第二章整式的加减化简求值专项练习
沪科版七年级数学上册(HK)-第2章 整式的加减 第二章 专题训练(三) 整式化简求值的方法
-2=4.
类型三 利用无关变量求值
7.若代数式x2+ax-(bx2-x-3)的值与字母x无关,则a-b的值
为
(B )
A.0 B.-2 C.2 D.1 8.已知:A=2x2+3xy-5x+1,B=-x2+xy+2. (1)求A+2B; (2)若A+2B的值与x的值无关,求y的值. 解:(1)∵A=2x2+3xy-5x+1,B=-x2+xy+2,∴A+2B=(2x2+3xy -5x+1)+2(-x2+xy+2)=2x2+3xy-5x+1-2x2+ቤተ መጻሕፍቲ ባይዱxy+4=5xy-5x +5; (2)∵A+2B的值与x的值无关,且A+2B=(5y-5)x+5,∴5y-5=0, 解得y=1,则y的值是1.
类型四 利用非负性化简求值 9.先化简,再求值:已知a,b满足(a+2)2+|b+1|=0,求3a2b- [2ab2+3(ab2+a2b-2)]的值.
解:原式=3a2b-2ab2-3ab2-3a2b+6=-5ab2+6,∵(a+2)2+|b+ 1|=0,∴a+2=0,b+1=0,解得a=-2,b=-1,则原式=10+6= 16.
第二章
整式加减
专题训练(三) 整式化简求值的方法
类型一 先化简再求值 1.先化简,再求值: (1)(2x-3y)+(5x+4y),其中x=-1,y=9; 解:原式=2x-3y+5x+4y=7x+y,当x=-1,y=9时,原式=-7+ 9=2; •(2)4x2y-[3xy-2(3xy-2)+2x2y],其中x=2,y=-1. 原式=4x2y-(3xy-6xy+4+2x2y)=4x2y-3xy+6xy-4-2x2y=2x2y +3xy-4,当x=2,y=-1时,原式=2×4×(-1)+3×2×(-1)-4 =-8-6-4=-18.
专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册
七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
人教版 七年级整式的加减--化简求值专项练习(含答案)
整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab ﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x 的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b 2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y ﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x ﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x ﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a ﹣b+a+b ﹣a+b+a+b ﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y ﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。
数学七年级上册第二章整式的加减专题训练(5)整式化简求值的常见类型课件 新人教版
类型二 化简后整体代入求值 2.先化简,再求值:(4a2-5ab+b2)-(2a2-3ab+3b2),其中a2-b2=5, ab=2. 解:原式=2a2-2b2-2ab=2(a2-b2)-2ab,当a2-b2=5,ab=2时, 原式=6
(2)5ab-2[3ab-(4ab2+12 ab)]-5ab2,其中 a=12 ,b=-23 ; 解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2. 解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1)=6x2+9xy-6x -3-6x2+6xy-6=15xy-6x-9
(2)原式=(15y-6)x-9,因为其值与 x 无关,
+5-(3x2y2+23 x2y-3x2y2+5xy2+2)=23 x2y+5xy2+5-3x2y2-23 x2y+3x2y2
-5xy2-2=(23 x2y-23 x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,所以 结果总是定值,与 x,y 的取值无关
10.老师布置了这样一道题:化简求值:3(x2-2x2y)-[3x2-y2+2(- 4x2y+y2)],其中x=-4,y=2.在计算过程中,小马虎把x=-4抄成了x= 4,结果也是对的,请你解释其中的原因并算出结果.
