STB5105-MBoard schematic

合集下载

清华紫光 文诚系列电脑 说明书

清华紫光 文诚系列电脑 说明书

文诚系列技术培训手册清华紫光台式电脑事业部技术支持部2004-06-01目录一、产品特点1.1优良的品质保证1.2出色的结构设计1.3可靠的安全维护二、文诚系列主机配置2.1文诚系列主机配置表三、主板技术规格3.1 精英P6VEMD2主板说明3.2 精英L4S5MG/GX+主板说明3.3 技嘉GA-8I845GV-CH2说明四、驱动程序安装4.1驱动光盘说明4.2驱动程序安装目录一、产品特点文诚系列电脑强调性能价格比,适用于教育、网吧等中低端用户,便于集中管理,统一维护。

1.1优良的品质保证1)通过国家3C认证;2)严格的部件优选体制,所有部件采用业界一线厂商的产品;3)周密的测试全集,保证部件的兼容性,同时保证系统的稳定性;4)五年保修。

1.2出色的结构设计1)立卧两用,根据不同空间随意放置;2)机箱面板模块化设计,根据不同的应用选取不同外观;3)良好的散热设计,确保立卧使用时系统内部热量有效、及时的散发;4)静音设计,减少部件共振,优化风道,降低噪音。

1.3可靠的安全维护1)集成硬盘保护功能,保证硬盘数据的安全,遭到破坏一键恢复;2)同一机型间网络传输功能,维护好一台机器即可通过网络对其他机器进行维护;3)自动维护,无人值班的情况下对整个网络环境中的机器机型维护;4)预留机箱锁孔,防止非法开启机箱。

二、文诚系列主机配置(一)文诚500 文诚800 文诚1000E 文诚1100文诚1200 CPU C3800Celeron 1.8GCeleron 1.8G Celeron 1.8G Celeron 1.8G主板 P6VEMD2L4S5MG/GX+ L4S5MG/GX+ L4S5MG/GX+GA-8I845GV-CH2内存Twinmos 128MDDR333Twinmos 128MDDR333Twinmos 128MDDR333Twinmos 128MDDR333Twinmos 128MDDR333硬盘SeagateST340015ASamsungSV0411N(40GB/5400PRM)SeagateST340015ASamsungSV0411N(40GB/5400PRM)SeagateST340015ASamsungSV0411N(40GB/5400PRM)光驱LG CR-8523B LG GCR-8523B软驱SamsungSFD-321BSamsungSFD-321BSamsungSFD-321B显示卡主板集成主板集成主板集成主板集成主板集成声卡主板集成主板集成主板集成主板集成主板集成网卡主板集成主板集成主板集成主板集成主板集成电源长城 1801-HP 长城 1801-HP 长城 1801-HP 长城 1801-HP 长城 1801-HPCPU风扇主板集成Cool MasterDI4-7H53B/DI4-7H54A-R2Cool MasterDI4-7H53B/DI4-7H54A-R2Cool MasterDI4-7H53B/DI4-7H54A-R2/EC203MBCool MasterDI4-7H53B/DI4-7H54A-R2/EC203MB机箱保利得 EN7472 保利得 EN7472 保利得 EN7472 保利得 EN7472 保利得 EN7472键盘精模 JME7010 精模 JME7010 精模 JME7010 精模 JME7010 精模 JME7010鼠标致伸 M042K0 致伸 M042K0 致伸 M042K0 致伸 M042K0 致伸 M042K0驱动光盘智能驱动光盘V2.0智能驱动光盘V2.0智能驱动光盘V2.0/2.1智能驱动光盘V2.0文诚系列主机配置(二)三、主板技术规格3.1文诚500采用的主板是:精英P6VEMD2,采用VIA CLE266 CE / VT8235 CD 芯片组。

LM5105中文资料

LM5105中文资料

LM5105100V Half Bridge Gate Driver with Programmable Dead-timeGeneral DescriptionThe LM5105is a high voltage gate driver designed to drive both the high side and low side N –Channel MOSFETs in a synchronous buck or half bridge configuration.The floating high-side driver is capable of working with rail voltages up to 100V.The single control input is compatible with TTL signal levels and a single external resistor programs the switching transition dead-time through tightly matched turn-on delay circuits.A high voltage diode is provided to charge the high side gate drive bootstrap capacitor.The robust level shift technology operates at high speed while consuming low power and provides clean output transitions.Under-voltage lockout disables the gate driver when either the low side or the bootstrapped high side supply voltage is below the op-erating threshold.The LM5105is offered in the thermally enhanced 10-pin LLP plastic package.Featuresn Drives both a high side and low side N-channel MOSFETn 1.8A peak gate drive currentn Bootstrap supply voltage range up to 118V DC n Integrated bootstrap diode n Single TTL compatible Inputn Programmable turn-on delays (Dead-time)n Enable Input pinn Fast turn-off propagation delays (26ns typical)n Drives 1000pF with 15ns rise and fall time n Supply rail under-voltage lockout nLow power consumptionTypical Applicationsn Solid State motor drivesn Half and Full Bridge power converters n Two switch forward power convertersPackagen LLP-10(4mm x 4mm)Simplified Block Diagram20137502FIGURE 1.February 2005LM5105100V Half Bridge Gate Driver with Programmable Dead-time©2005National Semiconductor Corporation Connection Diagram2013750110-Lead LLPSee NS Number SDC10AOrdering InformationOrdering Number Package TypeNSC Package DrawingSupplied AsLM5105SD LLP-10SDC10A 1000shipped as Tape &Reel LM5105SDXLLP-10SDC10A4500shipped as Tape &ReelPin DescriptionsPin Name DescriptionApplication Information1V DD Positive gate drive supply Decouple VDD to VSS using a low ESR/ESL capacitor,placed as close to the IC as possible.2HBHigh side gate driver bootstrap rail Connect the positive terminal of bootstrap capacitor to the HB pin and connect negative terminal to HS.The Bootstrap capacitor should be placed as close to IC as possible.3HO High side gate driver outputConnect to the gate of high side N-MOS device through a short,low inductance path.4HS High side MOSFET source connection Connect to the negative terminal of the bootststrap capacitor and to the source of the high side N-MOS device.5NC Not Connected6RDTDeadtime programming pinA resistor from RDT to VSS programs the turn-on delay of both the high and low side MOSFETs.The resistor should be placed close to the IC to minimize noise coupling from adjacent PC board traces.7EN Logic input for driver Disable/EnableTTL compatible threshold with hysteresis.LO and HO are held in the low state when EN is low.8IN Logic input for gate driver TTL compatible threshold with hysteresis.The high side MOSFET is turned on and the low side MOSFET turned off when IN is high.9V SS Ground returnAll signals are referenced to this ground.10LOLow side gate driver outputConnect to the gate of the low side N-MOS device with a short,low inductance path.L M 5105 2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.V DD to V SS–0.3V to+18VHB to HS–0.3V to+18VIN and EN to V SS–0.3V to V DD+0.3VLO to V SS–0.3V to V DD+0.3VHO to V SS HS–0.3V to HB+0.3VHS to V SS(Note6)−5V to+100VHB to V SS118VRDT to V SS–0.3V to5VJunction Temperature+150˚CStorage Temperature Range–55˚C to+150˚C ESD Rating HBM(Note2)2kVRecommended Operating ConditionsV DD+8V to+14V HS(Note6)–1V to100V HB HS+8V to HS+14V HS Slew Rate<50V/ns Junction Temperature–40˚C to+125˚CElectrical Characteristics Specifications in standard typeface are for TJ=+25˚C,and those in boldfacetype apply over the full operating junction temperature range.Unless otherwise specified,V DD=HB=12V,V SS=HS=0V,EN=5V.No load on LO or HO.RDT=100kΩ(Note4).Symbol Parameter Conditions Min Typ Max Units SUPPLY CURRENTSI DD V DD Quiescent Current IN=EN=0V0.340.6mAI DDO V DD Operating Current f=500kHz 1.653mAI HB Total HB Quiescent Current IN=EN=0V0.060.2mAI HBO Total HB Operating Current f=500kHz 1.33mAI HBS HB to V SS Current,Quiescent HS=HB=100V0.0510µAI HBSO HB to V SS Current,Operating f=500kHz0.1mAINPUT IN and ENV IL Low Level Input Voltage Threshold0.8 1.8VV IH High Level Input Voltage Threshold 1.8 2.2VR pd Input Pulldown Resistance Pin IN and EN100200500kΩDEAD-TIME CONTROLSVRDT Nominal Voltage at RDT 2.73 3.3VIRDT RDT Pin Current Limit RDT=0V0.75 1.5 2.25mA UNDER VOLTAGE PROTECTIONV DDR V DD Rising Threshold 6.0 6.97.4VV DDH V DD Threshold Hysteresis0.5VV HBR HB Rising Threshold 5.7 6.67.1VV HBH HB Threshold Hysteresis0.4VBOOT STRAP DIODEV DL Low-Current Forward Voltage I VDD-HB=100µA0.60.9VV DH High-Current Forward Voltage I VDD-HB=100mA0.85 1.1VR D Dynamic Resistance I VDD-HB=100mA0.8 1.5ΩLO GATE DRIVERV OLL Low-Level Output Voltage I LO=100mA0.250.4VV OHL High-Level Output Voltage I LO=–100mA,V OHL=V DD–V LO0.350.55VI OHL Peak Pullup Current LO=0V 1.8AI OLL Peak Pulldown Current LO=12V 1.6AHO GATE DRIVERV OLH Low-Level Output Voltage I HO=100mA0.250.4VV OHH High-Level Output Voltage I HO=–100mA,V OHH=HB–HO0.350.55VI OHH Peak Pullup Current HO=0V 1.8ALM51053Electrical Characteristics Specifications in standard typeface are for T J =+25˚C,and those in boldface typeapply over the full operating junction temperature range .Unless otherwise specified,V DD =HB =12V,V SS =HS =0V,EN =5V.No load on LO or HO.RDT=100k Ω(Note 4).(Continued)Symbol ParameterConditionsMinTyp MaxUnits I OLH Peak Pulldown CurrentHO =12V1.6ATHERMAL RESISTANCEθJAJunction to Ambient(Note 3),(Note 5)40˚C/WSwitching CharacteristicsSpecifications in standard typeface are for T J =+25˚C,and those in boldfacetype apply over the full operating junction temperature range .Unless otherwise specified,V DD =HB =12V,V SS =HS =0V,No Load on LO or HO (Note 4).Symbol ParameterConditionsMinTyp Max Units t LPHL Lower Turn-Off Propagation Delay 2656ns t HPHL Upper Turn-Off Propagation Delay 2656ns t LPLH Lower Turn-On Propagation Delay RDT =100k 485595705ns t HPLH Upper Turn-On Propagation Delay RDT =100k 485595705ns t LPLH Lower Turn-On Propagation Delay RDT =10k 75105150ns t HPLH Upper Turn-On Propagation Delay RDT =10k75105150ns t en ,t sd Enable and Shutdown propagation delay 28ns DT1,DT2Dead-time LO OFF to HO ON &HO OFF to LO ONRDT =100k 570µsRDT =10k 80MDT Dead-time matching RDT =100k 50t R ,t F Either Output Rise/Fall TimeC L =1000pF15t BSBootstrap Diode Turn-On or Turn-Off TimeI F =20mA,I R =200mA 50nsNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the component may occur.Operating Ratings are conditions under which operation of the device is guaranteed.Operating Ratings do not imply guaranteed performance limits.For guaranteed performance limits and associated test conditions,see the Electrical Characteristics tables.Note 2:The human body model is a 100pF capacitor discharged through a 1.5k Ωresistor into each pin.Pin 2,Pin 3and Pin 4are rated at 500V.Note 3:4layer board with Cu finished thickness 1.5/1.0/1.0/1.5oz.Maximum die size used.5x body length of Cu trace on PCB top.50x 50mm ground and power planes embedded in PCB.See Application Note AN-1187.Note 4:Min and Max limits are 100%production tested at 25˚C.Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC)methods.Limits are used to calculate National’s Average Outgoing Quality Level (AOQL).Note 5:The θJA is not a constant for the package and depends on the printed circuit board design and the operating conditions.Note 6:In the application the HS node is clamped by the body diode of the external lower N-MOSFET,therefore the HS voltage will generally not exceed -1V.However in some applications,board resistance and inductance may result in the HS node exceeding this stated voltage transiently.If negative transients occur on HS,the HS voltage must never be more negative than V DD -15V.For example,if V DD =10V,the negative transients at HS must not exceed -5V.L M 5105 4Typical Performance CharacteristicsV DD Operating Current vs Frequency Operating Current vs Temperature2013751020137511 Quiescent Current vs Supply Voltage Quiescent Current vs Temperature2013751220137513 HB Operating Current vs Frequency HO&LO Peak Output Current vs Output Voltage2013751620137517LM51055Typical Performance Characteristics(Continued)Diode Forward VoltageUndervoltage Hysteresis vs Temperature2013751520137518Undervoltage Rising Threshold vs Temperature LO &HO -High Level Output Voltage vs Temperature2013751920137520LO &HO -Low Level Output Voltage vs Temperature Input Threshold vs Temperature2013752120137522L M 5105 6Typical Performance Characteristics(Continued)Dead-Time vs RT Resistor ValueDead-Time vs Temperature (RT =10k)2013751420137526Dead-Time vs Temperature (RT =100k)20137527LM51057Timing DiagramsOperational NotesThe LM5105is a single PWM input Gate Driver with Enable that offers a programmable deadtime.The deadtime is set with a resistor at the RDT pin and can be adjusted from 100ns to 600ns.The wide deadtime programming range provides the flexibility to optimize drive signal timing for a wide range of MOSFETS and applications.The RDT pin is biased at 3V and current limited to 1mA maximum programming current.The time delay generator will accommodate resistor values from 5k to 100k with a deadtime time that is proportional to the RDT resistance.Grounding the RDT pin programs the LM5105to drive both outputs with minimum deadtime.STARTUP AND UVLOBoth top and bottom drivers include under-voltage lockout (UVLO)protection circuitry which monitors the supply volt-age (V DD )and bootstrap capacitor voltage (HB –HS)inde-pendently.The UVLO circuit inhibits each driver until suffi-cient supply voltage is available to turn-on the external MOSFETs,and the UVLO hysteresis prevents chattering during supply voltage transitions.When the supply voltage is applied to the V DD pin of LM5105,the top and bottom gates are held low until V DD exceeds the UVLO threshold,typically about 6.9V.Any UVLO condition on the bootstrap capacitor will disable only the high side output (HO).20137503LM5105Input -Output WaveformsFIGURE 2.20137504LM5105Switching Time Definitions:t LPLH ,t LPHL ,t HPLH ,t HPHLFIGURE 3.20137530LM5105Enable:t sdFIGURE 4.20137531LM5105Dead-time:DTFIGURE 5.L M 5105 8Operational Notes(Continued)LAYOUT CONSIDERATIONSThe optimum performance of high and low side gate drivers cannot be achieved without taking due considerations during circuit board layout.Following points are emphasized.1.A low ESR/ESL capacitor must be connected close tothe IC,and between V DD and V SS pins and between HB and HS pins to support high peak currents being drawn from V DD during turn-on of the external MOSFET.2.To prevent large voltage transients at the drain of the topMOSFET,a low ESR electrolytic capacitor must be con-nected between MOSFET drain and ground(V SS).3.In order to avoid large negative transients on the switchnode(HS)pin,the parasitic inductances in the source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier)must be minimized.4.Grounding considerations:a)The first priority in designing grounding connections isto confine the high peak currents from charging and discharging the MOSFET gate in a minimal physical area.This will decrease the loop inductance and mini-mize noise issues on the gate terminal of the MOSFET.The MOSFETs should be placed as close as possible to the gate driver.b)The second high current path includes the bootstrapcapacitor,the bootstrap diode,the local ground refer-enced bypass capacitor and low side MOSFET body diode.The bootstrap capacitor is recharged on the cycle-by-cycle basis through the bootstrap diode from the ground referenced V DD bypass capacitor.The re-charging occurs in a short time interval and involves high peak current.Minimizing this loop length and area on the circuit board is important to ensure reliable operation.5.The resistor on the RDT pin must be placed very close tothe IC and seperated from high current paths to avoid noise coupling to the time delay generator which could disrupt timer operation.POWER DISSIPATION CONSIDERATIONSThe total IC power dissipation is the sum of the gate driverlosses and the bootstrap diode losses.The gate driverlosses are related to the switching frequency(f),output loadcapacitance on LO and HO(C L),and supply voltage(V DD)and can be roughly calculated as:P DGATES=2•f•C L•V DD2There are some additional losses in the gate drivers due tothe internal CMOS stages used to buffer the LO and HOoutputs.The following plot shows the measured gate driverpower dissipation versus frequency and load capacitance.Athigher frequencies and load capacitance values,the powerdissipation is dominated by the power losses driving theoutput loads and agrees well with the above equation.Thisplot can be used to approximate the power losses due to thegate drivers.Gate Driver Power Dissipation(LO+HO)V CC=12V,Neglecting Diode Losses20137505 The bootstrap diode power loss is the sum of the forwardbias power loss that occurs while charging the bootstrapcapacitor and the reverse bias power loss that occurs duringreverse recovery.Since each of these events happens onceper cycle,the diode power loss is proportional to frequency.Larger capacitive loads require more current to recharge thebootstrap capacitor resulting in more losses.Higher inputvoltages(V IN)to the half bridge result in higher reverserecovery losses.The following plot was generated based oncalculations and lab measurements of the diode recoverytime and current under several operating conditions.Thiscan be useful for approximating the diode power dissipation.LM51059Operational Notes(Continued)Diode Power Dissipation V IN =80V20137506Diode Power Dissipation V IN =40V20137507The total IC power dissipation can be estimated from the above plots by summing the gate drive losses with the bootstrap diode losses for the intended application.Because the diode losses can be significant,an external diode placed in parallel with the internal bootstrap diode (refer to Figure 6)and can be helpful in removing power from the IC.For this to be effective,the external diode must be placed close to the IC to minimize series inductance and have a significantly lower forward voltage drop than the internal diode.HS Transient Voltages Below GroundThe HS node will always be clamped by the body diode of the lower external FET.In some situations,board resis-tances and inductances can cause the HS node to tran-siently swing several volts below ground.The HS node can swing below ground provided:1.HS must always be at a lower potential than HO.Pulling HO more than -0.3V below HS can activate parasitic transistors resulting in excessive current to flow from the HB supply possibly resulting in damage to the IC.The same relationship is true with LO and VSS.If necessary,a Schottky diode can be placed externally between HO and HS or LO and GND to protect the IC from this type of transient.The diode must be placed as close to the IC pins as possible in order to be effective.2.HB to HS operating voltage should be 15V or less .Hence,if the HS pin transient voltage is -5V,VDD should be ideally limited to 10V to keep HB to HS below 15V.3.A low ESR bypass capacitor between HB to HS as wellas VCC to VSS is essential for proper operation.The capacitor should be located at the leads of the IC to minimize series inductance.The peak currents from LO and HO can be quite large.Any series inductances with the bypass capacitor will cause voltage ringing at the leads of the IC which must be avoided for reliable op-eration.L M 5105 10LM5105 Operational Notes(Continued)LM5105Driving MOSFETs Connected in Half-Bridge Configuration Array20137508FIGURE6.11Physical Dimensionsinches (millimeters)unless otherwise notedNotes:Unless otherwise specified1.Standard lead finish to be 200microinches/5.00micrometers minimum tin/lead (solder)on copper.2.Pin 1identification to have half of full circle option.3.No JEDEC registration as of Feb.2000.LLP-10Outline Drawing NS Package Number SDC10ANational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L M 5105100V H a l f B r i d g e G a t e D r i v e r w i t h P r o g r a m m a b l e D e a d -t i m e。

