尼勒克县实验中学2018-2019学年上学期高三数学10月月考试题
乌什县实验中学2018-2019学年上学期高三数学10月月考试题
乌什县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个2. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-3. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 4. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 5. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=56. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对7.如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±x B .y=±3x C .y=±x D .y=±x8. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( ) A .y=±x B .y=±C .xy=±2xD .y=±x9. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 10.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A. B.C.D.二、填空题11.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.12.设函数,若用表示不超过实数m的最大整数,则函数的值域为.13.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.14.函数()y f x=图象上不同两点()()1122,,,A x yB x y处的切线的斜率分别是A Bk k,,规定(),A Bk kA BABϕ-=(AB为线段AB的长度)叫做曲线()y f x=在点A与点B之间的“弯曲度”,给出以下命题:①函数321y x x=-+图象上两点A与B的横坐标分别为1和2,则(),A Bϕ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B是抛物线21y x=+上不同的两点,则(),2A Bϕ≤;④设曲线xy e=(e是自然对数的底数)上不同两点()()112212,,,,1A x yB x y x x-=且,若(),1t A Bϕ⋅<恒成立,则实数t的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)15.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.16.已知,0()1,0xe xf xxì³ï=í<ïî,则不等式2(2)()f x f x->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.三、解答题17.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.18.(本题10分)解关于的不等式2(1)10ax a x -++>.19.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .20.(本题满分12分)如图1在直角三角形ABC 中,∠A=90°,AB=2,AC=4,D ,E 分别是AC ,BC 边上的中点,M 为CD 的中点,现将△CDE 沿DE 折起,使点A 在平面CDE 内的射影恰好为M . (I )求AM 的长;(Ⅱ)求面DCE 与面BCE 夹角的余弦值.21.(本小题满分10分)选修4-1:几何证明选讲1111]CP=. 如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP22.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.乌什县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]2. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 3. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 4. 【答案】D5.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.6.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.7.【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x ,即有渐近线方程为y=x .故选D .【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.8. 【答案】A【解析】解:抛物线y 2=8x 的焦点(2,0),双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,c=2,双曲线C 过点P (﹣2,0),可得a=2,所以b=2.双曲线C 的渐近线方程是y=±x .故选:A .【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.9. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.10.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.二、填空题11.【答案】2【解析】12.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.13.【答案】 .【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.14.【答案】②③ 【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;1212(,)x x x x A B ϕ==,1211,(,)A B ϕ==因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 15.【答案】 75【解析】计数原理的应用. 【专题】应用题;排列组合. 【分析】由题意分两类,可以从A 、B 、C 三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A 、B 、C 三门选一门,再从其它6门选3门,有C 31C 63=60,第二类,若从其他六门中选4门有C 64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.16.【答案】(【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(-.三、解答题17.【答案】 ①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN 上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M 与N 重合为(0,0),|PM|+|PN|=10=2|PM|,点P 在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③. 【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.18.【答案】当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想. 19.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】考点:1、集合的表示;2、子集的性质.20.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分CE=;(2)CD=.21.【答案】(1)4【解析】试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 22.【答案】【解析】解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.…当直线l 的斜率存在时,设直线l 的方程为y ﹣2=k (x ﹣1),代入C 的方程,并整理得(2﹣k 2)x 2+2(k 2﹣2k )x ﹣k 2+4k ﹣6=0 (*)(ⅰ)当2﹣k 2=0,即k=±时,方程(*)有一个根,l 与C 有一个交点所以l 的方程为…(ⅱ)当2﹣k 2≠0,即k ≠±时△=[2(k 2﹣2k )]2﹣4(2﹣k 2)(﹣k 2+4k ﹣6)=16(3﹣2k ),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l 与C 有一个交点.所以l 的方程为3x ﹣2y+1=0…综上知:l 的方程为x=1或或3x ﹣2y+1=0…(2)假设以P 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12﹣y 12=2,2x 22﹣y 22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.。
城区高中2018-2019学年上学期高三数学10月月考试题(3)
城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。
ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。
高三数学10月月考试题
周口中英文学校高中部2018―2019学年度高三上期10月考试题 数 学一、选择题:本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的 1。
设全集,集合, ,则 ( )A 、 B、 C。
D 。
2、命题“”的否定是( ) A 、 ﻩﻩﻩﻩB 、C 、ﻩ ﻩﻩD 、3、若将函数y =2sin (2x +π6)的图像向右平移\F(1,4)个周期后,所得图像对应的函数为(A)y =2sin(2x +π4) (B)y =2si n(2x +π3) (C)y =2sin(2x –\F(π,4)) (D)y=2si n(2x –π3)4、下列函数中,既是偶函数又在上单调递增的是( ) A 、 B 。
ﻩC 、 ﻩD 、5、若角的终边经过点,则( )A 、B 。
C、 D 、 6、函数的零点所在的区间是A 。
B、 C 、 D 。
7、函数的图象的大致形状是( ) A 、B 、C、 ﻩD 、8、设,,,则的大小关系为( )A 、B 、 C、 D 、 9、已知曲线在点处的切线的倾斜角为,则( )A、 B 、 C。
2 D、 10、设函数,则使得成立的的取值范围是 )A、ﻩB、ﻩ C、ﻩﻩD、11、(理科做)由曲线围成的封闭图形的面积为( )A、ﻩﻩﻩB。
ﻩC。
ﻩﻩﻩD、(文科做)若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小值为()A、1 B、 C。
D。
12、已知为函数的导函数,且,若则方程有且仅有一个根时,的取值范围是A、(﹣∞,0)∪{1}B、(﹣∞,1]ﻩC、(0,1] ﻩD。