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版七年级数学上册作业课件 第二章 整式的加减 专题训练(四) 整式化简求值的常见类型
4.已知2x2+xy=10,3y2+2xy=6,求4x2+8xy+9y2的值. 解:原式=4x2+2xy+6xy+9y2=2(2x2+xy)+3(3y2+2xy)=2×10+3×6=38 5.已知当x=2时,多项式-ax3-[8-(bx+2ax3)]的值为5,求当x=-2时该多项式的值. 解:-ax3-[8-(bx+2ax3)]=ax3+bx-8, 当x=2时,原式=8a+2b-8=5,所以8a+2b=13; 当x=-2时,原式=-8a-2b-8=-(8a+2b)-8=-13-8=-21
11.已知关于x,y的多项式(2bx2+ax-y+6)-(2x2-3x+5y-1)化简后不含x2项和x项, 求a,b的值. 解:原式=2bx2+ax-y+6-2x2+3x-5y+1=(2b-2)x2+(a+3)x-6y+7. 因为化简后不含x2项与x项,所以2b-2=0且a+3=0,则a=-3,b=1
12.已知A=2x2+3xy-2x-1,B=-x2+xy-1. (1)求3A+6B的值; (2)若3A+6B的值与x取值无关,求y的值. 解:(1)3A+6B=3(2x2+3xy-2x-1)+6(-x2+xy-1) =6x2+9xy-6x-3-6x2+6xy-6=15xy-6x-9 (2)原式=(15y-6)x-9.因为其值与 x 无关,所以 15y-6=0,则 y=25
解:原式=5ab-6ab+8ab2+ab-5ab2=3ab2, 当 a=12 ,b=-23 时,原式=23
(3)3x2y-[2x2y-3(2xy-x2y)-xy],其中 x=-12 ,y=2.
解:原式=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy= -2x2y+7xy,当 x=-12 ,y=2 时,原式=-2×(-12 )2×2+7×(-12 )×2=-8
整式的加减化简求值专项练习100题
- - -整式的加减化简求值专项练习100题1.先化简再求值:2〔3a2﹣ab〕﹣3〔2a2﹣ab〕,其中a=﹣2,b=3.2.先化简再求值:6a2b﹣〔﹣3a2b+5ab2〕﹣2〔5a2b﹣3ab2〕,其中.3.先化简,再求值:3x2y2﹣[5xy2﹣〔4xy2﹣3〕+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3〔a2b﹣ab2〕,其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+〔2y2﹣x2〕﹣3〔x2+2y2〕,其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣〔3x﹣5y〕+[4x2﹣〔3x2﹣x﹣y〕],其中.7.先化简,再求值:5x2﹣[x2+〔5x2﹣2x〕﹣2〔x2﹣3x〕],其中x=.8.先化简,再求值:〔6a2﹣6ab﹣12b2〕﹣3〔2a2﹣4b2〕,其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:〔﹣3x2﹣4y〕﹣〔2x2﹣5y+6〕+〔x2﹣5y﹣1〕,其中x、y满足|x﹣y+1|+〔x﹣5〕2=0.11.先化简,再求值:〔1〕5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;〔2〕〔2x3﹣xyz〕﹣2〔x3﹣y3+xyz〕﹣〔xyz+2y3〕,其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣〔2xy﹣x2y〕+xy,其中x=﹣1,y=﹣2.13.:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣〔4xy2﹣2x2y〕]的值.14.先化简,再求值:﹣9y+6x2+3〔y﹣x2〕,其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,假设|x﹣2a|+〔y﹣3〕2=0,且B﹣2A=a,求a的值.16.M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x〔1〕化简:4M﹣3N;〔2〕当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:〔1〕〔5x2﹣3x〕﹣2〔2x﹣3〕+7x2,其中x=﹣2;〔2〕2a﹣[4a﹣7b﹣〔2﹣6a﹣4b〕],其中a=,b=.18.先化简,再求值:5〔xy+3x2﹣2y〕﹣3〔xy+5x2﹣2y〕,其中x=,y=﹣1.19.化简:〔1〕〔9y﹣3〕+2〔y﹣1〕〔2〕求x﹣2〔x﹣y2〕+〔﹣x+y2〕的值,其中x=﹣2,y=.20.先化简,再求值:〔5a+2a2﹣3+4a3〕﹣〔﹣a+4a3+2a2〕,其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣〔b﹣a〕+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣〔2a2+2ab﹣b2〕+〔a2﹣ab﹣b2〕,其中a=3,b=﹣2.23.