非晶硅太阳电池的原理

合集下载

太阳能电池材料的种类、原理和特点

太阳能电池材料的种类、原理和特点

太阳能电池是一种将太阳能直接转换为电能的装置,它是太阳能光伏发电系统的核心部件之一。

太阳能电池材料的种类、原理和特点是影响太阳能电池性能和应用领域的关键因素。

本文将围绕这一主题展开讨论,以便为读者深入了解太阳能电池提供全面的了解。

一、太阳能电池材料的种类太阳能电池材料可以分为晶体硅、非晶硅、多晶硅、柔性薄膜电池材料等几种主要类型。

1. 晶体硅晶体硅是太阳能电池最常用的材料之一,它主要由单晶硅和多晶硅两种类型,其中单晶硅的电池效率较高,但成本较高,多晶硅则相对便宜一些。

2. 非晶硅非晶硅是一种非晶态材料,是将硅薄片进行涂覆和烧结而成的,其电池效率较低,但成本较低,适合一些需要成本控制的应用场景。

3. 多晶硅多晶硅电池是利用多晶硅片制成,其性价比相对较高,广泛应用于家用光伏电站和商业光伏电站中。

4. 柔性薄膜电池材料柔性薄膜电池是一种新型的太阳能电池材料,主要由非晶硅材料、铜铟镓硒等化合物材料制成,具有柔性、轻薄、便于携带等优点,是未来太阳能电池发展的方向。

二、太阳能电池材料的原理太阳能电池是利用光电效应将太阳能直接转换为电能的装置。

不同类型的太阳能电池材料有着不同的工作原理。

1. 晶体硅晶体硅太阳能电池的工作原理是通过P-N结构实现的。

当太阳光照射在P-N结上时,光子的能量被硅中的电子吸收并激发,使得电子跃迁到导带中,形成光生电子和空穴。

这些光生电子和空穴会在P-N结的作用下分离,从而形成电流,从而实现将太阳能光能转化为电能。

2. 非晶硅非晶硅太阳能电池利用非晶硅薄膜吸收太阳光的能量,并将其转化为电能。

其工作原理与晶体硅相似,但非晶硅的材料结构不规则,电子的运动方式也有所不同。

3. 柔性薄膜电池材料柔性薄膜电池材料利用非晶硅、铜铟镓硒等化合物材料,通过薄膜沉积技术将材料制备成薄膜,实现光伏效应的转化工作原理与晶体硅和非晶硅类似,通过材料的光电转换将太阳光能转换为电能。

三、太阳能电池材料的特点不同种类的太阳能电池材料各有其独特的特点和适用场景。

!!!太阳能电池制造工艺---工艺流程以及工序简介

!!!太阳能电池制造工艺---工艺流程以及工序简介

去除磷硅玻璃的目的、作用:
1.
磷硅玻璃的厚度在扩散中工艺难控制,且其工艺窗口太小,不稳 定。 磷硅玻璃的折射率在1.5左右,比氮化硅折射率(2.07左右)小, 若磷硅玻璃较厚会降低减反射效果。 磷硅玻璃中含有高浓度的磷杂质,会增加少子表面复合,使电池 效率下降。
2.
3.
2. 扩散(POCl3液态扩散)
结的附近形成了与内建电场方
向相反的光生电场。在n区与p 区间产生了电动势。当接通外
电路时便有了电流输出。
单晶硅太阳电池
多晶硅太阳电池
非晶硅太阳电池
2. 硅太阳电池的制造工艺流程

下面我们就硅太阳电池的制造工艺流程以及各工序进行简 单的介绍。 晶体硅太阳能电池制造的常规工艺流程主要包括:硅片清 洗、绒面制备、扩散制结、(等离子周边刻蚀)、去 PSG(磷硅玻璃) 、PECVD 减反射膜制备、电极(背面电极、 铝背场和正电极) 印刷及烘干、烧结、Laser和分选测试等。 同时,在各工序之间还有检测项目,主要有抽样检测制绒效 果、抽样 测方块电阻、抽样测氮化硅减反射膜厚度和折射 率等项目。
(c). 去磷硅玻璃---PSG
在扩散过程中发生如下反应:
4PCl3 5O2 2PO 2 5 6Cl2
POCl3分解产生的P2O5淀积在硅片表面, P2O5与Si反应生成SiO2和 磷原子:
2P O 5Si 5SiO 4P
2 5 2
这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。
ser
4.沉积减反射膜(PECVD)
10.烧 结
5.丝网印刷背电极
6.烘 干
9.丝网印刷正电极
8.烘 干
7.丝网印刷背电场

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理性能及特点:太阳能电池分为单晶硅太阳电池〔坚固耐用,使用寿命一般可达20年。

光电转换效率为15%。

〕多晶硅太阳电池〔其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。

〕非晶硅太阳能电池〔其光电转换率为10%,成本低,重量轻,应用方便。

〕太阳能发电原理:太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。

直接传输适用于较短距离。

基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,到达用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用外表镀有高反射涂层的光导管,通过反射可以将阳光导入室内。

