1晶体的微观结构

合集下载

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:

固体物理_第一至第七章总复习详解

固体物理_第一至第七章总复习详解
上页 下页 返回 结束
总复习
第二章 晶体结合 一、原子的负电性
负电性=常数(电离能+亲和能) 电离能:让原子失去电子所必需消耗的能量 亲和能:处于基态的中性气态原子获得一个电子所放出的能量
负电性大的原子,易于获得电子。 负电性小的原子,易于失去电子。
二、晶体结合的基本类型及其特性
1、离子结合:正负离子之间的库仑相互作用,强键
总复习
一维单原子链
重要结论:
试探解为: xn Aei(tnaq)
色散关系:
w2 2 (1 cosqa)
m
2
m
sin( qa ) 2
m
sin( qa ) 2
中心布里渊区范围: q
a
a
振动模式数目(格波数目):N
上页 下页 返回 结束
格波
总复习
• 格波:晶体中所有原子共同参与的一种 频率相同的振 动,不同原子间有振动
总复习
第一章 晶体结构
一、晶体的宏观特性:周期性、对称性、方向性(各向异性)
二、晶体的微观结构
1. 空间点阵(布拉伐格子) 基元、布拉伐格子、格点、单式格子、复式格子 晶体结构=基元+空间点阵 布拉伐格子(B格子)=空间点阵 复式格子=晶体结构 复式格子≠B格子
2.原胞 初基原胞、基矢、威格纳-赛兹原胞(W-S原胞,对称
位相差,这种振动以波 的形式在整个
晶体中传播,称为格波
xn Aei(tnaq)
上页 下页 返回 结束
3. 一维双原子链 总 复 习
mM 2n-2
2n-1 2n
2n+1 2n+2 2n+3
Ⅰ. 体系:N个原胞,每个原胞中包括2个原子 (m1=M, m2=m, M>m)。

晶体的微观结构

晶体的微观结构

面心立方格子
(3)布拉菲格子 (4)复式格子 (5)格矢
2、一维布拉菲格子 3、一维复式格子 3、二维情况
4、三维情况:
重复单原是平行六面体,晶格周期性可表为:
(r) (r l1a1 l2a2 l3a3 )
采用原胞基矢 R l1a1 l2a2 l3a3 采用晶胞基矢 R ma nb pc
一、空间点阵
1、晶体的微观结构具周期性,其几何模型即空间点阵。 2、空间点阵:晶体中诸结点的空间排列
3、基元:晶体中一种或几种粒子组成的最小结构单元。 4、晶体结构=点阵+格点(基元)
碳 60 晶 体 的 晶 胞 , 晶 体 的 基 元 包 含 60 个 碳 原 子
二、晶格的周期性 基矢 1、定义: (1)原胞(固体物理学原胞):晶体中最小的重复单元 (2)晶胞(结晶学原胞):同时反映周期性和对称性, 不一定是最小的重复单元。
正 五 边 形 无 法 填 满 整 个 平 面
4、七个晶系 (1)晶系:在晶体学中,有共用特征对称素的一族点群称~ (共同的特征对称素决定着共同的晶胞形状) (2)每个晶系都有确定了标准的晶胞和基矢,晶系的对称性 可以完全由晶胞的对称性来描述。 (3)所有晶体可分为7个晶系:三斜、单斜、正交、四方、 三角、六角和立方(如图)
3、基本对称操作: (1)转动操作(n次旋转对称) 旋转轴:将晶体绕某轴旋转一定角度后,若晶体能完全 复原,该轴称为旋转对称轴。若转动 后能复 原,则定义 n 2 / 为该转轴的次数。 可证明晶体只有1、2、3、4、6次旋转轴 (2)镜面 (3)反演
(4)象转轴:只有 1,2, 3,4,6 五种 但: 1 i, 2 m, 3 3 i, 6 3 m