[1,+∞)二、填空题(每题5分,共计20分)13、已知p:,q:,则是的条件14、函数的图象和函数且的图象关于直线y=x对称,且函数,则函数的图象必过定点___________、15、6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级、灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区、已知下面四种说法都是正确的、⑴甲轻型救援队所在方向不是C方向,也不是D方向;⑵乙轻型救援队所在方向不是A方向,也不是B方向;⑶丙轻型救援队所在方向不是A方向,也不是B方向;⑷丁轻型救援队所在方向不是A方向,也不是D方向;此外还可确定:假如丙所在方向不是D方向,那么甲所在方向就不是A方向,有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C 方向、其中判断正确的序号是。
新疆高三上学期数学10月月考试卷
新疆高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高三上·鹤岗月考) 点是角终边上一点,则的值为()A .B .C .D .2. (2分)在等差数列中,若,则的值等于()A . 45B . 75C . 180D . 3003. (2分) (2020高一下·高安期中) “ ”是此方程,表示椭圆的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分)复数(2+i)2等于()A . 3+4iB . 5+4iC . 3+2iD . 5+2i5. (2分) (2019高三上·梅州月考) 已知集合,,则()A .B .C .D .6. (2分) (2020高二下·深圳期中) 已知集合则()A .B .C .D .7. (2分)点P是曲线上的任意一点,则点P到直线的最小距离为()A . 1B .C .D .8. (2分)定义在R上的函数满足:恒成立,若,则与的大小关系为()A .B .C .D . 与的大小关系不确定9. (2分) (2019高一上·南通月考) 已知函数已知,则实数a的值为()A . -2或1B . -2或2C . 1D . -2或2或110. (2分) (2019高三上·资阳月考) 已知直线与曲线相切,则的最大值为()A .B .C . eD .二、填空题 (共6题;共6分)11. (1分) (2016高一上·湄潭期中) 已知函数f(x)= ,则函数f(x)的定义域为________.12. (1分) (2017高二下·汉中期中) 设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn ,令an=lgxn ,则a1+a2+…+a99的值为________.13. (1分)据统计,生态系统中,在输入一个营养级的能量中,大约有10%~20%(包括20%)的能量可以流动到下一个营养级(称为能量传递率),在H1→H2→…→H8这条生物链中,若H1提供的能量为107焦,则H8最多获得的能量为 ________焦.14. (1分) (2018高二上·湛江月考) 如图所示,为测一建筑物的高度,在地面上选取两点,从两点分别测得建筑物顶端的仰角为,且两点间的距离为,则该建筑物的高度为________ .15. (1分)(2019·温州模拟) 已知,若对任意的aÎR,存在Î[0,2] ,使得成立,则实数k的最大值是________16. (1分)(2018·长安模拟) 定义运算:,例如:,,则函数的最大值为________.三、解答题 (共6题;共60分)17. (10分) (2020高一下·隆化期中) 设数列{ }是等差数列,数列{ }的前n项和满足 ,,且(1)求数列{ }和{ }的通项公式:(2)设为数列{ }的前n项和,求.18. (15分)函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求f(x)的最小正周期及解析式;(2)求函数f(x)在区间上的单调增区间.19. (5分) (2017高二下·蚌埠期中) 已知函数f(x)=ax3+bx+1的图象经过点(1,﹣3)且在x=1处f(x)取得极值.求:(1)函数f(x)的解析式;(2) f(x)的单调递增区间.20. (10分) (2020高一下·宝应期中) 在中,角A,B,C的对边分别是a、b、c,且.(1)求角A的大小;(2)若,的面积,求a的值.21. (10分) (2019高二上·上杭期中) 某渔业公司年初用81万元购买一艘捕鱼船,第一年各种费用为1万元,以后每年都增加2万元,每年捕鱼收益30万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:方案一:年平均获利最大时,以46万元出售该渔船;方案二:总纯收入获利最大时,以10万元出售该渔船问:哪一种方案合算?请说明理由.22. (10分) (2019高二下·萨尔图期末) 已知函数 .(Ⅰ)若在处有极小值,求实数的值;(Ⅱ)若在定义域内单调递增,求实数的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、。
疏勒县实验中学2018-2019学年上学期高三数学10月月考试题
疏勒县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示,已知四边形ABCD的直观图是一个边长为的正方形,则原图形的周长为()A.B. C. D.2.若某算法框图如图所示,则输出的结果为()A.7B.15C.31D.633.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm24.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件5.已知A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是()A.a=3B.a=﹣3C.a=±3D.a=5或a=±36.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2B.C.D.47. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.8. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]9. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .()D .(]10.函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)二、填空题11.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.12.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)13.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ=⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是 .14.函数的值域是 .15.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,M N 、24y x =F MN ,则直线的方程为_________.||||10MF NF +=MN 16.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .三、解答题17.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点.(Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.18.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC .(Ⅰ)求证:AB ⊥SC ;(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ;(Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.19.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.21.(1)已知f(x)的定义域为[﹣2,1],求函数f(3x﹣1)的定义域;(2)已知f(2x+5)的定义域为[﹣1,4],求函数f(x)的定义域.22.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.疏勒县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】考点:平面图形的直观图.2.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A≤5,B=3,A=2满足条件A≤5,B=7,A=3满足条件A≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.3.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B4.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.6.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大. 7. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log xx y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=x x y a A +∞→x 0→y D C 8. 【答案】B【解析】解:由M 中y=2x ,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x ≤1,即N=(﹣1,1],则M ∩N=(0,1],故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 9. 【答案】A【解析】解:∵函数g (x )是偶函数,函数f (x )=g (x ﹣m ),∴函数f (x )关于x=m 对称,若φ∈(,),则sin φ>cos φ,则由f (sin φ)=f (cos φ),则=m ,即m==(sin φ×+cos αφ)=sin (φ+)当φ∈(,),则φ+∈(,),则<sin (φ+)<,则<m <,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键. 10.【答案】B【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x +2(a >0且a ≠1)图象一定过点(0,3),故选B .【点评】本题主要考查指数函数的单调性和特殊点,属于基础题. 二、填空题11.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1)=2×1+(-2+t )·(-1)=4-t =2,∴t =2.答案:212.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10af x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.13.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由得,∴,①错误;(1,4)λμ+=-a b 124λμλμ-+=-⎧⎨+=⎩21λμ=⎧⎨=⎩与不共线,由平面向量基本定理可得,②正确;a b 记,由得,∴点在过点与平行的直线上,③正确;OA = a OM μ=+ a b AM μ=b M A b 由得,,∵与不共线,∴,∴,∴④2μλ+=+a b a b (1)(2)λμ-+-=0a b a b 12λμ=⎧⎨=⎩2(1,5)μλ+=+=a b a b 正确;设,则有,∴,∴且,∴表示的一(,)M x y 2x y λμλμ=-+⎧⎨=+⎩21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩200x y x y -≤⎧⎨+≥⎩260x y -+=(,)λμΩ条线段且线段的两个端点分别为、,其长度为,∴⑤错误.