间接传输适用于各种不同距离。

将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。

太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。

当太阳光照射到半导体上时,其中一部分被外表反射掉,其余部分被半导体吸收或透过。

被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。

这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。

光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p 区之间的薄层产生所谓光生伏打电动势。

假设分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。

一文读懂非晶硅太阳能电池及其应用

一文读懂非晶硅太阳能电池及其应用

一文读懂非晶硅太阳能电池及其应用目前光伏市场上,制作太阳能电池使用的最多的材料就是硅,其中主要分为单晶硅太阳能电池,多晶硅太阳能电池以及非晶硅太阳能电池,前两种,由于所用材料是间接带隙半导体——吸收太阳能时需要一定的厚度,PN结比较厚(一般大于200微米),所以其硅原料消耗较多,成本相应较高,电池板的价格居高不下,其所造成的硅浪费也比较大,而硅是十分多用途的重要半导体。

非晶硅为直接带隙半导体,光辐射吸收范围广,所需厚度薄,故此非晶硅薄膜太阳能电池可以做得很薄,光吸收薄膜总厚度大约1微米,非晶硅以其原料消耗少,低成本以及较好的性能而得到市场的青睐。

非晶硅太阳能电池的特点低成本1、硅材料用料少,可充分吸收光,单晶要200μ厚,非晶1μ厚(非晶硅光吸收系数大)。

2、主要原材料是生产高纯多晶硅过程中使用的硅烷,这种气体,化学工业可大量供应,且十分便宜,制造一瓦非晶硅太阳能电池的原材料本约RMB3.5-4(效率高于6%)。

3、晶体硅太阳电池的基本厚度为240-270um,相差200多倍,大规模生产需极大量的半导体级,仅硅片的成本就占整个太阳电池成本的65-70%,在中国1瓦晶体硅太阳电池的硅材料成本已上升到RMB22以上。

从原材料供应角度分析,人类大规模使用阳光发电,最终的选择只能是非晶硅太阳电池及其它薄膜太阳电池,别无它法!易于形成大规模因为核心工艺适合制作特大面积无结构缺陷的a-Si合金薄膜;只需改变气相成分或者气体流量便可实现pn结以及相应的叠层结构;生产可全程自动化。

品种多,用途广薄膜的a-Si太阳能电池易于实现集成化,器件功率、输出电压、输出电流都可自由设计制造,可以较方便地制作出适合不同需求的多品种产品。

由于光吸收系数高,暗电导很低,适合制作室内用的微低功耗电源,如手表电池、计算器电池等。

由于a-Si膜的硅网结构力学性能结实,适合在柔性的衬底上制作轻型的太阳能电池。

灵活多样的制造方法,可以制造建筑集成的电池,适合户用屋顶电站的安装。

非晶硅太阳电池的原理

非晶硅太阳电池的原理

非晶硅太阳电池的原理2010-11-1314:54目录一、非晶硅薄膜太阳电池基础知识简介二、非晶硅薄膜太阳电池生产线及制造流程简介三、国产提供的非晶硅薄膜太阳电池生产线介绍一、非晶硅薄膜太阳电池基础知识简介1976年美国RCA实验室的D.E.Conlson和C.R.Wronski在Spear形成和控制p-n结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si太阳能电池,揭开了a-Si在光电子器件或PV组件中应用的幄幕。

目前a-Si多结太阳能电池的最高光电转换效率己达15%。

图1为一般单结的非晶硅太阳能电池结构图,图2为非晶硅太阳能电池图1非晶硅太阳能电池结构图图2非晶硅柔性太阳能电池第一层,为普通玻璃,是电池载体。

第二层为绒面的TCO。

所谓TCO就是透明导电膜,一方面光从它穿过被电池吸收,所以要求它的透过率高;另一方面作为电池的一个电极,所以要求它导电。

TCO制备成绒面起到减少反射光的作用。

太阳能电池就是以这两层为衬底生长的。

太阳能电池的第一层为P层,即窗口层。

下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。

再下面为n 层,起到连接i和背电极的作用。

最后是背电极和Al/Ag电极。

目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。

由于a-Si(非晶硅)多缺陷的特点,a-Si的p-n结是不稳定的,而且光照时光电导不明显,几乎没有有效的电荷收集。

所以,a-Si太阳能电池基本结构不是p-n 结而是p-i-n结。

掺硼形成P区,掺磷形成n区,i为非杂质或轻掺杂的本征层(因为非掺杂的a-Si是弱n型)。

重掺杂的p、n区在电池内部形成内建势,以收集电荷。

同时两者可与导电电极形成欧姆接触,为外部提供电功率。

i区是光敏区,光电导/暗电导比在105~106,此区中光生电子、空穴是光伏电力的源泉。

非晶体硅结构的长程无序破坏了晶体硅电子跃迁的动量守恒选择定则,相当于使之从间接带隙材料变成了直接带隙材料。

太阳能电池板什么能转换成什么能

太阳能电池板什么能转换成什么能

太阳能电池板什么能转换成什么能太阳能电池板的工作原理太阳电池是一种对光有响应并能将光能转换成电力的器件。

能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。

它们的发电原理基本相同,现以晶体硅为例描述光发电过程。

P型晶体硅经过掺杂磷可得N型硅,形成P-N结。

当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了跃迁,成为自由电子在P-N 结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。