晶体内部结构的微观对称

晶体内部结构的微观对称
催化剂设计
利用晶体对称性,可以设计具有特定催化性能的 催化剂,提高化学反应的效率和选择性。
3
药物合成与筛选
通过研究药物分子与晶体之间的相互作用,可以 优化药物分子的设计和合成,提高药物的疗效和 降低副作用。
06
晶体内部结构对称性的研 究方法
X射线晶体学
总结词
X射线晶体学是研究晶体内部结构的主要方法之一,通过分析X射线在晶体中的衍射现象,可以获得晶体中原子的 排列方式和晶格结构等信息。
晶体内部结构的微观对 称
目录 CONTENT
• 晶体微观对称的概念 • 晶体微观对称的几何基础 • 晶体内部结构的对称元素 • 晶体内部结构的对称操作 • 晶体内部结构对称性的应用 • 晶体内部结构对称性的研究方法
01
晶体微观对称的概念
定义与特性
定义
晶体内部结构的微观对称是指晶体内 部原子或分子的排列方式具有的对称 性。
空间群对称
晶体内部原子或分子的排列具 有空间群对称性,如立方晶系
的点群对称。
02
晶体微观对称的几何基础
点群
定义
点群是指晶体中由一个或多个对 称元素组成的集合,这些对称元 素在晶体中所有可能的取向中保
持不变。
分类
点群可以分为一维、二维和三维点 群,分别对应于一维、二维和三维 晶体结构。
应用
点群是晶体结构分类的基础,通过 点群可以确定晶体的对称性,进而 确定晶体的物理和化学性质。
总结词
旋转轴是晶体内部结构中的一种对称元素,能够使晶体内部结构在旋转一定角度后恢复到原始状态。
详细描述
旋转轴在晶体内部结构中起着重要的作用,不同的旋转轴会导致晶体具有不同的对称性,从而影响晶体 的物理性质和化学性质。例如,在矿物学中,许多矿物具有特定的对称性,可以通过观察其晶体形态和 内部结构来确定其对称元素。

晶体结构

晶体结构
高, 硬度大.如 W和Re, m.p. 达 3500K, K 和 Na 单电子少, 金属键弱, 熔点低, 硬度小.
金属能带理论中, 成键的实质是, 电子填充 在低能量的能级中, 使晶体的能量低于金属原子 单独存在时的能量总和.
2. 金属晶体的堆积模型
金属原子堆积在一起,形成金属晶体。金 属原子最外层价电子脱离核的束缚,在 晶体中自由运动,形成“自由电子”, 留下的金属正离子都是满壳层电子结构, 电子云呈球状分布,所以在金属结构模 型中,人们把金属正离子近似为等径圆 球。
面心立方紧密堆积, 配位数12, 空间利用率74% 六方紧密堆积: 配位数12,空间利用率74% 体心立方紧密堆积: 配位数8, 空间利用率68%
金属元素中具有面心立方,密集六
方和体心立方三种典型结构的金属占了 绝 大 多 数 , 如 表 3-33 所 示 。 许 多 金 属 中 存在多种结构转变现象,这说明三种结 构之间能量差异不大。
点阵是一组无限的点,点阵中每个点都
具有完全相同的周围环境。在平移的对 称操作下,(连结点阵中任意两点的矢 量,按此矢量平移),所有点都能复原, 满足以上条件的一组点称为点阵。
平移——点阵:
平移是晶体结构中最基本的对称操作,可用T 来表示 Tmnp=ma+nb+pc m,n,p为任意整数 即一个平移矢量Tmnp作用在晶体三维点阵上, 使点阵点在a方向平移m单位,b方向平移n单 位,c方向平移p单位后,点阵结构仍能复原。
3.4 金属晶体
1. 金属键
金属键的形象说法: “失去电子的金属 离子浸在自由电子的海洋中”. 金属离子 通过吸引自由电子联系在一起, 形成金属 晶体. 这就是金属键.
金属键无方向性, 饱和性。金属键的 强弱和自由电子的多少有关, 也和离子半 径、电子层结构等其它许多因素有关, 很 复杂. 金属键的强弱可以用金属原子化热 等来衡量. 金属原子化热是指 1mol 金属 变成气态原子所需要的热量. 金属原子化 热数值小时, 其熔点低, 质地软; 反之, 则 熔点高, 硬度大.