(2,4)(2,2)-14.【答案】 [0,3] .【解析】解:令t=5+4x ﹣x 2,由二次函数的图象与性质可得:该函数的最大值为9要使函数的解析式有意义,t ≥0故0≤5+4x ﹣x 2≤9,故0≤≤3故函数的值域是[0,3]故答案为:[0,3]15.【答案】20x y --=【解析】解析: 设,那么,,∴线段1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN 的中点坐标为.由,两式相减得,而,∴(4,2)2114y x =2224y x =121212()()4()y y y y x x +-=-1222y y +=,∴直线的方程为,即.12121y y x x -=-MN 24y x -=-20x y --=16.【答案】﹣2≤a ≤2【解析】解:原命题的否定为“∀x ∈R ,2x 2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a 2﹣4×2×9≤0,解得:﹣2≤a ≤2.故答案为:﹣2≤a ≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.三、解答题17.【答案】【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体,∴B 1C 1⊥平面ABB 1A 1;∵A 1B ⊂平面ABB 1A 1,∴B 1C 1⊥A 1B .又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1,∴A 1B ⊥平面ADC 1B 1,∵A 1B ⊂平面A 1BE ,∴平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:连接EF ,EF ∥,且EF=,设AB 1∩A 1B=O ,则B1O∥C1D,且,∴EF∥B1O,且EF=B1O,∴四边形B1OEF为平行四边形.∴B1F∥OE.又∵B1F⊄平面A1BE,OE⊂平面A1BE,∴B1F∥平面A1BE,(Ⅲ)解:====.18.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.19.【答案】【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,两式作差,得:a n+2=a•a n+1,n≥2,∴{a n}是首项为b,公比为a的等比数列,∴.(Ⅱ)当a=1时,S n=na1=nb,不合题意,当a≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得{S n}成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.20.【答案】【解析】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.21.【答案】【解析】解:(1)∵函数y=f(x)的定义域为[﹣2,1],由﹣2≤3x﹣1≤1得:x∈[﹣,],故函数y=f(3x﹣1)的定义域为[﹣,];’(2)∵函数f(2x+5)的定义域为[﹣1,4],∴x∈[﹣1,4],∴2x+5∈[3,13],故函数f(x)的定义域为:[3,13].22.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.。
尼勒克县高级中学2018-2019学年高二上学期第二次月考试卷数学
尼勒克县高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为( )A .30°B .45°C .60°D .90° 2. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .273. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<4. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或55. 已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<16. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .367. 函数y=的图象大致为( )A .B .C .D .8. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+9. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定10.《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
尼勒克县高中2018-2019学年高二上学期第二次月考试卷数学
尼勒克县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 2. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧3. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,) B .(,,)C .(,,)D .(,,)4. 函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .15. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.6. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x +y ,则( )A .x=﹣B .x=C .x=﹣D .x=7. 设a 是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定8. ()0﹣(1﹣0.5﹣2)÷的值为( )A .﹣B .C .D .9. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .10.椭圆=1的离心率为( ) A . B .C .D .11.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( )A .80+20πB .40+20πC .60+10πD .80+10π12.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣5二、填空题13.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .17.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)18.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .三、解答题19.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.21.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值; (Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ) 设a >,g (x )=﹣5+ln ,∃x 1,x 2∈(0,e],使得|f (x 1)﹣g (x 2)|<9成立,求a 的取值范围.22.已知函数()f x =121x a +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
尼勒克县一中2018-2019学年上学期高三数学10月月考试题
尼勒克县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1202. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣33. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}4. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}5. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .6. 已知,则tan2α=( )A .B .C .D .7. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D29. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种10.在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB11.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.12.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .7二、填空题13.函数的最小值为_________.14.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).15.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其中为自然对数的底数)的解集为 .16.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.三、解答题17.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.18.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点2在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.19.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.20.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛⎫⎪ ⎪⎝⎭,直线1PF交y 轴于Q ,且22,PF QO O =为坐标原点. (1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.21.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .22.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.23.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.尼勒克县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .2. 【答案】B【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数, 则f (0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件, 当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件, 作出函数f (x )的图象如图: 则函数在上为增函数,最小值为﹣2, 故正确的是B , 故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.3. 【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B4.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.5.【答案】B【解析】解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.6.【答案】C【解析】解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C【点评】本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.8.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.9.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.10.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D11.【答案】D12.【答案】A解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k,S=75,n=6…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,则输入的整数k的最大值为4.故选:二、填空题13.【答案】﹣【解析】∵f(x)=log2•log(2x)∴f(x)=log•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是。