ARTISAN TECHNOLOGY GROUP 设备购买、维修与售卖说明书

ARTISAN TECHNOLOGY GROUP 设备购买、维修与售卖说明书

Agilent 81689A / 81689B / 81649A Compact Tunable Laser Modules Technical SpecificationsFebruary 2002The 81689A, 81689B, 81649A compact tunable lasermodules offer superior performance now also in the compactmodule class. As they are tunable with continuous outputpower, they are the most flexible stimulus for the test ofoptical amplifiers, DWDM components as well as for the testof complete DWDM systems.Compact tunable lasers for C-and L-bandThe Agilent 81689A and 81689B modules operate in the C-band from 1525 nm to 1575 nm, whereas the Agilent 81649A covers the L-band from 1570 nm to 1620 nm.Test of optical amplifiersA variable amount of the compact, yet fully remote controlled Agilent 81689A, 81689B and 81649A tunable laser modules, in combination with the 81682A and 81642A high power Tunable Laser, is the ideal solution to characterize optical amplifiers for use in DWDM applications. The 81689A, 81689B and 81649A compact tunable laser modules provide the high stimulus power needed to test today's optical amplifiers. Together with the 81651A optical attenuator module, an output power dynamic range of more than60 dB can be achieved. Even without the attenuator module the power can be attenuated by 9dB (10dB for 81689B) e.g. to equalize power levels of several sources. Polarization Maintaining Fiber for the test of integrated optical devicesThe 81689A, 81689B and 81649A modules are ideally constructed to characterize integrated optical devices. Their optional Panda PMF output ports provide a well defined state of polarization to ensure constant measurement conditions on waveguidedevices. A PMF cable easily connectsan external optical modulator.The 81689A, 81689B and 81649A isavailable with both, standard single-mode fiber and Panda type PMF.Compact module for DWDMmulti-channel testThe 81689A, 81689B and 81489Aallow a realistic multi-channel test bedfor DWDM transmission systems to beset up.Their flexibility make them thepreferred choice for tests of DWDMtransmission system during installationand maintenance phases.Compact spare for DFBmodules in ITU gridsThe 81689B for the first time solvesthe sparing nightmare for users ofDWDM combs. In combination with acomb of 81662A DFB lasers the81689B can replace any DFB between1525nm and 1575nm without powerpenalty.Remote control & PnPsoftware drivers for easyprocess automationIts continuous, mode-hop free tuningmakes it quick and easy to set even themost complex configurations to thetarget wavelengths and power levels,just by dialing or using the vernier keys.A 8163B mainframe can host2 compact tunable laser modules. Thisallows for the most compact C- and L-band stimulus solution available today.Each 8164B mainframe can host up tofour units of the 81689A, 81689B or81649A in its upper slots.The 8166B is most interesting for highchannel count solutions. Up to17 compact tunable laser modules canbe hosted here.The 81649A, 81689A and 81689B areproduced to ISO 9001 internationalquality system standard as part ofAgilent's commitment to continuallyincreasing customer satisfactionthrough improved quality control.Specifications describe theinstrument's warranted performance.They are verified at the end of a 2 mlong patchcord and are valid afterwarm-up and for the stated outputpower and wavelength ranges.Each specification is assured bythoroughly analyzing all measurementuncertainties. Supplementaryperformance characteristics describethe instrument’s non-warranted typicalperformance.Every instrument is delivered with acommercial certificate of calibrationand a detailed test report.For further details on specifications,see the Definition of Terms in AppendixC of the Compact Tunable Laser User'sGuide.81689A, 81689B, 81649A Compact Tunable Laser for Multi-channel test applicationsAgilent 81689A Agilent 81689B Agilent 81649A Wavelength range1525 nm to 1575 nm1525 nm to 1575 nm1570 nm to 1620 nm Wavelength resolution0.01 nm, 1.25 GHz at 1550 nm0.01 nm, 1.25 GHz at 1550 nm0.01 nm, 1.17 GHz at 1595 nm Absolute wavelength accuracy (typ.) [1]±0.3 nm±0.3 nm±0.3 nmRelative wavelength accuracy [1]±0.3 nm±0.15 nm±0.15 nmWavelength repeatability [1]±0.05 nm±0.05 nm±0.05 nmWavelength stability(typ., over 24 h at constant temperature)[1] (typ., over 1 h at constant temperature)[1]±0.02 nm±0.01 nm±0.005 nm±0.01 nm±0.005 nmTuning speed (typ.)<10 sec/ 50 nm<10 sec/ 50 nm<10 sec/ 50 nmLinewidth (typ.) [2]with Coherence Control ON (typ.) [2]20 MHz---< 20MHz>100MHz< 20MHz>100MHzOutput power (continuous power on duringtuning)≥ 6 dBm (1525 –1575nm)≥ 10 dBm (1525 –1575nm)≥ 6 dBm (1570 –1620nm) Minimum output power–3 dBm0 dBm–3 dBmPower stability (at constant temperature) [3]±0.03 dB over 1 hour,typ. ±0.06 dB over 24 hours ±0.015 dB over 1 hour,typ. ±0.0075 dB over 1 hour,typ. ±0.05 dB over 24 hours±0.015 dB over 1 hour,typ. ±0.0075 dB over 1 hour,typ. ±0.05 dB over 24 hoursPower repeatability (typ.) [3]±0.02 dB±0.02 dB±0.02 dB Power linearity±0.1dB±0.1dB±0.1dB Power flatness versus wavelength±0.3 dB±0.2 dB±0.2 dBSide-mode suppression ratio (typ.) [2]> 40 dB(1525 – 1575 nm at 0 dBm)> 45 dB(1525 – 1575 nm at ≥ 3 dBm)> 45 dB(1570 – 1620 nm at ≥ 0 dBm)Signal to source spontaneous emission ratio (typ.) [4]≥ 39 dB/ nm(1525 –1575 nm at 6 dBm)≥ 44 dB/ nm(1525 –1575 nm at 10 dBm)≥ 42 dB/ nm(1570 – 1620 nm at 6 dBm)Relative intensity noise (RIN, typ.)< -137 dB/Hz(100 MHz – 2.5 GHz, at +3 dBm)< -137 dB/Hz(100 MHz – 2.5 GHz, at +7 dBm)< -137 dB/Hz(100 MHz – 2.5 GHz, at +3 dBm)Dimensions75 mm H, 32 mm W, 335 mm D(2.8" x 1.3" x 13.2")75 mm H, 32 mm W, 335 mm D(2.8" x 1.3" x 13.2")75 mm H, 32 mm W, 335 mm D(2.8" x 1.3" x 13.2")Weight 1 kg 1 kg 1 kg[1]At CW operation. Measured with wavelength meter based on wavelength in vacuum.[2]Measured by heterodyning method.[3]500 ms after changing power.[4]Measured with optical spectrum analyzer at 1 nm resolution bandwidth.Listed optionsOption 021: standard single mode fiber,straight contact output connectorOption 022: standard single mode fiber,angled contact output connectorOption 071: polarization maintainingfiber, straight contact output connectorOption 072: polarization maintainingfiber, angled contact output connectorSupplementary performance characteristics ModulationInternal digital modulation50% duty cycle, 200 Hz to 300 kHz.>45% duty cycle, 300 kHz to 1 MHz. Modulation output (via Mainframe): TTL reference signal.External digital modulation> 45% duty cycle, fall time< 300 ns, 200 Hz to 1 MHz. Modulation input (via Mainframe):TTL signal.External analog modulation≥ ±15% modulation depth,5 kHz to 1 MHz.Modulation input: 5 Vp-p Coherence control(81649A/81689B)For measurements on components with 2 m long patchcords and connectors with 14 dB return loss, the effective linewidth results in a typical power stability of< ±0.025 dB over1 minute by reducing interference effects in the test setup.GeneralOutput isolation (typ.):38 dBReturn loss (typ.):55 dB (options 022, 072)40 dB (options 021, 071)Polarization maintaining fiber (Options071, 072)Fiber type: Panda.Orientation: TE mode in slow axis,in line with connector key.Extinction ratio: 16 dB typ.Laser class:Class IIIb according to FDA 21 CFR1040.10, Class 3A according to IEC 825- 1; 1993.Recommended re-calibration period:2 years.Warm-up time:< 40 min,immediate operation after boot-up.EnvironmentalStorage temperature:–20 °C to +70 °C (81689A)–40 °C to +70 °C (81689B, 81649A)Operating temperature:15 °C to 35 °CHumidity:< 80 % R.H. at 15 °C to 35 °CSpecifications are valid in non-condensingconditions.Laser Safety InformationAll laser sources specified by this datasheet are classified as Class 1Maccording to IEC 60825-1 (2001).All laser sources comply with 21 CFR1040.10 except for deviations pursuantto Laser Notice No. 50, dated 2001-July-26This page intentially left blankAgilent Technologies’Test and Measurement Support,Services, and AssistanceAgilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."Our PromiseOur Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.Your AdvantageYour Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.By internet, phone, or fax, get assistance with all your test & measurement needsOnline assistance:Related Agilent Literature:/coms/lightwaveAgilent 8163A Lightwave MultimeterPhone or Fax Agilent 8164A Lightwave Measurement SystemUnited States:Agilent 8166A Lightwave Multichannel System(tel)180****4844Technical Specificationsp/n 5988-1568ENCanada:(tel)187****4414Agilent 81662A DFB Laser(fax) (905) 206 4120Agilent 81663A DFB LaserAgilent Fabry Perot LaserTechnical SpecificationsEurope:p/n 5988-1570EN(tel) (31 20) 547 2323(fax) (31 20) 547 2390Agilent Power Sensor ModulesJapan:Agilent Optical Heads(tel) (81) 426 56 7832Agilent Return Loss Modules(fax) (81) 426 56 7840Technical Specificationsp/n 5988-1569ENLatin America:(tel) (305) 269 7500(fax) (305) 269 7599Agilent 8163A/B Lightwave MultimeterAgilent 8164A/B Lightwave Measurement SystemAustralia:Agilent 8166A/B Lightwave Multichannel System(tel) 1 800 629 485 Configuration Guide(fax) (61 3) 9210 5947p/n 5988-1571ENNew Zealand:Agilent 8163B Lightwave Multimeter(tel) 0 800 738 378Agilent 8164B Lightwave Measurement System(fax) 64 4 495 8950Agilent 8166B Lightwave Multichannel SystemTechnical SpecificationsAsia Pacific:p/n 5988-3924EN(tel) (852) 3197 7777(fax) (852) 2506 9284Product specifications and descriptions in this document subject to change without notice.Copyright © 2001 Agilent TechnologiesFebruary 12 20025988-3675EN。