这个过程的实质是:光子能量转换成电能的过程。

太阳能电池板什么能转换成什么能第一种:光能—电能的转换太阳能电池板不是光能-化学能-电能,而是是太阳能直接转换成电能。

太阳光照射到太阳能电池上,就产生光生电压,就是光生伏打效应。

如果这时在太阳能电池两端接上负载就会产生光生电流,于是产生了电能。

把太阳能发电称为光伏发电。

光伏(PV or photovoltaic)是太阳能光伏发电系统(photovoltaic power system)的简称。

是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统。

太阳能发电分为光热发电和光伏发电。

通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。

光伏发电系统由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,因而发电设备极为精炼,可靠、稳定、寿命长,安装维护简便。

与常用的火力发电系统相比,太阳能发电系统除了无污染排放外,还具有建设周期短和可利用建筑屋面的优势。

光伏照明就是用太阳能发电系统照明。

独立光伏照明系统一般使用蓄电池作为储能设备,白天将太阳能电池输出的电能储存起来,夜间为照明负载供电。

这样的独立光伏照明系统在偏远地区、沙漠、边疆哨所等电网仍未覆盖的区域有很高的实用价值。

太阳能电池是光伏照明系统的输入电源,为整个系统提供照明和控制所需电能。

非晶硅太阳电池的光致衰减效应

非晶硅太阳电池的光致衰减效应

非晶硅太阳电池的光致衰减效应非晶硅太阳电池是一种新型的太阳能电池,它具有高效率、低成本、易制备等优点,因此备受关注。

然而,非晶硅太阳电池在使用过程中会出现光致衰减效应,这对其性能和寿命产生了一定的影响。

本文将从光致衰减效应的原理、影响因素和解决方法三个方面进行探讨。

一、光致衰减效应的原理光致衰减效应是指在太阳电池中,光照射会使得电池的电流输出下降,这种现象被称为光致衰减效应。

其原理是在光照射下,非晶硅太阳电池中的电子会被激发,从而跃迁到导带中,形成电流输出。

然而,随着时间的推移,电子会逐渐被捕获,形成缺陷态,从而导致电流输出下降,这就是光致衰减效应的原理。

二、影响因素光致衰减效应的发生受到多种因素的影响,主要包括以下几个方面:1.光照强度:光照强度越大,光致衰减效应越明显。

2.温度:温度越高,光致衰减效应越明显。

3.电压:电压越高,光致衰减效应越明显。

4.时间:时间越长,光致衰减效应越明显。

5.材料:不同的材料对光致衰减效应的影响不同。

三、解决方法为了减轻光致衰减效应对非晶硅太阳电池性能和寿命的影响,可以采取以下措施:1.降低光照强度:通过降低光照强度来减轻光致衰减效应的影响。

2.降低温度:通过降低温度来减轻光致衰减效应的影响。

3.降低电压:通过降低电压来减轻光致衰减效应的影响。

4.优化材料:通过优化材料的制备工艺和材料组成来减轻光致衰减效应的影响。

5.采用多层结构:通过采用多层结构来减轻光致衰减效应的影响。

光致衰减效应是非晶硅太阳电池中不可避免的现象,但可以通过降低光照强度、降低温度、降低电压、优化材料和采用多层结构等措施来减轻其影响,从而提高非晶硅太阳电池的性能和寿命。