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体

晶体的宏观特性和微观结构

晶体的宏观特性和微观结构

说明:
1.基矢的选法并不唯一确定,(初基元胞 内仅含一个格点)。
2.威格纳-赛兹元胞(W-S元胞,对称元胞)
作法:(1)任选一格点为原点; (2)将原点与各级近邻的格点连线,得 到几组格矢; (3)作这几组格矢的中垂面,这些中垂 面绕原点围成的最小区域称W-S 元胞。(请看模型、动画GT010)
·
○ ○ B子格子

二、元胞
1.初基元胞和基矢 初基元胞:B格子中的最小重复区域。 每个初级元胞只包含一个格点。 基矢:在B格子中任取一个格点为原点, 初级元胞的三个棱边为三个矢量a1、 a2、a3 ,其模分别为该方向的最小周 期长度,这三个矢量a1、a2、a3称为 基矢。
基矢选定之后,B格子中的任一格点的位矢 Rn= n1a1+ n2a2+ n3a3 Rn称为格矢,是B格子的数学表示。
布拉菲格子(B格子)=空间点阵 说 明
1. 2.
基元中A、B可以是不同的原子,或相 同的原子,但周围“ 环境”不同。 每个基元用一个格点来表示。此格点选 在基元的什么地方、代表几个原子并未 限制。
3.每个基元内所含的原子数=晶体中原子 的种类数。 4.布拉菲格子(B格子)的基本特征:各格 点的情况(基元内涵和周围“ 环境”) 完全相同。 5.晶体结构的一种描述:带基元的B格子。 另一种描述: 单式格子:晶体由一种原子组成。一个 基元仅有一个原子,即一个原子由一个 格点表示。
晶体的宏观特性 和微观结构
绪论
研究对象: 固体的结构及其组成粒子(原子、离 子、分子、电子等)之间相互作用与运 动规律,以阐明其性能和用途。 固体物理是固体材料和器件的基础学 科,是新材料、新器件的生长点。
注意事项
1.
2.

