17、图形与证明专题训练
图形证明题训练
图形证明题训练1.已知△ABC 是等边三角形,点D 、F 分别在边BC 、AC 上,且DF ∥AB ,过点A 平行于BC 的直线与DF 的延长线交于点E ,连结CE 、BF . (1)求证:△ABF ≌△ACE ;(2)若D 是BC 的中点,判断△DCE 的形状,并说明理由.2.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC 。
求证:△CDE ≌△EAF3.如图,在四边形ABCD 中,AB =DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点.(1)求证:四边形EGFH 是菱形;(2)若AB =1,则当∠ABC +∠DCB =90°时,求四边形EGFH的面积.4.如图,已知点E ,C 在线段BF 上,BE EC CF ==,AB DE ∥,ACB F ∠=∠.(1)求证:ABC DEF △≌△;(2)试判断:四边形AECD 的形状,并证明你的结论.FE DCBA5.已知△ABC 是等边三角形,点D 、F 分别在边BC 、AC 上,且DF ∥AB ,过点A 平行于BC 的直线与DF 的延长线交于点E ,连结CE 、BF . (1)求证:△ABF ≌△ACE ;(2)若D 是BC 的中点,判断△DCE 的形状,并说明理由.FEDCBAAB CDEF G HFEDCBA6.如图,在等边△ABC 中,点D 是BC 边的中点,将△ADC 沿AC 边翻折得到△AEC ,连接DE .(1)证明△ADE 是等边三角形;(2)取AB 边的中点F ,连结CF 、CE ,证明四边形AFCE 是矩形.7.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC .点E ,F ,G 分别在边AB ,BC ,CD 上,AE =GF =GC .(1)求证:四边形AEFG 是平行四边形;(2)当∠FGC =2∠EFB 时,求证:四边形AEFG 是矩形.EF DABCABCFD E G。
图形与证明(二)复习(1)练习1
BC九年级数学 作业1、已知:菱形ABCD 中,对角线AC = 16 cm ,BE ⊥BC 于点E ,则BE 的长.为 。
2、直角梯形的一条对角线把梯形分成两个三角形, 其中一个是边长为4的等边三角形,那么梯形的中位线长为 。
3、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩 形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,他的判定方法是 。
4、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( )(A )3个 (B )4个 (C )5个 (D ) 6个5、如图,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD.有下列四个结论:①∠PBC =15°;②AD ∥BC ;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形.其中正确的结论的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个6、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9, 则该梯形两腰中点的连线EF 长是( ) A 、10 B 、221 C 、215 D 、127、如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45º。
翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E 。
若AD=2,BC=8, 求:(1)BE 的长。
(2)CD :DE 的值。
CFBEADCB ADPDBCAEF CDBA EF8、如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作:⑴请在网格中建立平面直角坐标系, 使A点坐标为(-2,4),B点坐标为(-4,2);⑵在第二象限内的格点上..........画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是,△ABC的周长是(结果保留根号);⑶画出△ABC以点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.△与R t ABD△中,90=,,ABC BAD∠=∠= ,AD BC AC BD 相交于点G,过点A作AE D B∥交D A的∥交C B的延长线于点E,过点B作B F C A延长线于点F AE BF,,相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形A H B G是菱形;(3)若使四边形A H B G是正方形,还需在R t ABC△的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)EF。
图形与证明(二)复习(1)练习2
DCBAD九年级数学 作业1、如图,设M ,N 分别是直角梯形ABCD 两腰AD ,CB 的中点,DE 上AB 于点E ,将△ADE 沿DE 翻折,M 与N 恰好重合,则AE :BE 等于( ) A .2:1 B .1:2 C .3:2 D .2:32、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是( )A .0.5cmB .1cmC .1.5cmD .2cm3、如图,若将四根木条钉成的矩形木框变为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 。
4、矩形ABCD 中,22=AB ,将角D 与角C 分别沿过A 和B 的直线AE 、BF 向内折叠,使点D 、C 重合于点G ,且AGB EGF ∠=∠,则=AD .5、已知平行四边形A B C D ,AD a AB b ABC α===,,∠.点F 为线段B C 上一点(端点B C ,除外),连结A F A C ,,连结D F ,并延长D F 交A B 的延长线于点E ,连结C E .(1)当F 为B C 的中点时,求证E F C △与A B F △的面积相等;(2)当F 为B C 上任意一点时,E F C △与A B F △的面积还相等吗?说明理由.左右左右第二次折叠 第一次折叠图1图26、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等; (1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的两条直线有什么规律?7、如图:把一个矩形如图折叠,使顶点B 和D 重合,折痕为EF 。
最新人教版中考数学复习专题17 证明题(3)——代数与规律探究
(3)a1+a2+a3+a4+a5+a6=____________(得出最简结果);
返回目录
(4)计算:a1+a2+…+an.
返回目录
谢谢
返回目录
返回目录
5. 如图ZT17-2,每个图形都由同样大小的小正方形按照一定的 规律组成,每个小正方形的面积是1.
返回目录
根据图形与等式的关系解答下列问题: (1)直接写出图⑤所反映的等式:____1_+_2_+_3_+_4_+_5_=___________ ; (2)猜想图n所反映的等式,并证明; (解3:)(根2据)(图2①)所的反结映论的计等算式::1011=+102+103+…+2 020+2 021.
返回目录
(3)101+102+103+…+2 020+2 021 =(1+2+3+…+2 021)-(1+2+3+…+100) = =2 038 181.
返回目录
6. 观察下列等式: 第一个等式:a1= 第二个等式:a2= 第三个等式:a3= 第四个等式:a4=
返回目录
按上述规律,回答下列问题:
专题训练
专题17 证明题(3)——代数与规律探究
1. (2019·安徽)观察以下等式:
按照以上规律,解决下列问题: (1)写出第6个等式:_________________________.
ቤተ መጻሕፍቲ ባይዱ
返回目录
(2)写出你猜想的第n个等式:
___________________________________________
专题117多边形的角的计算与证明大题专练30题-2021-2022学年八年级数学上(原卷版【人教版】
2021-2022学年八年级数学上册尖子生同步培优题典【人教版】专题11.7多边形的角的计算与证明大题专练30题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共30题,解答30道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2020秋•花都区期末)已知,四边形ABCD 中,∠C +∠D =200°,∠B =3∠A ,求∠A 和∠B 的度数.2.(2021春•海陵区校级月考)一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数.3.(2021春•大丰区月考)一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,求这个多边形内角和的度数和边数.4.(2021春•鼓楼区校级月考)在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.5.(2020秋•临河区期末)在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是几边形?这个多边形的内角和是多少度?6.(2021春•浦东新区期中)若一个多边形的内角和的14比一个四边形的内角和多90°,那么这个多边形的边数是多少?7.(2021春•娄底月考)一个多边形的内角和与外角和的度数总和为1260°,求多边形的边数.8.(2020秋•和平区期末)如图,五角星的顶点为A 、B 、C 、D 、E ,求∠A +∠B +∠C +∠D +∠E 的度数?9.(2020秋•阜平县期中)已知n 边形的内角和θ=(n ﹣2)×180°.(1)当θ=900°时,求出边数n ;(2)小明说,θ能取800°,这种说法对吗?若对,求出边数n ;若不对,说明理由.10.(2020秋•江岸区校级月考)求出下列图形中x 的值.11.(2021春•玄武区校级月考)如图,在△ABC中,∠A=80°,∠C=60°,F、H是BC上的点,FG⊥AC,HD⊥AC,垂足分别为G、D,在AB上取一点E,使∠BED+∠B=180°,求四边形BEDH各内角的度数.12.(2020秋•襄城区期末)如图,四边形ABCD中,AD∥BC,DC⊥BC,将四边形沿对角线BD折叠,点A恰好落在DC边上的点E处,若∠EBC=20°,求∠EBD的度数.13.(2021春•邗江区月考)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D.利用以上结论解决下列问题:(2)如图2所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.(3)如图3,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD,AB分别相交于点M,N.①若∠B=100°,∠C=120°,求∠P的度数.②若角平分线中角的关系改成“∠CAP=14∠CAB,∠CDP=14∠CDB”,试直接写出∠P与∠B,∠C之间存在的数量关系,并证明理由.14.(2021春•新吴区月考)(1)如图①,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE的内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A 与∠1、∠2之间存在什么样的关系?(3)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)15.(2021春•徐州期中)如图,在四边形ABCD中,∠A=140°,∠D=80°.(1)如图1,若∠B=∠C,则∠C=度;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠DCB的角平分线交于点E,试求出∠BEC的度数;②在①的条件下,若延长BA、CD交于点F(如图4).将原来条件“∠A=140°,∠D=80°”改为“∠F=40°”.其他条件不变.则∠BEC的度数为.16.(2020秋•沂水县期末)(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?17.(2020秋•丛台区校级期末)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?18.(2021春•雨花区校级月考)已知:如图,四边形ABCD中,AB∥CD,∠BCD=∠BAD.(1)求证:AD∥BC;(2)若∠ABC的平分线交CD的延长线于点E,过点E作EF⊥EB交BA的延长线于点F,∠F=50°,求∠BCD的度数.19.(2020秋•即墨区期末)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)20.(2020秋•齐齐哈尔期末)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.21.(2020秋•巴南区期中)已知边数为n的多边形的一个外角是m°,内角和是x°,外角和是y°.(1)当x=2y时,求n的值;(2)若x+y+m=2380,求m的值.22.(2020秋•中山市校级期中)回答下列问题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,∠A=40°,∠P的度数=(直接写出答案).(2)如图②,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角,如图②,若α+β>180°,求∠P的度数(用α,β的代数式表示,写出详细过程).23.(2020秋•江岸区校级月考)在四边形ABCD中,O在其内部,满足∠ABO=1n∠ABC,∠DCO=1n∠DCB.(1)如图1,当n=2时,如果∠A+∠D=260°,直接写出∠O的度数;(2)当n=3时,M、N分别在AB、DC的延长线上,BC下方一点P,满足∠CBP=2∠PBM,∠BCP =2∠PCN,①如图2,判断∠O与∠P之间的数量关系,并证明你的结论;②如图3,延长线段BO、PC交于点Q,△BQP中,存在一个内角等于另一个内角的2倍,直接写出∠A+∠D的度数为.24.(2020秋•袁州区校级期中)(1)如图1我们称之为“8”字形,请直接写出∠A,∠B,∠C,∠D之间的数量关系;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7=度;(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.25.(2020秋•袁州区校级期中)四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=50°,∠C=70°,则∠DOE=°;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.26.(2019秋•天心区期末)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)若∠ABC=76°,求∠AEB的大小;(2)求证:BE∥DF.27.(2020秋•青秀区校级期中)已知某正多边形的一个内角都比它相邻外角的3倍还多20°.(1)求这个正多边形一个内角的度数;(2)求这个正多边形的内角和.28.(2020秋•温岭市期中)已知一个n边形的每个内角是135°.(1)求n;(2)求这个n边形的内角和.29.(2020秋•蜀山区校级期中)在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.30.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧!【问题探究】(1)如图1,请直接写出∠A+∠B+∠C+∠D+∠E=;(2)将图1变形为图2,∠A+∠DBE+∠C+∠D+∠E的结果如何?请写出证明过程;(3)将图1变形为图3,则∠A+∠B+∠C+∠D+∠E的结果如何?请写出证明过程.【变式拓展】(4)将图3变形为图4,已知∠BGF=160°,那么∠A+∠B+∠C+∠D+∠E+∠F的度数是.。
初二数学图形与证明试题
初二数学图形与证明试题1. 如图,在△ABC 中,∠ACB=90°,∠B=30°,AC=1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+;…,按此规律继续旋转,直到得到点P 2014为止,则P 1P 2014=( ).A .2012+671B .2013+671C .2014+671D .2015+671【答案】B .【解析】从整个运动过程分析,可以判断该旋转变换在做以3为周期的周期运动,此为解题的关键性结论;由=,,…可以发现线段(n 为大于1的自然数)的长存在等差关系,运用此规律即可解决问题,而2012=670×3+2,所以=.故选:B .【考点】旋转的性质;图形的变化规律类问题.2. 如图,在△ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 于点D ,CD=2,则点D 到AB 的距离等于 .【答案】2.【解析】∵∠C =90°,AD 平分∠BAC ,CD=2,∴点D 到AB 的距离等于2,根据角分线上的点到角的两边距离相等.【考点】角平分线性质定理的运用.3. 如图,已知平行四边形ABCD 的面积是32,点0是平行四边形ABCD 对角线的交点,OE ∥AD 交CD 于点E, OF ∥AB 于点F ,那么△EOF 的面积是______________.【答案】4.【解析】∵平行四边形的对角线互相平分,∴OB=OD,∴S △BOC =S △DOC ,∵OE ∥AD,OA=OC,∴CE=DE,∴S △OCE =S △DOE ,同理CF=BF,S △BOF =S △COF ,∴S △OEF =S 四边形OFCE =S △BCD ,∵平行四边形ABCD 的面积是32,∴△BCD 的面积是16,∴S △OEF =S △BCD =×16=4.【考点】1.平行四边形性质;2.三角形中位线定理;3.三角形面积计算.4. (10分)如图,在矩形ABCD 中,AB=4cm ,BC=8cm ,AC 的垂直平分线EF 分别交AD ,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形。
上海市2019年中考数学真题与模拟题分类 专题17 图形的变化之解答题(1)(50道题)(解析版)
专题17 图形的变化之解答题(1)参考答案与试题解析一.解答题(共50小题)1.(2019•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【答案】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(4570)厘米.答:点D′到BC的距离为(4570)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.2.(2019•上海)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【答案】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【点睛】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.3.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【答案】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD∠BAC,同理∠ABD∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE(∠ABC+∠BAC)=90°∠C,∴∠E=90°﹣(90°∠C)∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E∠C,∴∠ABC=∠E∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时2.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时2.综上所述,∠ABC=30°或45°,2或2.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.4.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【答案】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC;(2)∵DF垂直平分BC,∴BD=CD,BF=CF,∵tan∠DBF,∴DF,在Rt△BFD中,根据勾股定理得:BD,∴AD=5,则.【点睛】此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.5.(2019•嘉定区二模)如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果P A=PE,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB60°,在△ABP和△EPC中,∠∠,∴△ABP≌△EPC(AAS).【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.(2019•宝山区二模)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果P A=PE,联结BP,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠∠∠∠在△ABP和△EPC中,∴△ABP≌△EPC(AAS)【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.(2019•崇明区二模)如图,已知△ABC中,AB=6,∠B=30°,tan∠.(1)求边AC的长;(2)将△ABC沿直线l翻折后点B与点A重合,直线l分别与边AB、BC相交于点D、E,求的值.【答案】解:(1)过A作AH⊥BC,垂足为H,如图1所示:∵AB=6,∠B=30°,AH⊥BC,∴AH=3,∵tan∠ACB,∴CH=2,∴AC;(2)由翻折得:BD AB=3,AE=BE,∠BDE=90°,∵cos B,∴,∴BE=2,∴AE=2,∴EH,∴EC=CH+EH=2,∴46.【点睛】本题考查了翻折变换的性质、含30°角的直角三角形的性质、三角函数、勾股定理等知识;熟练掌握翻折变换的性质是解决问题的关键.8.(2019•青浦区二模)已知:如图,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.(1)求证:∠FGC=∠B;(2)延长CE与DA的延长线交于点H,求证:BE•CH=AF•AC.【答案】证明:(1)∵四边形ABCD为菱形,∴AB=BC,而AB=AC,∴AB=BC=AC,∴△ABC为等边三角形,∴∠B=∠BAC=60°,在△ABF和△CAE中,∴△ABF≌△CAE(SAS),∴∠BAF=∠ACE,∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,∴∠FGC=∠B;(2)如图,∵四边形ABCD为菱形,∴∠B=∠D,AD∥BC,∴∠BCE=∠H,∴△BCE∽△DHC,∴,∵△ABF≌△CAE,∴CE=AF∵CA=CB=CD,∴,∴BE•CH=AF•AC.【点睛】本题考查了相似三角形的判定与性质:判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;同时灵活运用相似三角形的性质进行几何计算.也考查了菱形的性质.9.(2019•浦东新区二模)已知:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=AD,AM⊥BD,垂足为点M,连接CM并延长,交线段AB于点N.求证:(1)∠ABD=∠BCM;(2)BC•BN=CN•DM.