非晶硅太阳电池

非晶硅太阳电池

非晶硅太阳电池一、简介非晶硅太阳电池是一种新型的太阳能电池,它是利用非晶硅薄膜制成的。

与传统的多晶硅太阳电池相比,非晶硅太阳电池具有更高的光电转换效率和更低的制造成本。

二、原理非晶硅太阳电池采用了一种称为“堆垛结构”的设计,这种设计可以使得光线在薄膜中反复折射,从而增强了光吸收效果。

在吸收到光线后,光子会激发出电子-空穴对,在外加电场作用下,这些电子-空穴对会分别向两端移动,并产生一个电压差。

通过将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。

三、制造工艺1. 清洗基板:首先需要清洗基板表面以去除表面杂质。

2. 沉积非晶硅层:在基板上沉积一层非晶硅薄膜。

3. 氧化处理:经过氧化处理后形成氧化硅层。

4. 刻蚀:利用刻蚀技术去除氧化硅层的一部分,形成电极。

5. 沉积金属层:在电极上沉积一层金属,形成另一个电极。

6. 制成单元:将多个这样的单元串联在一起,就可以得到一个具有较高输出功率的太阳能电池。

四、优缺点1. 优点:(1)光电转换效率高:非晶硅太阳电池可以将光线转换为电能的效率达到了10%-13%左右,比传统的多晶硅太阳电池要高。

(2)制造成本低:非晶硅太阳电池制造工艺简单,生产成本低。

(3)适用范围广:非晶硅太阳电池可以适用于各种不同环境下的太阳能利用场合。

2. 缺点:(1)稳定性差:由于非晶硅薄膜中存在大量的缺陷和杂质,因此其稳定性较差。

(2)寿命短:由于材料缺陷和杂质等原因,非晶硅太阳电池寿命较短。

五、应用领域非晶硅太阳电池可以广泛应用于各种不同的领域,包括:1. 太阳能电池板:非晶硅太阳电池可以制成太阳能电池板,用于发电、供电等。

2. 光伏发电系统:非晶硅太阳电池可以作为光伏发电系统中的核心部件,用于将光能转换为电能。

3. 便携式充电器:非晶硅太阳电池可以制成便携式充电器,用于为手机、平板等设备充电。

六、结语随着可再生能源的需求不断增加,非晶硅太阳电池将会有更广阔的应用前景。

非晶硅薄膜太阳能电池基础知识

非晶硅薄膜太阳能电池基础知识

顾客导向、科技领航、全面管理、精益求精
顾客导向、科技领航、全面管理、精益求精
非晶硅太阳能电池的基本特性
2、太阳能电池的电流电压特性
根据PN结整流方程,在一定的 入射光下,通过外接负载的电流是:
I=IF-IL=IS[EXP(qV/kT)-1]-IL
输出电流随着负载的增大而减 小,输出电压随着外接负载的增大 而增大。
顾客导向、科技领航、全面管理、精益求精
非晶硅太阳能电池的基本特性
4、环境影响因素
1)辐照度 • 辐照度越大,电流越大。当辐照度大于500W/m2,辐照度与短路 电流呈良好的线性关系。 • 辐照度越大,电压越大。但电压随辐照度的变化较小,测试标准 AM1.5,光强1000 W/m2 2)温度 • 温度升高,电流增大,电压降低,呈现出功率下降,测试标准温度 25 ℃ • 非晶硅太阳能电池的温度系数一般为 电压温度系数:-0.33%/℃,电流温度系数:0.09%/℃, 输出功 率温度系数:-0.23%/℃ 3)光谱 不同的电池对各波长的光吸收系数不一样.
4)转换效率η 表示入射的太阳光能量有多少能转换为有效的电能。即: η =(太阳能电池的输出功率/入射的太阳光功率)x100% = (Vm•Im/Pin•S)×100% = Voc•Isc•FF/Pin • S 其中,Pin是入射光的强度,S为太阳能电池的面积。
顾客导向、科技领航、全面管理、精益求精
• 能源危机与环境污染是人类正面临的重大挑战,开发新能源和可再生清洁 能源是21世纪最具决定影响的技术领域之一。据世界能源委员会和国际应 用系统分析研究所预测,全球化石燃料不足100年,而且,由于燃烧化石 燃料的CO2等气体随能耗指数增加,已严重破坏了生态平衡。造成了诸如 温室效应,酸雨等一系列问题。寻求一种可再生,无污染的清洁能源成为 了一项迫切任务。太阳能电池正是在这种形势下发展起来的。

非晶硅薄膜太阳能电池

非晶硅薄膜太阳能电池

• 商品晶体硅太阳电池还是以156mm*156mm和 125mm*125mm为主。
非晶硅太阳能电池存在的问题
6
• 30
25
效率较低
5
• 单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性 20 4基体非晶硅太阳电池组件(约1000平方厘米)的效率为 10-12%,还存在一定差距。
15 3
为何要发展非晶硅薄膜太阳电池?
光伏工业的高速发展和关键原材料高纯硅短缺的矛盾
按照目前全世界年产1500兆瓦晶体硅太阳能,约需16500吨高纯硅,近几年 全世界高纯硅的产能仅为25000吨,70%左右回用于制造集成电路,二极管, 三极管等半导体器件,绝对满足不了光伏工业的需求,供需矛盾十分突出, 并导致全球范围内高纯硅从25美元/公斤上升至200美元/公斤以上,使得2003 年前国际市场每瓦太阳能电池2美元左右上升到3.5美元。
• 能量返回期短
• 转换效率为6%的非晶硅太阳电池,其生产用电约1.9度 电/瓦,由它发电后返回的时间约为1.5-2年,这是晶 硅太阳电池无法比拟的。
• 大面积自动化生产
• 目前,世界上最大的非晶硅太阳电池是Switzland Unaxis的KAI-1200 PECVD 设备生产的1100mm*1250mm 单结晶非晶硅太阳电池,起初是效率高于9%。其稳定 输出功率接近80W/片。
减效应也可在电量输出中加以考虑,我们认为以上缺点 类别 1 类别 2 类别 3 类别 4 已不成为其发展的障碍,非晶硅太阳能电池已迎来新的 发展机遇。
• 稳定性问题 • 非晶硅太阳能电池的光致衰减,所谓的W-S效应,是影 响其大规模生产的重要因素。目前,柔性基体非晶硅 太阳能电池稳定效率已超过10%,已具备作为空间能源 的基本条件。