先化简再求值:3a2﹣〔2ab+b2〕+〔﹣a2+ab+2b2〕,其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2〔ab﹣a2b〕+ab〕+3ab2,其中a=3,b=﹣.25.3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2〔a2b+2ab2〕]的值.26.先化简,再求值:﹣8xy2+3xy﹣2〔xy2﹣xy〕,其中x=,y=﹣2.27.,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:〔1〕2A﹣B;〔2〕当时,2A﹣B的值.28.先化简,后计算:2〔a2b+ab2〕﹣[2ab2﹣〔1﹣a2b〕]﹣2,其中a=﹣2,b=.29.先化简,再求值:2〔a2﹣2ab〕﹣3〔a2+2ab〕,其中a=﹣1,b=2.30.A=4〔2﹣x2〕﹣2x,B=2x2﹣x+3.〔1〕当x=时,求A﹣2B的值;〔2〕假设A与2B互为相反数,求x的值.31.先化简再求值,a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[〔4ab2﹣a2b〕﹣3abc]的值.32.化简〔求值〕2〔x2y+xy2〕﹣2〔x2y﹣x〕﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2〔ab﹣3a2〕﹣[a2﹣5〔ab﹣a2〕+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+〔6a2﹣7a〕]﹣2〔a3﹣3a2﹣4a+b〕其中a=2,b=﹣1,35.先化简,再求值:〔5a2b+4b3﹣2ab2+3a3〕﹣〔2a3﹣5ab2+3b3+2a2b〕,其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:〔a2﹣3ab﹣2b2〕﹣〔a2﹣2b2〕,其中,b=﹣8.38.化简:,其中x=.39.化简求值:3〔x3﹣2y2﹣xy〕﹣2〔x3﹣3y2+xy〕,其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2〔xy﹣x2y〕+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣〔6mn2+mn〕]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[〔a2+b2〕﹣〔a2﹣b2〕],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2〔x2+2x﹣1〕﹣x+1,其中x=﹣2.44.化简求值:〔2x2﹣x﹣1〕﹣〔x2﹣x﹣〕+〔3x2﹣3〕,其中x=.45.化简求值:3〔x2﹣xy〕﹣5〔〕,其中x=﹣2,y=﹣3.46.先化简,再求值:9〔xy﹣x2y〕﹣2〔xy﹣x2y﹣1〕其中xy+1=0.47.先化简,再求值:4〔3x2y﹣xy2〕﹣2〔xy2+3x2y〕,其中x=,y=﹣1.48.x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣〔2x2+5xy﹣y2〕+2〔x2+3xy〕,其中x=﹣2,y=1.50.先化简,再求值:〔8xy﹣3x2〕﹣5xy﹣3〔xy﹣2x2+3〕,其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2〔a2﹣2a﹣1〕],其中a=﹣2.53.先化简﹣x2﹣〔3x﹣5y〕+[4x2﹣〔3x2﹣x﹣y〕],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3〔〕﹣〔5x2y﹣4xy2〕,其中x=2,y=﹣1.56.先化简,再求值,a=1,b=﹣,求多项式的值.57.先化简,再求值:3〔x2﹣xy〕﹣〔4x2﹣3xy﹣1〕,其中.58.先化简,再求值:,其中.59.先化简,再求值:2〔x2y﹣xy2﹣1〕﹣〔2x2y﹣xy2﹣y〕,其中x=2,y=﹣1.60.先化简,再求值:〔2m2n+2mn2〕﹣2〔m2n﹣1〕﹣3+mn,其中.61.先化简,再求值.3x﹣5〔x﹣2xy2〕+8〔x﹣3xy2〕,其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2〔xy2﹣x2y〕].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣〔a2﹣2ab﹣b2〕﹣〔5a2+2ab+3b2〕],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣〔5x2﹣x+1〕],其中x=3.67.先简化再求值:〔其中x=﹣2,y=〕68.先化简,再求值.2〔a2b+2b3﹣ab2〕+3a3﹣〔2a2b﹣3ab2+3a3〕﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2〔a2b+ab3〕﹣3〔a2b﹣3〕﹣2ab3﹣1,其中a=2,b=﹣2.70.a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2〔x2+xy﹣2y2〕﹣3〔x2﹣2xy+y2〕],其中x=﹣,y= 72.先化简,再求值:2x2+〔﹣x2+3xy+2y2〕﹣〔x2﹣xy+2y2〕,其中x=,y=3.73.