【答案】证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠MBC,∴∠ABD=∠MBC,∵AB=AD,AM⊥BD,∴BM=DM,∵DC⊥BC,∴∠BCD=90°,∴CM=BM=DM,∴∠MBC=∠BCM,∴∠ABD=∠BCM;(2)∵∠BNM=∠CNB,∠NBM=∠NCB,∴△NBM∽△NCB,∴BN:CN=BM:BC,而BM=DM,∴BN:CN=DM:BC,∴BC•BN=CN•DM.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.10.(2019•静安区二模)已知:如图5,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF•BC,求∠BAF的度数.【答案】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠1=∠2,∵点M为AC的中点,∴AM=CM.在△AME与△CMF中∠∠∴△AME≌△CMF(ASA),∴ME=MF.∴四边形AECF为平行四边形,又∵EF⊥AC,∴平行四边形AECF为菱形;(2)解:∵CD2=BF•BC,∴,又∵四边形ABCD为矩形,∴AB=CD,∴又∵∠ABF=∠CBA,∴△ABF∽△CBA,∴∠2=∠3,∵四边形AECF为菱形,∴∠1=∠4,即∠1=∠3=∠4,∵四边形ABCD为矩形,∴∠BAD=∠1+∠3+∠4=90°,∴即∠1=30°.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了菱形的判定与性质和矩形的性质.11.(2019•虹口区二模)如图,在▱ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC 于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.【答案】证明:(1)∵BE∥AC,∴△COF∽△BFE∴∵点F为BC的中点,∴CF=BF,∴OC=BE∵四边形ABCD是平行四边形,∴AO=CO∴AO=BE∵BE∥AC,∴四边形AOEB是平行四边形(2)∵四边形AOEB是平行四边形,∴∠BAO=∠E∵∠OBC=∠E,∴∠BAO=∠OBC∵∠ACB=∠BCO,∴△COB∽△CBA∴∵四边形ABCD是平行四边形,∴AC=2OC∵点F为BC的中点,∴BC=2FC∴即BO•OC=AB•FC【点睛】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.12.(2019•普陀区二模)已知:如图,在四边形ABCD中,AD<BC,点E在AD的延长线上,∠ACE=∠BCD,EC2=ED•EA.(1)求证:四边形ABCD为梯形;(2)如果,求证AB2=ED•BC.【答案】(1)证明:∵EC2=ED•EA∴而∠E=∠E∴△ECA∽△EDC∴∠EAC=∠ECD又∵∠ACE=∠BCD∴∠ACE﹣∠ACD=∠BCD﹣∠ACD即∠ECD=∠BCA∴∠EAC=∠BCA∴AE∥BC,∵AD<BC,故四边形ABCD是梯形.(2)证明:由(1)可知△ECA∽△EDC∴即得而由已知可得∴CD=AB,即梯形ABCD是等腰梯形∴∠B=∠BCD而∠BCD=∠EDC∴∠B=∠EDC由(1)知∠BCA=∠ECD∴△ABC∽△EDC∴而AB=CD∴AB2=ED•BC故AB2=ED•BC得证.【点睛】本题考查的是相似三角形的判定与性质,以及等腰梯形的判定与性质,通过比例式得出对应线段相等也是证明线段相等的一种方法.13.(2019•长宁区二模)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.【答案】证明:(1)∵AE2=EB•EC∴又∵∠AEB=∠CEA∴△AEB∽△CEA∴∠EBA=∠EAC而∠EAC=90°∴∠EBA=∠EAC=90°又∵∠EBA+∠CBA=180°∴∠CBA=90°而四边形ABCD是平行四边形∴四边形ABCD是矩形即得证.(2)∵△AEB∽△CEA∴即,∠EAB=∠ECA∵四边形ABCD是矩形∴OB=OC∴∠OBC=∠ECA∴∠EBF=∠OBC=∠ECA=∠EAB即∠EBF=∠EAB又∵∠F=∠F∴△EBF∽△BAF∴而AF=AC∴BF=AE即AE=BF得证.【点睛】本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.14.(2019•张店区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.【答案】证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴,∴,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.(2019•普陀区二模)如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,,△ADE 的面积等于3.(1)求△ABC的面积;(2)如果BC=9,且cot B,求∠AED的正切值.【答案】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴()2,∵S△ADE=3,∴S△ABC=27.(2)如图,作AH⊥BC于H.∵S△ABC BC×AH=27,∴AH=6,∵cot B,∴BH=4,CH=9﹣4=5,∵DE∥BC,∴∠AED=∠C,∴tan∠AED=tan∠C.【点睛】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(2019•闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin∠,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE ∥QC,求的值.【答案】(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在Rt△ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE,∵AB=2,∴AE=6,∴BE2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂足为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在Rt△ABG和Rt△BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH PD=a.QH BD=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,又∠ACP=90°,∴∠QCH=∠P AC,∴△ACP∽△QCH,∴,即,解得,a=b,∴CH=3a.由勾股定理得,CQ a,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,∴,即,解得,FC a,∴QF=QC﹣FC a,∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF面积之比等于高之比,∴.【点睛】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的判定定理和性质定理是解题的关键.17.(2019•闵行区二模)如图,已知四边形ABCD是菱形,对角线AC、BD相交于点O,BD=2AC.过点A作AE⊥CD,垂足为点E,AE与BD相交于点F.过点C作CG⊥AC,与AE的延长线相交于点G.求证:(1)△ACG≌△DOA;(2)DF•BD=2DE•AG.【答案】证明:(1)∵在菱形ABCD中,AD=CD,AC⊥BD,OB=OD,∴∠DAC=∠DCA,∠AOD=90°,∵AE⊥CD,CG⊥AC,∴∠DCA+∠GCE=90°,∠G+∠GCE=90°,∴∠G=∠DCA,∴∠G=∠DAC,∵BD=2AC,BD=2OD,∴AC=OD,在△ACG和△DOA中,∠∠∴△ACG≌△DOA(AAS);(2)∵AE⊥CD,BD⊥AC,∴∠DOC=∠DEF=90°,又∵∠CDO=∠FDE,∴△CDO∽△FDE,∴,即得OD•DF=DE•CD,∵△ACG≌△DOA,∴AG=AD=CD,又∵OD BD,∴DF•BD=2DE•AG.【点睛】本题考查了全等三角形的性质和判定,相似三角形的性质和判定,菱形的性质,能综合运用定理进行推理是解此题的关键.18.(2019•崇明区二模)如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,对角线AC、BD相交于点O.过点D作DE⊥BC,交AC于点F.(1)联结OE,若,求证:OE∥CD;(2)若AD=CD且BD⊥CD,求证:.【答案】证明:(1)∵∠ABD=90°,DE⊥BC,∴AB∥DE,∴,∵,∴,∴OE∥CD;(2)∵AD∥BC,AB∥DE,∴四边形ABED为平行四边形又∵∠ABD=90°,∴四边形ABED为矩形,∴AD=BE,∠ADE=90°,又∵BD⊥CD,∴∠BDC=∠BDE+∠CDE=90°,∠ADE=∠ADB+∠BDE=90°,∴∠CDE=∠ADB,∵AD=CD,∴∠DAC=∠DCA,在△ADO和△CDF中∠∠∴△ADO≌△CDF(ASA),∴OD=DF,∵AB∥DE,∴,∵AD∥BC,∴,∴.【点睛】本题考查了矩形的性质和判定,相似三角形的性质和判定,直角梯形的性质等知识点,能综合运用知识点进行推理是解此题的关键.19.(2019•黄浦区二模)如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.(1)求证:四边形ABCD是矩形;(2)求证:.【答案】解:(1)证明∵AD∥BC,∴,∵DO=BO,∴AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AC,∴∠ACD+∠DCE=90°,∵∠DCE=∠ACB,∴∠ACB+∠ACD=90°,即∠BCD=90°,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,∵AD∥BC,∴,∴∴,∵∠ADC=∠ACF=90°,∴∠,∴.【点睛】本题主要考查对矩形的性质,成比例的线段性质的理解和掌握,此题难度不大.20.(2019•黄浦区二模)已知四边形ABCD中,AD∥BC,∠ABC=2∠C,点E是射线AD上一点,点F是射线DC上一点,且满足∠BEF=∠A.(1)如图1,当点E在线段AD上时,若AB=AD,在线段AB上截取AG=AE,联结GE.求证:GE=DF;(2)如图2,当点E在线段AD的延长线上时,若AB=3,AD=4,cos A,设AE=x,DF=y,求y 关于x的函数关系式及其定义域;(3)记BE与CD交于点M,在(2)的条件下,若△EMF与△ABE相似,求线段AE的长.【答案】解:(1)∵AG=AE,∴∠.∵AD∥BC,∴∠A+∠ABC=180°,∵∠ABC=2∠C,∴∠,∴∠AGE=∠C,∵AD∥BC,∴∠D+∠C=180°,又∠BGE+∠AGE=180°,∴∠BGE=∠D,∵∠BEF+∠FED=∠A+∠GBE,∵∠BEF=∠A,∴∠FED=∠GBE,又AB=AD,AG=AE,∴BG=ED,∴△GBE≌△DEF(ASA),∴GE=DF;(2)在射线AB上截取AH=AE,联结EH,∵∠HBE=∠A+∠AEB,∠DEF=∠BEF+∠AEB,又∠BEF=∠A,∴∠HBE=∠DEF.∵AD∥BC,∴∠EDC=∠C,∠A+∠ABC=180°.∵AH=AE,∴∠,又∠ABC=2∠C,∴∠H=∠C,∴∠H=∠EDC,∴△BHE∽△EDF,∴.过点H作HP⊥AE,垂足为点P.∵,AE=AH=x,∴,,,∴,∵AB=3,AD=4,AE=x,DF=y,∴,∴>;(3)记EH与BC相交于点N.∵△EMF∽△ABE,∠BEF=∠A,∴∠AEB=∠EMF,或∠AEB=∠EFM,若∠AEB=∠EMF,又∠AEB<∠EMF,矛盾,∴此情况不存在,若∠AEB=∠EFM,∵△BHE∽△EDF,∴∠BEH=∠EFM,∴∠AEB=∠BEH,∵AD∥BC,∴∠AEB=∠EBC,∴∠BEH=∠EBC,∴BN=EN=BH=x﹣3,∵AD∥BC,∴,∴,∴,∴线段AE的长为.【点睛】本题属于相似三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21.(2019•黄浦区一模)如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE 交AD于点H,点F在CE上,且满足CF•CE=CD•BC.(1)求证:△ACF∽△ECA;(2)当CE平分∠ACB时,求证:.【答案】(1)证明:∵∠ACD=∠BCA,∠CAD=∠B,∴△ACD∽△BCA,∴,∴AC2=CD•BC,∵CF•CE=CD•BC,∴AC2=CF•CE,∴,∵∠ACF=∠ECA,∴△ACF∽△ECA;(2)证明:∵CF•CE=CD•BC,∴,∵∠DCF=∠ECB,∴△CFD∽△CBE,∴∠CFD=∠B,∵∠CAD=∠B,∴∠CFD=∠CAD,∴A,F,D,C四点共圆,∴∠AFC=∠ADC,∵△ACF∽△ECA,∴∠CAE=∠AFC,∴∠CAE=∠ADC,∵当CE平分∠ACB,∴∠ACE=∠DCH,∴△ACE∽△DCH,∴()2,∵AC2=CD•BC,∴.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.(2019•长宁区一模)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F 在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】解:(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN,∴∴AC=15∴AB20∵S△ABC AB×AC BC×AF,∴AF12,∵AF⊥BC∴cos∠EAF=cos∠MBN∴AE=20∴EF16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△F AE∽△FCA∴,∠AEF=∠F AC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF∴BE=BF+EF∵∠MBN=∠ACB,∠AEF=∠F AC,∴△BDE∽△CF A∴∴∴y(0<x)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC AB×AC BC×AF,∴AF12,∴BF16,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN,∴BE,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE k,∵BC=BE﹣CE=25∴k∴AE,CE,BE∵∠ACB=∠F AE,∠AFC=∠AFE,∴△AFC∽△EF A,∴,设AF=7a,EF=20a,∴CF a,∵CE=EF﹣CF a,∴a,∴EF,∵AC∥DF,∴,∴,∴DF,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.23.(2019•虹口区一模)如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【答案】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.24.(2019•浦东新区一模)将大小两把含30°角的直角三角尺按如图1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE 恰好经过大三角尺的重心G.已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图2),求点B、E 之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.【答案】解:(1)在Rt△ABC中,AC=AB cos30°=6,BC=6,由重心的性质得:,则CD=4,DE=8;(2)连接BE,过点C作CH⊥AB交于点H,BH BC=3,CH=BC sin60°=3,AH=9,HD,AD=AH﹣HD=9,∵∠ACD=∠ECB,,∴△ADC∽△BEC,∴,即:AD BE,∴BE(9)=3;(3)①如图,当DE在AC下方时,∵△ADC∽△BEC,∴∠BEC=∠ADC=∠AEB+∠CED=∠DCE+∠DEC=90°+∠CED,即:∠AEB=90°,在Rt△ABE中,AE2+BE2=AB2,设:BE=x,则AD x,AB=12,AE=AD+DE x+8,即:(x+8)2+x2=122,解得:x=42,②当DE在AC上方时,求得:x=42;sin∠BAE.【点睛】本题是三角形相似综合题,核心是确定图象旋转后的位置,利用相似确定边角关系,此类题目难度在于作图的准确性.25.(2019•普陀区一模)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.【答案】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH OC=1,CH,∴,整理得:2a2﹣a﹣4=0,解得a或(舍弃).经检验a是分式方程的解.∴a.(2)如图②中,设OC=x.作CH⊥AB于H,则OH,CH x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a x)2,整理得:x2+ax﹣5a2=0,解得x=(1)a或(1)a(舍弃),∴OC=(1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴,∴,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴,∴【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.26.(2019•宝山区一模)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.【答案】解:(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP,根据勾股定理得,HE3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EP A=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x(不合题意值已舍去),即:AP;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=22,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG EC=52,∴,即:,解得:FG=31.【点睛】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题.27.(2019•黄浦区一模)在△ABC中,∠ACB=90°,BC=3,AC=4,点O是AB的中点,点D是边AC 上一点,DE⊥BD,交BC的延长线于点E,OD⊥DF,交BC边于点F,过点E作EG⊥AB,垂足为点G,EG分别交BD、DF、DC于点M、N、H.(1)求证:;(2)设CD=x,NE=y,求y关于x的函数关系式及其定义域;(3)当△DEF是以DE为腰的等腰三角形时,求线段CD的长.【答案】(1)证明:如图1中,∵OD⊥DF,BD⊥DE,∴∠ODF=∠BDE=90°,∴∠ODB=∠NDE,∵EG⊥AB,∴∠BGM=∠MDE=90°,∵∠BMG=∠EMD,∴OBD=∠DEN,∴△OBD∽△NED,∴.(2)解:如图1中,∵∠BCD=∠BDE=90°,∴tan∠DBC,∵,∴,在Rt△ABC中,AB5,∴OB=OA=2.5,∴,∴y x(0<x<2).(3)解:①如图2﹣1中,当DE=DF时,作OK⊥AC于K.∵∠OKD=∠DCF=∠ODF=90°,∴∠ODK+∠KOD=90°,∠ODK+∠CDF=90°,∴∠DOK=∠CDF,∴△OKD∽△DCF,∴,∴,∴CF x(2﹣x),∵DF=DE,DC⊥EF,∴∠CDE=∠CDF,∵∠CDE+∠CDB=90°,∠CBD+∠CDB=90°,∴∠∠CDE=∠CBD=∠CDF,∵∠DCF=∠DCB=90°,∴△DCF∽△BCD,∴,∴CD2=CF•CB,∴x2=x(2﹣x),解得x或0(舍弃)∴CD.如图2﹣2中,当DE=EF时,∵ED=EF,∴∠EDF=∠EFD,∴∠EDC+∠CDF=∠DBC+∠BDF,∵∠EDC=∠DBC,∴∠CDF=∠BDF,∵∠CDF+∠ADO=90°,∠BDF+∠BDO=90°,∴∠ADO=∠BDO,∵AO=OB,易知DA=DB,设DA=DB=4﹣x,在Rt△BCD中,∵BD2=CD2+BC2,∴(4﹣x)2=x2+32,∴x,∴CD.综上所述,CD的长为或.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.(2019•徐汇区一模)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.【答案】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE AB BC,∴,∴BC2=2DF•BF.【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.29.(2019•奉贤区一模)如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E 是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【答案】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴∴HC m,∵CG∥EF∴即∴GC∴DG=CD﹣GC=3∴S△DFG DG×CH(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC。
专题17 三次函数的图像与性质(解析版)
专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。
苏科版七年级数学下册第七章 平面图形的认识(二) 图形证明专项训练 附答案