第1章-非晶硅薄膜及非晶硅薄膜太阳电池

第1章-非晶硅薄膜及非晶硅薄膜太阳电池
新材料及新概念太阳电池
艾斌 博士 副教授
中山大学太阳能系统研究所
Institute for Solar Energy System
第一章 非晶硅薄膜以及非晶硅薄膜太阳电池 §1-1 非晶态半导体物理基础 §1-2 非晶硅薄膜太阳电池基础知识 §1-3 非晶硅薄膜太阳电池生产线及制造工艺
Institute for Solar Energy System
Institute for Solar Energy System
理论上: 1957年,Anderson 定域化理论。 60年代,Mott-CFO 能带模型(Cohen, Fritzsche, Ovshinsky)。 1977年,Mott,Anderson 获诺贝尔奖。
Institute for Solar Energy System
电导激活能的变化说明了材料的费米能级随着掺杂 浓度的变化而被调制,表明确实可以对非晶硅进行 掺杂以控制它的导电类型和导电能力。
3. 非晶硅薄膜的制备
非晶硅薄膜的制备技术有很多,包括辉光放电等离子 体增强化学气相沉积(PECVD),热丝化学气相沉 积(HWCVD)和电子回旋共振等离子体化学气相淀 积(ECRCVD)技术等。其中最常用的是PECVD方 法。典型的PECVD装置由高频电源,反应腔体系
5. 结构分析方法
5.1 a-Si:H 红外吸收谱
振动模式分两类: 成键原子之间有相对位移。 键长有变化——伸缩模 (stretch); 键角有变化——弯折模 (bend). 成键原子之间无相对位移。 摆动(wag); 滚动(rock); 扭动(twist).
Institute for Solar Energy System
统,样品传输系统,真空抽气系统和反应气体流量控 制系统等几部分组成 。

非晶硅薄膜太阳能电池

非晶硅薄膜太阳能电池

一、引言太阳能光电转换电池主要分为两类,一类是晶体硅电池,包括单晶硅(sc—si)电池、多晶硅(mc—si)电池两种,它们占据约93%的市场份额;另一类是薄膜电池,主要包括非晶体硅(a—Si,使用的是硅,但以不同的形态表现)太阳能电池、铜铟镓硒(cICS)太阳能电池和碲化镉(cdTe)太阳能电池,这类电池占据7%的市场份额。

晶体硅太阳能电池一直是主流产品,其中多晶硅太阳能电池自l998年开始成为世界光伏市场的主角。

但是由于晶体硅太阳能电池所需的高纯多晶硅价格飙升,使得晶体硅电池价格上涨,为非晶硅太阳能电池带来了行业机会。

制造晶体硅类太阳能电池成本高、能耗大、有污染,要解决这些问题,使太阳能行业真正变成最环保的产业,只能大力发展非晶硅太阳能电池。

二、优点1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um的可见光波段,它的吸收系数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素.2.非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高.3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右.4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化.5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多三、原理非晶硅电池的工作原理是基于半导体的光伏效应。

当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL,VL与内建电势Vb相反,当VL=Vb时,达到平衡;IL=0,VL达到最大值,称之为开路电压Voc;当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL=0;当外电路加入负载时,则维持某一光电压VL 和光电流IL。

非晶硅太阳能电池基础知识

非晶硅太阳能电池基础知识
掉一部分红外光,臭氧滤掉一部分紫外光。 2)大气层外,太阳光谱的峰值在0.5μ附近 大气层的厚度在100公里左右。 大气层外“大气质量为0”为:AM0 太阳垂直照射在海平面“大气质量为1”为:AM1 太阳光与海平面的法线夹角60度时它通过大气的质量为:AM2 AM0太阳光谱总投射功率为:135.3mw/cm2 AM1太阳光谱总投射功率为:100mw/cm2 AM2太阳光谱总投射功率为:72—75mw/cm2 测试太阳电池的标准光强是:AM1.5 1000W/m2 温度为:25℃
由太阳电池的输出特性曲线可以看出:虽然在同样的光照下同一块太 阳电池负载不同,太阳电池的输出功率也不同,
A点:负载电阻RA,RA.VA/Id(1/RA的斜率)此时太阳电池的输出功率为: PA=Id*VA
B点:“负载电阻为RB的输出功率为PB=IdVB,显然PB>PA P点:输出功率最大,Vm=Im-Vm称作
ቤተ መጻሕፍቲ ባይዱ
1、晶体硅太阳电池 2、非晶硅太阳电池
1、短路电流Isc ----- 在一定的光照下通常取AM1.5=100mw/cm²输 出端短路时,太阳电池的输出电流。
2、开路电压Voc---在一定的光照(AM1.5)输出端开路时,太阳电池 的两端的电压。
3、填充因子 FF 填充因数FF定义为:FF=Pm / (Isc * Voc) =(Im * Vm) /
非晶硅太阳能电池基础知识
太阳能电池是能把光能直接转换成电能的半导体器件,主要是 半导体材料制造成的。
太阳电池把光能转化成电能,包括下面三个过程; 1、太阳光或其他光照射到太阳能电池的表面。 2、太阳能电池的半导体能吸收光子,并激发出电子-空穴对,
这些电子空穴对被太阳电池的内建场分离,分离的条件: a、有内建电场; b、电子空穴有足够长的寿命和迁移率,使μt足够大, μt