库尔勒市实验中学2018-2019学年上学期高三数学10月月考试题
库尔勒市实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .22. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣23. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( ) A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 4. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .5. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 6. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 7. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1C .e ﹣x+1D .e ﹣x ﹣18. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 9. 复数满足2+2z 1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i10.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .二、填空题11.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .12.不等式()2110ax a x +++≥恒成立,则实数的值是__________.13.函数1()lg(1)1f x x x=++-的定义域是 ▲ . 14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.16.(文科)与直线10x -=垂直的直线的倾斜角为___________.三、解答题17.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.18.已知函数f (x )的定义域为{x|x ≠k π,k ∈Z},且对定义域内的任意x ,y 都有f (x ﹣y )=成立,且f (1)=1,当0<x <2时,f (x )>0. (1)证明:函数f (x )是奇函数;(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.19.已知条件4:11p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数 的取值范围.20.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC =. (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .21.19.已知函数f (x )=ln .22.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.库尔勒市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A (6,2),化目标函数z=x ﹣y 为y=x ﹣z ,由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4. 故选:A .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.3. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a ba b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,∴1ab =,∴log 1a b =-,故选B.4. 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点, 直线斜率存在,设为k ,则过P 的直线方程为y=kx ﹣2, 即kx ﹣y ﹣2=0,若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0, 解得k ≤﹣或k≥,即≤α≤且α≠, 综上所述,≤α≤,故选:A .5. 【答案】A 【解析】6. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 7. 【答案】D【解析】解:函数y=e x 的图象关于y 轴对称的图象的函数解析式为y=e ﹣x,而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y 轴对称,所以函数f (x )的解析式为y=e ﹣(x+1)=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.故选D .8. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 9. 【答案】【解析】解析:选D.法一:由2+2z 1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b , ∴a =b =-1,故z =-1-i. 10.【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.二、填空题11.【答案】 (x ﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a ,b ),半径为r , ∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x+y=0上, ∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5. 故答案为:(x ﹣1)2+(y+1)2=5.12.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题. 13.【答案】()()1,11,-⋃+∞考点:定义域 14.【答案】 180【解析】解:由二项式定理的通项公式T r+1=C n r an ﹣r b r可设含x 2项的项是T r+1=C 7r (2x )r可知r=2,所以系数为C 102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.15.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 16.【答案】3π 【解析】,故倾斜角为3π. 考点:直线方程与倾斜角.三、解答题17.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;18.【答案】【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.又f(x﹣y)=,所以f(﹣x)=f[(1﹣x)﹣1]======,故函数f(x)奇函数.(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,设2<x<3,则0<x﹣2<1,则f(x﹣2)=,即f(x)=﹣<0,设2≤x1≤x2≤3,则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,则f(x1)﹣f(x2)=,∴f(x1)>f(x2),即函数f(x)在[2,3]上为减函数,则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.19.【答案】[]1,2-. 【解析】试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a --由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 20.【答案】(1)2=AD ;(2)3π=B .【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.21.【答案】【解析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a ﹣2≤1 ∴1≤a ≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.22.【答案】(1)131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)证明见解析.【解析】试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⋅- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,其前项和为()1114414n -<+.考点:数列与裂项求和法.1。
尼勒克县实验中学2018-2019学年高二上学期第二次月考试卷数学