第七章平面图形的认识(二) 图形证明专项训练1.如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.2.如图,请你从下列三个条件中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.①AD∥BC;②AB∥CD;③∠A=∠C.已知:________________________________________________.结论:________________________________________________.理由:3.如图,∠A=65°∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.4.如图所示,已知∠1=∠2,再添加什么条件可使AB∥CD成立?请你说明理由.5.如图,已知∠1=45°,∠2=135°,∠D=45°,问:BC与DE平行吗?AB与CD呢?为什么?6.如图,若∠1+∠3=180°,能否得出AB∥CD?为什么?7.如图,直线AB和直线CD被直线GH所截,交点分别为点E、F,AEF EFD∠=∠.(1) AB与CD平行吗,为什么?(2)如果AEM NFD∠=∠,那么EM与FN是否平行,为什么?8.如图,25E∠=︒,求证://AB EF.∠=︒,10∠=︒,45BBCD∠=︒,30CDE9.如图,如果AB∥CD,∠B=38°,∠D=38°,那么BC与DE平行吗?为什么?10.如图,AB∥CD,∠ACB=90°,∠ACD=55°,求∠B的度数.11.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.12.已知,如图,在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE=_______;(2)若∠B=80°,∠C=40°,则∠DAE=_______;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为______________,并说明理由.13.(1)如图,小莉画了一个角∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)聪明的小莉想出了一个画30°角的方法:①画两条相交的直线OX、OY,使∠XOY=60°,②在射线OX、OY上分别再任意取A、B点,③作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,则∠C就是30°的角.你认为小莉的方法正确吗?请你说明理由.14.如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠l+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(2)如果把四边形ABCD沿时折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠l与∠2之间的关系吗?(直接写出关系式即可)15.认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+12∠A ,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∠1=12∠ABC ,∠2=12∠ACB ∴∠1+∠2=12(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A ∴∠1+∠2=12(180°﹣∠A)=90°-12∠A∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+12∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________________.16.平面内的两条直线有相交和平行两种位置关系.(1)AB平行于CD,如图(1),点P在AB、CD外部时,由//AB CD,有B BOD∠=∠,又因为BOD∠是POD的外角,故BOD BPD D∠=∠+∠,得BPD B D ∠=∠-∠.如图(2),将点P 移到AB 、CD 内部,以上结论是否成立?若不成立,则BPD ∠、B ∠、D ∠之间有何数量关系?请证明你的结论;(2)在图(2)中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图(3),则BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?(不需证明)(3)根据(2)的结论求图(4)中A B C D E F ∠+∠+∠+∠+∠+∠的度数.第七章 平面图形的认识(二) 图形证明专项训练参考答案1.相等.2.本题答案不唯一,如:已知:①②,结论:③.理由:因为AD ∥BC ,所以∠A=∠ABF ,理由是两直线平行,内错角相等.又因为AB ∥CD ,所以∠ABF=∠C ,理由是两直线平行,同位角相等,所以∠A=∠C3.131°4.解:添的条件为∠EBN=∠FDN ,理由为:∵∠1=∠2,∴∠1+∠EBN=∠2+∠FDN ,即∠ABD=∠CDN ,∴AB ∥CD .5.解:∵∠2=135°,∴∠BCD=180°﹣∠2=45°,而∠1=45°,∠D=45°,∴∠1=∠BCD ,∠D=∠BCD ,∴AB ∥CD ,BC ∥DE .6.解:能.∵∠3+∠2=180°,∠1+∠3=180°,∴∠1=∠2,∴AB ∥CD .7. (1)//AB CD 。
初一数学图形与证明试题答案及解析
初一数学图形与证明试题答案及解析1.下列正多边形的组合中,不能铺满地面的是A.正三角形和正五边形B.正三角形和正四边形C.正三角形和正十二边形D.正三角形和正六边形【答案】A【解析】找到两种多边形的若干个内角的和为360°的两种正多边形的组合即可.解:A正三角形的每个内角是60°,正五边形的每个内角为:180°-360°÷5=108°,∵60m+108n=360°,m,n不能得出正整数解。
∴不能够组成镶嵌,符合题意;B、正三角形的每个内角是60°,正方形的每个内角是90°,∵4×60°+1×90°=360°,∴能够组成镶嵌,不符合题意;C、正十二边形的每个内角是150°,正三角形的每个内角是60°,∵2×150°+1×60°=360°,∴能够组成镶嵌,不符合题意;D、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,或∵4×60°+1×120°=360°,能够进行镶嵌,不符合题意.故选A。
两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.2.(7分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.【答案】AD=CF,证明略。
【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等,可根据AAS判定△ADE≌△CFE,即证AD=CF.解:AD=CF.∵AB∥FC,∴∠A=∠ECF,∠ADE=∠CFE.∵DE=FE,∴△ADE≌△CFE.∴AD=CF.3.一个角的补角是它的余角的4倍,则这个角是_________度.【答案】60【解析】设这个角为x°,根据题意可得:180-x=4(90-x),解得x=60.【考点】1.互余;2.互补.4.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错【答案】C【解析】因为由∠1=∠2可得AD//BC,所以①错误;因为由∠3=∠4可得AD//BC,所以②正确;因为AD∥BE,所以∠1=∠2,又因为∠D=∠B,所以根据三角形的内角和可得∠3=∠4,所以AD//BC,因此③正确;所以②③正确,故选:C.【考点】平行线的判定与性质.5.下列说法正确的是()A.同位角相等.B.在同一平面内,如果a⊥b,b⊥c,则a⊥c.C.相等的角是对顶角.D.在同一平面内,如果a∥b,b∥c,则a∥c.[【答案】D.【解析】A选项说法错误,因为只有在两直线平行的情况下,同位角才能相等;B选项说法错误,因为垂直于同一直线的两直线平行,∴a∥c;C选项说法错误,由于位置关系不同,相等的角不一定是对顶角;D说法正确,根据是平行公理推论,即如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故选D.【考点】1.直线的位置关系及形成的角的名称;2.平行公理推论.6.(3分)(2015•本溪)如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.【答案】48°.【解析】已知∠BAC=90°,∠1=42°,根据平角的定义可得∠3=180°﹣90°﹣∠1=90°﹣42°=48°.再由平行线的性质即可得∠2=∠3=48°.【考点】平行线的性质.7.如图,△中,点是上的一点,,是中点,点F是BD的中点。
最新北京中考数学真题模拟题汇编专题17:图形的变化之解答题
最新北京中考数学真题模拟题汇编专题17 图形的变化之解答题(14道题)参考答案与试题解析一.解答题(共14小题)1.(2019•门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.【答案】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,∵∠BAD=α,∴∠FAG=60°﹣α,∵∠AFG=∠EFD=60°,∴∠AGE=180°﹣60°﹣(60°﹣α)=60°+α;(2)CG=2BD,理由是:如图,连接BE,过B作BP∥EG,交AC于P,则∠BPC=∠EGP,∵点D关于直线AB的对称点为点E,∴∠ABE=∠ABD=60°,∴∠EBD+∠C=180°,∴EB∥GP,∴四边形EBPG是平行四边形,∴BE=PG,∵∠DFG+∠C=120°+60°=180°,∴∠FGC+∠FDC=180°,∴∠ADB=∠BGP=∠BPC,∵AB=BC,∠ABD=∠C=60°,∴△ABD≌△BCP(AAS),∴BD=PC=BE=PG,∴CG=2BD.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行四边形的判定和性质,对称的性质,添加恰当的辅助线构造全等三角形是本题的关键.2.(2019•东城区二模)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∵∠ABE=30°,AE=2,∴BE=2,BC=4,∴EC=2,∵AE∥BC,∴△AEF∽△BCF,∴,∴EF EC.【点睛】本题考查相似三角形的判定和性质,矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2019•东城区二模)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.【答案】证明:(1)∵将线段AD绕点A逆时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°∴△ADE是等边三角形∵△ABC为等边三角形∴AB=AC,∠BAC=∠DAE=60°∴∠DAB=∠CAE,且AB=AC,AD=AE∴△ADB≌△AEC(SAS)∴BD=CE(2)如图,过点C作CG∥BP,交EF的延长线于点G,∵∠ADB=90°,∠ADE=60°∴∠BDG=30°∵CG∥BP∴∠G=∠BDG=30°,∵△ADB≌△AEC∴BD=CE,∠ADB=∠AEC=90°∴∠GEC=∠AEC﹣∠AED=30°∴∠G=∠GEC=30°∴GC=CE,∴CG=BD,且∠BDG=∠G,∠BFD=∠GFC∴△BFD≌△CFG(AAS)∴BF=FC∴点F是BC中点(3)如图,连接AF,∵△ABC是等边三角形,BF=FC∴AF⊥BC∴∠AFC=90°∴∠AFC=∠AEC=90°∴点A,点F,点C,点E四点在以AC为直径的圆上,∴EF最大为直径,即最大值为1【点睛】本题是几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.4.(2019•平谷区二模)在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC=40°;∠AEC=60°;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.【答案】解:(1)如图,补全图形:(2)连接AD,∵三角形ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,由对称可知,AD=AB,∴AD=AC,∵∠BAP=α=20°,∴∠DAB=40°,∴∠DAC=40°+60°=100°,∴∠ADC=∠ACD,∠AEC=∠ADC+∠DAE=40°+20°=60°,故答案为40,60;(3)由对称可知,∠BAE=∠DAE=α,∵AD=AB=AC,∴∠ADC,∠AEC=60°,∵∠ACB=60°,∠ACD=∠ADC=60°﹣α,∴∠BCE=α,∵∠ABC=60°,∠ABE=∠ADC=60°﹣α,∴∠BEC=60°,∴∠AEC=∠BEC;(4)当0°<α<60°时,CD=2DE+AE,证明:在CD上截取BG=BE,∵∠BEC=60°,∴△BGE是等边三角形,∴∠BGC=∠AED=120°,∵∠BCE=∠DAE=α,∴△BCG≌△DAE(AAS),∴AE=CG,∵EG=BE=DE,∴CD=2DE+CG,即CD=2DE+AE.【点睛】本题考查了轴对称,熟练运用等边三角形的性质是解题的关键.5.(2019•顺义区二模)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.【答案】证明:(1)①∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD ∴∠3=∠5=15°∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠1=∠2=45°,∠ABC=∠ACB=45°又∵AE=AE,∴△ABE≌△ACE(SAS)∴∠3=∠4=15°∴∠6=∠7=30°∴∠DEC=∠6+∠7=60°∵∠AED=∠3+∠1=60°∴∠AED=∠CED②BD=2CE+AE理由如下:过点A作AH⊥BD于点H,∵∠EBC=∠ECB∴BE=CE,∵∠AED=60°,AH⊥BD∴AE=2EH∵AB=AD,AH⊥BD∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE(2)补全图形如图,2CE﹣AE=BD理由如下:如图2,以A为顶点,AE为一边作∠EAF=60°,AF交DB延长线于点F.∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD∴∠ABD=∠ADB,∠BAD=30°∴∠ABD=∠ADB=75°∴∠AED=∠ADB﹣∠DAE=60°∵∠EAF=60°又∵∠EAF=60°,∴∠F=60°∴△AEF是等边三角形.∴AE=AF=EF.∵AC=AD,∠CAE=∠DAF=45°,AE=AF,∴△CAE≌△DAF(SAS).∴CE=DF.∵AB=AC,∠BAE=∠CAE=45°,AE=AE,∴△BAE≌△CAE(SAS).∴BE=CE.∴BE=CE.∵DF+BE﹣EF=BD,∴2CE﹣AE=BD【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.6.(2019•石景山区二模)如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【答案】解:(1)如图,连接CF.∵,∠ACB=90°,CE平分∠BCD,∴∠BCE=45°,∵点E、F关于直线BC对称,∴CE=CF,∠FCB=∠BCE=45°,∴∠FCA=45°,在△FCA与△ECB中,∴△FCA≌△ECB(SAS),∴AF=BE;(2)FG,EG与CE的数量关系:GE2+GF2=2CE2,证明:∵△FCA≌△ECB,∴∠AFC=∠BEC,∵∠AFC+∠CFG=180°,∴∠CFG+∠CEG=180°,∴∠ECF+∠EGF=180°,∵∠ECF=45°+45°=90°,∴∠EGF=90°,连接EF,∴GE2+GF2=EF2,∵CE=CF,∴CE2+CF2=2CE2=EF2,∴GE2+GF2=2CE2.【点睛】本题考查了轴对称的性质与等腰直角三角形的性质,熟练运用勾股定理、三角形全等的判定与性质是解题的关键.7.(2019•朝阳区一模)如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.【答案】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF BC,∵BC=BD,AF=DE,∴DE BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=2,∴AF=BF=DE,∴BE DE,∴AD,AD′=2().【点睛】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.8.(2019•石景山区一模)如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.【答案】解:(1)补全的图形如图1所示.(2)证明:∵△ABC是等边三角形,∴AB=BC=CA.∠ABC=∠BCA=∠CAB=60°.由平移可知ED∥BC,ED=BC.∴∠ADE=∠ACB=60°.∵∠GMD=90°,如图1,∴DG=2DM=DE.∵DE=BC=AC,∴DG=AC.∴AG=CD.(3)线段AH与CG的数量关系:AH=CG.证明:如图2,连接BE,EF.∵ED=BC,ED∥BC,∴四边形BEDC是平行四边形.∴BE=CD,∠CBE=∠ADE=∠ABC.∵GM垂直平分ED,∴EF=DF.∴∠DEF=∠EDF.∵ED∥BC,∴∠BFE=∠DEF,∠BFH=∠EDF.∴∠BFE=∠BFH.∵BF=BF,∴△BEF≌△BHF(ASA).∴BE=BH=CD=AG.∵AB=AC,∴AH=CG.【点睛】本题考查平移变换、等边三角形的性质、三角形全等的性质和判定、平行四边形的判定和性质等知识,解题的关键灵活应用所学知识解决问题,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.9.(2019•西城区一模)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.【答案】(1)证明:如图1中,∵BA=BC,∠ABC=90°,∴∠BAC=∠ACB=45°,∵线段AB绕点A逆时针旋转90°得到线段AD,∴∠BAD=90°,BA=AD,∴∠FAD=∠FAB=45°,∵AF=AF,∴△FAD≌△FAB(SAS),∴BF=DF.(2)①解:结论:AH⊥BF.理由:如图2中,连接CD.∵∠ABC+∠BAD=180°,∴AD∥BC,∵AD=AB=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形,∵AB=BC,∴四边形ABCD是正方形,∵BA=CD,∠ABH=∠DCE,BH=CE,∴△ABH≌△DCE(SAS),∴∠BAH=∠CDE,∵∠FCD=∠FCB=45°,CF=CF,CD=CB,∴△CFD≌△CFB(SAS),∴∠CDF=∠CBF,∴∠BAH=∠CBF,∵∠CBF+∠ABF=90°,∴∠BAH+∠ABF=90°,∴∠ANB=90°,∴AH⊥BF.②如图3中,取AB的中点O,连接ON,OC.∵∠ANB=90°,AO=OB,∴ON AB=1,在Rt△OBC中,OC,∵CN≥OC﹣ON,∴CN1,∴CN的最小值为1.【点睛】本题属于几何变换综合题,考查了正方形的判定和性质,全等三角形的判断和性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.10.(2019•平谷区一模)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.【答案】解:(1)∵线段AC绕点A逆时针旋转60°得到线段AD,∴△ACD是等边三角形,∴∠ACD=60°,∵∠ABC=120°,∴∠BAC+∠BCA=60°,∴∠BCD=∠ACD+∠BCA=60°+60°﹣α=120°﹣α,即∠BCD=120°﹣α.(2)BD=AB+BC.如图1,延长BA使AE=BC,连接DE.由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DCB=∠DAE.∴△ADE≌△CDB(SAS).∴BD=BE.∴BD=AB+BC.(3)如图2,AC,BD的数量关系是:;位置关系是:AC⊥BD于点P.理由如下:∵∠BAC=30°,∠ABC=120°,∴∠ACB=30°,∴AB=BC,∵AD=DC,∴BD垂直平分AC,∴∠ABD=60°,∠DAB=90°,∴,∴.【点睛】本题考查的是图形旋转的性质及等边三角形的判定与性质,熟知旋转前、后的图形全等是解答此题的关键.11.(2019•通州区一模)如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.【答案】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°﹣2α,AE=AC,∴[180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.(2)结论:AF=EF+CF.证明:如图,作∠FCG=60°交AD于点G,连接BF.∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴△FCG是等边三角形,∴GF=FC,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α,在△ACG和△BCF中,,∴△ACG≌△BCF.∴AG=BF,∵点B关于射线AD的对称点为E,∴BF=EF,∴AF﹣AG=GF,∴AF=EF+CF.【点睛】本题考查作图﹣轴对称变换,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2019•门头沟区一模)如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P 作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.【答案】解:(1)补全图形(如图1);理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠EOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POE=∠PQF=∠POQ,∴PO=PQ.∴△EPO≌△FPQ(ASA),∴PE=PF,(2)结论:线段OE,OP和OF之间的数量关系是OF+OE OP.理由:如图1中,∵△EPO≌△FPQ,∴OE=FQ.又∵OQ=OF+FQ=OF+OE,又∵OQ OP,∴OF+OE OP.(3)结论:线段OE,OP和OF之间的数量关系是OF﹣OE OP.理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠AOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POA=∠PQO=∠POQ=45°,∴PO=PQ,∠POE=∠PQE=135°,∴△EPO≌△FPQ(ASA),∴PE=PF,OE=FQ.又∵OQ=OF﹣FQ=OF﹣OE,又∵OQ OP,∴OF﹣OE OP.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.(2019•延庆区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)的对称轴与x轴交于点A,将点A向右平移3个单位长度,向上平移2个单位长度,得到点B.(1)求抛物线的对称轴及点B的坐标;(2)若抛物线与线段AB有公共点,结合函数图象,求a的取值范围.【答案】解:(1)抛物线的对称轴为直线x2,∴点A的坐标为(2,0).∵将点A向右平移3个单位长度,向上平移2个单位长度,得到点B,∴点B的坐标为(2+3,0+2),即(5,2).(2)分a>0和a<0两种情况考虑:①当a>0时,如图1所示.∴25a﹣20a+3a﹣2≥2,∴a;②当a<0时,如图2所示.∵y=ax2﹣4ax+3a﹣2=a(x﹣2)2﹣a﹣2,∴,∴a≤﹣2.综上所述:a的取值范围为a或a≤﹣2.【点睛】本题考查了坐标与图形的变化﹣平移:掌握点平移的坐标规律和二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质,求出点A的坐标;(2)分a>0和a<0两种情况,利用数形结合找出关于a的一元一次不等式(或一元一次不等式组).14.(2019•北京模拟)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=60°②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点D 逆时针旋转2α得到线段DF,连结BF,请直接写出DE.BF、BP三者的数量关系(不需证明)【答案】解:(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②补全图形如图2,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α﹣∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,CP=BF.(2)结论:BF﹣BP=2DE•tanα.理由:如图3,∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α+∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠DCE,∴CE=DE tanα,∴BC=2CE=2DE tanα,即BF﹣BP=2DE tanα.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.。
中考数学专题17 三角形与全等三角形
温馨提示:
三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的长短及求角或线段中经常用到。学习时应结合图形,做到熟练、准确地应用。
三角形的角平分线、高、中线均为线段。
(三)全等三角形的概念与性质
1.能够完全重合的两个三角形叫做全等三角形.