STBB551中文资料

STBB551中文资料

SURFACE MOUNT BIDIRECTIONAL TRANSIENT VOLTAGE SUPPRESSOR
SMA (DO-214AC)
5.0 ± 0.15
4.5 ± 0.15
1.1 ± 0.3
1.2 ± 0.2 2.6 ± 0.15 2.1 ± 0.2
0.2 ± 0.07
2.0 ± 0.2
MECHANICAL DATA
Page 2 of 4
Rev. 04 : March 25, 2005
元器件交易网
ELECTRICAL CHARACTERISTICS
Rating at 25 °C ambient temperature unless otherwise specified Breakdown Voltage @ It ( Note 1 ) W orking Peak Reverse Voltage VRWM (V) 53.0 53.0 58.1 58.1 64.1 64.1 70.1 70.1 77.8 77.8 85.5 85.5 94.0 94.0 102 102 111 111 128 128 136 136 145 145 154 154 171 171 188 188 213 213 239 239 256 256 273 273 299 299 342 342 376 376 Maximum Reverse Leakage @ V RWM IR (µA) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Maximum Reverse Current IRSM (A) 4.7 4.7 4.3 4.3 3.9 3.9 3.5 3.5 3.2 3.2 2.9 2.9 2.6 2.6 2.4 2.4 2.2 2.2 2.0 2.0 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 0.9 0.9 0.9 0.9 0.8 0.8 Maximum Clamping Voltage @ IRSM VRSM (V) 85.0 85.0 92.0 92.0 103 103 113 113 125 125 137 137 152 152 165 165 179 179 207 207 219 219 234 234 246 246 274 274 301 301 344 344 384 384 414 414 438 438 482 482 548 548 603 603 Maximum Temperature Co-efficient of VBR (% / °C) 0.104 0.104 0.104 0.104 0.105 0.105 0.105 0.105 0.106 0.106 0.106 0.106 0.107 0.107 0.107 0.107 0.107 0.107 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110

Telemecanique Advantys STB智能分布式IO系统)

Telemecanique Advantys STB智能分布式IO系统)

现场总线技术正得到越来越广泛的应用并形成一种技术趋势为业内所接受。

随着各种国际、国家标准的确立,以及智能仪表的不断涌现,现场总线正逐渐进入到主流的过程控制领域。

由于在减少接线成本,简化安装,方便调试,降低维护费用等方面有着明显的优势,现场技术延长了控制系统的生命周期,有效的保护用户的投资。

Advantys STB系列产品是施耐德电气顺应市场发展趋势,为满足客户需求而提供的模块化IP20分布式I/O解决方案。

Advantys STB具有高度的开放性和灵活性,适合于任何应用。

开放性来自于它对7种主流现场总线/以太网技术的支持。

灵活性来自于对输入/输出系统,电缆连接系统以及电源管理系统的高度模块化设计。

Advantys STB 具有如下特征:- 基于先进的“控制岛”概念,每个“岛”最多可扩展为7个“段”,共计高达32个I/O模块- 可自由选择多达7种现场总线和网络协议连接PLC,iPC或PAC- 提供经济型和标准型两种可选模块类型,并且可以混合使用- 可根据实际需要选择模块类型,从2点到16点的数字量I/O模块和从1点到8点的模拟量模块- 网络接口模块(NIM)可通过Modbus 协议连接本地显示单元- 多种高性能专家模块用于连接Tego Power和Tesys U电动机启动控制器,扩展连接多达12个CANopen设备(TE Altivar变频器,Advantys FTB/FTM或第三方CANopen设备)- I/O模块支持热插拔- 易用的配置软件可完成控制岛模块配置,实现模块或系统的诊断- 可选配32K内存卡用于安全的存储配置信息,或快速的复制相同配置。

为适应Advantys STB在项目上的应用,并节约用户成本,继高密度数字量输入、输出模块后,施耐德继续推出高达8通道的各种模拟量输入、输出模块,作为现有产品的补充。