尼勒克县实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. =( ) A .2B .4C .πD .2π2. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种3. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣24. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .5. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.6. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.7. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .8.给出下列命题:①在区间(0,+∞)上,函数y=x﹣1,y=,y=(x﹣1)2,y=x3中有三个是增函数;②若log m3<log n3<0,则0<n<m<1;③若函数f(x)是奇函数,则f(x﹣1)的图象关于点A(1,0)对称;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0有2个实数根.其中假命题的个数为()A.1 B.2 C.3 D.49.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.10.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.20+2πB.20+3πC.24+3πD.24+3π11.设m、n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥β,m⊥β,则m∥α;其中正确命题的序号是()A.①②③④B.①②③ C.②④D.①③12.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为()1111]A.10B.51C.20D.30二、填空题13.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.14.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 15.已知关于 的不等式在上恒成立,则实数的取值范围是__________16.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .17.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .18.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .三、解答题19.如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.20.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.21.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.22.已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为﹣4,求a的值.23.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.24.已知命题p:x2﹣3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围.尼勒克县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.2.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.3.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A .4. 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A (a ,a ),化目标函数z=2x+y 为y=﹣2x+z ,由图可知,当直线y=﹣2x+z 过A (a ,a )时直线在y 轴上的截距最小,z 最小,z 的最小值为2a+a=3a=1,解得:a=. 故选:B .【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.6. 【答案】B第7.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.8.【答案】A【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x3是增函数.∴有两个是增函数,命题①是假命题;②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;③若函数f(x)是奇函数,则其图象关于点(0,0)对称,∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.9.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.10.【答案】B 【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.11.【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .12.【答案】D 【解析】试题分析:分段间隔为50301500,故选D. 考点:系统抽样二、填空题13.【答案】B 【解析】14.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.15.【答案】【解析】因为在上恒成立,所以,解得答案:16.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=,∴m=20,n=13,∴m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.17.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.18.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.三、解答题19.【答案】【解析】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V=V P﹣ABC,,得,A﹣PBC故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.20.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.21.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.22.【答案】【解析】解:(1)要使函数有意义:则有,解得﹣3<x<1,所以函数f(x)的定义域为(﹣3,1).(2)f(x)=log a(1﹣x)+log a(x+3)=log a(1﹣x)(x+3)==,∵﹣3<x<1,∴0<﹣(x+1)2+4≤4,∵0<a<1,∴≥log a4,即f(x)min=log a4;由log a4=﹣4,得a﹣4=4,∴a==.【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.23.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.24.【答案】【解析】解:对于命题p:x2﹣3x+2>0,解得:x>2或x<1,∴命题p:x>2或x<1,又∵命题q:0<x<a,且p是q的必要而不充分条件,当a≤0时,q:x∈∅,符合题意;当a>0时,要使p是q的必要而不充分条件,需{x|0<x<a}⊊{x|x>2或x<1},∴0<a≤1.综上,取并集可得a∈(﹣∞,1].【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.。
尼勒克县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
尼勒克县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知实数x ,y满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .42. 函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( ) A.向左平移个单位得到B.向右平移个单位得到 C.向左平移个单位得到 D.向左右平移个单位得到3. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 24. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f()﹣f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)5. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心6. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( ) A .2B .6C .4D .27. 已知AC ⊥BC ,AC=BC ,D满足=t+(1﹣t),若∠ACD=60°,则t 的值为( )A.B.﹣C.﹣1D.8. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .39. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .910.如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.30°B.45°C.60°D.90°11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D.1812.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是()A.等腰直角B.等腰或直角C.等腰D.直角二、填空题13.设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.14.设p:实数x满足不等式x2﹣4ax+3a2<0(a<0),q:实数x满足不等式x2﹣x﹣6≤0,已知¬p是¬q的必要非充分条件,则实数a的取值范围是.15.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.16.1785与840的最大约数为.17.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .18.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .三、解答题19.在平面直角坐标系xOy 中,经过点且斜率为k 的直线l 与椭圆有两个不同的交点P 和Q .(Ⅰ)求k 的取值范围;(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.20.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.21.已知命题p :x 2﹣2x+a ≥0在R 上恒成立,命题q :若p 或q 为真,p 且q 为假,求实数a 的取值范围.22.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.23.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .尼勒克县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 D C BCDBADBC题号 11 12 答案B13. 1 .14. .15.16. 105 .17. 18.三、解答题19. 20.21.22.(1)()2=+1f x x x -;(2)1m <-. 23.24.。
尼勒克县高中2018-2019学年高三下学期第三次月考试卷数学