非晶硅太阳电池的原理

非晶硅太阳电池的原理

非晶硅太阳电池的原理非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。

2).可连续、大面积、自动化批量生产。

3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。

4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。

5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。

1.非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。

为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。

国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。

在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。

1.1 工作原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。

当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场V b 的作用下,光生电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势V L , V L 与内建电势V b 相反,当V L = V b 时,达到平衡; I L = 0, V L 达到最大值,称之为开路电压V oc ; 当外电路接通时,则形成最大光电流,称之为短路电流I sc ,此时V L= 0;当外电路加入负载时,则维持某一光电压V L 和光电流I L 。

其I--V 特性曲线见图3非晶硅太阳电池的转换效率定义为:P i 是光入射到电池上的总功率密度,I sc 是短路电流密度,FF 为电池的填充因子,V oc 为开路电压,I m 和 V m 分别是电池在最大输出功率密度下工作的电流密度和电压。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1讲课讲稿

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1讲课讲稿

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别硅太阳能电池的外形及基本结构如图1。

其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。

上表面为N+型区,构成一个PN+结。

顶区表面有栅状金属电极,硅片背面为金属底电极。

上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。

当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。

各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。

光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。

当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。

太阳能电池各区对不同波长光的敏感型是不同的。

靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。

电池基体域产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。

2.单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成PN结。

npn的利用原理及合理利用措施。

npn的利用原理及合理利用措施。

npn的利用原理及合理利用措施。

非晶硅(a-Si)/微晶硅(μc-Si)/非晶硅(a-Si)(a-Si/μc-
Si/a-Si)三层电池是一种光伏技术,也被称为非晶硅太阳能电池。

它的利用原理是,在这种太阳能电池中,a-Si透明导电层吸收
可见光,并将其传导到a-Si和μc-Si层。

a-Si层主要负责吸收
低能量的红外光,而μc-Si层主要负责吸收高能量的蓝色光。

在太阳能光子击中a-Si和μc-Si层时,光子的能量会通过a-Si
和μc-Si的p型和n型层形成电子和空穴。

这些电子和空穴会
被导电层捕获并转化为电流,从而产生电能。

合理利用措施包括:
1. 提高光吸收效率:采用多层结构,通过调整各层材料的带隙能力来增加光子的吸收。

2. 优化层次结构:根据不同的光子能量,调整a-Si和μc-Si层
的厚度和组成,以提高各层的光吸收和载流子收集效率。

3. 表面处理:通过在透明导电层上进行抗反射涂层或纳米纹理等表面处理,减少光的反射,提高光的吸收。

4. 智能跟踪系统:利用太阳能电池板的智能跟踪系统,根据太阳的位置和光照强度调整面板的角度,最大限度地吸收太阳能。

5.系统优化:在设计和安装太阳能电池系统时,优化组件布局、
避免阴影、最大限度地利用光能,并使用高效的反馈和控制系统来提高整体的能量转换效率。

这些措施有助于提高a-Si/μc-Si/a-Si电池的能量转换效率并实现更可持续的太阳能利用。

硅太阳能电池高级原理与实践

硅太阳能电池高级原理与实践

硅太阳能电池高级原理与实践硅太阳能电池是一种利用光能转化为电能的器件。

它能够将太阳光转换为电能,广泛应用于太阳能发电、太阳能照明等领域。

在本文中,将介绍硅太阳能电池的高级原理和实践,包括硅太阳能电池的工作原理、材料的选择、制备工艺、性能测试等内容。

硅太阳能电池主要由P型硅和N型硅组成。

P型硅含有少量的杂质,使其呈正电荷状态;N型硅含有大量的杂质,使其呈负电荷状态。

在太阳光照射下,光子被硅材料吸收后,会激发P型硅、N型硅的电子,从而产生电势差。

这种电势差称为光生电势,是硅太阳能电池产生电能的基础。

当硅太阳能电池被外加电路连接时,由于硅材料的PN结,电子会向P区移动,空穴会向N区移动,从而形成电流。

硅太阳能电池的输出电压与电池数量、电池面积、太阳辐照度等因素有关。

二、材料的选择硅太阳能电池的关键材料是硅。

硅是一种硬且脆的晶体,具有良好的导电性和光电性能。

硅太阳能电池的制备材料主要有单晶硅、多晶硅和非晶硅。

单晶硅具有晶体结构完整、杂质含量低等优点,制备难度较大,成本也比较高。

多晶硅材料中晶粒尺寸不同,不同晶粒的电子运动速度不同,可能会导致电子复合,从而影响效率。