【答案】(1)C(2)A(3)C
方法总结:
(1)考查三角形的边或角时,一定要注意三角形形成的条件:两边之和大于第三边,两边之差小于第三边;
(2)在求三角形内角和外角时,要明确所求的角属于哪个三角形的内角和外角,要抓住题目中的等量关系;
类型二全等三角形
(1)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________________________.
2.三角形的两边之和大于第三边,两边之差小于第三边.
3.三角形中的重要线段
(1)角平分线:三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等.
(2)中线:三角形的三条中线交于一点,这点叫做三角形的重心.
(3)高:三角形的三条高交于一点,这点叫做三角形的垂心.
(4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等.
1.(2009·温州)下列长度的三条线段能组成三角形的是()
A.1cm,2cm,3.5cmB.4cm,5cm,9cm
C.5cm,8cm,15cmD.6cm,8cm,9cm
解析:计算较小两数的和与最大数比较,大于的组成三角形,否则不能.
答案:D
2.(2008·嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=()
初三数学图形与证明试题
初三数学图形与证明试题1.若用半径为9,圆心角为的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是().A.1.5B.2C.3D.6【答案】C【解析】等弧长计算,半径为9,圆心角为的弧长=即这个圆锥的底面周长=6,即2r=6,故选C2.赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙。
如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.【答案】25.【解析】根据垂径定理,得AD=AB=20米.设圆的半径是R,根据勾股定理,得R2=202+(R﹣10)2,解得R=25米.【考点】垂径定理的应用;勾股定理.3.如图,AB是⊙O的直径,AB=8,点M在⊙O上,,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则周长的最小值为()A.4B.5C.6D.7【答案】B.【解析】本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON,由两点之间线段最短可知MN′与AB的交点P′即为△PMN周长的最小时的点,根据N是弧MB的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.作N关于AB的对称点N′,连接MN′,NN′,ON′,ON.∵N关于AB的对称点N′,∴MN′与AB的交点P′即为△PMN周长的最小时的点,∵N是弧MB的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5.故选B.【考点】轴对称-最短路线问题;圆周角定理.4.观光塔是潍坊市的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.【答案】135【解析】根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD= m,所以在Rt△ACD中,CD= AD=×=135m.【考点】解直角三角形的应用.5.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.【答案】70.【解析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.试题解析:∵矩形的长和宽分别为a,b,周长为14,面积为10,∴a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.【考点】因式分解的应用.6.如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.4【答案】C.【解析】∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选C.【考点】平行四边形的性质.7.在3×3的方格中,A、B、C、D、E、F分别位于如图所示的小正方形的顶点上,从C、D、E、F四点中任意取一点,以所取得一点及点A、B为顶点画三角形,则所画三角形为等腰三角形的概率是.【答案】.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、F点时,所画三角形是等腰三角形,即可得出答案;试题解析:根据从C、D、E、F四个点中任意取一点,一共有4种可能,只有选取C、D,F点时,所画三角形是等腰三角形,=.故P(所画三角形是等腰三角形)【考点】1.概率公式;2.等腰三角形的判定.8.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为.【答案】y=-3x+18.【解析】根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.试题解析:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.∴当Q到达B点,P在AD的中点时,△PAQ的面积最大是9cm2,设正方形的边长为acm,∴×a×a=9,解得a=6,即正方形的边长为6,当Q点在BC上时,AP=6-x,△APQ的高为AB,∴y=(6-x)×6,即y=-3x+18.【考点】动点问题的函数图象.9.(3分)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 cm.(结果保留π)【答案】.【解析】如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.【考点】1.平面展开-最短路径问题;2.最值问题.10.(12分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB 于点E ,交CA 的延长线于点F .(1)求证:FE ⊥AB ;(2)当EF=6,时,求DE 的长.【答案】(1)证明见试题解析;(2)9.【解析】(1)连接AD 、OD ,由直径所对的圆周角是直角得出∠ADC=90°,由等腰三角形的性质可得到D 是BC 的中点,从而OD 是△ABC 的中位线,根据切线的性质证明结论;(2)由平行线分线段成比例定理,列出比例式计算得到答案.试题解析:(1)连接AD 、OD ,∵AC 为⊙O 的直径,∴∠ADC=90°,又∵AB=AC ,∴CD=DB ,又CO=AO ,∴OD ∥AB ,∵FD 是⊙O 的切线,∴OD ⊥EF ,∴FE ⊥AB ;(2)∵,∴,∵OD ∥AB ,∴,又EF=6,∴DE=9.【考点】1.切线的性质;2.相似三角形的判定与性质;3.综合题.11. (3分)如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向▱ABCD 内部投掷飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率为( )A .B .C .D .【答案】C .【解析】∵四边形ABCD 为平行四边形,∴△OEH 和△OFG 关于点O 中心对称,∴S △OEH =S △OFG ,∴S 阴影部分=S △AOB =S 平行四边形ABCD ,∴飞镖(每次均落在▱ABCD 内,且落在▱ABCD 内任何一点的机会均等)恰好落在阴影区域的概率==.故选C . 【考点】1.几何概率;2.平行四边形的性质.12. 如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)见解析;(2)【解析】连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.[来试题解析:(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF=.【考点】切线的判定13.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【答案】B.【解析】∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.【考点】平行线的性质.14.(3分)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市【答案】C.【解析】∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【考点】专题:正方体相对两个面上的文字.15.在面积为60的▱ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=10,BC=12,则CE+CF的值为()A.22+11B.22-11C.22+11或22-11D.22+11或2+【答案】D.【解析】分两种情况:①由平行四边形ABCD的面积求出AE=5,AF=6,再根据勾股定理求出BE、DF,求出CE、CF,即可得出结果;②CE=10-5,CF=6-10,即可得出结果.试题解析:分两种情况:①如图1所示:∠A为锐角时;∵平行四边形ABCD的面积=BC•AE=AB•AF=60,AB=10,BC=12,∴AE=5,AF=6,∵AE⊥直线BC于点E,作AF⊥直线CD于F,∴∠AEB=∠AFD=90°,∴BE=,DF=,∴CE=12+5,CF=10+6∴CE+CF=22+11;②如图2所示:∠A为钝角时;由①得:CE=10-5,CF=6-10,∴CE+CF=2+;故选D.【考点】平行四边形的性质.16.如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.【答案】(1)证明见解析;(2)直线BC与⊙O相切,理由见解析;(3).【解析】(1)由平行四边形的性质得出∠AED=∠EDC,证出,即可得出AD=CE;(2)作直径CF,连接EF,则∠EFC=∠EDC,证出∠EFC=∠BCE,再由CF是⊙O的直径,得出∠FEC=90°,得出∠BCF=90°,即可得出结论;(3)证明△BCE∽△EDC,得出对应边成比例,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC.∴,∴AD=CE;(2)解:直线BC与⊙O相切,理由如下:如图所示:作直径CF,连接EF.则∠EFC=∠EDC,∵∠BCE=∠CDE,∴∠EFC=∠BCE.∵CF是⊙O的直径,∴∠FEC=90°,∴∠EFC+∠FCE=90°,∴∠BCE+∠FCE=90°∴∠BCF=90°.∴OC⊥CB.∴直线BC与⊙O相切;(3)解:∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,由(1)得:AD=CE,∴BC=CE,∵AB∥CD,∴∠BEC=∠DCE.又∵∠BCE=∠CDE,∴△BCE∽△EDC,∴,∵BC=3∴CE=3,即,解得,BE=.【考点】1.切线的判定;2.平行四边形的性质;3.相似三角形的判定与性质.17.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A.【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.故选A.【考点】1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.18.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是 .【答案】AD=BD【解析】如图,连接CD由题意得:∠EDF=∠ECF,∴∠EDF+∠ECF=180°,∴D、E、C、F四点共圆,∴∠DEF=∠DCF;而∠DEF=∠A,∴∠DCF=∠A(设为α),DA=DC;∵∠B+α=∠BCD+α=90°,∴∠B=∠BCD,∴DB=DC,DA=DB,【考点】翻折变换(折叠问题).19.如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若BC为⊙O的直径,则图中阴影部分的面积为.【答案】π.【解析】如图,连接OP,∵PA、PB与⊙O相切,∴PA=PB,∠PAO=∠PBO=90°∵∠BPA=60°,∴△PAB为等边三角形,∠AOB=120°∴PB=AB=PA=3,∠POB=60°∴OB=.∵OB=OC,∴S△AOB =S△AOC∴S阴影=S扇形OAB==π.【考点】1.切线的性质;2.扇形面积的计算.20.如图,直线a∥b,AB⊥BC,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°【答案】C【解析】先根据平行线的性质求出∠ACB的度数,再由垂直的定义得出∠ABC的度数,根据三角形内角和定理即可得出结论.∵直线a∥b,∠1=40°,∴∠ACB=∠1=40°.∵AB⊥BC,∴∠ABC=90°,∴∠2=90°﹣∠ACB=90°﹣40°=50°.【考点】平行线的性质21.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)【答案】【解析】过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,可得出∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,从而AF=FC=AN=NC,设AF=FC=x,则tan30°=,解得x=,由tan30°=,得到,解得:BN=,由AB=AN+BN,即可得出结论.试题解析:过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°=,解得:x=,∵tan30°=,∴,解得:BN=,∴AB=AN+BN==.答:灯塔A、B间的距离为()海里.【考点】1.解直角三角形的应用-方向角问题;2.几何图形问题.22.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 . 【答案】.【解析】如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2, ∴△ABD 的高为,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,,∴△ABG ≌△DBH (ASA ), ∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =.【考点】1.扇形面积的计算;2.全等三角形的判定与性质;3.菱形的性质.23. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是21cm 2,则该矩形的面积为( )A .60cm 2B .70cm 2C .120cm 2D .140cm 2【答案】A .【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm 2).故选A .【考点】矩形的性质.24. 如图,以Rt △ABC 的边AC 为直径的⊙O 交斜边AB 于点D ,点F 为BC 上一点,AF 交⊙O于点E,且DE∥AC.(1)求证:∠CAF=∠B.(2)若⊙O的半径为4,AE=2AD,求DE的长.【答案】【解析】(1)连接CE,根据圆周角定理可知∠AEC=90°,故∠CAF+∠ACE=90°.再由题意可知∠B+∠DAC=90°,根据DE∥AC,可得,故,由圆周角定理可知∠ACE=∠DAC,故可得出结论;(2)连接DC,由(1)知DE∥AC,故可得出AD=CE,由全等三角形的判定定理得出Rt△ACD≌Rt△CAE,所以CD=AE=2AD,设AD=x,则CD=2x,在Rt△ABD中根据勾股定理可求出AD,CD的长,过D作DM⊥AC,过O作ON⊥ED,由AD•CD=AC•DM可得出DM的长,连OD,在Rt△OND中,由勾股定理可求出DN的长,由ED=2DN即可得出结论.试题解析:(1)证明:连接CE,∵AC是⊙O的直径,∴∠AEC=90°,∴∠CAF+∠ACE=90°.∵∠ACB=90°,∴∠B+∠DAC=90°,∵DE∥AC,∴,∴,∴∠ACE=∠DAC,∴∠CAF=∠B;(2)解:连DC,∵DE∥AB,∴∠CAE=∠AED,∴AD=DE,在Rt△ACD与Rt△CAE中,∵,∴Rt△ACD≌Rt△CAE(HL),∴CD=AE=2AD,设AD=x,则CD=2x,在Rt△ACD中,x2+(2x)2=82,∴AD=,CD=.过D作DM⊥AC,过O作ON⊥ED,∴AD•CD=AC•DM,∴DM====ON,连OD,在Rt△OND中,∵DN===∴ED=2DN=.【考点】圆周角定理;勾股定理25.一个正方体的平面展开图如图所示,将它折成正方体后“设”字对面是()A.和B.谐C.泰D.州【答案】B.【解析】已知,这是一个正方体的平面展开图,共有六个面,其中面“建”与面“州”相对,面“和”与面“泰”相对,“谐”与面“设”相对.故答案选B.【考点】正方体的侧面展开图.26.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.3【答案】C.【解析】∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.【考点】1.圆内接四边形的性质;2.坐标与图形性质;3.含30度角的直角三角形.27.如图,四边形OBCD中的三个顶点在⊙O上,点A是优弧BD上的一个动点(不与点B、D 重合).(1)当圆心O在∠BAD内部,∠ABO+∠ADO=60°时,∠BOD= ;(2)当圆心O在∠BAD内部,四边形OBCD为平行四边形时,求∠A的度数;(3)当圆心O在∠BAD外部,四边形OBCD为平行四边形时,请直接写出∠ABO与∠ADO的数量关系.【答案】(1)120 °;(2)60°;(3)60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=60°,然后根据圆周角定理易得∠BOD=2∠BAD=120°;(2)根据平行四边形的性质得∠BOD=∠BCD,再根据圆周角定理得∠BOD=2∠A,则∠BCD=2∠A,然后根据圆内接四边形的性质由∠BCD+∠A=180°,易计算出∠A的度数;(3)讨论:当∠OAB比∠ODA小时,如图2,与(1)一样∠OAB=∠ABO,∠OAD=∠ADO,则∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,所以∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,用样方法得到∠ABO﹣∠ADO=60°.试题解析:(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=60°,即∠BAD=60°,∴∠BOD=2∠BAD=120°;(2)∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∵∠BOD=2∠A,∴∠BCD=2∠A,∵∠BCD+∠A=180°,即3∠A=180°,∴∠A=60°;(3)当∠OAB比∠ODA小时,如图2,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,∴∠ADO﹣∠ABO=60°;当∠OAB比∠ODA大时,同理可得∠ABO﹣∠ADO=60°,综上所述,|∠ABO﹣∠ADO|=60°.【考点】1.圆周角定理;2.平行四边形的性质;3.圆内接四边形的性质.28.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 °.【答案】130【解析】∵四边形ABCD内接与⊙O,∴∠A+∠C=180°,∵∠A=115°,∴∠C=65°,∴∠BOD=2∠C=130°;【考点】1.圆内接四边形的性质;2.圆周角定理.29.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.B.C.8D.10【答案】B.【解析】延长CO交AB于E点,连接OB,∵CE⊥AB,∴E为AB的中点,由题意可得CD=4,OD=4,OB=8,DE=(8×2﹣4)=×12=6,OE=6﹣4=2,在Rt△OEB中,根据勾股定理可得:OE2+BE2=OB2,代入可求得BE=,∴AB=.故选B.【考点】1.垂径定理;2.翻折变换(折叠问题).30.有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A.B.4C.D.2【答案】B【解析】经过正n边形的中心O作边AB的垂线OC,则∠B=60°,∠O=30°,在直角△OBC中,根据三角函数得到OB=2BC=AB=4.点评:正多边形的计算31.如图,AC是△ABD的高,∠D=45°,∠B=60°,AD=10.求AB的长.【答案】【解析】首先根据Rt△ACD的三角函数求出AC的长度,然后根据Rt△ABC的三角形函数求出AB的长度.试题解析:在Rt△ACD中,AC=10×sin∠D=10×sin45°=5在Rt△ABC中,AB=.【考点】锐角三角函数的应用.32.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2 B.3 C.4 D.5【答案】C.【解析】试题解析:∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,DD′=2DC=4,AE′=1,∴A′D=5,∴DE′=5-1=4∴PE+PD=PE′+PD=DE′=4,故选C.【考点】轴对称-最短路线问题.33.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6B.3C.3D.3【答案】D【解析】根据AB=AC以及∠BAC=120°可得:∠D=30°,根据BD为直径可得:∠BAD=90°,则根据Rt△ABD的性质可得:BD=2AB=6,AD=3【考点】圆的基本性质34.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为()A.2.5B.5C.10D.15【解析】试题解析:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【考点】圆锥的计算.35.