晶体的结构和性质

晶体的结构和性质

晶体的结构和性质晶体,是由原子、离子或分子有序排列而成的固态物质。

其独特的结构和性质使得晶体在科学研究和工业应用中占据重要地位。

本文将着重探讨晶体的结构和性质,并对其应用领域进行简要介绍。

一、晶体的结构晶体的结构可以分为两个层次来讨论:微观结构和宏观结构。

微观结构是指晶体中原子、离子或分子的排列方式。

晶体的微观结构可以由X射线衍射、电子显微镜等高分辨率实验手段进行研究。

例如,石英晶体的微观结构是由硅氧簇构成的,这些硅氧簇按照一定的规则排列形成晶体的三维结构。

宏观结构是指晶体的晶体形状,也就是晶体表面的外部几何形态。

晶体的宏观结构与其内部微观结构密切相关。

例如,钻石晶体的宏观结构呈现为八面体的形状,与其微观结构中碳原子之间的强共价键有关。

晶体的结构对于其性质具有重要的影响,下面将对晶体的一些性质进行探讨。

二、晶体的性质1. 光学性质晶体的不同结构决定了它们不同的折射率、吸收特性和透明度等光学性质。

例如,石英晶体具有较高的透明度,可以广泛用于光学仪器和光学器件制造。

而金刚石晶体在适当条件下具有高折射率和强光散射能力,使其成为用于研究光学行为的重要晶体。

2. 电学性质晶体的结构和电子排布方式影响着它们的电学性质。

不同的晶体可以表现出不同的电导率、介电常数和电荷迁移速率等。

这些性质使得晶体在电子学领域具有重要应用,如半导体材料和光电器件。

3. 热学性质晶体的结构也会对其热学性质产生影响。

晶体的热导率、热膨胀系数和热稳定性等热学性质对于材料的热管理和稳定性至关重要。

例如,硅晶体由于其较高的热导率和稳定性,是制造集成电路中必不可少的材料之一。

三、晶体的应用由于晶体独特的结构和性质,它们广泛应用于多个领域:1. 材料科学领域晶体结构研究对于新材料的开发具有重要意义。

通过对晶体结构的深入理解,科学家能够设计出具有特定性能的新材料,如高强度陶瓷、高温超导材料等。

2. 光电子学领域晶体的光学和电学性质使其成为光电子学领域的核心材料。

晶体的微观结构

晶体的微观结构
第二节 晶体的微观结构
晶体的微观结构
晶体的粒子在空间呈现出周期性的无限排列(长程、有序)
(最小)重复单元
重复规则
基元
基矢
格点、空间点阵
初级原胞、惯用原胞
2-1 空间点阵学说
一、导论: 历史上,关于晶体微观结构的学说
十八世纪,阿羽依认为:方解石是由一些坚实的、 相同的、平行六面体的“小基石”有规则地重复堆集而 成的。
的数学表达
a1
3 ai 1 aj 22
a2
3 ai 1 aj 22
a:原子间最小距离,晶格常数
基矢
2. 原胞
原胞---以一个格点为顶点,选取三个独立的方向,以这 三个独立方向上的周期为边长,做一个平行六 面体,以这样一个平行六面体为重复单元来概括 晶体结构,这样的一个平行六面体被称为原胞。
周期性和对称性的原胞称为惯用原胞。
格点也并不都处在原胞的顶角上,还可以处在体 心、面心、底心以及晶胞中的其他位置。
1.既体现晶体的周期性,又体现晶体的对称性; 2.体积是最小体积的整数倍; 3.至少含一个格点。
表示方法:
基矢: a 3ai b aj a:原子间最小距离(单位nm)
a/b / c 表示惯用原胞基矢,称为轴
1
>=1
1
>=1
a1/a2 / a3
a/b / c
Rl l1a1 l2 a2 l3a3 Rn ma nb lc
重复规则 基矢
初级原胞、惯用原胞
方向:最近邻 对称性最高
模量:重复周期
NaCl晶体 c
a 惯用原胞
a2 a3
b a1
初级原胞
基元 空间点阵
a2 a3

晶体内部结构的微观对称和空间群

晶体内部结构的微观对称和空间群
平移轴(translation axis) 螺旋轴(screw axis): 滑移面(glide plane)
晶体微观对称元素
• 平移轴(translation axis)
为一直线方向,相应的对称操作为沿此直线方向平移一 定的距离。对于具有平移轴的图形,当施行上述对称操 作后,可使图形相同部分重复。在平移这一对称变换中, 能够使图形复原的最小平移距离,称为平移轴的移距。
c
a
b
P
Triclinic
abc
c
c
c
b
bLeabharlann aPaCMonoclinic
= = 90o
abc
b
aP
C
F
I
Orthorhombic
= = = 90o a b c
c
c
a1
P
a2
I
Tetragonal
= = = 90o a1 = a2 c
a3
a2
a1
P
Hexagonal
R
3 [110] [110] [001]
[210]
空间群的圣佛利斯符号
➢ 空间群的圣佛利斯符号表示方法很简单,即在其 对称型的圣佛利斯符号的右上角加上序号即可。 如对称型L4的圣佛利斯符号为C4,与它对应的六 个空间群的圣佛利斯符号分别为C41、 C42、 C43、 C44、 C45、 C46。
➢ 优点:每一种圣佛利斯符号只与一种空间群对应。 ➢ 缺点:不能直观看出格子类型和各方向存在哪些对
➢ 晶面符号(hkl)中无公约数,但对于面网符号, 可以有公约数。
面网符号
平行于(010)晶面的几组面网的符号
面网符号
➢ 面网符号中存在以下关系: dnhnknl=1/ndhkl d030=1/3d010

固体物理基础(第2版)(蓸全喜)1-4章 (1)

固体物理基础(第2版)(蓸全喜)1-4章 (1)