Ericsson DS-2250 Vertical Turbo Card 维护手册说明书

Ericsson DS-2250 Vertical Turbo Card 维护手册说明书

MAINTENANCE MANUALEDACS® VERTICAL TURBO CARDROA 117 2239ericssonzCopyright © Sepotember 1996,Ericsson Inc.SPECIFICATIONS*ITEM SPECIFICATION CURRENT DRAIN80 to 120 mAPOWER REQUIREMENTS+5 Vdc ±5%, 120 mA (maximum).+12 Vdc ±5%, 5 mA (maximum).-12 Vdc ±5%, 5 mA (maximum).MEMORY:VolatileNon-Volatile Inter-processor 64K bytes128K bytes in the DS-2250 microprocessors (battery powered) 8K bytes Dual PortCONNECTIONS RS-232 Serial Ports I/O Lines:InputsOutputs 96 pin DIN connector (P1) mating to VME backplane interface.Two (2), six pin modular RJ-12 connectors (J2 and J3)Two (2) Schmitt trigger lines with 100K ohm pull up to Vcc. Two (2) transistor buffered, open-collector lines with 100k ohm pull up to Vcc.All four (4) I/O lines diode clamped to within +0.5 Vdc above Vcc and -0.5 Vdc below ground.OSCILLATOR FREQUENCY11.0592 MHzINDICATORS (Operating Status)One red LED per DS-2250 microprocessorDIMENSIONS100 mm (high) x 220 mm )long)* These specifications are intended for use during servicing. Refer to appropriate Specification Sheet for the complete specification.INTRODUCTIONThe Vertical Turbo Card (ROA 117 2239) provides additional processing power and memory for the Ericsson Control Point Trunking Card (ROA 117 2240/3).The Turbo Card is manufactured using surface mount components. The card plugs into a Trunking Shelf along with the Control Point Trunking Card and the Simulcast Interface Card. Electrical connections are made by plugging the Turbo Card into the proper card slot which connects P1 into the shelf’s backplane.FRONT PANEL CONTROLS ANDINDICATORSThe Vertical Turbo Card’s front panel is shown in Figure 1 and described in the accompanying text.Figure 1 - Vertical Turbo Card Front PanelTable 1 - Connector ChartCIRCUIT ANALYSISThe Turbo Card consists of two independent microprocessor sections (See Figure 2). The heart of each section is a DS-2250 microprocessor, U1 or U2. In addition to its internal memory, each microprocessor has a 32K byte external RAM, U12 or U13. Each section also contains a 4K byte Dual Port RAM (DPRAM), U3 or U4, which provides the interface to the Trunking Card. A single oscillator, consisting of U14 and B1, provides the clock for both processors. Each processor uses one half of U8 to interface between its TTL I/O and its RS-232 serial port. When one of the processors triggers U9, it turns on either LED D1 or D2. A single input bit and a single output bit is available on each processor for I/O. The module has a single RESET button which resets both processors. LOAD/RUN circuits on each processor set the operating mode. Port 1 and INT 0 of both processors are tied together to provide a high speed parallel communication link between the two processors.Figure 2 - Turbo Card Block DiagramMICROPROCESSORS U1 and U2Microprocessors U1 and U2 are Dallas Semiconductor DS-2250 single-in-line package (SIP) modules. The DS-2250 is a special proprietary derivative of the Intel 8031 microprocessor containing the basic 8031 structure, a bootstrap loader, terminal interface, and internal control of 64K bytes of battery backed-up RAM. The RAM can be partitioned into two separate code and data areas, The code area can be write protected after it is initially loaded. An internal bit, ECE2, under program control alters the memory map allowing access to all available memory (see Figure 3). DUAL PORT RAMDual-port RAM (DPRAM) chips U3 and U4 interface with the Trunking Card's 8032 microprocessor (U1). One DPRAM port is connected to the Trunking Card and the other port is connected to either U1 or U2. To the Trunking Card, U3 and U4 appear as a single 8k byte memory block between addresses 0 and 1FFFH. To the Turbo Card microprocessor U1, U3 appears as a 4k byte RAM addressed from 0 to 0FFFH and likewise, U2 sees U4 as a 4k byte RAM addressed from 0 to 0FFFH. Thus, each microprocessor shares 4K bytes of memory with the Trunking Card processor. This permits the efficient exchange of data between the Trunking Card and the Turbo Card. Integrated circuits U11-D and U10-D drive the output enable (read) input (RAM CS) from the Trunking Card, while U10-A, B, and C along with U11-A and B drive DPRAM chip enables origninating from the Trunking Card write command (WRBAR).RAM U12 AND U13As shown in Figure 3, when ECE2 is 0, each processor accesses a 32K RAM at addresses 8000H to FFFFH. These RAM's are on the Turbo Card, not in the DS-2250, thus they are not powered by the DS-2250 battery. This volatile memory space is used as a temporary scratch pad by the processors. U10-E and U10-F drive the RAM CE (chip enable), pins of U12 and U13 respectively, from bit 15 of the address bus. A low enables the RAM. OSCILLATOR CIRCUITU14 is an unbuffered CMOS inverter (74HCU04). In this application, U14-A functions as a linear gain stage with crystal B1 in its feedback path, forming an oscillator at 11.0592 MHz. U14-B buffers the clock and drives both processors' clock input pins.RESET CIRCUITSwitch S1 resets the Turbo Card and the Trunking Card's S4 resets the Trunking Card. The software will usually start properly with only an S4 Trunking Card reset; however, both boards may be resetDepressing the Turbo Card's S1 grounds R21, R22, and the positive side of C21. This turns on PNP transistors Q4 and Q7 pulling the RESET input of each processor high. In this logic state, the microprocessors are reset and not operating. When S1 is released, the voltage on C21's positive terminal and the bases of Q4 and Q7 slowly rises as C21 charges through R8, R15, R21, and R22. Eventually, this voltage rises high enough to turn Q4 and Q7 off allowing the processor RESET inputs to fall low. RESET is kept low at this point by R7 and R14. R8 and R15 hold Q4 and Q7 in the off condition.LOAD/RUN CIRCUITDuring normal operation (RUN mode), the processors' RESET inputs are held low and the PSEN output controls external memory. Each DS-2250 is put into the LOAD mode by holding its RESET pin high and pulling its PSENFigure 3 - Memory Map For Each DS-2250pin low.Switch S2 selects RUN/LOAD mode for processor U1. Moving S2 down shorts pins 2 and 3, placing U1 in the LOAD mode. This applies Vcc (5V) to R10 and R12. Vcc on R10 turns on Q8 which turns on Q7 through R9 pulling U1's RESET high. Vcc on R12 turns on Q6 which holds PSEN low. When S2 is up (shorting pins 1 and 2) the processor is in the RUN mode. Vcc is not applied to R10 and R12. Q8 is held off by R11 and Q7 is held off by R8 so RESET is pulled low by R7. Q6 is held off by R13 so PSEN is not held low and may become an output of U1.Switch S3 selects RUN/LOAD mode for processor U2. Moving S3 down shorts pins 2 and 3, placing U2 in the LOAD mode. This applies Vcc (5V) to R17 and R19. Vcc on R17 turns on Q5 which turns on Q4 through R16 pulling U2's RESET high. Vcc on R19 turns on Q3 which holds PSEN low. When S3 is up (shorting pins 1 and 2) the processor is in the RUN mode. Vcc is not applied to R17 and R19. Q5 is held off by R18 and Q4 is held off by R15 so RESET is pulled low by R4. Q3 is held off by R20 so PSEN is not held low and may become an output of U2. RS-232 INTERFACEThe RS-232 interfaces are used to program the DS-2250 modules and to interface to other serial devices in future applications (refer to the Programming Instructions). An Intel hex format file from a PC can be loaded into memory via the serial ports. This manual and the Software Release Notes (SRN) provide complete instructions for loading software in the field.U8 is a dual TTL-to-RS-232 duplex serial interface. Capacitors C1, C2, C3, and C4 are used by U8 to convert 5V signals to RS-232 levels. Section 1 converts U1's serial port to RS-232 and section 2 converts U2's serial port to RS-232. The serial output for U1 is at J2-2 and the input is at J2-1. The serial output for U2 is at J3-2 and the input is at J3-1.I/O BITSOne output bit from U1 is available. It is buffered by Q9 and drives out on P1-B21. Weak pull-up R30 holds P1-B21 high when Q9 is turned off by U1. One input bit to U1is available. It is buffered from P1-B20 by U15-A and protected from static and overdrive by D3 and R27. Weak pull-up R35 holds the input high when not in use.One output bit from U2 is available. It is buffered by Q10 and drives out on P1-B23. Weak pull-up R32 holds J P1-B23 high when Q10 is turned off by U2. One input bit to U2 is available. It is buffered from P1-B22 by U15-B and protected from static and overdrive by D4 and R31. Weak pull-up R36 holds the input high when not in use.LED INDICATORSLED D1 is controlled by processor U1. The processor must apply pulses to retriggerable one-shot (monostable multivibrator) U9 pin 4 about every half second or faster to keep the LED on. This provides a visual indication that the microprocessor is running. The pulse on U9-4 retriggers the output on U9-6 keeping Q1 on and LED D1 on. If the pulses don't appear before the one-shot times out, U9-6 will fall low turning Q1 and D1 off. R1 and C17 determine the drop-out time.LED D2 is controlled by processor U2. The processor must apply pulses to retriggerable one-shot (monostable multivibrator) U9 pin 12 about every half second or faster to keep the LED on. This provides a visual indication that the microprocessor is running. The pulse on U9-12 retriggers the output on U9-10 keeping Q2 on and LED D2 on. If the pulses don't appear before the one-shot times out, U9-10 will fall low turning Q2 and D2 off. R4 and C18 determine the drop-out time.HARDWARE INSTALLATIONInstallation or removal of the Turbo Card involves sliding the assembly into or out of the VME Shelf. This may be accomplished with power applied without damaging the assembly.When installing the Turbo Card, ensure the card is installed in the designated slot. Refer to the specific application drawings.SOFTWARE INSTALLATIONThe following procedures provide instructions for programming the Turbo Card using software provided with the software media kit, an IBM compatible personal computer (PC), and programming cable 19B804346P111.TURBO CARD SOFTWARE INSTALLATIONThis procedure provides instructions for downloading the Turbo software to an IBM PC or compatible personal computer.The Turbo software is distributed in the Turbo Media Kit diskette as multiple files. These files must be loaded into the PC such that they are co-located with the Trunking Card PC Programmer. Once loaded the new software becomes available for selection.Equipment Required• IBM PC/XT/AT or compatible with at least 640Kmemory, monitor and keyboard running MS-DOS version 3.3 or higher.• Two Disk Drives, a single 3-1/2 inch HD floppy and fixed (hard) drive.• Serial Port configured as either COM1 or COM2.• Parallel port for connection to a printer (optional,but recommended).• CPTC Software Media Kit AE/LZY 213 767/2.• Programming Cable, 19B804346P111 (DB-9 toRJ-12).• TQ-3357 V4.03 (or later) PC Programmer Procedure1. Run the Trunking Card PC Programmer (TQ-3357).2. Load the Turbo Distribution diskette in the disk drive.3. From the Current Personalities Screen, access theLOAD utility by selecting the F8 Utils , F8 Files and then the F1 Load . The “New File Loader” dialog box will appear.4. Enter the path to the Turbo Distribution diskette files.Figure 4 - Trunking Card PC Programmer Load File Menu5. The programmer will load all files , including the FieldMacros into the PC Programmer’s working directories.6. It is now possible to program the Turbo Card.Programming The Turbo CardThis procedure downloads the Turbo software to the microprocessors U1 and U2 on the Turbo board.1. Refer to TQ-3357 Chapter 4 - Upgrading Firmwarewith the Load1E Utility for complete instructions on downloading the Turbo software .2. Connect the Programming Cable, 19B804346P111,from the PC's serial port connector to the Turbo card input port connector U1 COM (see Figure 5).3. With power ON, move the Turbo Card RN/PG switchesto the PG position (toward the right). This places the processors U1 and U2 into the programming mode. If either switch is already in the PG position, move the switch to the RN position and then back to the PG position.4. The Turbo Card LEDs U1 (D1) and U2 (D2) shouldturn OFF indicating that the Turbo Card is in the programming mode.5. Execute the "load1e.exe " program on the PC andfollow the on screen instructions.6. The "load1e.exe " program loads the file "1etop.hex "Figure 5 - Turbo Card Programminginto the Turbo Card's upper half of memory for use by the processor U1.7. Monitor the PC's on screen instructions and prompts.8. When directed, move the programming cable from theU1 COM connector to U2 COM.9. After the cable is moved to U2 COM, the PC willindicate it is loading the "1ebot.hex" file into the Turbo Card's lower half of memory for use by the processor U2.10. Disconnect the programming cable upon successfulcompletion of the programming procedure and return the Turbo Card to the Normal operating mode. Returning To Normal Operating ModeUpon successful completion of the programming, the PC displays a "FINISHED - SWITCH S2 AND S3 TO THE REAR" message.1. Move the Turbo Card RN/PG switches to the RNposition (toward the left). This places the processors U1 and U2 into the run mode.2. Press S1 to reset the Turbo Card.3. The Turbo Card LEDs, U1 (D1) and U2 (D2), will lightindicating the code is executing.4. This completes the Turbo Card programming. If anyproblems were encountered or if any error messages were received, refer to the Error section below or Trouble Shooting section of this manual.ERRORSThe transfer process uses the file 1ECRC.HEX for error checking and verification. Any error during this procedure generally indicates a defective communication link between the PC and Turbo Card. If errors occur, check connectors and cables. Cycle the RN/PG switch from the PG to RN and back to PG. Repeat the programming sequence.Errors usually generate one or more of the following:• Error 1Did not receive sign-on banner fromDS-2250.• Error 2Did not receive CR-LF from DS-2250.• Error 3Did not receive prompt from DS-2250.• Error 4Did not receive CRC value from DS-2250.• Error 5Did not receive serial number fromDS-2250."Cannot open COM Port" - The PC's COM Port is non-existent or in use by other software or hardware. A PC re-configuration is required."Cannot open 'filename' " - Be sure file exists in the appropriate directory."Bad CRC" - A CRC error means that after loading, memory contents are incorrect or the wrong "1ecrc.Hex" file was used. If the "1ecrc.Hex" file is the same shipped with the software, a Turbo Card hardware problem is indicated."Wrong serial number-check cables" - If cabling is correct, DS-2250 microprocessors may have been swapped. The four byte serial number is printed to the screen to help in restoring DS-2250's to their proper locations. The serial numbers will be the same, except for least significant bit, for both DS-2250's The least significant bit must be logic 1 for the top DS-2250 (U1) and logic 0 for the bottom DS-2250 (U2)."Illegal serial number" - Serial number is either invalid, was never programmed, or has been erased.Serial NumberingAn error will occur when U1 and U2 are swapped. Each processor has a unique serial number with U1 having an odd serial number and U2 having a serial number one digit less than U1’s serial number. The PC’s on screen information displays the processors’ serial numbers for verification. The most significant digits of U1 and U2’s serial numbers must match.Do not swap U1 and U2 DS2250 microprocessors or take one DS-2250 from one Turbo Card and put it in another Turbo Card. However, it is permissible to swap DS-2250's as pairs if the U1 and U2 positions are maintained.TROUBLESHOOTINGIf a problem is traced to the Turbo Card, perform the following checks and inspections:• If an error message is received while loading the Turbo Card software, review ProgrammingInstructions - Errors section for possible correctiveaction.• Visually check for damaged parts, unsoldered pins or parts, broken cable or pins (P1), or unseated DS-2250 modules.• Look for trash in the SIP sockets. A magnifying glass or low power microscope is helpful.• Verify the RN/PG switch is in the RN position in the RUN condition.• Check +5, +12 and -12 volt lines.• With a high speed, high impedance scope, check for oscillations at U14-4. A somewhat flattenedsine wave of about 4V amplitude at 11.0592 MHzshould be seen.If the problem persists, substitute the Turbo Card with a known good Turbo Card. Ensure the substitute card has the correct software loaded.If the DS-2250 modules are suspect, substitute the modules with modules from a known good board. Be sure to put U1 from the good Turbo Card into XU1 of the suspect Turbo Card and likewise for U2. Remember to swap DS-2250's as pairs and reprogram the Turbo card if necessary.VERTICAL TURBO CARD ROA 117 2239(1/1078 ROA 117 2239, Sh. 1, Rev. A)Revision: DPRODUCTION CHANGESChanges in the equipment to improve performance or simplify circuits are identified by a "Revision Letter," which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the parts list for the descriptions of the parts affected by these revisions.R1A ROA 117 2239 - Initial production using 131-32 ROA 117 2239 Rev. C Parts List.R1B ROA 117 2239 - Changed part number for J2 and J3 from RNV 256 103 to RNV 403 19/06.U1, U2 - MICROCONTROLLER RYT 919 6004/1 (DS2250)U3, U4 - DUAL PORT RAM RYT 119 6100/1 (IDT7134SA70J)U5, U6 - 8X1 D LATCH RYT 306 6011/C (74HC573)CAUTION OBSERVE PRECAUTIONS FOR HANDLINGELECTROSTATICSENSITIVEDEVICESU9 - 2 X CMOS MONOSTABLE MULTI-VIBRATOR RYT 306 2024/C (74HC438)FUNCTION TABLEX = H or L = from L to H Vcc R RESET ATr A+Tr A-QA QA GNDA C A R RESETB Tr B+Tr B-QB QBB C B= from H to LU11 - 4X2 NAND GATE RYT 318 0000/C (74AC00)U14- 6 X INVERTER, SCHMITT TRIGGERRYT 306 6045/C (74HCU04)1234567(GND)141312111098(Vcc)TRUTH TABLEINPUTSOUTPUTS A1 (A2,A3,A4)B1 (B2,B3,B4)O1 (O2,O3,O4)L L H L H H H L H HHLGND6Y 5A 5Y 4A 4Y6A 1Y2A 2Y 3A 3Y 1A VccU12, U13 - 32K X 8 STATIC RAM RYT 119 6005/4C (EC155257AFL)A14A12A7A6A5A4A3A2A1A0I/01I/02I/03GNDV DD R/W A13A8A9A11A10I/08I/07I/06I/05I/04OUTLINE DIAGRAM AE/LZB 119 1887 R1AVERTICAL TURBO CARD(1078-ROA 117 2239, Sh. 1, Rev. A)This page intentionally left blankAE/LZB 119 1887 R1A SCHEMATIC DIAGRAMVERTICAL TURBO CARDROA 117 2239(1911-ROA 117 2239, Sh. 1, Rev. A)21VERTICAL TURBO CARD ROA 117 2239(1911-ROA 117 2239, Sh. 2, Rev. A)Ericsson Inc.Private Radio SystemsMountain View RoadLynchburg, Virginia 24502AE/LZB 119 1887R1A 1-800-528-7711 (Outside USA, 804-528-7711)Printed in U.S.A.AE/LZB 119 1887 R1A。