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.160m B.80mC.120(-1)m D.120(+1)m【答案】A【解析】过点A作AD⊥BC,则CD=120m,BD=40m,则BC=CD+BD=160m.【考点】三角形函数的应用.36.如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).【答案】米【解析】设CD=EF=x,根据Rt△CAD,求出AD与x的关系,根据Rt△BEF,求出BF与x的关系,然后根据BD=DF-BF=2-BF,AB=AD+BD=4求出x的值.试题解析:设小明的身高为x米,则CD=EF=x米.在Rt△ACD中,∠ADC=90°,tan∠CAD=,即tan30°=,AD=x在Rt△BEF中,∠BFE=90°,tan∠EBF=EF/BF,即tan60°=,BF=由题意得DF=2,∴BD=DF-BF=2-,∵AB=AD+BD=4,∴x+2-=4 解得:x=.答:小明的身高为米.【考点】锐角三角函数的应用.37.在Rt△ABC中,∠C=90°,a=4,b=3,则sinA的值是()A.B.C.D.【解析】试题解析:如图所示:∵在Rt△ABC中,∠C=90°,a=4,b=3,∴c=5,∴sinA=.故选B.【考点】1.锐角三角函数的定义;2.勾股定理.38.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为.【答案】10cm.【解析】圆锥的底面周长=扇形的弧长,据此列等式求出r的值.,解得r=10cm.故答案为:10cm.【考点】圆锥的有关计算.39.计算:2sin60°+tan45°= .【答案】.【解析】试题解析:原式=2×+1=.【考点】特殊角的三角函数值.40.(2015•盐城校级模拟)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.【答案】3π.【解析】根据弧长公式L=求解.解:L===3π.故答案为:3π.【考点】弧长的计算.41.(2015•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.【答案】125.【解析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【考点】切线的性质.42. (2015秋•芜湖期末)若一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,则这个圆锥的底面半径长是 cm . 【答案】12【解析】设这个圆锥的底面半径为rcm ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程求出r 即可.解:设这个圆锥的底面半径为rcm ,根据题意得2πr=,解得r=12,所以这个圆锥的底面半径长为12cm . 故答案为12.【考点】圆锥的计算.43. 如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 .【答案】2.5【解析】根据题意可得阴影部分的面积等于△ABC 的面积,因为△ABC 的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积. 解:设AP 与EF 相交于O 点. ∵四边形ABCD 为菱形, ∴BC ∥AD ,AB ∥CD . ∵PE ∥BC ,PF ∥CD , ∴PE ∥AF ,PF ∥AE .∴四边形AEFP 是平行四边形. ∴S △POF =S △AOE .即阴影部分的面积等于△ABC 的面积.∵△ABC 的面积等于菱形ABCD 的面积的一半, 菱形ABCD 的面积=AC•BD=5, ∴图中阴影部分的面积为5÷2=2.5. 故答案为:2.5.【考点】菱形的性质.44. 如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m ,木板超出车厢部分AD=0.5m ,则木板CD 的长度为 .(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).【答案】4.9m.【解析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB=,∴AC===≈4.39,∴CD=AC+AD=4.39+0.5=4.89≈4.9(m).故答案为:4.9m.【考点】解直角三角形的应用-坡度坡角问题.45.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为_________.【答案】120°【解析】根据中点可得DE∥BC,则∠DEC+∠C=180°,根据∠C=60°,可得∠DEC=120°.【考点】三角形中位线的性质.46.如图,AB为⊙O直径,弦CD⊥AB于E,则下面结论中错误的是()A.CE=DE B.=C.∠BAC=∠BAD D.OE=BE【答案】D【解析】根据垂径定理分析即可.根据垂径定理和等弧对等弦,得A、B、C正确,只有D错误.故选D.【考点】垂径定理.47.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D= 度.【答案】90【解析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【考点】圆内接四边形的性质.48.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.【答案】.【解析】作OH⊥AB,延长DC交⊙O于E,如图,根据垂径定理得到AH=BH=AB=,CD=CE,再利用相交弦定理得CD•CE=BC•AC,易得CD=,当CH最小时,CD最大,C点运动到H点时,CH最小,所以CD的最大值为.解:作OH⊥AB,延长DC交⊙O于E,如图,∴AH=BH=AB=,∵CD⊥OC,∴CD=CE,∵CD•CE=BC•AC,∴CD2=(BH﹣CH)(AH+CH)=(﹣CH)(+CH)=3﹣CH2,∴CD=,∴当CH最小时,CD最大,而C点运动到H点时,CH最小,此时CD=,即CD的最大值为.故答案为.【考点】垂径定理;勾股定理.49.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C= .【答案】75°.【解析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.【考点】特殊角的三角函数值;非负数的性质:偶次方.50.如图,正六边形ABCDEF的边长为2,两顶点A、B分别在x轴和y轴上运动,则顶点D到原点O 的距离的最大值和最小值的乘积为 . 【答案】12 【解析】当O 、D 、AB 中点共线时,OD 有最大值和最小值,BD=2,BK=1, ∴DK=,OK=BK=1, ∴OD 的最大值为:1+, 同理,把图象沿AB 边翻折180°得最小值为:-1,∴顶点D 到原点O 的距离的最大值和最小值的乘积为:(1+)(-1)=12.【考点】(1)、正多边形和圆;(2)、坐标与图形性质51. 下列四边形中,对角线相等且互相垂直平分的是A .平行四边形B .正方形C .等腰梯形D .矩形【答案】B .【解析】试题解析:对角线相等且互相垂直平分的四边形是正方形,故选B .【考点】1.等腰梯形的性质;2.平行四边形的性质;3.矩形的性质;4.正方形的性质.52. 如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下列结论:① △ODC 是等边三角形;②BC=2AB ;③∠AOE=135°; ④S △AOE =S △COE ,其中正确的结论的个数有A .1B .2C .3D .4【答案】C【解析】∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OC ,OD=OB ,AC=BD ,<BR>∴OA=OD=OC=OB ,∵AE 平分∠BAD ,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD ,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC ,∴△ODC 是等边三角形,∴①正确;∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠DAC=∠ACB=30°,∴AC=2AB ,∵AC >BC ,∴2AB >BC ,∴②错误;∵AD ∥BC ,∴∠DBC=∠ADB=30°,∵AE 平分∠DAB ,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD ∥BC ,∴∠DAE=∠AEB ,∴∠AEB=∠BAE ,∴AB=BE ,∵四边形ABCD 是矩形,∴∠DOC=60°,DC=AB ,∵△DOC 是等边三角形,∴DC=OD ,∴BE=BO ,∴∠BOE=∠BEO=(180°-∠OBE )=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC ,∴根据等底等高的三角形面积相等得出S △AOE =S △COE ,∴④正确;故选C .【考点】矩形的性质.53.如图,、是以线段为直径的⊙上两点,若,且,则( ).A.B.C.D.【答案】B.【解析】因为∠ACD=40°,CA=CD,所以∠CAD=∠D=(180°-40°)÷2=70°,所以∠B=∠D=70°,又因为AB为直径,所以∠ACB=90°,所以∠CAB=90°-∠B=90°-70°=20°,故选B.【考点】1.圆周角定理;2.弧,弦圆心角定理;3.三角形内角和定理.54.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48B.41.68C.43.16D.55.63【答案】B【解析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可,如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里)【考点】锐角三角函数的应用55.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时【答案】D.【解析】试题解析:∵∠CAB=10°+20°=30°,∠CBA=80°-20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.【考点】解直角三角形的应用-方向角问题.56.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=42°32′,则∠2的度数()A.17°28′B.18°28′C.27°28′D.27°32′【答案】A.【解析】试题解析:过点A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=42°32′,∵∠BAC=60°,∴∠4=60°-42°32′=17°28′,∵NM∥AE,∴∠2=∠4=17°28′,故选A.【考点】平行线的性质.57.下列命题中,正确的是()A.平分弦的直径垂直于弦B.对角线相等的平行四边形是正方形C.对角线互相垂直的四边形是菱形D.三角形的一条中线能将三角形分成面积相等的两部分【答案】D.【解析】试题解析:A、平分弦(非直径)的直径垂直于弦,所以A选项错误;B、对角线垂直且相等的平行四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、三角形的一条中线能将三角形分成面积相等的两部分,所以D选项正确.故选D.【考点】命题与定理.58.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【答案】(1)四边形CEGF为菱形,理由详见解析;(2)3≤CE≤5.【解析】(1)根据折叠的性质,易证△EFG是等腰三角形,根据等腰三角形的性质可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,。
初二数学图形与证明试题
初二数学图形与证明试题1.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=________.【答案】.【解析】∵菱形的对角线垂直平分,∴BO=3,DO=4,AB=5,在Rt△AOB中,列面积相等的式子:AO×BO=AB×OH,3×4=5×OH,∴OH=.【考点】菱形性质及三角形面积计算.2.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.【考点】1.含30度角的直角三角形;2.正方形的性质.3.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72°D.60°【答案】B.【解析】在平行四边形ABCD中,根据平行四边形对角相等可得∠A:∠B:∠C:∠D=2:3:2:3,又因平行四边形的内角和是360度,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°,即可得∠D=108°.故答案选B.【考点】平行四边形的性质.4.矩形、菱形、正方形都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【答案】B【解析】根据矩形的对角线互相平分且相等,菱形的对角线互相垂直平分,正方形的对角线互相垂直平分且相等,可知它们三者的共同性质是:对角线互相平分.故选B【考点】矩形、菱形、正方形的对角线的性质5.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是_______________。
初一数学图形与证明试题答案及解析
初一数学图形与证明试题答案及解析1.用圆规、直尺作出下图:(保留痕迹,不写作法)【答案】方法正确7分,结论1分【解析】分析:首先作AB的垂直平分线NM,交AB于点O,以AO的长为半径,分别以A,B,C,D为圆心作弧即可得出图形.解答:解:如图所示:点评:此题主要考查了作图与应用作图中,解决问题的关键是作出正方形,进而作出一边垂直平分线,题目应用较广同学们应学会这种图形作法.2.下列图形中不可以折叠成正方体的是()A. B C D【答案】C【解析】利用正方体及其表面展开图的特点解题.A,B,D都可以折叠成正方体,只有C有两个面重合,不能围成正方体.故选C.【考点】正方体及其表面展开图3.(9分)如图,已知∠AOB是直角,∠BOC=600, OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=600”改为:∠AOB= x0,∠EOF=y0,条件不变.①则请用x的代数式来表示y.②如果∠AOB+∠EOF=1560.则∠EOF是多少度?【答案】(1)45°;m(2)①y=x,②52°.【解析】(1)根据角平分线的定义和角的和差倍分的关系即可求得∠EOF的度数;(2)①把(1)中的数字换成字母即可解得x与y的关系;②根据x+y=156°,y=x即可解得x、y的值.试题解析:(1)∵∠AOB=90°,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB=×=90°=45°.(2)①∵∠AOB=x°,∠EOF=y°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC-∠FOC=∠AOC-∠BOC= (∠AOB+∠BOC)-∠BOC=∠AOB.即y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,又∵y=x.代入解得x=104°,y=52°.即∠EOF=52°.【考点】角平分线的性质;角的计算.4.如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=35°,则∠B的度数为()A.25°B.35°C.55°D.65°【答案】C【解析】∵DE∥BC,∴∠C=∠1=35°,∵∠A=90°,∴∠B=90°-∠C=90°-35°=55°.故选C.【考点】1.平行线的性质;2.直角三角形的性质.5.(本题8分)如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.【答案】65°.【解析】应用三角形内角和定理求出∠EAC的度数,再应用角平分线的定义求得∠DAE的度数,应用三角形内角和定理求得∠ADE的度数.试题解析:解:因为AE是△ABC的高,所以∠AEC=90°,由三角形内角和定理得∠EAC=90°-40°=50°,因为AD平分∠EAC,所以∠EAD=25°,所以∠ADE=90°-25°=65°.【考点】三角形内角和定理;角平分线的定义.6.下面各图中,∠1、∠2互为邻补角的是:【答案】D.【解析】有公共顶点,相邻且互补的两个角互为邻补角,A没有公共顶点,B不互补,C不相邻,故选D.【考点】邻补角定义.7.(本题满分10分)如图,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)CD与EF平行吗?并说明理由;(2)若∠A=70°,求∠FEC的度数.【解析】(1)根据垂线的定义得∠CDB=∠FEB=90°,后根据同位角相等,两直线平行,可以得到EF∥CD;(2)先根据角平分线的定义得∠ACE=45°,再利用互余计算出∠ACD=90°-∠A=20°,则∠ECD=∠ACE-∠ACD=25°,然后根据平行线的性质求解.试题解析:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠FEB=90°,∴EF∥CD;(2)解:∵∠ACB=90°,CE平分∠ACB交AB于E,∴∠ACE=45°,∵∠A=70°,∴∠ACD=90°﹣70°=20°,∴∠ECD=∠ACE﹣∠ACD=25°,∵EF∥CD,∴∠FEC=∠ECD=25°.【考点】垂直的意义,角平分线,平行线判定8.(本题满分12分)如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点,(1)说明:∠AEB=∠DAE+∠CBE;(2)如图(2),当AE平分∠DAC,∠ABC=∠BAC.①说明:∠ABE+∠AEB=900;②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.【答案】(1)见解析;(2)见解析;(3)∠BCD=600【解析】(1)如图(1),过点E作EF∥BC,交AB于F.根据平行线的性质可证得结论;(2)①如图(2),根据平行线的性质和互为补角,角平分线的性质可证;②根据平行线的性质和角平分线的性质,可求结果.试题解析:解:(1)如图(1),过点E作EF∥BC,交AB于F.∵EF∥BC,AD∥BC∴EF∥AD∥BC∴∠DAE=∠AEF,∠CBE=∠BEF∴∠AEF+∠BEF=∠DAE+∠CBE∵∠AEB=∠AEF+∠BEF∴∠AEB=∠DAE+∠CBE.(2)如图(2)∠ABC+∠BAC+∠ACB=180°∵∠ABC=∠BAC,∠ACB=2∠DAE∴2∠ABC+2∠DAE=180°即∠ABC+∠DAE=90°∠ABC=∠ABE+∠CBE由(1)得∠AEB=∠DAE+∠CBE∴∠ABE+∠AEB=90°.(3)∠ACB=180°-∠ABC-∠BAC=180°-2∠BAC∵∠BAC=∠F+∠ACF∴∠ACB=180°-2(∠F+∠ACF)=180°-2×60°-2∠ACF∵CF平分∠ACD∴∠ACD=2∠ACF即∠ACB=180°-2×60°-∠ACD得∠ACB+∠ACD=60°即∠BCD=60°.【考点】平行线的性质,角平分线的性质,互为补角9.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后展开得到()【答案】B.【解析】观察图形可得,剪去一个小正方形,得到四个小正方形,每两个小正方形构成一个矩形,并且这个矩形关于正方形纸片的一条对角线对称,只有选项B符合要求,故答案选B.【考点】翻折变换.10.如图,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.20B.30C.40D.10【答案】A【解析】根据图形可得:阴影部分的面积====×(100-60)=20.【考点】代数的计算.11.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 .【答案】25°.【解析】如图,根据平行线的性质可得∠1=∠3=20°,由题意知∠3+∠2=45°,所以∠2=25°.【考点】平行线的性质.12.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.【答案】三角形的稳定性【解析】注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【考点】三角形的稳定性13.(3分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
2020年高考数学之冲破压轴题讲与练 专题17 立体几何中的最值问题(解析版)