先化简,再求值:〔2x2﹣5xy〕﹣3〔x2﹣y2〕+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2〔3a2b+ab2〕+〔4a2b﹣3b2〕,其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+〔5a2﹣3a〕﹣6〔a2﹣2a〕],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4〔xy﹣x2y〕+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2〔a2b+ab2〕﹣3〔a2b﹣3〕﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2〔3y2﹣2x〕﹣4〔2x﹣y2〕,其中|x﹣2|+〔y+1〕2=0.80.先化简,再求值,5x2﹣〔3y2+5x2﹣2xy〕+〔﹣7xy+4y2〕,其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足〔x﹣2〕2+|y+3|=0.82.先化简,再求值:2〔x2﹣3xy﹣y2〕﹣〔2x2﹣7xy﹣2y2〕,其中x=4,y=﹣1时.83.求代数式的值:2〔3xy+4x2〕﹣3〔xy+4x2〕,其中x=﹣3,.84.先化简,再求值:5〔a2b﹣ab2〕﹣〔ab2+3a2b〕,其中85.先化简,再求值:5〔3a2b﹣ab2〕﹣〔ab2+3a2b〕﹣4〔3a2b﹣ab2〕,其中a=﹣2,b=.86.先化简,再求值:〔a2b﹣2ab2﹣b3〕÷b+〔b﹣a〕〔b+a〕,其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣〔3m2+5m﹣2〕+2〔3m+m2﹣2m3〕﹣1,其中m=2011.89.先化简,再求值2〔3x2﹣x+4〕﹣3〔2x2﹣2x+3〕,其中.90.先化简,再求值.2〔2xy2﹣y2〕﹣〔4xy2+y2﹣x2y〕﹣y2,其中x=,y=﹣.91.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.92.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=93.ab2=-6,求-ab(a2b5-ab3-b)的值.94.a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.95.96.(x-1)(x+1)(x-2)(x-4)≡(x 2-3x)2+a(x 2-3x)+b ,求a ,b 的值.97.多项式x 4+mx 2+3x+4中含有一个因式x 2-x+4,试求m 的值,并求另一个因式.98.假设x 3-6x 2+11x-6≡(x-1)(x 2+mx+n),求m ,n 的值.99、计算,当a 6 = 64时, 该式的值100.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x。
整式的加减化简求值专项练习100题
整式的加减化简求值专项练习100题1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x3﹣xyz)﹣2(x3﹣y3+xyz)﹣(xyz+2y3),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.91.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.92.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=93.已知ab2=-6,求-ab(a2b5-ab3-b)的值.94.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.95.96.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.97.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.98.若x 3-6x 2+11x-6≡(x-1)(x 2+mx+n),求m ,n 的值.99、计算,当a 6 = 64时, 该式的值100.化简求值:22)2()2()2)(12(+---+-x x x x ,其中 211-=x。
第2章 整式的加减(压轴必刷30题4种题型专项训练)(原卷版)-2024-2025学年七年级数学上学
第2章整式的加减(压轴必刷30题4种题型专项训练)一.列代数式(共4小题)1.(2022秋•黄骅市校级期中)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π).2.(2022秋•上杭县期中)如图,长方形的长为a,宽为b,(1)用含a、b的代数式表示图中阴影部分的面积S阴影.(2)当a=5cm,b=2cm时,求S阴影.(π取3.14)3.(2022秋•曲阜市期中)一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?4.(2022秋•夷陵区期中)如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.二.代数式求值(共8小题)5.(2022秋•新野县期中)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为.输入…12345…输出……6.(2022秋•启东市校级月考)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值.7.