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如,3 + 5=8,(-2)+(-3)=-(2 + 3)=-5。

- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

例如,3+(-2)=3 - 2 = 1,-5+3=-(5 - 3)=-2。

- 减去一个数等于加上这个数的相反数。

例如,5-3 = 5+(-3)=2,3-5 = 3+(-5)=-2。

6. 有理数的乘除法。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如,3×5 = 15,(-2)×(-3)=6,3×(-4)=-12。

- 任何数与0相乘都得0。

- 除以一个不等于0的数,等于乘这个数的倒数。

例如,6÷3 = 6×(1)/(3)=2,6÷(-2)=6×(-(1)/(2))=-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学科总复习第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。

6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a 的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。

表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac11、倒数1除以一个数(零除外)的商,叫做这个数的倒数。

如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。

0除以任何一个不等于0的数,都得0.13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。

a n中,a叫做底数(base number),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。

16、近似数(approximate number):17、有理数可以写成m/n(m、n是整数,n≠0)的形式。

另一方面,形如m/n(m、n 是整数,n≠0)的数都是有理数。

所以有理数可以用m/n(m、n是整数,n≠0)表示。

拓展知识:1、数集:把一些数放在一起,就组成一个数的集合,简称数集。

(1)所有有理数组成的数集叫做有理数集;(2)所有的整数组成的数集叫做整数集。

2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。

3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。

4、比较两个有理数大小的方法有:(1)根据有理数在数轴上对应的点的位置直接比较;(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;(3)做差法:a-b>0 ⇔a>b;(4)做商法:a/b>1,b>0 ⇔a>b.第二章整式的加减总复习【知识点定义】1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.2、系数单项式中的数字因数叫做这个单项式的系数.3、单项式的次数一个单项式中,所有字母的指数的和叫做这个单项式的次数.4、多项式几个单项式的和叫做多项式.5、多项式的项在多项式中,每个单项式叫做多项式的项.-6是常数项.6、常数项多项式中,不含字母的项叫做常数项.7、多项式的次数多项式里,次数最高的项的次数,就是这个多项式的次数.8、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.9、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.10、整式单项式和多项式统称整式。

11、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.12、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.13、去括号法则括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)15、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.第三章《一元一次方程》综合复习指导【知识点归纳】 一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =bc三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变. 五、解方程的一般步骤1、 去分母(方程两边同乘各分母的最小公倍数)2、去括号(按去括号法则和分配律)3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4、合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).六、用方程思想解决实际问题的一般步骤1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2.、设:设未知数(可分直接设法,间接设法)3、列:根据题意列方程.4、解:解出所列方程.5、检:检验所求的解是否符合题意.6、答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1、和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2、等积变形问题:“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3、劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5、工程问题:工程问题中的三个量及其关系为:工作总量=工作效率×工作时间6、行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间.(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7、商品销售问题有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率8、储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)第四章图形认识初步【知识点归纳】一、多姿多彩的图形1.从实物中抽象出的各种图形统称为几何图形。

2.点、线、面、体A.点:线和线相交的地方。

B.线:面和面相交的地方,线可分为直线、射线、线段C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。

相关文档
最新文档