第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A .334B .233C .324D .32【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为22, 所以其面积为232336()424S =⨯⋅=,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( ) A .123 B .183C .243D .543【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===23934ABC S AB ==V Q AB 6∴=,Q 点M 为三角形ABC 的中心2BM 233BE ∴== Rt OMB ∴V 中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB |2=,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =r (0,1,0),|a r|=1,直线b 的方向单位向量b =r (1,0,0),|b r|=1,设B 点在运动过程中的坐标中的坐标B ′(cosθ,sinθ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =u u u u r (cosθ,sinθ,﹣1),|'AB u u u u r|2=,设'AB u u u u r与a r所成夹角为α∈[0,2π], 则cosα()()101022'cos sin a AB θθ--⋅==⋅u u uu r r ,,,,|sinθ|∈[0,22], ∴α∈[4π,2π],∴③正确,④错误. 设'AB u u u u r 与b r 所成夹角为β∈[0,2π],cosβ()()'110022''AB b cos sin AB b b AB θθ⋅-⋅===⋅⋅u u u u r r u u u u r u u u u r r r ,,,,|cosθ|, 当'AB u u u u r与a r 夹角为60°时,即α3π=,|sinθ|22232cos cosπα===, ∵cos 2θ+sin 2θ=1,∴cosβ22=|cosθ|12=,∵β∈[0,2π],∴β3π=,此时'AB u u u u r 与b r 的夹角为60°,∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】415 【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =. ∴356FG SG x ==-,222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭V 451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 15485441512V =⨯⨯-=.例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时: 四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值. 【答案】(1)详见解析;(2)277. 【解析】(1)AOB ∆Q 为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.Q 二面角B AO C --是直二面角,即平面AOC ⊥平面AOB .又平面AOC I 平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂Q 平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠. 在Rt OCD ∆中,2COD π∠=,2OC OB ==,2224CD OD OC OD =+=+,22sin 4OC ODC CD OD ∴∠==+, 当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin33OD OB π==.因此,22227sin 774OC ODC CD OD ∠==≤=+,即直线CD 与平面AOB 所成角的正弦的最大值为277. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1. 因为在中,所以,即于是仓库的容积,从而. 令,得或(舍).当时,,V 是单调增函数; 当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知23AB =,26BC =,045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( ) A.()23,26 B.()6,23C.()3,6D.()0,23【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,023,26,45ABC AB BC ∠===,由余弦定理可得23AC =,所以221(23)(6)6BM =-=, 所以623BM <<由于BM x =,所以实数x 的取值范围是()6,23,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足2AC BC ==,2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大. 由2AC BC ==,2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h ,则11222323h ⨯⨯⨯⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A .)2,2ππ⎡⎣ B .,2ππ⎡⎤⎣⎦C .{}2πD .2,2ππ⎡⎫⎪⎢⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin222α⎡=∈⎣,∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈)2,2ππ⎡⎣故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B .24C .34D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥Q ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( ) A .3 B .22C .23D .33【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =,正方形对角线长为2a ,则其外接圆的半径22r a =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++4322272793441084a a a ≥⋅⋅=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2AB BC ==,2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】2AB BC ==Q ,2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( ) A .()323p - B .()423p -C .()323p +D .()423p +【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 2+3 (r 1+r 2)= 3. r 1+r 2=313+=332-, r 1+r 2⩾212r r ,球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π13+−2π()2313+=(6−33)π,当且仅当r 1=r 2时取等号 其面积最小值为(6−33)π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,2AD AB ==,5CD CB ==,且AD AB ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C .3D .33【答案】D 【解析】取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥Q 即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为2AD AB ==,5CD CB ==,且AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为π3tan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为42,侧棱长为25的正四棱锥S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O , 正方形ABCD 中,42,4AB AO ==, 在直角三角形SAO 中,2222(25)42SO SA OA =-=-=,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆外接圆的半径为222m n + 则三棱锥的高为22934m n +-+,三棱锥P ABC -的体积公式为222222111(93)(93)324344m n m n m n mn +++⨯-+≤⨯-+, 设224m n t +=,则1()(93)3f t t t =-+,1()93329t f t t t '⎛⎫=--+ ⎪-⎝⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则22BC b c =+, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,2222222221()44224b c b c R BC OO ⎛⎫++⎛⎫=+=+=+⎪ ⎪ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+= ⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________. 【答案】23 【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得303x <<; 由2()130'=-<f x x 得313x <<; 所以函数3()=-f x x x 在30,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,在3,13⎛⎫⎪ ⎪⎝⎭上单调递减; 所以max 333323()33279⎛⎫==-= ⎪ ⎪⎝⎭f x f ,因此三棱锥体积的最大值为239239-=⋅=A BCD V . 故答案为2313.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==,2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅V ;因为16632ABC S =⋅⋅=V ,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=+-=+-,所以()213333R R ⋅+-⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,23AD BD ==,13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足4223h =⨯,即3h =,此时112233232A BCD V -=⨯⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB⊥平面PAD,∴AB PD⊥,又PD AC⊥,∴PD⊥平面ABCD,则四棱锥P ABCD-可补形成一个长方体,球O的球心为PB的中点,设()03CD x x=<<,则3PD x=-.从而球O的表面积为()()222223431262x x xxπππ⎛⎫++-⎪⎡⎤=-+≥⎣⎦⎪⎝⎭.故答案为6π16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC将V ACD翻折成V ACD',直线AC与BD' 所成角的余弦的最大值是______.【答案】66【解析】试题分析:如图,连接BD′,设直线AC与'BD所成的角为θ.O是AC的中点.由已知得6AC=,以OB为x轴,OA为y轴,过O与平面ABC垂直的直线为z轴,建立空间直角坐标系,则60,,02A⎛⎫⎪⎪⎝⎭,30,0,02B⎛⎫⎪⎪⎝⎭,60,,02C⎛⎫-⎪⎪⎝⎭.作DH AC⊥于H,连接D′H 翻折过程中,'D H始终与AC垂直,则21666CDCHCA===,则63OH=,153066DH⨯==,因此30630'cos,,sin636Dαα⎛⎫--⎪⎪⎝⎭(设∠DHD′=α),则3030630'cos,,sin6236BDαα⎛⎫=---⎪⎪⎝⎭u u u u r,与CAu u u r平行的单位向量为()0,1,0n=,所以cos cos',BD nθ=u u u u r''BD nBD n⋅=u u u u ru u u u r=6395cosα+,所以cos1α=-时,cosθ取得最大值,为66.17.(2019·重庆一中高三开学考试(理))已知正方形ABCD的边长为22,将ABC∆沿对角线AC折起,使平面ABC⊥平面ACD,得到如图所示的三棱锥B-ACD.若O为AC的中点,点M,N分别为DC,BO上的动点(不包括端点),且BN CM=,则当三棱锥N-AMC的体积取得最大值时,点N到平面ACD的距离为______.【答案】1【解析】由题意知,BO AC⊥,而平面ABC⊥平面ACD,所以BO⊥平面ACD,易知BO=2,设BN x=,三棱锥N AMC-的高为NO,则2NO x=-,由三棱锥体积公式得21122=22(2)(1)3233N AMCV y x x x-=⨯⨯⨯-=--+,∴x=1时,y max=23.此时,211NO=-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D-中,点M是AD中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.【答案】2305【解析】 由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯= 所以1,MBPS ∆=设P 到BM 的距离为h ,则151,2MBP S h ∆=⨯⨯= 解得25,5h =所以P 在底面ABCD 内(不包括边界)与BM 平行且距离为255的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为45,5所以25,5CP = 此时()221min 252302.55C P ⎛⎫=+= ⎪ ⎪⎝⎭故答案为2305. 19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【答案】305【解析】取BC中点N,连结11,,B D B N DN,作CO DN⊥,连1C O,因为面1//B DN面面1A BM,所以动点P在底面ABCD内的轨迹为线段DN,当点P与点O重合时,1C P取得最小值,因为1115222552DN CO DC NC CO⋅=⋅⇒==,所以221min11130()155C P C O CO CC==+=+=.20.(2019·湖南高三期末(文))点P在正方体1111ABCD A B C D-的侧面11BCC B及其边界上运动,并保持1AP BD⊥,若正方体边长为2,则PB的取值范围是__________.【答案】2,2⎡⎤⎣⎦【解析】连结1AB,AC,1CB,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB , 当P 在1CB 中点时:最小为2 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2,2⎡⎤⎣⎦. 故答案为:2,2⎡⎤⎣⎦。
新人教版八年级下册数学各章专项训练试题第17章 勾股定理(含答案)
第17章勾股定理专项训练专训1.巧用勾股定理求最短路径的长名师点金:求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草.(第1题)2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C 坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A,C之间的距离.(参考数据21≈4.6)(2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40 km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间)(第2题)用平移法求平面中最短问题3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( )A.13 cm B.40 cm C.130 cm D.169 cm(第3题)(第4题)4.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是________.用对称法求平面中最短问题5.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.(第5题)6.高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B 两城镇到P的距离之和最小.求这个最短距离.(第6题)用展开法求立体图形中最短问题类型1 圆柱中的最短问题(第7题)7.如图,已知圆柱体底面圆的半径为2π,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).类型2 圆锥中的最短问题8.已知:如图,观察图形回答下面的问题:(1)此图形的名称为________.(2)请你与同伴一起做一个这样的物体,并把它沿AS剪开,铺在桌面上,则它的侧面展开图是一个________.(3)如果点C是SA的中点,在A处有一只蜗牛,在C处恰好有蜗牛想吃的食品,但它又不能直接沿AC爬到C处,只能沿此立体图形的表面爬行,你能在侧面展开图中画出蜗牛爬行的最短路线吗?2·1·c·n·j·y(4)SA的长为10,侧面展开图的圆心角为90°,请你求出蜗牛爬行的最短路程.(第8题)类型3 正方体中的最短问题9.如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.(第9题)类型4 长方体中的最短问题10.如图,长方体盒子的长、宽、高分别是12 cm,8 cm,30 cm,在AB的中点C处有一滴蜜糖,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.(第10题)专训2.巧用勾股定理解折叠问题名师点金:折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合,解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角;(2)在图形中找到一个直角三角形,然后设图形中某一线段的长为x ,将此直角三角形的三边长用数或含有x 的代数式表示出来;(3)利用勾股定理列方程求出x ;(4)进行相关计算解决问题.巧用全等法求折叠中线段的长1.(中考·泰安)如图①是一直角三角形纸片,∠A =30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C ′处,折痕为BD ,如图②,再将图②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,则折痕DE 的长为( )(第1题) A.83cm B .2 3 cm C .2 2 cm D .3 cm巧用对称法求折叠中图形的面积2.如图所示,将长方形ABCD 沿直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,求△BED 的面积.(第2题)巧用方程思想求折叠中线段的长3.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.(第3题)巧用折叠探究线段之间的数量关系4.如图,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC 于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.(第4题)专训3.利用勾股定理解题的7种常见题型名师点金:勾股定理建立起了“数”与“形”的完美结合,应用勾股定理可以解与直角三角形有关的计算问题,证明含有平方关系的几何问题,作长为n(n为正整数)的线段,解决实际应用问题及专训一、专训二中的最短问题、折叠问题等,在解决过程中往往利用勾股定理列方程(组),有时需要通过作辅助线来构造直角三角形,化斜为直来解决问题.利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC中,∠ABC=90°,点D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.(第1题)利用勾股定理作长为n的线段2.已知线段a,作长为13a的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC中,∠ABC=90°,CD⊥AD,AD2=2AB2-CD2.求证:AB=BC.(第3题)利用勾股定理证明线段之间的平方关系4.如图,∠C=90°,AM=CM,MP⊥AB于点P.求证:BP2=BC2+AP2.(第4题)利用勾股定理解非直角三角形问题5.如图,在△ABC 中,∠C =60°,AB =14,AC =10.求BC 的长.(第5题)利用勾股定理解实际生活中的应用6.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km/h ⎝ ⎛⎭⎪⎫即503 m/s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15 s ,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第6题)利用勾股定理探究动点问题7.如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm/s 的速度移动,设运动的时间为t 秒.(1)求BC 边的长;(2)当△ABP 为直角三角形时,借助图①求t 的值;(3)当△ABP 为等腰三角形时,借助图②求t 的值.(第7题)答案专训11.4(第2题)2.解:(1)如图,过点C 作AB 的垂线,交AB 的延长线于点E.∵∠ABC =120°,∴∠BCE =30°.在Rt △CBE 中,∵BC =20 km ,∴BE =10 km.由勾股定理可得CE =10 3 km.在Rt △ACE 中,∵AC2=AE2+CE2=(AB +BE)2+CE2=8 100+300=8 400, ∴AC =2021≈20×4.6=92(km).(2)选择乘“武黄城际列车”.理由如下:乘客车需时间t1=8060=113(h),乘“武黄城际列车”需时间t2≈92180+2040=1190(h). ∵113>1190,∴选择乘“武黄城际列车”.(第3题)3.C 点拨:将台阶面展开,连接AB ,如图,线段AB 即为壁虎所爬的最短路线.因为BC =30×3+10×3=120(cm),AC =50 cm ,在Rt △ABC 中,根据勾股定理,得AB2=AC2+BC2=16 900,所以AB =130 cm.所以壁虎至少爬行130 cm.5.解:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP.(第5题)易知BD ⊥AC ,且BO =OD ,∴BP =PD ,则BP +EP =ED ,此时最短.∵AE =3,AD =1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52,∴ED =BP +EP =5.6.解:如图,作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,则点P 即为所建的出口.此时A 、B 两城镇到出口P 的距离之和最小,最短距离为AC 的长.作AD ⊥BB ′于点D ,在Rt △ADC 中,AD =A ′B ′=8 km ,DC =6 km.∴AC =AD2+DC2=10 km ,∴这个最短距离为10 km.(第6题)7.2 2 点拨:将圆柱体的侧面沿AD 剪开并铺平得长方形AA ′D ′D ,连接AC ,如图.线段AC 就是小虫爬行的最短路线.根据题意得AB =2π×2π×12=2.在Rt △ABC 中,由勾股定理,得AC2=AB2+BC2=22+22=8,∴AC =8=2 2.(第7题)8.解:(1)圆锥 (2)扇形(3)把此立体图形的侧面展开,如图所示,AC 为蜗牛爬行的最短路线.(4)在Rt △ASC 中,由勾股定理,得AC2=102+52=125,∴AC =125=5 5.故蜗牛爬行的最短路程为5 5. (第8题)(第9题)9.解:(1)蚂蚁能够最快到达目的地的可能路径有如图的AC ′1和AC1.(2)如图,AC ′1=42+(4+4)2=4 5. AC1=(4+4)2+42=4 5.所以蚂蚁爬过的最短路径的长是45. 10.解:分为三种情况:(1)如图①,连接EC ,在Rt △EBC 中,EB =12+8=20(cm),BC =12×30=15(cm). 由勾股定理,得EC =202+152=25(cm).(2)如图②,连接EC.根据勾股定理同理可求CE =673 cm>25 cm. (3)如图③,连接EC.根据勾股定理同理可求CE =122+(30+8+15)2= 2 953(cm)>25 cm. 综上可知,小虫爬行的最短路程是25 cm.(第10题)专训21.A2.解:由题意易知AD ∥BC ,∴∠2=∠3.∵△BC ′D 与△BCD 关于直线BD 对称,∴∠1=∠2.∴∠1=∠3.∴EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB2+AE2=BE2,∴42+(8-x)2=x2.∴x =5.∴DE =5.∴S △BED =12DE ·AB =12×5×4=10. 解题策略:解决此题的关键是证得ED =EB ,然后在Rt △ABE 中,由BE2=AB2+AE2,利用勾股定理列出方程即可求解.2-1-c-n-j-y3.(1)证明:在正方形ABCD 中,AD =AB ,∠D =∠B =90°.∵将△ADE 沿AE 对折至△AFE ,∴AD =AF ,DE =EF ,∠D =∠AFE =90°.∴AB =AF ,∠B =∠AFG =90°.又∵AG =AG ,∴Rt △ABG ≌Rt △AFG(HL).(2)解:∵△ABG ≌△AFG ,∴BG =FG.设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CE =DE =EF =3,∴EG =3+x.∴在Rt △CEG 中,32+(6-x)2=(3+x)2,解得x =2.∴BG =2.4.(1)证明:由题意知,AF =CF ,AE =CE ,∠AFE =∠CFE ,又四边形ABCD 是长方形,故AD ∥BC ,∴∠AEF =∠CFE.∴∠AFE =∠AEF.∴AE =AF =EC =CF.(2)解:由题意知,AE =EC =a ,ED =b ,DC =c ,由∠D =90°知,ED2+DC2=CE2,即b2+c2=a2.专训3(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC 中,点D 为AC 边的中点,∴BD ⊥AC ,BD 平分∠ABC(等腰三角形三线合一),∴∠ABD =∠CBD =45°,又易知∠C =45°, ∴∠ABD =∠CBD =∠C.∴BD =CD.∵DE ⊥DF ,BD ⊥AC ,∴∠FDC +∠BDF =∠EDB +∠BDF.∴∠FDC =∠EDB.在△EDB 与△FDC 中,⎩⎪⎨⎪⎧∠EBD =∠C ,BD =CD ,∠EDB =∠FDC ,∴△EDB ≌△FDC(ASA),∴BE =FC =3.∴AB =7,则BC =7.∴BF =4.在Rt △EBF 中,EF2=BE2+BF2=32+42=25,∴EF =5.2.2a ;3a3.证明:∵CD ⊥AD ,∴∠ADC =90°,即△ADC 是直角三角形.由勾股定理,得AD2+CD2=AC2.又∵AD2=2AB2-CD2,∴AD2+CD2=2AB2.∴AC2=2AB2.∵∠ABC=90°,∴△ABC是直角三角形.由勾股定理,得AB2+BC2=AC2,∴AB2+BC2=2AB2,故BC2=AB2,即AB=BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.(第4题)4.证明:如图,连接BM.∵PM⊥AB,∴△BMP和△AMP均为直角三角形.∴BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.∴BP2+PM2=BC2+CM2.又∵CM=AM,∴CM2=AM2=AP2+PM2.∴BP2+PM2=BC2+AP2+PM2.∴BP2=BC2+AP2.(第5题)5.思路导引:过点A 作AD ⊥BC 于D ,图中出现两个直角三角形——Rt △ACD 和Rt △ABD ,这两个直角三角形有一条公共边AD ,借助这条公共边可建立起两个直角三角形之间的联系.解:如图,过点A 作AD ⊥BC 于点D.∴∠ADC =90°.又∵∠C =60°,∴∠CAD =90°-∠C =30°,∴CD =12AC =5. ∴在Rt △ACD 中,AD =AC2-CD2=102-52=5 3. ∴在Rt △ABD 中,BD =AB2-AD2=11.∴BC =BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.【来源:6.思路导引:(1)要求点B 和点C 的坐标,只要分别求出OB 和OC 的长即可.(2)由(1)可知BC 的长度,进而利用速度公式求得汽车在这段限速路上的速度,并与503比较即可. 解:(1)在Rt △AOB 中,∵∠BAO =60°,∴∠ABO =30°,∴OA =12AB. ∵OA =100 m ,∴AB =200 m.由勾股定理,得OB =AB2-OA2=2002-1002=1003(m).在Rt △AOC 中,∵∠CAO =45°,∴∠OCA =∠OAC =45°.∴OC =OA =100 m .∴B(-1003,0),C(100,0). (2)∵BC =BO +CO =(1003+100)m ,1003+10015≈18>503, ∴这辆汽车超速了.7.解:(1)在Rt △ABC 中,BC2=AB2-AC2=52-32=16,∴BC =4 cm.(2)由题意知BP =t cm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,即t =4;②如图②,当∠BAP 为直角时,BP =t cm ,CP =(t -4)cm ,AC =3 cm ,在Rt △ACP 中,AP2=32+(t -4)2,在Rt △BAP 中,AB2+AP2=BP2,即52+[32+(t -4)2]=t2,解得t =254. 故当△ABP 为直角三角形时,t =4或t =254.(第7题(2))(3)①如图①,当BP =AB 时,t =5;②如图②,当AB =AP 时,BP =2BC =8 cm ,t =8;(第7题(3))③如图③,当BP =AP 时,AP =BP =t cm ,CP =|t -4|cm ,AC =3 cm ,在Rt △ACP 中,AP2=AC2+CP2,所以t2=32+(t -4)2,解得t =258. 综上所述:当△ABP 为等腰三角形时,t =5或t =8或t =258.第17章 勾股定理 专项训练专训1.证垂直在解题中的应用名师点金:证垂直的方法:(1)在同一平面内,垂直于两条平行线中的一条直线;(2)等腰三角形中“三线合一”;(3)勾股定理的逆定理:在几何中,我们常常通过证垂直,再利用垂直的性质来解各相关问题.利用三边的数量关系说明直角1.如图,在△ABC 中,点D 为BC 边上一点,且AB =10,BD =6,AD =8,AC =17,求CD 的长.(第1题)利用转化为三角形法构造直角三角形2.如图,在四边形ABCD中,∠B=90°,AB=2,BC=5,CD=5,AD=4,求S四边形ABCD.(第2题)利用倍长中线法构造直角三角形3.如图,在△ABC中,D为边BC的中点,AB=5,AD=6,AC=13,求证:AB⊥AD.(第3题)利用化分散为集中法构造直角三角形4.在△ABC中,CA=CB,∠ACB=α,点P为△ABC内一点,将CP绕点C顺时针旋转α得到CD,连接AD.(1)如图①,当α=60°,PA=10,PB=6,PC=8时,求∠BPC的度数;(2)如图②,当α=90°时,PA=3,PB=1,PC=2时,求∠BPC的度数.(第4题)利用“三线合一”法构造直角三角形5.如图①,在△ABC中,CA=CB,∠ACB=90°,D为AB的中点,M,N分别为AC,BC 上的点,且DM⊥DN.(1)求证:CM+CN=2BD;(2)如图②,若M,N分别在AC,CB的延长线上,探究CM,CN,BD之间的数量关系.(第5题)专训2.全章热门考点整合应用名师点金:本章主要学习了勾股定理、勾股定理的逆定理及其应用,勾股定理揭示了直角三角形三边长之间的数量关系.它把直角三角形的“形”的特点转化为三边长的“数”的关系,是数形结合的典范,是直角三角形的重要性质之一,也是今后学习直角三角形的依据之一.本章的考点可概括为:两个概念,两个定理,两个应用.两个概念a.互逆命题1.有下列命题:①直角都相等;②内错角相等,两直线平行;③如果a+b>0,那么a>0,b>0;④相等的角都是直角;⑤如果a>0,b>0,那么ab>0;⑥两直线平行,内错角相等.(1)③和⑤是互逆命题吗?(2)你能说出③和⑤的逆命题各是什么吗?(3)请指出哪几个命题是互逆命题.b.互逆定理2.下列四个定理中,存在逆定理的有( )个.(1)有两个角相等的三角形是等腰三角形;(2)全等三角形的对应角相等;(3)同位角相等,两直线平行.A.0 B.1 C.2 D.33.写出下列各命题的逆命题,并判断是不是互逆定理.(1)全等三角形的对应边相等;(2)同角的补角相等.两个定理a.勾股定理4.如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD.若AB=8,BD=5,求CD的长.(第4题)b.勾股定理的逆定理5.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形.(2)小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是锐角三角形、直角三角形、钝角三角形?2-1-c-n-j-y两个应用a.勾股定理的应用6.如图,在公路l旁有一块山地正在开发,现需要在C处爆破.已知C与公路上的停靠站A的距离为300 m,与公路上的另一停靠站B的距离为400 m,且CA⊥CB.为了安全起见,爆破点C周围半径250 m范围内(包括250 m)不得有人进入.问:在进行爆破时,公路AB 段是否有危险?需要暂时封锁吗?(第6题)b.勾股定理逆定理的应用7.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距5 n mile的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行40 n mile,乙巡逻艇每小时航行30 n mile,航向为北偏西37°,问:甲巡逻艇的航向?(第7题)答案专训11.解:∵AD2+BD2=100=AB2,∴△ABD为直角三角形,且∠ADB=90°.在Rt△ACD中,CD2+AD2=AC2,∴CD =AC2-AD2=172-82=15.2.解:连接AC.在Rt △ACB 中,AB2+BC2=AC2,∴AC =3,∴AC2+AD2=CD2.∴△ACD 为直角三角形,且∠CAD =90°,∴S 四边形ABCD =12×2×5+12×3×4=6+ 5.(第3题)3.证明:如图,延长AD 至点E ,使DE =AD ,连接CE ,BE.∵D 为BC 的中点,∴CD =BD.又∵AD =DE ,∠ADC =∠BDE ,∴△ADC ≌△EDB ,∴BE =AC =13.在△ABE 中,AE =2AD =12,∴AE2+AB2=122+52=169.又∵BE2=132=169,∴AE2+AB2=BE2,∴△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AD.点拨:本题运用倍长中线法构造全等三角形证明线段相等,再利用勾股定理的逆定理证明三角形为直角三角形,从而说明两条线段垂直.4.解:(1)如图①,连接DP ,易知△DCP 为等边三角形,易证得△CPB ≌△CDA ,∴∠BPC =∠ADC,∠CDP=60°,AD=6,DP=8,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=150°,∴∠BPC=150°.(第4题)(2)如图②,连接DP,易得△DCP为等腰直角三角形,易证得△CPB≌△CDA,∴∠BPC=∠ADC,∠CDP=45°,AD=1,DP=2CD=22,∴AD2+DP2=AP2,∴∠ADP=90°,∴∠ADC=135°,∴∠BPC=135°.5.(1)证明:如图①,连接CD,∵DM⊥DN,∴∠MDC+∠CDN=90°.∵∠ACB=90°,AC=CB,D为AB的中点,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CDN+∠NDB=90°.∴∠MDC=∠NDB.∵CD⊥AB,∠BCD=45°,∴CD=BD.在△CMD和△BND中,∵∠MDC=∠NDB,∠MCD=∠NBD,CD=BD,∴△CMD≌△BND,∴CM=BN.∴CM+CN =BN+CN=BC.在Rt△CBD中,∠B=45°,∠CDB=90°,∴BC=2BD.∴CM+CN=2BD.(2)解:CN-CM=2BD,如图②,连接CD,证法同(1).(第5题)专训二1.解:(1)由于③的题设是a+b>0,而⑤的结论是ab>0,故⑤不是由③交换命题的题设和结论得到的,所以③和⑤不是互逆命题.(2)能.③的逆命题是如果a>0,b>0,那么a+b>0.⑤的逆命题是如果ab>0,那么a>0,b>0.(3)①与④,②与⑥分别是互逆命题.2.C3.解:(1)逆命题:三条边对应相等的两个三角形全等.原命题与其逆命题都是真命题且都是定理,所以它们是互逆定理.2·1·c·n·j·y(2)逆命题:如果两个角相等,那么这两个角是同一个角的补角.原命题是真命题,但其逆命题是假命题,所以它们不是互逆定理.4.解:设CD=x,在Rt△ABC中,有AC2+(CD+BD)2=AB2,整理,得AC2=AB2-(CD+BD)2=64-(x+5)2.①在Rt△ADC中,有AC2+CD2=AD2,整理,得AC2=AD2-CD2=25-x2.②由①②两式,得64-(x+5)2=25-x2,解得x=1.4,即CD的长是1.4.点拨:勾股定理反映了直角三角形三边长之间的数量关系,利用勾股定理列方程思路清晰、直观易懂.5.解:(1)锐角;钝角(2)a2+b2=22+42=20,∵c为最长边,2+4=6,∴4≤c<6.①由a2+b2>c2,得c2<20,0<c<25,∴当4≤c<25时,这个三角形是锐角三角形;②由a2+b2=c2,得c2=20,c=25,∴当c=25时,这个三角形是直角三角形;③由a2+b2<c2,得c2>20,c>25,∴当25<c<6时,这个三角形是钝角三角形.6.思路导引:要判断公路AB 段是否需要暂时封锁,只需要判断点C 到公路l 的距离是否大于250 m .若大于250 m ,则不需要暂时封锁;若小于或等于250 m ,则需要暂时封锁. 解:如图,过点C 作CD ⊥AB 于点D.在Rt △ABC 中,因为BC2+AC2=AB2,BC =400 m ,AC =300 m ,(第6题)所以AB2=4002+3002=5002,所以AB =500 m.因为SRt △ABC =12AB ·CD =12BC ·AC , 所以500×CD =400×300,所以CD =240 m.因为240<250,所以公路AB 段有危险,需要暂时封锁.7.解:AC =40×0.1=4(n mile),BC =30×0.1=3(n mile).因为AB =5 n mile ,所以AB2=BC2+AC2,所以∠ACB =90°.因为∠CBA =90°-37°=53°,所以∠CAB =37°,所以甲巡逻艇的航向为北偏东53°.。
初二数学图形与证明试题
初二数学图形与证明试题1.如图,在菱形ABCD中,已知菱形ABCD的周长是40,AC=12,则菱形ABCD的面积为.【答案】96.【解析】连接BD,设与AC交点为O,∵菱形四边相等,对角线垂直平分,∴AO=6,AB=10,∴BO=8,∴BD=16,菱形ABCD的面积=16×12÷2=96.【考点】菱形性质与计算.2.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是()A.16B.14C.20D.24【答案】C【解析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CE=4的长度,再求出ABCD的周长=2×(AB+AD)=20.故选C【考点】平行线的性质,等腰三角形的性质,平行四边形的性质3.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E, A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④BE=BF.其中正确的有()A.②③④B.①③④C.①②④D.①②③【答案】C.【解析】在△ABC中,AB=BC可得∠A=∠C,由旋转的性质可得∠C=∠C1,∠A=∠A1,BC=BC1,∠ABA1=∠CBC1=α,在△CDF和△FBC1中,∠C=∠C1,∠CFD=∠BFC1,根据三角形的内角和定理可得∠CDF==∠CBC1=α;再由AB=BC1,∠ABA1=∠CBC1,∠A=∠C1,根据ASA可判定△ABE≌△C1BF,所以BE=BF,又因A1B=BC,所以A1E=CF,故正确的结论有①②④三个,所以答案选C.【考点】等腰三角形的性质;旋转的性质;全等三角形的判定及性质.4.(3分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE= .【答案】4【解析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后由AB=6,BC=8,根据=AB•DE+BC•DF=×6DE+×8DE=28,解得DE=4.三角形的面积公式列式可知S△ABC【考点】角平分线的性质5.(2分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A. B. C. D.【答案】D.【解析】由等腰三角形的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.已知△ABC和△DCE都是边长为4的等边三角形,根据等边三角形的性质可得∠DCE=∠CDE=60°,BC=CD=4.再由三角形的外角的性质可得∠BDC=∠CBD=∠DCE=30°,即可得∠BDE=90°.在Rt△BDE中,由勾股定理可得BD=.故答案选D.【考点】勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.6.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.【答案】详见解析.【解析】根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.【考点】平行四边形的判定.7.(3分)下列三条线段不能构成直角三角形的是()A.1、、2B.C.5、12、13D.9、40、41【答案】B.【解析】A、因为12+()2=22,故是直角三角形,不符合题意;B、因为()2+()2≠()2,故不是直角三角形,符合题意;C、因为52+122=132,故是直角三角形,不符合题意;D、因为92+402=412,故是直角三角形,不符合题意;故选B.【考点】勾股定理的逆定理.8.如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,△DBC的周长是24cm,则BC= _________cm.【答案】10.【解析】∵C△DBC =24cm,∴BD+DC+BC=24cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24cm,即AC+BC=24cm,又∵AC=14cm,∴BC=24﹣14=10cm.故答案为:10.【考点】线段垂直平分线的性质.9.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.1,,B.,,C.6,8,10D.5,12,13【答案】B.【解析】A.,能组成直角三角形,故本选项不合题意;B.,不能构成直角三角形,故本选项符合题意;C.,能组成直角三角形,故本选项不合题意;D.,能组成直角三角形,故本选项不合题意.故选B.【考点】勾股定理的逆定理.10.(本题7分)△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B 的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.【答案】(1)答案见试题解析;(2)当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【解析】(1)首先了解伴侣分割线的定义,然后把角ABC分成90°角和20°角即可;(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别进行分析.试题解析:(1)如图所示:(2)设BD为△ABC的伴侣分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=x.