BCX51 52 53 PNP中间功率导电器SOT89数据手册说明书

BCX51 52 53 PNP中间功率导电器SOT89数据手册说明书

Features• BV CEO > -45V, -60V & -80V• I C = -1A Continuous Collector Current • I CM = -2A Peak Pulse Current• Low Saturation Voltage V CE(sat) <************• Gain Groups 10 and 16• Complementary NPN Types: BCX54, 55, and 56• Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) • Halogen- and Antimony-Free. "Green" Device (Note 3)•For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAPcapable, and manufactured in IATF 16949 certified facilities),please contact us or your local Diodes representative.https:///quality/product-definitions/Mechanical Data• Case: SOT89• Case Material: Molded Plastic, “Green” Molding Compound; UL Flammability Rating 94V-0• Moisture Sensitivity: Level 1 per J-STD-020•Terminals: Matte Tin Finish Leads; Solderable per MIL-STD-202 Method 208•Weight: 0.052 grams (Approximate)Applications • Medium Power Switching or Amplification Applications • AF Driver and Output StagesOrdering Information (Note 4)Product Compliance Marking Reel Size (inches)Tape Width (mm)Quantity per ReelBCX51TA Standard AA 7 12 1,000 BCX51-13R Standard AA 13 12 4,000 BCX5110TA Standard AC 7 12 1,000 BCX5116TA Standard AD 7 12 1,000 BCX5116TC Standard AD 13 12 4,000 BCX52TA Standard AE 7 12 1,000 BCX5210TA Standard AG 7 12 1,000 BCX5216TA Standard AM 7 12 1,000 BCX53TA Standard AH 7 12 1,000 BCX5310TA Standard AK 7 12 1,000 BCX5316TA Standard AL 7 12 1,000 BCX5316TC Standard AL 13 12 4,000 BCX5316-13R Standard AL 13 12 4,000 BCX5110TC Standard AC 13 12 4,000 BCX51TC Standard AA 13 12 4,000 BCX5210TC Standard AG 13 12 4,000 BCX5216TC Standard AM 13 12 4,000 BCX52TC Standard AE 13 12 4,000 BCX5310TC Standard AK 13 12 4,000 BCX53TCStandardAH13124,000Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.2. See https:///quality/lead-free/ for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, "Green" and Lead-free.3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.4. For packaging details, go to our website at https:///design/support/packaging/diodes-packaging/.Top View Device SymbolTop View Pin-Out SOT89E C BMarking InformationAbsolute Maximum Ratings (@ T A = +25°C, unless otherwise specified.)CharacteristicSymbol BCX51 BCX52 BCX53 Unit Collector-Base Voltage V CBO -45 -60 -100 V Collector-Emitter Voltage V CEO -45-60 -80V Emitter-Base Voltage V EBO -5 V Continuous Collector CurrentI C -1 A Peak Pulse Collector Current (Single pulse) I CM -2 Continuous Base CurrentI B -100 mAPeak Pulse Base Current (Single pulse) I BM-200Thermal Characteristics (@ T A = +25°C, unless otherwise specified.)CharacteristicSymbol Value Unit Power Dissipation(Note 5) P D1 W(Note 6) 1.5 (Note 7) 2.0 Thermal Resistance, Junction to Ambient Air (Note 5) R θJA 125 °C/W (Note 6) 83 (Note 7)60 Thermal Resistance, Junction to Lead (Note 8) R θJL 13 °C/W Thermal Resistance, Junction to Case (Note 9)R θJC 27 °C/W Operating and Storage Temperature Range T J, T STG-55 to +150°CESD Ratings (Note 10)CharacteristicSymbol Value Unit JEDEC ClassElectrostatic Discharge - Human Body Model ESD HBM 4,000 V 3A Electrostatic Discharge - Machine ModelESD MM400VCNotes: 5. For a device mounted with the exposed collector pad on 15mm x 15mm 1oz copper that is on a single-sided 1.6mm FR4 PCB; device is measured under still air conditions whilst operating in a steady-state.6. Same as Note 5, except the device is mounted on 25mm x 25mm 1oz copper.7. Same as Note 5, except the device is mounted on 50mm x 50mm 1oz copper.8. Thermal resistance from junction to solder-point (on the exposed collector pad).9. Thermal resistance from junction to the top of the case.10. Refer to JEDEC specification JESD22-A114 and JESD22-A115.xx = Product Type Marking Code, as follows:BCX51 = AA BCX52 = AEBCX53 = AH BCX5110 = AC BCX5210 = AG BCX5310 = AK BCX5116 = AD BCX5216 = AMBCX5316 = ALThermal Characteristics and Derating Information2550751001251500.00.20.40.60.81.0Derating CurveTemperature (°C) M a x P o w e r D i s s i p a t i o n (W )Transient Therm al Im pedanceT h e r m a l R e s i s t a n c e (°C /W )Pulse Width (s)Pulse Power DissipationPulse Width (s)M a x P o w e r D i s s i p a t i o n (W )Copper Area (sqmm)M a x i m u m P o w e r (W )Copper Area (sqmm)T h e r m a l R e s i s t a n c e (°C /W )Note:11. Measured under pulsed conditions. Pulse width ≤ 300µs. Duty cycle ≤ 2%.Typical Electrical Characteristics (@ T A = +25°C, unless otherwise specified.)-I , COLLECTOR CURRENT (A)C h ,D C C U R RE N T G A I NF E Fig. 2 Typical DC Current Gain vs. Collector CurrentDC Current Gain vs. Collector Current -V , COLLECTOR-EMITTER VOLTAGE (V)CE I , C O L L E C T O R C U R R E N T (A )CFig. 1 Typical Collector Current vs. Collector-Emitter VoltageCollector Current vs. Collector-Emitter Voltage -h FE V I CI C V V CETypical Electrical Characteristics (continued.)0.20.40.60.81.0-V , B A S E -E M I T T E R T U R N -O N V O L T A G E (V )B E (O N)-I , COLLECTOR CURRENT (A)C -V , C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E (V )C E (S A T )Fig. 4 Typical Collector-Emitter Saturation Voltagevs. Collector Current 0.20.40.60.81.01.2-V , B A S E -E M I T T E R S A T U R A T I O N V O L T A G E (V B E (S AT )-I , COLLECTOR CURRENT (mA)C f , G A I N -B A ND W I D T H P R O D U C T (M H z )T Fig. 6 Typical Gain-Bandwidth Product vs. Collector Current V , REVERSE VOLTAGE (V)R C A P A C I T A N C E (p F )Fig. 7 Typical Capacitance Characteristics -V B E (s a t ), B A S E -E M I T T E R S A T U R A T I O N V O L T A G E )-V B E (o n ), B A S E -E M I T T E R T U R N -O N V O L T A G E (V )-V C E (s a t ) , C O L L E C T O R -E M I T T E RC v V RVCE(sat) V I Cf T V I CPackage Outline DimensionsPlease see /package-outlines.html for the latest version.SOT89SOT89Dim Min Max TypA 1.40 1.60 1.50B 0.50 0.62 0.56B1 0.42 0.540.48c 0.35 0.43 0.38D 4.40 4.60 4.50D1 1.62 1.83 1.733D2 1.61 1.81 1.71E 2.40 2.60 2.50E2 2.05 2.35 2.20e - - 1.50H 3.95 4.25 4.10H1 2.63 2.93 2.78L 0.90 1.20 1.05L1 0.327 0.527 0.427z 0.20 0.40 0.30All Dimensions in mmSuggested Pad LayoutPlease see /package-outlines.html for the latest version.SOT89Dimensions Value(in mm)C 1.500G 0.244X 0.580X1 0.760X2 1.933Y 1.730Y1 3.030Y2 1.500Y3 0.770Y4 4.530TOP VIEW。

爱克斯板开发者套件数据手册说明书

爱克斯板开发者套件数据手册说明书

规格书
概述 CPU GPU 内存 存储 存储扩展 BIOS 系统支持 推理单元 CPU iGPU GNA I/O 接口 以太网 USB 无线模组 电源输入
其他
显示
显示接口
英特尔赛扬 N5105 2.0-2.9GHz (formerly Jasper Lake) 英特尔 UHD 集成显卡 24 个执行单元 450MHz-800MHz 板载 LPDDR4x 2933MHz, 4GB/6GB/8GB 板载 64GB eMMC 存储 1 * M.2 Key-M 2242, Support SATA&NVME AMI UEFI BIOS Ubuntu Windows 10/11
85x85mm Operation: 0℃ - 45℃ Storage: -10℃ - 75℃ 5%~95% RH (non-condensing)
DC 12V Lower than 18W
1
Power
2
Headset & mic 2-in-1 3.5mm jack
3
Type-C PD Power Input
3
Type-C PD 电源输入
4
40-Pin GPIO 排针
5
RJ45 千兆以太网
6
USB3.0 Type-A x 2
7
USB3.0 Type-A x 2
8
DP x 1 , HDMI x1
9
DC 12V 输入板载 1.25mm 接口
10
M.2 2242 存储扩展
关键组件
尺寸
AIxBoard Edge Developer Kit Datasheet
Key Components
Dimensions

华硕主板说明书P5VD2VMSE

华硕主板说明书P5VD2VMSE
關於這本用戶手冊......................................................................................................7 用戶手冊的編排方式.......................................................................................7 提示符號 ...........................................................................................................7 跳線帽及圖標說明...........................................................................................7 哪裡可以找到更多的產品信息....................................................................8 代理商查詢.........................................................................................................8
Motherboard
P5VD2-VM SE
用戶手冊
C2950 1.00 版 2007 年 8 月發行
版權所有•不得翻印 © 2007 華碩電腦 本產品的所有部分,包括配件與軟件等,其所有權都歸華碩電腦公司( 以下簡稱華碩)所有,未經華碩公司許可,不得任意地仿製、拷貝、摘抄或 轉譯。本用戶手冊沒有任何形式的擔保、立場表達或其它暗示。若有任何因 本用戶手冊或其所提到之產品的所有信息,所引起直接或間接的數據流失、 利益損失或事業終止,華碩及其所屬員工恕不為其擔負任何責任。除此之 外,本用戶手冊所提到的產品規格及信息只能參考,內容亦會隨時升級,恕 不另行通知。本用戶手冊的所有部分,包括硬件及軟件,若有任何錯誤,華 碩沒有義務為其擔負任何責任。 用戶手冊中所談論到的產品名稱僅做識別之用,而這些名稱可能是屬於 其他公司的註冊商標或是版權。 本產品的名稱與版本都會印在主板/顯卡上,版本數字的編碼方式是用 三個數字組成,並有一個小數點做間隔,如 1.22、1.24 等...數字越大表示 版本越新,而越左邊位數的數字更動表示更動幅度也越大。主板/顯卡、 BIOS 或驅動程序改變,用戶手冊都會隨之升級。升級的詳細說明請您到華 碩的互聯網瀏覽或是直接與華碩公司聯絡。

华硕主板

华硕主板

数字家庭主板M2NDH-支持AMD®SocketAM2Athlon64FX/Athlo64X2/Athlon64/Sempron -AMDLive!™Ready-强大扩充能力:1xPCI-Ex16、2xPCI-E、3xPCI-华硕WiFi-APSolo-华硕DHRemote™-华硕MP3-In™-华硕Q-Connector-高保真音频中央处理器支持AMD®SocketAM2Athlon64FX/Athlo64X2/Athlon64/Sempron 支持AMDCool'n'Quiet™技术AMD64架构,同时兼容32位和64位计算AMDLive!™Ready芯片组NVIDIAnForce®430MCP前端总线2000/1600MT/s内存双通道内存架构4x240-pinDIMM内存插槽,支持最大容量高达8GB的DDR2800/667/533ECC和non-ECC、un-buffered内存扩充插槽1xPCI-Expressx16插槽2xPCI-Expressx1插槽3xPCI2.2插槽存储装置/RAID-1xUltraDMA133/100/66/33-4xSerialATA3.0Gb/s-NVIDIAMediaShield™RAID通过SerialA TA设备支持RAID0、1、0+1、5和JBOD网络功能NVIDIAnForce®430内建GigabitMAC,支持externalAttansicPHY无线局域网:54MbpsIEEE802.11b/g(华硕WiFi-APSolo)音频功能ADI6声道高保真音频CODEC背板S/PDIF数字音频输出USB高达8个USB2.0/1.1接口M2N-VMDH-AMDSocketAM2-NVIDIAGeForce6100/nForce430-双通道DDR2800/667/533-1xPCIExpressx16+1xPCIExpressx1+2xPCI-双VGA:DVI-D和D-Sub-8声道高保真音频-2x1394a接口中央处理器支持AMD®SocketAM2Athlon64X2/Athlon64FX/Athlon64/Sempro nAMDCool'n'Quiet™技术AMD64架构,兼容32位和64位计算AMDLive!™Ready芯片组NVIDIAGeForce6100/nForce430前端总线2000/1600MT/s 内存双通道内存架构4x240-pinDIMM插槽,支持最大容量为8GB的DDR2800/667/533non-ECC,un-buffered内存显卡集成GeForce6100GPU高清晰视频处理,最高分辨率可达1920x1440(@75Hz)支持RGB显示;UXGA1600x1200(@60Hz)支持DVI-D显示支持双VGA输出:DVI-D和RGB注意:DVI-D不能用来输出RGB信号至CRT。