第1章 晶体结构
本章提要
本章的核心是讨论晶体结构的周期性和对称性。首先, 从晶体的宏观特征出发,揭示晶体微观结构的几何特征,阐明晶 体结构的周期性和对称性两大特点;其次,介绍了空间点阵、布 拉菲格子、基元、原胞、晶格、对称操作、晶体指数等重要概 念,并列举了一些常见的、典型的晶体结构;再次,简要介绍了晶 体 X 射线衍射的原理和方法,以及分析晶体衍射的倒格子和布 里渊区等概念;最后,在阅读材料里,简单介绍了准晶态和非晶态 材料的结构,群与晶体空间点阵的分类。
第1章 晶体结构
第1章 晶体结构
1.1 晶体的宏观特性 1.2 晶体的微观结构 1.3 晶体的基本类型 1.4 典型的晶体结构 1.5 晶体的对称性 1.6 晶面和晶面指数 1.7 晶体的倒格子与布里渊区 1.8 晶体中的X光衍射 *1.9 非晶态材料的结构 *1.10 准晶态 *1.11 群与晶体点阵的分类 本章小结 思考题 习题
图1-1给出了晶体生长过程的理想化模型图,其中 图(a)和图(b)的砌块是相同的,但其生长成的晶体面却不一 样,该图诞生于两个世纪以前的科学家们的想象。由此可见, 如果不考虑由于偶然因素混入结构中的杂质或缺陷,晶体就 是由这些全同砌块的三维周期性阵列构成的。
第1章 晶体结构 图1-1 晶体生长过程的理想化模型图
第1章 晶体结构 图1-3 石英晶体的若干外形
第1章 晶体结构
晶体的物理性质随观测方向不同而变化,称为各向异性。 晶体的很多物理性质,如压电性质、光学性质、磁学性质、热 学性质等都表现出各向异性。
当晶体受到敲打、剪切、撞击等外界作用时,它有沿某一 个或几个具有确定方位的晶面劈裂开来的性质。例如云母晶体 很容易沿着与自然层状结构平行的方向劈裂为薄片。晶体的这 一性质称为解理性,这些劈裂的晶面则称为解理面。自然界中 的晶体显露于外表的晶面往往就是一些解理面。

高中物理:晶体和非晶体

高中物理:晶体和非晶体

高中物理:晶体和非晶体
【知识点的认识】
一、晶体和非晶体
1.晶体与非晶体
(1)物理性质:有些晶体(单晶体)在物理性质上表现为各向异性,非晶体的物理性质表现为各向同性。

(2)熔点:晶体具有一定的熔化温度,非晶体没有一定的熔化温度。

2.单晶体与多晶体
(1)单晶体整个物体就是一个晶体,具有天然的有规则的几何形状,物理性质表现为各向异性;而多晶体是由许许多多的细小的晶体(单晶体)集合而成,没有天然的规则的几何形状,物理性质表现为各向同性。

(2)熔点:单晶体和多晶体都有一定的熔化温度。

3.晶体的微观结构
(1)晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列。

(2)用晶体的微观结构解释晶体的特点。

晶体有天然的规则几何形状是由于内部微粒有规则地排列。

晶体表现为各向异性是由于从内部任何一点出发,在不同方向上相等距离内微粒数不同。

晶体的多型性是由于组成晶体的微粒不同的空间排列形成的。

第1页共1页。

1.晶体结构

1.晶体结构









晶体结构=空间点阵+基元
Ci (i)、 CS (m)和 S4( 4 )
四、点群(32种) Schö nflies符号:用主轴+脚标表示 主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群 脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的
排列具有长程周期性结构 非晶体:组成固体的粒子只有短程序,但无长程
周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
规则网络
无规网络
Al65Co25Cu10合金 准 晶
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。 例:Na、Cu、Al等晶格均为简单晶格
复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。 简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。 如:金刚石、Mg、Zn 、 C60和NaCl等晶格都是复式晶格
b3 a1 a 2 a 3 va
2 a 2 a 3
倒格矢:G n n1 b1 n2 b 2 n3 b3 , n1、n2、n3都是整数。 倒格子原胞体积:

1-2 晶体的微观结构

1-2 晶体的微观结构
重复/最小 重复/非最小 不重复/非最小
2
aj
(2) 选取方法: * 晶体中原子的种类数 化学元素 周围环境:最近邻原子的方位与距离
化学元素: 周围环境:
a / a / a a1/a2 /a3 a 1/a 2 /a 3 / a a 1 2 1 3
3 2
2 1
A
3
1 2
3
B
3
2
1
A
B
a / a / a /a2 /aa a / a / / / a 1 2 3 3 1 2 3 1 2 3 a / a / a a / a / a / /a2 /1a3a 21 3 21 2 3 3
* 最近邻不同种类的原子组合
2 1
A
3
1 2 3
B
2
2
1
2
B
A
3
A
A
1
3
1
3
1 2 3
B
2
B
B
A
2
B
A
3
A
1
3
1
B
A
B
2
1
A
A
3
1 2
B
1
2
1
1
2
B
A
3
B 3 2 A 1
A
3
3
1 2 3
B
2
B
A
3
2
B
1
A
3
B
A
B

共6种基元
(3) 基元的特性: * 基元可以是原子、原子团、离子团。 * 基元中原子的个数:
选在(同种)基元的相同原子位置
2 1
A B

晶体结构

晶体结构

3.3 原子晶体和分子晶体
3.3.1原子晶体 3.3.2分子晶体
3.3.1 原子晶体
原子晶体中晶格结点上排列着原子, 晶格结点间以共价键结合。
原子晶体具有熔点高、硬度大的特点。
金刚石晶体 C:2s22p2
2s 2p
C
基态

激发态

sp3杂化
C
C
C
C
CC CC
CC C
最简单的离子晶体的结构类型
空间构型 晶胞类型
CsCl型 NaCl型
简单立方 面心立方
正、负 离子的 配位数
8
6
ZnS型 由Zn2+和S2-各
4
组成的面心立
方在轴向1/4
处穿插形成
每个晶 胞中的 分子数
1
4
4
示例
TlCl、CsBr、CsI NaF、MgO、 NaBr、KI BeO、ZnSe
3.2.3半径比规则
硬度 机械性能
导电、 导热性
实例
离子键 高 硬 脆
良好(熔融 及水溶液)
NaCl MgO
共价键 很高 很硬 很脆
非导体
金刚石、 SiC BN
分子晶体 分子
分子间力 低 软 弱
非导体
金属晶体 金属原子、
正离子 金属键
高 硬 有延展性 良好
CO2 I2 Ne
W Ag Ca Cu
3.2 离子晶体
3.2.1离子键和离子晶体的性质 3.2.2离子晶体中最简单的结构类型 3.2.3半径比规则
Z
Y
(a)平面格子
O
X
(b)空间格子
晶格结点在空间的排列方式不同,晶格就有不同的 形状。最简单的是立方晶格,它有三种类型:

材料的微观结构

材料的微观结构

材料的微观结构
材料的微观结构是指材料在微观尺度上的组织和特征。

微观结构直接影响着材料的性能和行为,因此对于材料科学和工程来说,了解和掌握材料的微观结构至关重要。

首先,我们来看一下晶体结构。

晶体是由原子或分子按照一定的规律排列而成的,具有一定的周期性和规则性。

晶体的微观结构可以通过X射线衍射等手段来进行研究和表征。

晶体结构的类型包括立方晶系、四方晶系、单斜晶系等,不同的晶体结构对材料的性能有着重要的影响。

其次,我们需要了解晶界和晶格缺陷。

晶界是相邻晶粒的交界面,晶界的存在对材料的塑性变形和断裂行为有着重要的影响。

晶格缺陷包括点缺陷、线缺陷和面缺陷,它们可以改变材料的导电性、热导率和力学性能。

此外,我们还需要关注材料的显微组织。

显微组织是指材料在光学显微镜下的组织结构,包括晶粒大小、形状和分布,以及晶间的相对取向。

显微组织对材料的强度、硬度、韧性等性能有着重要的影响。

最后,我们来讨论材料的电子结构。

材料的电子结构决定了材料的导电性、光学性能和化学性质。

通过理论计算和实验手段,可以揭示材料的能带结构、费米能级位置等重要信息。

综上所述,材料的微观结构是材料科学和工程中的重要内容,它直接关系到材料的性能和行为。

通过对材料的微观结构进行深入的研究和理解,可以为材料的设计、制备和应用提供重要的指导和支持。

因此,加强对材料微观结构的研究,对于推动材料科学和工程的发展具有重要的意义。

晶体的类型和结构

晶体的类型和结构

30 26
4.2003年3月,学国家发现首例带 2003年 下呈现超导性。 结晶水的晶体在 5K 下呈现超导性。报 报道, 报道,该晶体中含有最简式为 CoO2 的 层状结构,结构如右图(小球表示Co Co原 层状结构,结构如右图(小球表示Co原 大球表示O原子)。 )。下列用粗线画 子,大球表示O原子)。下列用粗线画 出的CoO 层状结构的晶胞( 出的CoO2层状结构的晶胞(晶胞是在 晶体中具有代表性的最小重复单元) 晶体中具有代表性的最小重复单元)示 D 意图不符合化学式的是
30
一个氯化钠晶胞中 有多少个钠离子? 有多少个钠离子? Na+=(12/4+1) ( ) =4个 个
30
19
NaCl晶体结构示意图: NaCl晶体结构示意图: 晶体结构示意图 (4)每 个晶胞含 钠离子、 钠离子、 氯离子的 个数? 个数?
1 氯离子: 氯离子: × 8 + 1 × 6 = 4
30
Cl-
Na+
Na
Cl+
12
1、NaCl晶体结构示意图: NaCl晶体结构示意图 晶体结构示意图:
晶胞是在晶体中具有代表性的最小重复单元 晶胞是在晶体中具有代表性的最小重复单元 是在晶体中具有代表性 (1)钠 离子和氯 离子在晶 胞中的位 置:
Cl-
Na+
钠离子:体心和棱中点;氯离子:面心和顶点, 钠离子:体心和棱中点;氯离子:面心和顶点, 30 13 或者反之。 或者反之。
1、NaCl晶体结构示意图: NaCl晶体结构示意图 晶体结构示意图:
(3)、在氯 )、在氯 化钠晶体中, 化钠晶体中, 每个Na 每个Na+周围 与之最接近且 距离相等的Cl 距离相等的Cl共有6 共有6个;这6 个Cl-在空间构 成的几何构型 成的几何构型 为 正八面体 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密勒指数
(3)同一晶面族在两种坐标系下的指数往往不同 (4)一般密勒指数简单的晶面族,面间距大
晶 面 族
五、晶体的对称性 对称操作
1、晶体对称性:经过某些操作后能够完全复原的特性 2、对称操作:若对晶体实行操作(空间变换)后,晶体情况 仍能保持不变(原子分布不变),则称此操作是 该晶体的对称操作。 (1)平移对称操作(对应周期性): (2)点对称操作(至少有一点保持不动): (3)对称操作组成对称操作群。 (4)点对称操作组成点群,共32个。 (5)平移对称操作+点群=空间群(230个)
一、空间点阵