非晶硅的杂质含量较高,但合成简单,成本较低。

三、制备工艺硅太阳能电池的制备过程包括硅片切割、钝化、金属化、渲染等工艺。

其中,钝化和金属化是关键步骤。

钝化是对硅片表面进行处理,使其形成一层致密的氧化层。

这一处理可以保护硅片表面免受外界的污染和损伤,并降低电子回流、电容效应等现象的影响。

金属化是在硅片表面涂上导电金属,形成电极,以便将其与外部电路连接。

通常使用的材料是铝、铜等高电导率材料。

渲染过程将P型硅和N型硅组合在一起,形成PN结。

硅太阳能电池经过渲染后,需要进行热处理,以消除内部应力和硅材料的缺陷。

四、性能测试硅太阳能电池的性能测试主要包括转换效率、开路电压、短路电流、填充因子等参数的测试。

转换效率是指太阳能电池从太阳光中转化为电能的比率,是衡量太阳能电池性能的关键指标。

单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池

单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池

单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池是目前应用最广泛的三种太阳能电池。

单晶硅太阳能电池是由单晶硅棒材制成,具有高转换效率和较长使用寿命,但制造成本较高;多晶硅太阳能电池是由多晶硅片制成,具有较低的转换效率和较短的使用寿命,但制造成本较低;非晶硅太阳能电池是由非晶硅薄膜制成,具有制造成本低、柔性好等优点,但转换效率较低。

由于三种太阳能电池各自的特点和优缺点不同,因此在实际应用中需要根据具体的需求进行选择。

- 1 -。

非晶硅太阳能电池工作原理及进展

非晶硅太阳能电池工作原理及进展

非晶硅太阳能电池工作原理及进展.txt生活是过出来的,不是想出来的。

放得下的是曾经,放不下的是记忆。

无论我在哪里,我离你都只有一转身的距离。

本文由yy19880602贡献 pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

维普资讯 、非晶硅太阳能电池工作原理及进展、/徐温元(开大学电子科学系)南自196年以来,晶硅基台金作为一种新型的电子材料,7非由于它的优异的光电特性,它在太阳能使电池及其他方面具有广泛的应用前景,而推动着人们对这羹材料特性进行深人研究。

近几年国际上从有关这方面的研究工作发展迅速,已形成一个新技术产业部门.非晶硅太阳能电池的转换效率和电弛面积也都有明显的提高和增太.本文综述了非晶硅材料特性,电池工作原理及最近发展.一、非晶硅材料特性移率虺非晶硅基合金材料包括氢化非晶硅as:—i了H、非晶碳化硅aSxH、非晶氮化硅-iC:s1i…N:H、非晶锗硅aSl—i…Ge:等一系列H犍材料.类台金均可在较低的温度下(3O)这<0℃以等离子化学气相沉积方法(CVPD)在较广泛的衬底材料(玻璃、属、高温塑料)生如金及上成大面积薄膜.1非晶硅舍金的带隐及悬挂键.远程无序的.对理想晶态半导体来说,我们已卷市崖(m ?ePc)图l非晶态半导体态密宦分布示意图带隙宽度.非晶硅的带隙宽度约等于17V,.e同.这种不同与非晶硅中含有1%以上的氢0非晶硅与晶体硅不同之处是其原子排列是晶体硅的带隙宽度为1IV,二者有明显的不.c能用能带理论阐明其导电机理,即电子或空穴有关.再者,在非晶硅中掺人适量的锗(e、若G)可“由”运动于扩展的导带或价带之中,并碳(或氮O,可以形成不同的硅基合金即自地c)N)则具有较高的迁移率,而处于导带和价带之间的非晶锗硅合金禁带态密度为零.对非晶态半导体来说,由于aSl—i…C:Has—i一Gc:非晶碳硅台金H,或非晶氮硅台金asl—i…N:H.原子排列非长程有序,即材料中存在着各种不各种合金的带隙宽度随掺人量(的变化而变.)完整性(键长、角不相等和材料中存在空洞表1列出几种常见合金的带隙宽度.从迁移率如键或E,内分布的带尾的态密度近似以指向等)导致在描述非晶态导电机理时虽也有类似边E,于晶态的导带和价带,但它分成扩展态和局域数规律降到~1“c? V的悬挂键态密度./me0态.在扩展态中,子和空穴的迁移率明显低所谓悬挂键是指非晶硅中的而电s原子未成共价i110/9于晶态材料,只相当于晶态材料载流子迁移率键的电子态.由射频溅射或电子束蒸发方法制的I%或更低.谓局域态即载流子不能在其中备的非晶硅膜,其悬挂键态密度可高达所输运的一种态,而且载流子是连续分布于导带ce由等离子体化学沉积法制备的非晶mV.或价带附近,故局域态又称为带尾,如图I所硅膜中含有大量的氢,可有效地与非晶硅中的示.带尾的宽窄与原子排列无序程度有关,即悬挂键结合形成s—键,使悬挂键态密度降iH无序程度愈高带尾分布愈宽.低.悬挂键分布在带隙的中部,并起复合中心图中E,E,迁移率边,占到占.间称的作用.悬挂键态密度越低,则材料的载流子称之物理655 ?维普资讯 表I几种非晶志半导体的帝隙宽度可使此材料成为p型或n型的导电材料,其电导率可增至约l-( ? m)02Qc~.对于台有微晶成分的非晶硅材料,电导率可更高.其Cure(S(晶)!s≈CJ)多i寿命越长.对于高质量的非晶硅材斟,其悬挂键态密度可低于l“c/me0V.嚣表l中各种非晶硅基合金()量从01分.逐渐增加时,带隙宽度也逐渐增大.其z戢流子的输运过程.非晶硅材粒受光照或外电场注人时将产生菲平衡载流子,这些载流子在被复合之前在扩展态输运过程中,有一部分载流子将被带尾局域态所陷获,而被陷的载流子由于声子协助可重新激发回到扩展态.这种过程在载流子通过材料时可多次重复发生,直至载流子穿通材料崔波长^r)n图2非晶硅基合金与晶体硅光吸收系敲的比较达到另一电极.由于这种多次陷阱效应,导致3光吸收特性.了载流子迁移率的下降.对未掺杂的本征非晶导率为l-一1( ? m)Ot0Qc~.通过掺硼或磷非晶硅基合金材料的光吸收特性与晶体硅由图2可以看出,非晶硅在可见光部分比晶硅材料来说,是电子导电,般用i示,电材料差别很大,2给出几种材料的光吸收谱.这一表图侣/钛-’200A~_GI020A1B.ODIAp.10A0aeHS:TC0图3()I玻璃为衬康的单结电}(为玻璃,TC为so镀面透明导电膜,a三【电GOnB为缓冲层,n为掺磷n型电于导电材料,p为掺礤P型空穴导电材料,,(,+’钼钍^ITi为背电敏,燕上1—2置的钍再蒸铝,)先00可得到较好的欧姆接触);【)b以不锈钢为衬雇的单结电}(为不镑钢衬雇,IO为氧化镏锡遗明导电膜)电sT;f)叠层电她(电他为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非晶硅太阳电池的原理
2008-10-17 15:44
非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:
1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。