尼勒克县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±32. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111]3. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 4. 已知实数x ,y满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .45. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 6 6. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36 7. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤< 8. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .9. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.10.已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .11.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .C .D .312.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .6二、填空题13.方程22x ﹣1=的解x= .14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .15.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x=+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.16.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;④函数g(x)=2x2﹣1共有三个稳定点;⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.17.不等式的解集为R,则实数m的范围是.18.设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:A.M中所有直线均经过一个定点B.存在定点P不在M中的任一条直线上C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上D.M中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号).三、解答题19.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.20.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.21.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.22.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.23.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.24.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.25.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.26.已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+a n.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{}的前n项和T n.尼勒克县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},∴2a ﹣1=9或a 2=9,当2a ﹣1=9时,a=5,A ∩B={4,9},不符合题意;当a 2=9时,a=±3,若a=3,集合B 违背互异性;∴a=﹣3. 故选:B .【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.2. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)3. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
尼勒克县一中2018-2019学年高三上学期11月月考数学试卷含答案
尼勒克县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .22. 设a=lge ,b=(lge )2,c=lg ,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a3. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )4. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 5. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非6. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 7. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014C .2015 D .20161111] 8. 已知x ,y ∈R,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( ) A .4﹣B .4﹣C.D.+班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A .11B .11.5C .12D .12.510.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 11.设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i12.由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .360二、填空题13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.14.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 623815.已知平面上两点M(﹣5,0)和N(5,0),若直线上存在点P使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是.16.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)17.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.18.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.三、解答题19.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)20.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.21.已知直线l经过两条直线2x+3y﹣14=0和x+2y﹣8=0的交点,且与直线2x﹣2y﹣5=0平行.(Ⅰ)求直线l的方程;(Ⅱ)求点P(2,2)到直线l的距离.22.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.23.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.24.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.尼勒克县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.1914. (﹣1,1] .15. ①② .16. (1,+∞)17. .18. [] .三、解答题19. 20.21.22.(1) 7a =;(2) 310P =. 23. 24.。
尼勒克县一中2018-2019学年高二上学期第二次月考试卷数学
尼勒克县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的162. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.3. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]4. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能5. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .6. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.7. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人8. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°9. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .4 10.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)12.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥ 二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 . 15.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .16.设全集______.17.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 18.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .三、解答题19.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.20.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE =-F BCD 的体积.21.已知直线l :x ﹣y+9=0,椭圆E : +=1,(1)过点M (,)且被M 点平分的弦所在直线的方程;(2)P 是椭圆E 上的一点,F 1、F 2是椭圆E 的两个焦点,当P 在何位置时,∠F 1PF 2最大,并说明理由;(3)求与椭圆E 有公共焦点,与直线l 有公共点,且长轴长最小的椭圆方程.22.本小题满分12分 设函数()ln x f x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-23.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥;(2)证明:平面 PAB 平面 FGH .24.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos t y =1+sin t(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.尼勒克县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 2. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.3. 