当∠A=90°时,△ABC存在伴侣分割线,此时y=90°﹣x,当∠ABD=90°时,△ABC存在伴侣分割线,此时y=90°+x,当∠ADB=90°时,△ABC存在伴侣分割线,此时x=45°且y>x;第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时180°﹣x﹣y=y﹣90°,∴y=135°﹣,当∠BDC=90°时,若BD=AD,则△ABC存在伴侣分割线,此时∠A=45°,∴y=135°﹣x.综上所述,当y=90°﹣x或y=90°+x或x=45°且y>x或y=135°﹣或y=135°﹣x时△ABC存在伴侣分割线.【考点】1.作图—应用与设计作图;2.分类讨论.11.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【答案】D【解析】因为△ADB≌△ADC,所以AB=AC,所以△ABC是等腰三角形,所以选:D.【考点】全等三角形的性质、等腰三角形的判定.12.如图,已知 MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM="CN"C.AB=CD D.AM∥CN【答案】B【解析】因为在△ABM和△CDN中,MB=ND,∠MBA=∠NDC,所以当添加条件∠M=∠N后,可利用ASA判定△ABM≌△CDN;当添加条件AM=CN后,因为∠MBA和∠NDC不是边MA与MB,NC与ND的夹角,所以不能判定△ABM≌△CDN;当添加条件AB=CD后,可利用SAS判定△ABM≌△CDN;当添加条件AM∥CN后,∠A=∠NCD,所以可利用AAS判定△ABM≌△CDN;所以选项A、C、D正确,B错误,故选:B.【考点】全等三角形的判定.13.已知:如图,直线l是线段AB的垂直平分线,C、D是l上任意两点(除AB的中点外).求证:∠CAD=∠CBD.【答案】证明见解析.【解析】利用线段垂直平分线的性质可知CA=CB,DA=DB,加上CD=CD,可证明△ACD≌△BCD,可得到∠CAD=∠CBD.试题解析:∵MN是线段AB的垂直平分线,且C、D在MN上,∴CA=CB,DA=DB,在△ACD和△BCD中,,∴△ACD≌△BCD(SSS),∴∠CAD=∠CBD.【考点】线段垂直平分线的性质.14.已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.【答案】参见解析.【解析】先由平行线的性质得出∠BCD=∠B,再根据已知条件利用SAS证明△ABC≌△EDC,最后根据全等三角形的对应边相等,得出结论.试题解析:∵AB∥CD,∴∠BCD=∠B(两直线平行,内错角相等),又因为BC=CD,AB=EC,所以△ABC≌△EDC(SAS),所以AC=ED(全等三角形的对应边相等).【考点】1.平行线的性质;2.三角形全等的判定.15.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为.【答案】【解析】根据等边三角形的性质可得:∠EBP=∠QBF=30°,根据BF=2可得:BQ=,根据点Q为中点可得:BP=2BQ=2,则PE=.【考点】直角三角形的性质16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有().A.7条B.8条C.9条D.10条【答案】C.【解析】∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选C.【考点】1.多边形内角与外角;2.多边形的对角线.17.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.【答案】135°.【解析】观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.【考点】全等三角形的判定与性质.18.如图所示,两个正方形的边长分别为和,如果,,那么阴影部分的面积是____________.【答案】20.【解析】试题解析:根据题意可得,阴影部分面积为两个正方形面积和减去空白面积,即(a2+b2)--=(a2+b2-ab)=(a2+b2+2ab-3ab)= [(a+b)2-3ab];代入a+b=10,ab=20可得阴影面积为(10×10-20×3)÷2=20【考点】代数式求值.19.如图,在Rt△ABC中,∠A=90°,点D为斜边BC上一点,且BD=BA,过点D作BC的垂线交AC于点E.求证:点E在∠ABC的角平分线上.【答案】证明见解析.【解析】此题主要考查了直角三角形的判定、性质和角平分线的性质解题,做题时,要根据情况作辅助线是必须的,也是解决本题的关键.可通过证明Rt△ABE≌Rt△DBE从而得到结论.试题解析:证明:连接BE,∵ED⊥BC,∴∠BDE=∠A=90°.在Rt△ABE和Rt△DBE中∵,∴Rt△ABE≌Rt△DBE(HL).∴∠ABE=∠DBE.∴点E在∠ABC的角平分线上.【考点】直角三角形全等的判定.20.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20【答案】C.【解析】分两种情况:①若4是腰,则另一腰也是4,底是8,但是4+4=8,故不构成三角形,舍去.②若4是底,则腰是8,8.4+8>8,符合条件.成立.所以三角形的周长为:4+8+8=20.故答案选C.【考点】1.等腰三角形的性质;2.三角形的三边关系.21.把命题“等边对等角”改写成“如果……,那么…….”的形式:如果,那么.【答案】如果三角形的两边相等,那么这两条边所对的角相等.【解析】试题解析:“等边对等角”改写为“如果三角形的两边相等,那么这两条边所对的角相等”.【考点】命题与定理.22.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17B.16或15C.15D.16或15或17【答案】D.【解析】试题解析:多边形的内角和可以表示成(n-2)•180°(n≥3且n是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据(n-2)•180°=2520°解得:n=16,则多边形的边数是15,16,17.故选D.【考点】多边形内角与外角.23.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2= 度时,a∥b.【答案】50.【解析】试题解析:当∠2=50°时,a∥b;理由如下:如图所示:∵∠1=40°,∴∠3=180°﹣90°﹣40°=50°,当∠2=50°时,∠2=∠3,∴a∥b;【考点】平行线的判定.24.四边形的各顶点坐标(x,y)变成(x+1,3y),四边形的面积会变为原来的倍.【答案】3.【解析】试题解析:∵四边形的各顶点坐标(x,y)变成(x+1,3y),∴四边形先向右平移1个单位,再沿y轴方向伸长3倍,∴四边形的面积会变为原来的3倍.【考点】坐标与图形性质.25.(2015秋•句容市月考)如图:在△ABC中,AB=AC=,BC=4,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.【答案】1.【解析】首先根据等腰三角形的性质可得AD⊥BC,再利用勾股定理计算出AD长,然后再证明AD=DF可得答案.解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∵BC=4,∴BD=2,∵AB=AC=,∴AD===1,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB,∵DF∥AB,∴∠BAF=∠F,∴∠DAE=∠F,∴AD=DF=1,故答案为:1.【考点】等腰三角形的判定与性质;勾股定理.26.下列长度的三条线段,能组成三角形的是()A.4,12,6B.3,8,4C.13,20,8D.9,17,8【答案】C.【解析】试题解析:A、4+6<12,不能组成三角形;B、3+4<8,不能组成三角形;C、13+8>20,能够组成三角形;D、8+9=17,不能组成三角形.故选C.【考点】三角形三边关系.27.如图,将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A的度数等于【答案】50°.【解析】根据翻折不变性和三角形的内角和定理及角平分线的性质解答.∵∠1+∠2=100°,∴∠ADF+∠AEF=360°-100°=260°,∴∠ADE+∠AED=130°,∴∠A=180°-130°=50°.【考点】1.三角形内角和定理;2.翻折变换(折叠问题).28.如图,点D在△ABC的AB边上,且∠ACD=∠A.作∠BDC的平分线DE,交BC于点F(用尺规作图法,保留作图痕迹,不要求写作法);(1)作∠BDC的平分线DE,交BC于点E(2)在(1)的条件下,判断直线DE与直线AC的位置关系并说明理由。
专题17 矩形的判定与性质(含答案)
专题17矩形的判定与性质知识解读矩形是特殊的平行四边形,理解矩形的定义,我们可从矩形的共性和特性两个方面来理解.共性:矩形是一个特殊的平行四边形,它具有平行四边形的一切性质,如对边平行且相等,对角相等,邻角互补,对角线互相平分等.特性:矩形的四个内角都等于90°,矩形的对角线相等.矩形的对称性矩形作为一个特殊的平行四边形,它应该是一个中心对称图形,同时由于对角线将矩形分成四个等腰三角形,相对的两个等腰三角形全等,所以矩形又是轴对称图形,它有两条对称轴.判定一个四边形为矩形,可从两个角度进行证明:一是证明它有三个角为直角;另一个是先证明它为平行四边形,再证它有一个角为直角或两条对角线相等.培优学案典例示范一、利用矩形对角线分得的四个等腰三角形进行角度的计算例1如图4-17-1,在矩形ABCD中,AE⊥BD,∠DAE:∠BAE=3:1,求∠BAE,∠EAO的度数.【提示】利用“∠DAE:∠BAE=3:1”“∠BAD=90°”,可求得∠BAE,然后借助△A0B是等腰三角形,求得∠AOB的度数,进而利用∠AEO=90°,求出∠EA0的度数.O E DAB C如图4-17-1 【解答】【技巧点评】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决.跟踪训练1.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为()A.3:2B.2:1C.1.5:1D.1:1二、利用矩形对边平行且相等,邻边垂直解决问题例2如图4-17-2,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED. 求证:AE平分∠BAD.E CBFA D如图4-17-2 【提示】由于∠BAD=90°,要证明AE平分∠BAD,只需设法求得∠BAE=45,可先证明BEF≌CDE,然后证明△ABE是等腰直角三角,即可证得∠BAE=45°.【解答】【技巧点评】本题证明△BEF ≌△CDE的三个条件,除了EF=ED已知之外,其他都是通过矩形的性质得到的,证明△ABE是等腰直角三角形,也用到矩形的对边相等来证明.跟踪训练2.如图4-17-3,在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.【解答】三、平移矩形的一条对角线,得到等腰三角形例3如图4-17-4,四边形ABCD是矩形,过A点作AE∥BD,交CB的延长线于E点。
图像与证明
专题复习训练卷三专题复习训练卷三图形与证明时间:60分钟㊀㊀满分:100分题㊀序一二三总㊀分结分人核分人得㊀分一㊁选择题(每题4分,共32分)1.下列说法中,错误的是(㊀㊀).A.同角的补角相等B .同位角相等C .垂直于同一条直线的两直线平行D.两条直线相交有且只有一个交点2.如图,点B 是әA D C 的边A D 延长线上的一点,D E ʊA C ,若øC =50ʎ,øB D E =60ʎ,则øC D B 的度数等于(㊀㊀).A.70ʎB .100ʎC .110ʎD.120ʎ(第2题)㊀㊀(第3题)㊀㊀(第4题)3.如图,l 1ʊl 2,ø1=120ʎ,ø2=100ʎ,则ø3等于(㊀㊀).A.20ʎB .40ʎC .50ʎD.60ʎ4.如图,一根直尺E F 压在三角板30ʎ的øB A C 上,与两边A C ㊁A B 交于点M ㊁N ,那么øC M E +øB N F 等于(㊀㊀).A.150ʎB .180ʎC .135ʎD.不能确定5.下列描述不属于定义的是(㊀㊀).A.两组对边分别平行的四边形叫做平行四边形B .等边三角形是特殊的等腰三角形C .在同一平面内三条线段首尾顺次连接得到的图形叫做三角形D.含有未知数的等式叫做方程6.下列命题是假命题的是(㊀㊀).A.三角形三条角平分线都在三角形内部B .三角形三条高都在三角形内部C .三角形三条中线都在三角形内部D.三角形三条高至少有一条在三角形内部七年级数学(下)7.已知四个命题:①如果一个数的相反数等于它本身,则这个数是0;②一个数的倒数等于它本身,则这个数是1;③一个数的平方等于它本身,则这个数是1或0;④如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有(㊀㊀).A.1个B .2个C .3个D.4个8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A ㊁B ㊁C 三人之外;(2)C 作案时总得有A 作从犯;(3)B不会开车.在此案中能肯定的作案对象是(㊀㊀).A.嫌疑犯AB .嫌疑犯BC .嫌疑犯CD.嫌疑犯A 和C二㊁填空题(每题2分,共20分)9.如图,A D ʊB C ,B D 平分øA B C ,且øA =110ʎ,则øD =㊀㊀㊀㊀.(第9题)㊀㊀(第10题)㊀㊀(第11题)10.如图,A B ʊC D ,A C ʅB C ,øB A C =65ʎ,则øB C D =㊀㊀㊀㊀.11.如图,A B ʊC D ,C E 平分øA C D ,若ø1=25ʎ,那么ø2的度数是㊀㊀㊀㊀.12.命题等腰三角形两腰上的中线相等 的题设为㊀㊀㊀㊀,结论为㊀㊀㊀㊀.13.命题如果一个数能被3整除,那么这个数也能被4整除 是㊀㊀㊀㊀命题(填 真 或 假 ),如果是假命题,举一个反例为:㊀㊀㊀㊀㊀㊀㊀㊀.14.在命题在同一个平面内,两条直线不平行,它们一定相交 中,条件是㊀㊀㊀㊀㊀㊀㊀,结论是㊀㊀㊀㊀㊀㊀㊀㊀.将它改为 如果 那么 ㊀㊀㊀㊀㊀㊀㊀㊀.15.命题 如果a b <0,那么a +b <0 是假命题.反例:㊀㊀㊀㊀㊀㊀㊀㊀.16.下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有:㊀㊀㊀㊀.(请填上所有符合题意的序号)17.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ʊb ,a ʅc ,那么b ʅc ;㊀㊀②如果b ʊa ,c ʊa ,那么b ʊc ;③如果b ʅa ,c ʅa ,那么b ʅc ;㊀㊀④如果b ʅa ,c ʅa ,那么b ʊc .其中真命题的是㊀㊀㊀㊀㊀.(填写所有真命题的序号)18.将一个正方体的各个面上分别标上字母a ,b ,c ,d ,e ,f .有甲㊁乙㊁丙三个同学站在不同的角度观察,结果如图所示,则a 的对面为㊀㊀㊀㊀,b 的对面为㊀㊀㊀㊀,c 的对面为㊀㊀㊀㊀.(第18题)专题复习训练卷三三㊁解答题(第19,20题每题9分,其余每题10分,共48分)19.观察下面的变形规律:11ˑ2=1-12;12ˑ3=12-13;13ˑ4=13-14;解答下面的问题:(1)若n 为正整数,请你猜想:1n (n +1)=㊀㊀㊀㊀;(2)证明你猜想的结论;(3)求和:11ˑ2+12ˑ3+13ˑ4+ +12012ˑ2013.20.如图,直线a ʊb ,试用两种不同的方法证明:øA C B =ø1+ø2.(第20题)21.(1)填写下列命题的证明过程:已知:点D ㊁E ㊁F 分别在A B ㊁A C ㊁B C 上,D E ʊB C ,E F ʊA B .求证:ø1=ø2.证明:D E ʊB C ⇒ø1=ø㊀㊀㊀㊀E F ʊA B ⇒ø2=ø㊀㊀㊀㊀}⇒ø1=ø2.(2)你还有不同的方法证明ø1=ø2吗?写出你的证明过程.(第21题)七年级数学(下)22.如图,现有3句话:①a ʅc ,②b ʅc ,③a ʊb .请以其中2句话为条件,第三句话为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请加以证明.(第22题)23.如图,已知A B ʊC D ,分别探索下列四个图形中øP 与øA ㊁øC 的关系,请你从所得的四个关系中任选一个加以证明.(1)㊀㊀(2)㊀㊀(3)㊀㊀(4)(第23题)专题复习训练卷三1.B ㊀2.C ㊀3.B ㊀4.A㊀5.B ㊀6.B ㊀7.B ㊀8.A9.35ʎ㊀10.25ʎ㊀11.50ʎ12.等腰三角形㊀两腰上的中线相等13.假㊀6(答案不唯一)14.在同一个平面内,两条直线不平行㊀它们一定相交㊀在同一个平面内,如果两条直线不平行,那么它们一定相交.15.设a =4,b =-3,a b =4ˑ(-3)=-12<0,而a +b =4+(-3)=1>0.16.②㊀③㊀17.①②④㊀18.e ㊀d ㊀f 19.(1)1n -1n +1(2)1n -1n +1=n +1n (n +1)-n n (n +1)=n +1-nn (n +1)=1n (n +1).(3)原式=1-12+12-13+13-14+ +12012-12013=1-12013=20122013.20.提示:过点C 作C D ʊa ,利用平行线的性质解决问题;或连接A B ,借助三角形的内角和定理解决问题.21.略22.(1)由①②,推出③;由①③,推出②;由②③,推出①;(2)略23.(1)øP =360ʎ-øA -øC ,(2)øP =øA +øC ,(3)øP=øC -øA ,(4)øP =øA -øC .证明略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形与证明专题训练
一、填空题:(每题 3 分,共 36 分)
1、命题“互余的两个角一定是锐角”是____命题(填“真”或“假”
)。
2、命题:“相等的角是对顶角”的题设是________,结论是________。
3、“等腰三角形的底角相等”的逆命题是____________________。
4、用反证法证明:“直角三角形的两个锐角互余”时,应先假设__________。
5、在△ABC 中,a =3,b =4,c =5,则∠C =____。
6、等腰三角形的两边长分别是 3cm 和 7cm ,则其周长为____。
7、如图,已知AD ∥BC ,∠1=∠2,且∠1=50°,则∠B =____。
8、在□ ABCD 中,∠A +∠C =200°,则∠B =____。
9、矩形的面积为
48cm 2
,其中一边长为 6cm ,则对角线长为____。
10、梯形中位线长 10,一对角线把它分成
2∶3,则梯形较长的底边为
____。
11、如图,已知
AB ∥CD ,则∠α=____。
12、如图,已知∠1=∠2,若再加一个条件就能使结论“
AB ·DE =
FE ·BC ”成立,则这个条件可以是________。
二、选择题:(每题 4 分,共 24 分)1、若∠1 和∠2 是同旁内角,是
∠1=30°,则∠2 为()
A 、30°
B 、150°
C 、30°或 150°
D 、无法确定
2、下列命题中,是其命题的有(
)
A 、两锐角之和是锐角
B 、钝角减去锐角得锐角
C 、钝角大于它的补角
D 、锐角小于它的余角
3、下列判断正确的是(
)
A 、对角线相等的四边形是矩形
B 、四边都相等的四边形是正方形
C 、对角线互相垂直的四边形是菱形
D 、对角线互相平分的四边形是平行四边形
4、直角三角形中,两条直角边长分别是
5 和 12,则斜边上的中线长是(
)
A 、26
B 、6.5
C 、8.5
D 、13 5、一个菱形的两条对角线长分别是
6cm 、8cm ,则它的面积是(
)A 、48cm
2
B 、38cm
2
C 、24cm
2
D 、12cm
2
6、等腰梯形的两条对角线互相垂直,中位线长为
8cm ,则它的高为()
A 、4cm
B 、82cm
C 、42cm
D 、8cm
三、解答题:(每题 9 分,共 54 分)
1、已知:AB ∥CD ,∠A =∠1,∠C =100°,求:∠2的度数。
((
A
F
2 1 B
C D
E
((
(
25°120°
αA B E
C
D
A D B
C
1
2 )
)A
B
C
D E F 1 2 )
)
2、如图,已知:EF 平分∠BEG ,GF 平分∠EGD ,且EF ⊥FG ,求证:AB ∥CD 。
3、已知:AB ∥CD ,BF ∥ED ,是AE =CF ,求证:△ABF ≌△CDE 。
4、求证:在一个三角形中,至多有两个内角大于 60°。
5、已知:□ ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F ,求证:AF =CE 。
6、在矩形ABCD 中,F 是DC 边上一点,且
AB =AF ,BE ⊥AF 于E 。
求证:BE =AD 。
E
F
B
D
C
A G
┌
┘
A
F
D
C
E B
└
A
B
C
D F E
四、(10分)如图,DE 是□ ABCD 的∠ADC 的平分线,EF ∥AD ,
交DC 于F ,求证:四边形
AEFD 是菱形。
五、(12分)已知等腰梯形ABCD 中,AD ∥BC ,
①若AD =5,BC =11,梯形的高是 4,求梯形的周长。
②若AD =3,BC =7,BD =52,求证:AC ⊥BD 。
六、(12分)已知:□ ABCD 中,E 是对角线AC 上一点。
①在AC 上找出一点 F ,当满足条件____时,△ABE ≌△CDF
②请加以证明。
C
A
E D F
B
D C
A
B
E
图形与证明专题训练答案:
一、1、真2、两个角相等这两个角是对顶角3、两个角相等的三角形是等腰三角形4、两个锐角之和不等于90°5、90°6、170cm 7、50°8、80°9、10cm 10、12 11、85°12、∠A=∠F 二、
1、D
2、C
3、D
4、B
5、C
6、D
三、1、∵∠A=∠1 ∴AB∥EF 又∵AB∥CD ∴EF∥CD ∴∠2+∠C=180°∴∠2=80° 2、略
3、∵AB∥CD ∴∠A=∠C ∵BF∥ED ∴∠BFA=∠DEC 又∵AF=CE ∴△ABF≌△CDE
4、已知:△ABC 求证:∠A、∠B、∠C中至多有两个角大于60°证明:设∠A>60°,∠B>60°,∠C >60°,则:∠A+∠B+∠C>180°与内角和定理矛盾∴假设错误∴至多有两个角大于60°
5、证:△ABE≌△CDF 可得:BE=DF ∴AF=CE
6、证△ADF≌△BEA 可得:BE=AD
四、共证□ ADFE,再证AD=AE
五、解:①作AE⊥BC,DF⊥BC,则BE=CF=11-5
2
=3 又∵AE=4 ∴AB=5 ∴周长=26
②过D作DH∥AC交BC的延长线于H,则:在△BDH中,BD=52,DH=AC-52,BH=7+3=10
由勾股定理逆定理可得AC⊥BD。
六、略。