(2022秋•兴化市校级月考)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价48元,乒乓球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球x盒(不小于5盒).问:(1)用代数式表示甲、乙两店购买所需的费用;(2)当需要40盒乒乓球时,通过计算,说明此时去哪家购买较为合算;(3)当需要40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.8.(2022秋•雁塔区校级月考)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.9.(2022秋•龙岗区期中)若a、b互为相反数,c、d互为倒数,|m|=3,求+m2﹣3cd+5m的值.10.(2022秋•徐州期中)某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:一等奖奖品二等奖奖品三等奖奖品单价/元12105数量/件x如果计划一等奖奖品买x件,买50件奖品的总价是y元.(1)先填表,再用含x的代数式表示y并化简;(2)若一等奖奖品买10件,则共花费多少?11.(2022秋•庄浪县期中)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?12.(2022秋•九龙坡区校级期中)已知|ab﹣2|与|a﹣1|互为相互数,试求下式的值:+++…+.三.整式的加减(共9小题)13.(2022秋•启东市期中)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4mcm B.4ncm C.2(m+n)cm D.4(m﹣n)cm14.(2022秋•上杭县校级月考)已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)(1)若A与B的和中不含x2项,求a的值;(2)在(1)的条件下化简:B﹣2A.15.(2022秋•立山区期中)王明在计算一个多项式减去2b2+b﹣5的差时,因一时疏忽忘了对两个多项式用括号括起来,结果得到的差是b2+3b﹣1,求出这个多项式并算出正确的结果.16.(2022秋•驻马店期中)已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.17.(2022秋•前郭县期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:﹣3x+2=x2﹣5x+1.(1)求所捂的二次三项式;(2)若请给x选择一个你喜欢的数代入,求所捂二次三项式的值.18.(2022秋•永州期中)由于看错了符号,某学生把一个代数式减去﹣3x2+3y2+4z2误认为加上﹣3x2+3y2+4z2,得出答案2x2﹣3y2﹣z2,你能求出正确的答案吗?(请写出过程)19.(2022秋•济南期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.20.(2022秋•吉林期中)某同学计算2x2﹣5xy+6y2减去某个多项式,由于粗心,误算为加上这个多项式,而得到﹣7y2﹣4xy+4x2,请你帮他求出正确的答案.21.(2022秋•营口期中)回答问题:(1)求整式(a2+4ab﹣5)的2倍与整式(a2﹣6ab+9)的差.(2)若(a﹣6)2+|b+|=0,求(1)中所求整式的值.四.整式的加减—化简求值(共9小题)22.(2022秋•永春县校级月考)阅读材料:对于任何数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2(1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当|m+3|+(n﹣1)2=0时,的值.23.(2022秋•定远县校级月考)(1)先化简,再求值:当(x﹣2)2+|y+1|=0时,求代数式4(x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值;(2)关于x的代数式(x2+2x)﹣[kx2﹣(3x2﹣2x+1)]的值与x无关,求k的值.24.(2022秋•洛龙区期中)化简求值:若(x+2)2+|y﹣|=0,求5x2﹣[2xy﹣3(xy+2)+4x2]的值.25.(2022秋•江阴市期中)先化简,再求值:已知|a﹣2|+(b+1)2=0,求代数式5(3a2b﹣ab2﹣1)﹣(ab2+3a2b ﹣5)的值.26.(2022秋•和平区校级期中)已知|a﹣2|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]的值.27.(2022秋•前郭县期中)化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b的值.28.(2022秋•湟中区校级期中)化简求值:2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5.29.(2022秋•祁阳县校级期中)先化简,后求值,已知:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m、n满足|m﹣1|+(n+2)2=0.30.(2022秋•九龙坡区校级期中)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2),其中(a﹣2)2+|b+|=0.。