【答案】C【解析】解:∵对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y ), ∴令x=n ,y=1,得f (n )•f (1)=f (n+1),即==f (1)=,∴数列{a n }是以为首项,以为等比的等比数列,∴a n =f (n )=()n,∴S n ==1﹣()n ∈[,1).故选C .【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题.4. 【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得, 消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.5.【答案】D【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,∴(AC+BC)2﹣3AC•BC=3,∴(AC+BC)2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.6.【答案】B【解析】连结,AC BD交于点E,取PC的中点O,连结OE,则O E P A,所以OE⊥底面ABCD,则O到四棱锥的所有顶点的距离相等,即O球心,均为12PC==可得34243316ππ=,解得72PA=,故选B.7.【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A .【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.8. 【答案】C 【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc ,可得a 2=7c 2, 所以cosA===﹣,∵0<A <180°, ∴A=120°. 故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.9. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.10.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.11.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B12.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系.二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.14.【答案】 m >1 .【解析】解:若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则命题“∀x ∈R ,x 2﹣2x+m >0”是真命题,即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >115.【答案】﹣2≤a ≤2【解析】解:原命题的否定为“∀x ∈R ,2x 2﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2﹣4×2×9≤0,解得:﹣2≤a ≤2.故答案为:﹣2≤a ≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.16.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
尼勒克县三中2018-2019学年高二上学期第二次月考试卷数学
尼勒克县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 2. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D 5. 阅读下面的程序框图,则输出的S=( )A .14B .20C .30D .556. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .367. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.8. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .39. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个11.设集合M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k的取值范围是()A.(﹣∞,﹣1] B.[﹣1,+∞)C.(﹣1,+∞)D.(﹣∞,﹣1)12.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)二、填空题13.1785与840的最大约数为.14.已知数列{a n}的前n项和为S n,a1=1,2a n+1=a n,若对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,则实数x的取值范围为.15.已知x,y满足条件,则函数z=﹣2x+y的最大值是.16.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.17.在△ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=.18.给出下列四个命题:①函数f(x)=1﹣2sin2的最小正周期为2π;②“x2﹣4x﹣5=0”的一个必要不充分条件是“x=5”;③命题p:∃x∈R,tanx=1;命题q:∀x∈R,x2﹣x+1>0,则命题“p∧(¬q)”是假命题;④函数f(x)=x3﹣3x2+1在点(1,f(1))处的切线方程为3x+y﹣2=0.其中正确命题的序号是.三、解答题19.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.20.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.21.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.22.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]24.已知椭圆C 1:+x 2=1(a >1)与抛物线C:x 2=4y 有相同焦点F 1.(Ⅰ)求椭圆C 1的标准方程;(Ⅱ)已知直线l 1过椭圆C 1的另一焦点F 2,且与抛物线C 2相切于第一象限的点A ,设平行l 1的直线l 交椭圆C 1于B ,C 两点,当△OBC 面积最大时,求直线l 的方程.尼勒克县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】考点:茎叶图,频率分布直方图.2.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,3.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.4.【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.5. 【答案】C【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4; S 5=30,i=5>4 退出循环, 故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.6. 【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x 4﹣2r ,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a 5,∴a 3a 7=a 52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.7.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.8.【答案】D【解析】解:∵f(x)=,f(1)=f[f(7)]=f(5)=3.故选:D.9.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.10.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.11.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.12.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.二、填空题13.【答案】105.【解析】解:1785=840×2+105,840=105×8+0.∴840与1785的最大公约数是105.故答案为10514.【答案】(﹣∞,]∪[,+∞).【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).15.【答案】4.【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.17.【答案】.【解析】解:在△ABC中,∵6a=4b=3c∴b=,c=2a,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.18.【答案】①③④.【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.三、解答题19.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.20.【答案】21.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.22.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a 2=2a ,则;当2≤n ≤2k ﹣1时,a n+1=(a ﹣1)S n +2,a n =(a ﹣1)S n ﹣1+2,所以a n+1﹣a n =(a ﹣1)a n ,故=a ,即数列{a n }是等比数列,,∴T n =a 1×a 2×…×a n =2n a1+2+…+(n ﹣1)=,b n ==.…(2)令,则n ≤k+,又n ∈N *,故当n ≤k 时,,当n ≥k+1时,.…|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|=+()+…+()…=(k+1+…+b 2k )﹣(b 1+…+b k )=[+k]﹣[]=,由,得2k 2﹣6k+3≤0,解得,…又k ≥2,且k ∈N *,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.23.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 24.【答案】【解析】解:(Ⅰ)∵抛物线x 2=4y 的焦点为F 1(0,1),∴c=1,又b 2=1,∴∴椭圆方程为:+x 2=1. …(Ⅱ)F 2(0,﹣1),由已知可知直线l 1的斜率必存在,设直线l 1:y=kx ﹣1由消去y 并化简得x 2﹣4kx+4=0∵直线l 1与抛物线C 2相切于点A .∴△=(﹣4k )2﹣4×4=0,得k=±1.…∵切点A 在第一象限. ∴k=1… ∵l ∥l 1∴设直线l 的方程为y=x+m由,消去y 整理得3x 2+2mx+m 2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.。
新疆高三上学期数学10月月考试卷