维修数字机顶盒

维修数字机顶盒
电路
ST5105
27M时钟 复位电路
创维数字技术(深圳)有限公司
SDRAM 电路
32
硬件介绍----ST5105方案
❖ DVB-C工作原理简介:
❖ 创维数字有线机顶盒采用ST公司的ST55XX硬件平台,目 前在市场上较为普及的为ST5105平台。ST5105采用SMD贴 片封装形式,ST5516采用BGA封装形式,现将创维DVB-C 的工作原理介绍如下:
4
硬件介绍----ST5105方案
❖ ST5105引脚功能介绍(第55脚-108脚)
FLASH 地址线
FLASH 使能端 (CPU-FLASH)
FLASH 数据线
(CPU-FLASH)
(CPU-FLASH)
1、此区域引脚连接FLASH芯片; 2、3.3V供电脚(55/72); 3、接地脚(68)
2020/4/16
1、此区域引脚连接CPU; 2、此部分引脚为FLASH数据线;
2020/4/16
创维数字技术(深圳)有限公司
10
硬件介绍----ST5105方案 ❖ FLASH电路 Flash 供电
FFlalsahsh 88MM
Flash 复位
2020/4/16
创维数字技术(深圳)有限公司
11
硬件介绍----ST5105方案
创维数字技术(深圳)有限公司
1、此区域引脚连接CPU; 2、此部分为SDRAM地址线部分
13
硬件介绍----ST5105方案
❖ SDRAM引脚功能介绍(第34脚-66脚)
SDRAM 地址线 SDRAM 时钟/使能 (SDRAM-CPU) (SDRAM-CPU)
SDRAM 数据线 (SDRAM-CPU)

硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能

硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能

硅酸钙板-纤维增强泡沫混凝土复合墙板的受压性能余其俊;林秋旺;李方贤;韦江雄;张同生;胡捷【摘要】以硅酸钙板为面板、纤维增强泡沫混凝土为芯材制备了泡沫混凝土复合墙板,研究了聚丙烯纤维掺量和泡沫混凝土容重对复合墙板受压性能的影响;并通过对受压应力应变曲线回归分析,获得了应力应变曲线方程.结果表明:随芯材中纤维掺量的增大(0~2 kg/m3),复合墙板受压破坏时芯材的裂缝减少,抗压强度提升了76.08%,受压韧性指数提高了30.03%;随芯材容重的增大(400~600 kg/m3),复合墙板受压破坏时逐渐从单一破坏转变为整体破坏,抗压强度大幅提高,受压韧性指数增幅较小;复合墙板受压应力应变曲线可分为弹性应变、应力硬化、应变软化和破坏4个阶段,峰值应变随纤维掺量的增加而增加,芯材容重对峰值应变的影响较小;复合墙板在受压条件下会出现界面裂缝和分层现象.%Foamed concrete sandwich panels were prepared by using calcium silicate boards as the skin layer and fiber-reinforced foamed concrete as the core material .Then, the influence of the polypropylene fiber dosage and the core material density on the structure performance of the prepared sandwich panels under compression was investiga -ted, and the stress-strain curve equations were established through the regression analysis of compressive stress -strain curves.The results show that (1) as the fiber dosage in the core material increases from 0 to 2 kg/m3 , the crack number of the core material decreases , while the compressive strength and the compressive toughness index increase respectively by 76.08% and 30.03%; ( 2 ) as the core material density increases from 400 kg/m3 to 600 kg/m3 , the failure mechanism of the prepared sandwich panels gradually changes fromsingle damage to overall destruction , with a greater increase in the compressive strength but a smaller increase in the compressive toughness index;(3) the stress-strain curves of the prepared sandwich panels can be divided into four stages , namely, elastic strain, stress hardening, strain softening and failure; (4) the peak strain increases with the increase of the fiber dosage, while the core material density has less effect on the peak strain; and (5) interface cracks and a delami-nation phenomenon may occur in the prepared sandwich panels under compression .【期刊名称】《华南理工大学学报(自然科学版)》【年(卷),期】2017(045)009【总页数】8页(P88-95)【关键词】泡沫混凝土;硅酸钙板;聚丙烯纤维;复合墙板;抗压强度;韧性指数【作者】余其俊;林秋旺;李方贤;韦江雄;张同生;胡捷【作者单位】华南理工大学材料科学与工程学院,广东广州510640;广东省建筑材料低碳技术工程技术研究中心,广东广州510640;华南理工大学材料科学与工程学院,广东广州510640;华南理工大学材料科学与工程学院,广东广州510640;广东省建筑材料低碳技术工程技术研究中心,广东广州510640;华南理工大学材料科学与工程学院,广东广州510640;广东省建筑材料低碳技术工程技术研究中心,广东广州510640;华南理工大学材料科学与工程学院,广东广州510640;广东省建筑材料低碳技术工程技术研究中心,广东广州510640;华南理工大学材料科学与工程学院,广东广州510640;广东省建筑材料低碳技术工程技术研究中心,广东广州510640【正文语种】中文【中图分类】TB321;TU528.2泡沫混凝土作为轻质微孔混凝土,它的多孔性质使其具有成本低、防火、保温隔热、隔声、抗震等性能[1],国内外学者就泡沫混凝土的性能已做了较多的研究[2- 6],但强度仍是泡沫混凝土亟待解决的问题之一[7].泡沫混凝土的缺陷在于本身胶凝材料用量大,缺少砂石等骨料,气孔率大,使得单一的泡沫混凝土产品存在着收缩大、强度低等性能缺陷,难以适应市场需求.为了提高泡沫混凝土的强度,将泡沫混凝土和硅酸钙板或者其他面板组合形成三明治复合墙板是一种较为有效的方法.一方面能够充分发挥泡沫混凝土保温隔热的优势,另一方面又能使泡沫混凝土和硅酸钙板发生协同效应,形成优势互补,提升复合墙板的整体力学性能[8]. Mydin等[9]以0.4 mm和0.8 mm的波纹钢为面板、以泡沫混凝土为芯材进行研究,研究表明不同边界条件下的轴心抗压破坏形式、最大荷载和应力-应变响应都有较大的不同,且相对泡沫混凝土本身,复合后形成的复合板性能有大幅度提高.Flores- Johnson等[10]以泡沫混凝土和纤维增强泡沫混凝土作为芯材,波纹钢作为面板,研究得出纤维的加入显著提高了泡沫混凝土的抗压强度、拉伸模量和极限应变,避免了泡沫混凝土的脆性破坏;Dey等[11]以粘接的耐碱玻璃纤维网格布为面层,以泡沫混凝土为芯材,研究了静态和低速动态加载方式下的复合板的弯曲刚度、强度和能量吸收能力,研究表明纤维的掺入显著提高了其力学性能且能阻止裂缝的扩展.文中采用无机防火的硅酸钙板和泡沫混凝土制备复合墙板,在此基础上重点研究了聚丙烯纤维掺量、泡沫混凝土容重对该体系的影响,得到不同条件下受压过程的应力-应变全曲线,提出了该体系受压下的应力-应变曲线方程,分析了复合墙板受压下的薄弱区.1 原材料和实验方法1.1 原材料硅酸盐水泥,珠江水泥厂PO 42.5R;HTQ- 1型复合发泡剂,河南华泰新材开发有限公司产品;硅酸钙板,广东松本绿色新材股份有限公司产品,厚度为5 mm;聚丙烯纤维,深圳维特耐工程材料有限公司产品,长度为19 mm、直径22 μm.硅酸盐水泥和硅酸钙板的物理性能如表1、2所示.表1 水泥的基本性能Table 1 Fundamental properties of the cement比表面积/(m2·kg-1)密度/(kg·m-3)标稠用水量/g凝结时间/min初凝终凝抗折强度/MPa 抗压强度/MPa3603.0912********.156.0表2 硅酸钙板的物理性能Table 2 Physical properties of calcium silicate board吸水率/%含水量/%湿胀率/%抗冲击性/(kJ·m-2)热导率/(W·m-1·K-1)密度/(g·cm-2)≤40≤10≤0.25≥20.1961.1<D≤1.41.2 泡沫混凝土及其复合墙板的制备1.2.1 泡沫混凝土的制备将发泡剂与水按质量比1∶30混合,将混合好的发泡剂水溶液用发泡机制备成密度约为60 kg/m3的泡沫,参照李应权等[12]的泡沫混凝土配合比设计方法进行配制,在搅拌锅内先将水泥和聚丙烯纤维和水预混均匀,再加入泡沫充分搅拌,制成新拌浆体,水灰比为0.5,富余系数取1.05,聚丙烯纤维掺量分别为1.0、1.5、2.0、2.5kg/m3.由前期实验[8]可知,泡沫混凝土容重过低将会出现粉化、收缩过大等一系列缺陷,最终导致复合墙板开裂、力学性能和热工性能劣化,因此本研究选取的泡沫混凝土容重分别为400、500和600 kg/m3.1.2.2 复合墙板的制备以硅酸钙板饰面为外表面,粗糙面为内表面,在模具中将硅酸钙板固定后,往两硅酸钙板中浇筑不同纤维含量和容重的泡沫混凝土,形成硅酸钙板-纤维泡沫混凝土-硅酸钙板的三明治组合形式.复合墙板的制备如图1所示.图1 泡沫混凝土复合墙板的制备示意图Fig.1 Schematic diagram of preparation of foamed concrete sandwich panel试验共制作24组泡沫混凝土和复合墙板.根据GB/T 23451—2009《建筑用轻质隔墙条板》,每组制备试件尺寸为100 mm×100 mm×100 mm的立方体泡沫混凝土和复合墙板各3个,试件成型1 d后拆模,标准养护28 d后进行抗压试验. 1.3 泡沫混凝土复合墙板受压性能实验方法采用三思纵横生产的UTM5105电子万能试验机,系统的加载头带有力传感器,可直接量测施加的压力的大小和位移的变化.试验采用力控制方式,加载速率为0.1 MPa/s.试验同时观察试件破坏的全过程,记录裂缝出现、界面的破坏、硅酸钙板的飞离等试验现象.以抗压强度、受压韧性指数和应力-应变全曲线来评价泡沫混凝土复合墙板的受压性能.受压韧性指数[13]定义为:试样从稳定荷载至3倍峰值应变所得的荷载-变形曲线下的面积与试样从稳定荷载至峰值应变所得的荷载-变形曲线下的面积的比值,其示意图如图2所示.2 实验结果与分析2.1 硅酸钙板-纤维增强泡沫混凝土复合墙板的破坏形式泡沫混凝土复合墙板试件在受压实验过程中,随着荷载逐渐增加,主要经历了以下几个过程:在加载初期,应力-应变关系接近直线关系;随后在硅酸钙板和芯材的界面之间出现裂缝,同时复合墙板芯材表面出现较多的微裂纹;达到最大承载力后,主裂纹不断扩大,直至复合墙板彻底破坏.芯材容重为600 kg/m3的不同纤维含量的复合墙板受压破坏形式如图3所示.不同芯材容重的复合樯板受压破坏形式如图4所示.图2 受压韧性指数示意图Fig.2 Sketch of compression toughness index图3 不同纤维含量的泡沫混凝土复合墙板破坏形式Fig.3 Failure mechanism of foamed concrete sandwich panels with different fiber content图4 不同容重的泡沫混凝土复合墙板破坏形式Fig.4 Failure mechanism of foamed concrete sandwich panels with different density从图3中可以看出,容重为600 kg/m3的泡沫混凝土复合墙板破坏后的硅酸钙板均与芯材脱离,且随着纤维掺量的增大,破坏后芯材的可见的大裂纹明显地减小,说明纤维能够很好地阻止裂缝的扩展和延伸.由图4可以看出,芯材容重为400 kg/m3时的复合墙板破坏后的硅酸钙板和芯材仍然粘结在一起,硅酸钙板不折断.容重为500 kg/m3时,出现硅酸钙板中间折断的现象,但硅酸钙板和芯材仍然粘结在一起,从表观上反映了泡沫混凝土和硅酸钙板之间的粘结力有所增强.容重为600 kg/m3时,在试件达到最大荷载时出现了硅酸钙板和芯材飞离的现象.可见泡沫混凝土的容重对复合墙板的破坏形式影响较大,随着芯材容重的增大,复合板逐渐从单一破坏转变为整体破坏,复合效应增强.2.2 硅酸钙板-纤维增强泡沫混凝土复合墙板受压荷载下的力学性能2.2.1 纤维掺量对复合墙板受压力学性能的影响纤维掺量对泡沫混凝土及复合墙板抗压强度和受压韧性指数的影响如图5所示.图5 纤维掺量对泡沫混凝土及复合墙板抗压强度和受压韧性指数的影响Fig.5 Influences of fiber content on compressive strength and compressive toughness index of foamed concrete sandwich panel从图5中可以看出,泡沫混凝土复合墙板的抗压强度比泡沫混凝土的抗压强度高出约25%,受压韧性指数提高约8.8%,说明将泡沫混凝土制备成复合墙板能有效改善泡沫混凝土强度较低、脆性较大的缺陷.除此之外,聚丙烯纤维的掺量对复合墙板的抗压强度和受压韧性指数有较显著的影响.在无纤维掺入的情况下,泡沫混凝土和泡沫混凝土复合墙板的抗压强度均较低,随着聚丙烯纤维掺量的增加,泡沫混凝土和泡沫混凝土复合墙板的抗压强度均增大,且前期增大幅度较大.当纤维掺量为2.0kg/m3时,比无纤维掺入的复合墙板的抗压强度提升了76.08%,受压韧性指数提高了30.03%.但当纤维掺入量过大时,泡沫混凝土复合墙板的抗压强度反而有所降低,受压韧性指数也出现了类似的情况.GB/T 23451—2009《建筑用轻质隔墙条板》中对隔墙条板的抗压强度要求是至少大于3.5 MPa,可见容重为600 kg/m3的泡沫混凝土复合墙板掺入纤维后可较好的满足国家标准,其中聚丙烯纤维掺量为1.5~2.0 kg/m3时,可使泡沫混凝土复合墙板的抗压强度和韧性指数保持在较高的水平. 为初步解释当纤维含量为2.5 kg/m3时的复合墙板强度有所降低的情况,通过试验对比了纤维掺量为1.0 kg/m3和2.5 kg/m3的泡沫混凝土复合墙板孔结构的扫描电镜图像,如图6所示.从图中可以看出,若纤维掺入过多,会使泡沫混凝土的孔结构遭到破坏,孔结构变得不完整,而孔结构和泡沫混凝土的强度有着密切的关系[7].因此后续试验研究中纤维掺量均取1.0~2.0 kg/m3.图6 泡沫混凝土复合墙板的SEM图Fig.6 SEM images of foamed concrete sandwich panels2.2.2 泡沫混凝土容重对复合墙板受压力学性能的影响聚丙烯纤维掺量为2.0 kg/m3,容重为400、500和600 kg/m3的芯材对复合墙板的抗压强度和受压韧性指数的影响如图7所示.图7 泡沫混凝土容重对复合墙板抗压强度和受压韧性指数的影响Fig.7 Influences of density on the compressive strength and compressive toughness index of foamed concrete sandwich panel从图7中可以看出,复合墙板的抗压强度随容重的增大而大幅提高,容重为400kg/m3时,复合墙板的抗压强度仅为2.98 MPa,而容重为600 kg/m3时,抗压强度达到5.67 MPa,增长了90.27%.泡沫混凝土复合墙板受压韧性指数随容重的增加略有增大,但增幅较小.按照GB/T 23451—2009 《建筑用轻质隔墙条板》中对隔墙条板的抗压强度的规定,可以看出在聚丙烯纤维掺量为2.0 kg/m3时,泡沫混凝土容重达到500 kg/m3以上的复合墙板均能满足要求.2.3 硅酸钙板-纤维增强泡沫混凝土复合墙板受压应力-应变全曲线分析2.3.1 硅酸钙板-纤维增强泡沫混凝土复合墙板受压应力-应变曲线特点硅酸钙板-纤维增强泡沫混凝土复合墙板典型的实测应力-应变全曲线如图8所示,结合其受压破坏特征,其应力-应变曲线可以分为4个不同的区域,其特点如下:1)OA 段,弹性变形阶段,泡沫混凝土复合墙板的应力增长较快而应变增长较为缓慢,特征点A为弹性极限点,此时对应着硅酸钙板和泡沫混凝土界面出现裂缝;A点处的应力约为峰值应力的80%~90%.2)AB段,应力硬化阶段,随着应力进一步增大,应力-应变曲线的斜率略有减小,由于硅酸钙板和芯材出现裂缝后,硅酸钙板逐渐受到弯曲应力,芯材裂缝不断增多,直至荷载峰值点B点结束,B点对应的应力和应变分别为峰值应力和峰值应变.3)BC段,应变软化阶段,峰值应力过后,应力-应变全曲线进入下降阶段,此阶段应变增加的同时,应力降低幅度较大,下降幅度可达50%左右,这主要是硅酸钙板折断和芯材主裂纹不断扩大的综合结果.4)C点过后,应变逐渐增大,应力降低放缓,泡沫混凝土复合墙板试件彻底破坏.图8 实测应力-应变全曲线Fig.8 Measured stress-strain curve2.3.2 纤维掺量对泡沫混凝土复合墙板受压应力-应变全曲线的影响纤维含量对容重为600 kg/m3的泡沫混凝土复合墙板的受压应力-应变全曲线和峰值应变的影响如图9所示.从图中可以看出,随着纤维含量的增加,峰值应力增加,弹性极限点和峰值应变均呈现出“后滞”的现象,且复合墙板后期承载能力提升,纤维掺量为2.0 kg/m3的复合墙板的后期承载力约是不掺纤维的复合墙板的后期承载力的3倍.纤维掺量对应力-应变全曲线的峰值应变影响较大,纤维含量为2.0 kg/m3时的峰值应变为22.35×10-3,比无纤维掺入时的峰值应变增大了92.51%.图9 不同纤维掺量的复合墙板应力-应变曲线和峰值应变Fig.9 Stress-strain curves and peak strain of foamed concrete sandwich panel with different fiber content2.3.3 泡沫混凝土容重对复合墙板受压应力-应变全曲线的影响泡沫混凝土容重对纤维掺量均为2.0 kg/m3的复合墙板应力-应变全曲线和峰值应变的影响如图10所示.从图10中可以看出,泡沫混凝土不同芯材容重的复合墙板应力-应变全曲线的形状相似,具有统一的形状和特征.复合墙板的后期承载力都较高,均为峰值应力的50%~60%,应力-应变全曲线峰值应变保持在较高的水平,均达到21×10-3以上,且相差不大,随容重的变化有少量的提升.2.3.4 泡沫混凝土复合墙板应力-应变全曲线方程应力-应变全曲线作为图形化的本构关系,是研究结构或构件受力性能的主要依据,为此本试验提出了泡沫混凝土复合墙板受压应力-应变全曲线方程并确定其参数,建立相应的数学模型.将试件的应力应变-全曲线采用无量纲坐标表示,即X=ε/ε0,Y=σ/σ0,其中ε0为峰值应变,σ0为峰值应力.绘制峰值坐标为(1,1)的标准曲线,如图11所示.图10 不同容重的复合墙板应力-应变全曲线和峰值应变Fig.10 Stress-strain curve and peak strain of foamed concrete sandwich panel with different density图11 不同纤维掺量的复合墙板受压应力-应变曲线的标准曲线Fig.11 Standard curve of stress-strain cure of foamed concrete sandwich panel with different fiber content不同纤维含量的复合墙板受压应力-应变标准曲线由于上升阶段和下降阶段相差悬殊,因此这两段曲线分别采用不同的方程进行拟合.本试验上升阶段参考过镇海等[14]建议的混凝土应力-应变全曲线方程,采用三次多项式,下降段采用有理分式,如下所示:(1)式中,a1、a2、a3控制曲线上升段,k1、k2为形状系数,k1控制曲线下降段的坡度,k2控制曲线下降段的下降度的凹凸程度[15].由于标准曲线的上升段具有类似的形状,因此对其进行统一的拟合,其结果如式(2)所示.Y=0.11X+2.35X2+1.46X3, 0≤X≤1(2)下降段采用最小二乘法拟合,分别得到参数k1、k2的取值,其结果如表3所示.表3 标准曲线下降段k值Table 3 k values of standard curve decline periodk 值纤维掺量/(kg·m-3)1.01.52.0k10.310.380.44k20.490.590.56由于采用上述下降段公式对无纤维的复合墙板拟合的结果和实验数据偏差较大,因此本试验采用式(3)进行拟合,拟合结果如式(4)所示.(3)(4)将拟合结果和实际实验曲线对比如图12所示.从图中可以看出,拟合的结果较好,能够充分吻合原实验数据的应力-应变情况.本试验提出的方程为复合墙板受压时的应力-应变全曲线方程,反映了复合墙板受压条件下的材料基本力学性能.2.4 硅酸钙板-纤维增强泡沫混凝土受压条件下的薄弱区分析泡沫混凝土复合墙板的受压破坏现象如图13所示.复合墙板受压至一定程度后将先后出现界面裂缝、硅酸钙板与泡沫混凝土相剥离、硅酸钙板的断裂、纤维的搭接等现象, 硅酸钙板和泡沫混凝土之间的界面是复合墙板的薄弱区.当硅酸钙板与泡沫混凝土间出现剥离破坏时,硅酸钙板承受压力而弯曲直至折断,在此过程中,硅酸钙板成为主要的承载体,芯材中的主裂纹扩张会得到减缓,由于硅酸钙板的强度较高,因而使得复合墙板的残余强度增加,复合墙板达到极限荷载时的极限应变有所增大.改善复合墙板的薄弱区是提高复合墙板受压性能的重要途径.图12 不同纤维掺量的复合墙板的实验曲线和拟合曲线对比Fig.12 Experimental curve vs fitting curve of foamed concrete sandwich panel with different fiber content图13 泡沫混凝土复合墙板的薄弱区Fig.13 Weak zones of foamed concrete sandwich panel4 结论(1)复合墙板的破坏形式随纤维掺量和芯材容重的不同而不同.聚丙烯纤维的掺入,能够充分阻止裂缝的扩展.不同容重的复合墙板,破坏后硅酸钙板和芯材的粘结情况不同.(2)芯材纤维掺量为0~2.0 kg/m3时,泡沫混凝土和复合墙板的抗压强度和受压韧性指数均随纤维掺量的增加而增大,复合墙板的抗压强度和受压韧性指数较泡沫混凝土的分别高出25%和8.8%;纤维掺量为2.0 kg/m3的复合墙板的抗压强度和受压韧性指数比无纤维复合墙板的分别提升了76.08%和30.03%;容重对复合墙板的抗压强度影响较大,对受压韧性指数影响较小.(3)复合墙板的应力-应变全曲线可分为弹性应变阶段、应力硬化阶段、应变软化阶段和破坏阶段等4个阶段,根据应力-应变曲线的形状特征,分别采用多项式和有理分式拟合曲线的上升阶段和下降阶段,拟合曲线和试验数据吻合得较好.(4)将泡沫混凝土制备成复合墙板后,其力学性能大幅度提升,受压时的界面裂缝和分层现象是复合墙板的薄弱区,改善复合墙板的薄弱区是提高复合墙板受压性能的重要途径.参考文献:[1] AMRAN Y H M,FARZADNIA N,ALI A A A.Properties and applications of foamed concrete:a review [J].Construction and BuildingMaterials,2015,101(1):990- 1005.[2] 周顺鄂,卢忠远,严云.泡沫混凝土导热系数模型研究 [J].材料导报,2009,23(3):69- 73.ZHOU Shun-e,LU Zhong-yuan,YAN Yun.Study on thermal conductivity model of foamed concrete [J].Cailiao Daobao,2009,23(3):69- 73.[3] 陈兵,刘睫.纤维增强泡沫混凝土性能试验研究 [J].建筑材料学报,2010,13(3):286- 290.CHEN Bing,LIU Jie.Experimental research on properties of foamed concrete reinforced with polypropylene fibers [J].Journal of BuildingMaterial,2010,13(3):286- 290.[4] CHINDAPRASIRT P,RATTANASAK U.Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash [J].Materials & Design,2011,32(2):723- 727.[5] JIANG J,LU Z,NIU Y,et al.Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement [J].Materials & Design,2016,92:949- 959.[6] KEARSLEY E P,WAINWRIGHT P J.The effect of high fly ash content on the compressive strength of foamed concrete [J].Cement and Concrete Research,2001,31(1):105- 112.[7] 方永浩,王锐,庞二波,等.水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系 [J].硅酸盐学报,2010,38(4):621- 626.FANG Yong-hao,WANG Rui,PANG Er-bo,et al.Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete [J].Journal of the Chinese Ceramic Society,2010,38(4):621- 626[8] 陈镇杉.泡沫混凝土复合板制备中的关键问题研究 [D].广州:华南理工大学,2015.[9] MYDIN M,WANG Y C.Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression [J].Thin-walled Structures,2011,49(1):66- 76.[10] FLORES-JOHNSON E A,LI Q M.Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces [J].Composite Structures,2012,94(5):1555- 1563.[11] DEY V,ZANI G,COLOMBO M,et al.Flexural impact response of textile-reinforced aerated concrete sandwich panels [J].Materials &Design,2015,86:187- 197.[12] 李应权,朱立德,李菊丽,等.泡沫混凝土配合比的设计 [J].徐州工程学院学报(自然科学版),2011(2):1- 5.LI Ying-quan,ZHU Li-de,LI Ju-li,et al.Study on mix ratio design of foamed concrete [J].Journal of Xuzhou Engineering Institute (Natural Science Edition),2011(2):1- 5.[13] 黄政宇,谭彬.活性粉末钢纤维混凝土受压应力-应变全曲线的研究 [J].三峡大学学报 (自然科学版),2007,29(5):415- 420.HUANG Zheng-yu,TAN Bin.Research on stress-strain curves of reactive powder concrete with steel-fiber under uniaxial compression [J].Journal of China Three Gorges University(Natural Science Edition),2007,29(5):415- 420.[14] 过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究 [J].建筑结构学报,1982,3(1):1- 12.GOU Zhen-hai,ZHANG Xiu-qin,ZHANG Da-cheng,et al.Experimental investigation of the complete stress-strain curve of concrete [J].Journal of Building Structures,1982,3(1):1- 12.[15] 史庆轩,王南,田园,等.高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J].建筑结构学报,2013,34(4):144- 151.SHI Qing-xuan,WANG Nan,TIAN Yuan,et al.Study on stress-strain relationship of high-strength concrete confined with high-strength stirrups under axial compression [J].Journal of Building Structures,2013,34(4):144- 151.。