2).可连续、大面积、自动化批量生产。

3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。

4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。

5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。

1.非晶硅太阳电池的结构、原理及制备方法
非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。

为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。

国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。

在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。

1.1 工作原理 非晶硅太阳电池的工作原理是基于半导体的光伏效应。

当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场V b 的作用下,光生
电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势V L , V L 与内建电势V b 相反,当V L = V b 时,达到平衡; I L = 0, V L 达到最大值,称之为开路
电压V oc ; 当外电路接通时,则形成最大光电流,称之为短路电流I sc ,此时V L= 0;当外电路加入负载时,则维持某一光电压V L 和光电流I L 。

其I--V 特性曲线见图3
非晶硅太阳电池的转换效率定义为:
P i 是光入射到电池上的总功率密度,I sc 是短路电流密度,FF 为电池的填充因子,
V oc 为开路电压,I m 和 V m 分别是电池在最大输出功率密度下工作的电流密度和电
压。

目前,子电池的开路电压约在0.8V—0.9V之间,I
sc
达到13mA/cm2,FF在0.7-0.8之间,η达到12%以上。

由于太阳光谱中的能量分布较宽,主要部分由0.3µm—1.5µm的波长范围组成。

现有的任何一种半导体材料都只能吸收能量比其能隙值高的光子,即只能在一有限波段转换太阳能量,故单结太阳电池不可能完全有效地利用太阳能。

采用分波段利用太阳能光谱的叠层电池结构则是有效提高光电转换效率的有效方法之一,而且也是主要趋势。

叠层太阳电池的结构见图4。

目前常规的叠层电池结构为
a-Si/a-SiGe, a-Si/a-Si/a-SiGe, a-Si/a-SiGe/a-SiGe, a-SiC/a-Si/a-SiGe 等.
1.2非晶硅太阳电池的制备
图5是非晶硅太阳能电池制备方法示意图,把硅烷(SiH4)等原料气体导入真空度保持在10—1000Pa的反应室中,由于射频(RF)电场的作用,产生辉光放电,原料气体被分解,在玻璃或者不锈钢等衬底上形成非晶硅薄膜材料。

此时如果原料气
体中混入硅烷(B
2H
6
)即能生成P型非晶硅,混入磷烷(PH
3
)即能生成N型非晶硅。

仅仅用变换原料气体的方法就可生成pin结,做成电池。

为了得到重复性好、性能良好的太阳电池,避免反应室内壁和电极上残存的杂质掺入到电池中,一般都利用隔离的连续等离子反应制造装置,即p,i,n各层分别在专用的反应室内沉积。

2.非晶硅太阳电池的应用
非晶硅太阳电池的应用市场有两个方面:一个是弱光电池市场,如计算器、手表等荧光下工作的微功耗电子产品;二是电源及功率应用领域。

如太
阳能收音机、太阳帽、庭园灯、微波中继站、航空航海信号灯、气象监测及光伏水泵、户用电源等。

随着非晶硅电池稳定效率的不断提高以及生产规模的不断扩大、成本的大幅度下降,促进了非晶硅太阳电池更大范围和更大规模的应用。

相关文档
最新文档