1、晶体的微观结构具周期性,其几何模型即空间点阵。 2、空间点阵:晶体中诸结点的空间排列
3、基元:晶体中一种或几种粒子组成的最小结构单元。 4、晶体结构=点阵+格点(基元)
碳 60 晶 体 的 晶 胞 , 晶 体 的 基 元 包 含 60 个 碳 原 子
二、晶格的周期性 基矢 1、定义: (1)原胞(固体物理学原胞):晶体中最小的重复单元 (2)晶胞(结晶学原胞):同时反映周期性和对称性, 不一定是最小的重复单元。
面心立方格子
(3)布拉菲格子 (4)复式格子 (5)格矢
2、一维布拉菲格子 3、一维复式格子 3、二维情况
4、三维情况:
重复单原是平行六面体,晶格周期性可表为:
(r) (r l1a1 l2a2 l3a3 )
采用原胞基矢 R l1a1 l2a2 l3a3 采用晶胞基矢 R ma nb pc
2、密堆积情况下,配位数为12(最大) 另外配位数还有:8、6、4、3、2几种情况
5、14种布拉菲格子
若在上述7种晶胞形状上加上底心、体心或面心后,晶胞仍 保持原来的特征对称素。 研究表明:除去不可能存在的和重复的以外,另有7种带心
晶胞,分别是: 底心单斜、体心正交、面心正交、底心正交、 体心四方、体心立方和面心立方 故共有14种形状的晶胞,称14种格子。
六、密堆积、配位数
为表示晶体中原子结合的紧密程度引入 (1)配位数:晶体中围绕任一原子的等距最近邻的原子数 (2)致密度:晶胞中原子占据的体积与晶胞总体积之比 1、密堆积 定义:若晶体由全同粒子组成,将同种粒子视作等大的刚球 这些全通的圆球最紧密的堆积方式称为密堆积。 有:六角密积 立方密积 两种方式
3、基本对称操作: (1)转动操作(n次旋转对称) 旋转轴:将晶体绕某轴旋转一定角度后,若晶体能完全 复原,该轴称为旋转对称轴。若转动 后能复 原,则定义 n 2 / 为该转轴的次数。 可证明晶体只有1、2、3、4、6次旋转轴 (2)镜面 (3)反演
(4)象转轴:只有 1,2, 3,4,6 五种 但: 1 i, 2 m, 3 3 i, 6 3 m
L均为整数 M\n\p不一定 为整数,一般为 有理数
金 刚 石 中 原 子 价 键 的 取 向 不 同
金 刚 石 由 两 个 面 心 立 方 套 购 而 成
闪 锌 矿 结 构
NaCl晶体
CsCl
三、晶列、晶面及其指数 1、晶列:通过晶体上晶体点阵中任意两个结点连成 的直线许多晶列形成晶列簇(包含所有格点) 2、晶列簇性质:
晶体的描述
单晶:理想、无任何缺陷。 多晶:许多不同外形、不同取向的大量单晶体
的组合体。
晶体的解理性:具有沿某些确定方位的晶面劈 裂的性质。 晶带:单晶体的晶面往往排列成带状,晶面的 交线(晶棱)互相平行,这些晶面的组
合称晶带。
带轴:相互平行的晶棱的共同方向成晶轴。 晶轴:重要的带轴。
2.2 晶体材料的微观结构
故:反映宏观对称性的基本对称素只有8种
1,
2,
3,
4,
6,
m,
i,
4
将基本对称操作组合起来,就得到32种不包括平移的宏观对称类型
对于晶体微观对称性,对称操作必须包括平移,故多出以下操作
(5)n度螺旋轴 (6)滑移反映面 32种宏观对称性+(5)(6)类对称操作=230种空间群 每种群对应于一特殊的晶格结构
正 五 边 形 无 法 填 满 整 个 平 面
4、七个晶系 (1)晶系:在晶体学中,有共用特征对称素的一族点群称~ (共同的特征对称素决定着共同的晶胞形状) (2)每个晶系都有确定了标准的晶胞和基矢,晶系的对称性 可以完全由晶胞的对称性来描述。 (3)所有晶体可分为7个晶系:三斜、单斜、正交、四方、 三角、六,称为晶向
4、晶列指数:用晶列簇的共同方向——一根晶列的 方向标记晶向 (1)晶列方向的标示方法:
(2)特殊晶列——晶轴
四、晶面和密勒指数 1、晶面:通过结点的平面称为晶面。所有彼此平 行的晶面集合称晶面族。
2、晶面组的特征量:
(1)晶面的方位 (1)方法: (2)在以晶胞基矢为坐标轴时,(h,k,l)称 (2)晶面的面间距 3、用晶面指数标示一族晶面的取向
相关文档
最新文档