施耐德AdvantysSTB智能分布式IO系统选型指南

施耐德AdvantysSTB智能分布式IO系统选型指南

绪”以太网体系结构,实现远程实时数据访问
b 由任意网络接口模块通过 MODBUS 协议连接本地人机界面,实现本地实时
数据访问
快捷的接线和 I/O 特性
如果无法轻松完成 I/O 的安装和接线,那么纵有再多高级功能也是事倍功半。 Advantys STB 为此集成了多种简单和灵活的途径,简化了这些繁复的工作。
欢迎进入施耐德电气 (Schneider-Electric) 简易精智 (Simply Smart) 的产品世界
正如所有施耐德电气的产品一样,Advantys STB 在功能设计中坚持引入 最先进的理念和特性,令系统更加智能化,功能更加强大,从而使应用 更加轻松。 Advantys STB 提供了高度模块化的 I/O 平台、简易的接线解决方案和电 源管理系统,是实现高效控制目标的首选方案。您将发现其与众不同的 优点——完善的智能化配置软件,卓越的网络适配能力和杰出的系统灵 活性——这样简约智能的组合保证了分布式自动化解决方案得以快速和 轻松地实现。
网络接口模块 (NIM) 每个岛均需要在主段最左侧的位置安装网络接口模块 (NIM)。 NIM 实际上是岛总线上的第一块 (最左侧) 模块。其功能相当于 岛总线的网关,即所有进出岛总线的通信均经由 NIM 完成。通 过 NIM 可以进行数据交换、配置服务,并通过基于 MODBUS 协 议的电缆连接HMI。NIM 还为岛模块提供逻辑电源。 每个 NIM 均内嵌 MODBUS 串口,用于便捷地连接到 HMI,Advantys 是唯一能让您使用任 意标准 MODBUS HMI 设备直接监控 I/O 的分布式 I/O 平台。
Advantys选型指南
组成Advantys STB岛的典型模块包括: 1. 网络接口模块 2. 配电模块 3. 数字量输入/输出模块 (直流24伏 &交流 115/220伏). 4. 模拟量输入/输出模快 5. 专家模块(包括:计数器模块,TeSys model U模块,Tego模块) 6. 扩展模块

MSSTB 鸣志智能型总线控制步进驱动器

MSSTB 鸣志智能型总线控制步进驱动器

5 Volt DC Power Supply
RS-485 RX+,RX-,TX+,TX-,GND
Comm Conn
RS-485
I/O Connector
X1 X2 X3 X4
3.3VDC Internal Logic Supply
Optical ISO
Voltage Temp Detect
Y1 Y2 Y3
Optical Iso
RS-485 address
DSP Driver Controller
MOSFET PWM Power Amplifier
motor
Over Current Detect Status
SW1
RS-485 baud rate
SW2
MSSTB - C
Block Diagram
Power Conn
3.3VDC Internal Logic Supply
Voltage Temp Detect
I/O Connector
X1 X2 X3 X4 Y1 Y2 Y3
Optical ISO
DSP Driver Controller
MOSFET PWM Power Amplifier
motor
Over Current Detect Status
步进电机驱动器
硬件手册
MSSTB05-R MSSTB05-C MSSTB10-R MSSTB10-C
STB
上海安浦鸣志自动化设备有限公司
版本. 1.0 11/20/2015
MSSTB 硬件手册
1 产品介绍 ......................................................................................................3 1.1 特性....................................................................................................3 1.2 功能框图 ............................................................................................4 1.3 安全须知 ............................................................................................5 2 开始前的准备 ...............................................................................................6 2.1 安装上位机软件..................................................................................7 2.2 连接通讯端口(-R型号) ........................................................................8 2.3 连接通讯端口(-C型号) ........................................................................9 2.4 波特率和地址设定 ............................................................................10 2.4.1 RS-485通信波特率和地址设定(-R型号) ..............................10 2.4.2 CANopen通讯波特率和地址设定(-C型号)........................... 11 2.5 连接电源 ..........................................................................................12 2.6 选择合适的电源................................................................................13 2.6.1 选择电源电压 .....................................................................13 2.6.2 选择电源电流 ......................................................................13 2.7 连接电机 ..........................................................................................14 3 输入与输出 ................................................................................................14 3.1 输入..................................................................................................15 3.1.1 X1, X2, X3和X4数字输入信号 .............................................15 3.2 输出..................................................................................................16 3.2.1 Y1, Y2和Y3数字输出信号 ...................................................16 4 驱动器的安装 .............................................................................................17 5 参考资料 ....................................................................................................18 5.1 驱动器机械尺寸................................................................................18 5.2 技术规格 ..........................................................................................19 5.3 推荐电机 ..........................................................................................20 5.4 力矩曲线 ..........................................................................................21 5.5 驱动器命名规则................................................................................23 5.6 订货信息 ..........................................................................................23 5.7 报警代码 ..........................................................................................23 6 配件 (需另购) .............................................................................................24 7 联系 MOONS’ .........................................................................................25 本用户手册所述内容仅适用于以下机型:

SEM CDT2000简明手册

SEM CDT2000简明手册

SEM/CDT2000简明手册1. SEM/CDT2000功能! 3或6或9或12个独立的16位8MHz计数器/定时器! 48通道基于TTL/CMOS 71055 的可编程数字量I/O! 四个中断源经组合可产生一个或两个或三个或四个PC总线中断! 在板提供RS-422与RS-232CC串行通讯接口转换电路! 仅需+5VDC 电源供电! PC/104标准尺寸2. SEM/CDT2000连接器与跳线位置图1. 跳线位置及出厂设置跳线器控制的功能出厂时的设置(已装有跳线器) J682C54#1U8的时钟源选择及Int-Source-1中断源选择三个定时器/计数器级联OSC1来自在板8M 振荡器中断源为OT2-1 J782C54#2U9的时钟源选择及Int-Source-2中断源选择三个定时器/计数器级联OSC2来自在板8M振荡器中断源为OT2-2 J882C54#3U10的时钟源选择及Int-Source-3中断源选择三个定时器/计数器级联OSC3来自在板8M振荡器中断源为OT2-3 J982C54#4U11的时钟源选择及Int-Source-4中断源选择三个定时器/计数器级联OSC4来自在板8M振荡器中断源为OT2-4 J10 中断共享时三态下拉接地跳线全部装上三态接地J11 中断及中断共享设置82C54#1U8对应中断582C54#2U9对应中断782C54#3U10对应中断1182C54#4U11对应中断15 J12 RS422在板终端匹配使能/禁止全部使能(装有跳线)SW 设置基地址300 hex (768 decimal)表1 跳线出跳线出厂设置厂设置Pin19~24图2. 中断源及时钟源选择跳线器J6~J9 图3. 中断及中断共享设置J114. J11-中断及中断共享设置如图3所示CDT2000可产生多达四个PC总线中断IRQ5IRQ7IRQ11IRQ155. J12-RS-422在板终端匹配设置1-2 RS-422串行口1发送端终端匹配使能/禁止3-4 RS-422串行口1接受端终端匹配使能/禁止5-6 RS-422串行口2发送端终端匹配使能/禁止7-8 RS-422串行口2接受端终端匹配使能/禁止表2. RS-422终端匹配对应关系表6. SW-基地址设置出厂设置300h基地址十进制/(十六进制)跳线器SW设置7-8 5-6 3-4 1-2基地址十进制/(十六进制)跳线器SW设置7-8 5-6 3-4 1-2512/(200) 544/(220) 576/(240) 608/(260) 640/(280) 672/(2A0) 704/(2C0)736/(2E0)0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 1768/(300)*800/(320)832/(340)864/(360)896/(380)928/(3A0)960/(3C0)992/(3E0)1 0 0 01 0 0 11 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 1 0 = closed, 1 = open, *=default表1-3. 基地址跳线器设置SW7. 外部I/O的连接计数器/定时器的连接-J2图4示出了计数器/定时器连接器J2的管脚图当您需要使用计数器/定时器时可参看此图见下页数字量I/O的连接-J1图4示出了数字量I/O连接器J1的管脚图当您需要使用数字量I/O时可参看此图见下页8. 串行口的连接-J3J4J55. J3J4J3J4J51J52346J57J58J59J510J51J32J31J42。

布加斯电子产品说明书

布加斯电子产品说明书

The 18" wide dishwasher perfectly fits in compact spaces.
Features & Benefits
46 dBA: dishwasher runs quietly so your kitchen conversations aren’t interrupted.
Notes: All height, width and depth dimensions are shown in inches. BSH reserves the absolute and unrestricted right to change product materials and specifications, at any time, without notice. Consult the product’s installation instructions for final dimensional data and other details prior to making cutout.
2 1/2" (63.5 mm)
Junction box accessory available for purchase SMZPCJB1UC (not included)
Example of Hardwire Installation
Ø 2 1/2" (63.5 mm)
7" (178 mm)
Note: Cutout required on left or right cabinet wall, depending on location of water inlet, drain and electrical connection
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O M CCT/MB400-2.0STB5105-MBoardSchematicsDocument number: 7647937ECONTROLLED DOCUMENTAuthor: Mark BrowningMCDT BoardsLast saved: October 15, 2004DOCUMENT 7647937REVISION E CONTROLLED DOCUMENT (Check latest revision)DATE 19-OCT-2004page: 1/23M P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O M1 Modification History 1 Modification HistoryNOTE: Change bars at the edge of each page show changes between revisions of document.Please note that section 1Modification History,should only be used as a guide to the document changes and the whole document should be referenced for complete changes.Revision A7647937A: Created: 19th of April 2004 by Mark Browning. First draft for initial review.Revision B7647937B:Updated:8th of June 2004by Mark Browning.Updates following schematic review and design changes. This version to be reviewed externally.Revision C 7647937C:Updated:10th of August 2004by Mark Browning.Imported new STB5105pinout.PIO assignments for DVBCI IORD/IOWR signals changed to PIO3-5 and PIO3-6. Some other minor corrections made.Revision D7647937D:Updated:1st of September 2004by Mark Browning.New schematics reflect shipped Rev.A PCB.Added pull up/down option resistors to FMI address 22&23,added pull-down resistors to NIM transport stream control signals. Some other minor cosmetic changes made.Revision E 7647937E:Updated:6th of October 2004by Mark Browning.Schematics updated for Rev.B PCB.Schematic changes are as follows:•STB5105 pin out (map file) changes to reflect last minute pad-ring changes of the device.•In DVBCI block,notDVB_REG signal is now derived from FMI ADDR(15)and inverted as requested in DDTS GNBvd26698.•Fixed RS232-ASC0 signals that were swapped, see DDTS INSbl22790.•Changed values of resistors and capacitors associated with the 27MHz crystal,see DDTS INSbl22796•Changed values of DVBCI control strobe pull-up resistors to 10K Ohm.M P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O M2 Contents 2ContentsSectionDescription Page 1Modification History (22)Contents (33)MB400B Schematics ............................................................................. 33.1STB5105-MBoard (Top Sheet 1 of 6) - LMI ........................................... 43.2STB5105-MBoard (Top Sheet 2 of 6) - FMI ........................................... 53.3STB5105-MBoard (Top Sheet 3 of 6) - PIO ........................................... 63.4STB5105-MBoard (Top Sheet 4 of 6) - Audio & Video ........................ 73.5STB5105-MBoard (Top Sheet 5 of 6) - System & clocks .................... 83.6STB5105-MBoard (Top Sheet 1 of 6) - Powers .................................... 93.7STB5105-MBoard - LMI DDR SDRAM ................................................. 103.8STB5105-MBoard - FMI peripherals ................................................... 113.9STB5105-MBoard - STEM-EMI buffers ............................................... 123.10STB5105-MBoard - STEM-EMI connector .......................................... 133.11STB5105-MBoard - STEM-IO connector (unused)............................ 143.12STB5105-MBoard - DVBCI ................................................................... 153.13STB5105-MBoard - FMI FLASH ........................................................... 163.14STB5105-MBoard - Single ST -NIM connector .................................... 173.15STB5105-MBoard - Transport Stream buffers ................................... 183.16STB5105-MBoard - Single SMARTCARD connector ........................ 193.17STB5105-MBoard - RS232 serial ports .............................................. 203.18STB5105-MBoard - Infra Red .............................................................. 213.19STB5105-MBoard - Audio outputs (22)3.20STB5105-MBoard - Video outputs ...................................................... 233MB400B Schematics STB5105-MBoard schematics.M P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O MM P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O MM P A N Y C O N F I D E N T I A L C O M P A N Y C O N F I D E N T I A L C O MMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.4 STB5105-MBoard (Top Sheet 4 of 6) - Audio & VideoMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.5 STB5105-MBoard (Top Sheet 5 of 6) - System & clocksMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.6 STB5105-MBoard (Top Sheet 1 of 6) - PowersMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.7 STB5105-MBoard - LMI DDR SDRAMMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.8 STB5105-MBoard - FMI peripheralsMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.9 STB5105-MBoard - STEM-EMI buffersMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.10 STB5105-MBoard - STEM-EMI connectorMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.11 STB5105-MBoard - STEM-IO connector (unused)MP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.12 STB5105-MBoard - DVBCIMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.13 STB5105-MBoard - FMI FLASHMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.14 STB5105-MBoard - Single ST-NIM connectorMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.15 STB5105-MBoard - Transport Stream buffersMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.16 STB5105-MBoard - Single SMARTCARD connectorMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.17 STB5105-MBoard - RS232 serial portsMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M3.18 STB5105-MBoard - Infra RedMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O MMP AN YCON FI DE NT IA LCOM P A N YCON FI D E N TI A LC O M。

相关文档
最新文档