新疆高三上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020高一上·洛阳期中) 设集合A={a,4},B={1,2,3},A B={2}则 =()A . {2,3,4}B . {3}C . {1,2,3,4}D . {2,4}2. (2分)下面四个命题中正确的命题个数是()①0比-i大②两个复数互为共轭复数,当且仅当其和为实数③x+yi=1+i的充要条件为x=y=1 ④如果让实数a与ai对应,那么实数集与纯虚数集一一对应A . 0B . 1C . 2D . 33. (2分) (2016高二上·叶县期中) 若a、b、c是常数,则“a>0且b2﹣4ac<0”是“对任意x∈R,有ax2+bx+c>0”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件4. (2分)命题“∃x0∈(0,+∞),lnx0>3﹣x0”的否定是()A . “∃x0∈(0,+∞),lnx0≤3﹣x0B . ∀x∈(0,+∞),lnx>3﹣xC . ∀x∈(0,+∞),lnx<3﹣xD . ∀x∈(0,+∞),lnx≤3﹣x5. (2分)下列函数中,在区间(0,上为增函数且以为周期的函数是()A .B .C .D .6. (2分)等差数列中,若,则的值是()A . 14B . 15C . 16D . 177. (2分)要得到的图象,只需将的图象().A . 向左平移个单位B . 向右平移个单位C . 向左平移个单位D . 向右平移个单位8. (2分)若数列满足,则当取最小值时n的值为()A . 8或9B . 9C . 8D . 7或89. (2分) (2015高二下·铜陵期中) 已知直线l:2x+4y+3=0,P为l上的动点,O是坐标原点,若点Q满足:2 ,则点Q的轨迹方程是()A . 2x+4y+1=0B . 2x+4y+3=0C . 2x+4y+2=0D . x+2y+1=010. (2分) (2019高二上·信丰月考) 已知正方体的棱长为a,点分别为棱的中点,下列结论中,其中正确的个数是()①过三点作正方体的截面,所得截面为正六边形;② /平面;③ ;④异面直线与所成角的正切值为;⑤四面体的体积等于A . 1B . 2C . 3D . 4二、填空题 (共5题;共5分)11. (1分) (2017高一上·河北期末) 已知⊥ ,| |=2,| |=3,且3 +2 与λ ﹣垂直,则实数λ的值为________.12. (1分) (2020高二上·南昌月考) 对任意实数k,圆:与直线:的位置关系是________.13. (1分)(2019·浙江模拟) 已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,侧视图为直角三角形,则该三棱锥的体积为________,该三棱锥的外接球的表面积为________.14. (1分) (2020高二下·长沙期末) 设 ,则的最大值为 ________.15. (1分) (2016高二下·鹤壁期末) 若f(x)=﹣ x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是________.三、双空题 (共1题;共2分)16. (2分) (2017高二上·长春期中) 平面内有一长度为2的线段AB与一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围为________.四、解答题 (共5题;共65分)17. (10分) (2019高三上·吉林月考) 设函数的正零点从小到大依次为……,,……,构成数列 .(1)写出数列的通项公式,并求出数列的前项和;(2)设,求的值.18. (10分)(2020·兴平模拟) 在中,角,,的对边分别为,,,且.(1)求角的值;(2)若,且的面积为,求边上的中线的大小.19. (15分)(2017·枣庄模拟) 在四边形ABCD中(如图①),AB∥CD,AB⊥BC,G为AD上一点,且AB=AG=1,GD=CD=2,M为GC的中点,点P为边BC上的点,且满足BP=2PC.现沿GC折叠使平面GCD⊥平面ABCG(如图②).(1)求证:平面BGD⊥平面GCD:(2)求直线PM与平面BGD所成角的正弦值.20. (15分) (2017高二下·遵义期末) 已知函数f(x)=ax﹣lnx;g(x)= .(1)讨论函数f(x)的单调性;(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;(3)若h(x)=x2[1+g(x)],当a>1时,对于∀x1∈[1,e],∃x0∈[1,e],使f(x1)=h(x0),求a 的取值范围.21. (15分) (2018高二上·会宁月考) 已知数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尼勒克县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D 2. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024C .3136D .44953. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)4. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=05. 在极坐标系中,圆的圆心的极坐标系是( )。
ABC D6. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 7. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.8. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]10.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q二、填空题11.设,则的最小值为12.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.13.函数1()lg(1)1f x x x =++-的定义域是 ▲ .14.在数列中,则实数a= ,b= .15.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是16.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .三、解答题17.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个? (3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .18.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .19.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a.20.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.21.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.22.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.ABCDP尼勒克县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.2. 【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.3.【答案】A【解析】解:令f(x)=x3﹣,∵f′(x)=3x2﹣ln=3x2+ln2>0,∴f(x)=x3﹣在R上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.4.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.5.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
6.【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.7. 【答案】A 【解析】8. 【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形 故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题.9. 【答案】B【解析】解:由M 中y=2x,x ≤1,得到0<y ≤2,即M=(0,2], 由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1], 故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.二、填空题11.【答案】9【解析】由柯西不等式可知12.【答案】2-【解析】由题意,得336160C m =-,即38m =-,所以2m =-.13.【答案】()()1,11,-⋃+∞考点:定义域14.【答案】a=,b=.【解析】解:由5,10,17,a ﹣b ,37知,a ﹣b=26, 由3,8,a+b ,24,35知,a+b=15,解得,a=,b=;故答案为:,.【点评】本题考查了数列的性质的判断与归纳法的应用.15.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.16.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题17.【答案】【解析】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x ≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x ),解可得x 的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5; 又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A 32=6种情况,即能被5整除的三位数共有6个; (2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A 33=6种情况, 取出的三个数字为2、4、9时,有A 33=6种情况,则此时一共有6+6=12个能被3整除的三位数; (3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A 32=6种情况,当末位是2或4时,有A 21×A 21×A 21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C 31×C 31×C 21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x ≠0时,可以组成无重复三位数共有C 41×C 31×C 21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x ),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x 为0与否两种情况讨论.18.【答案】(1)n a n 2=;(2)=n T )1(2+n n.考点:1.一元二次方程;2.裂项相消法求和.19.【答案】【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,则(|x﹣10|+|x﹣20|)min<10a+10,根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,即(|x﹣10|+|x﹣20|)min=10,所以,10<10a+10,解得a>0,所以,实数a的取值集合为A=(0,+∞);(2)∵a,b∈(0,+∞)且a≠b,∴不妨设a>b>0,则a﹣b>0且>1,则>1恒成立,即>1,所以,a a﹣b>b a﹣b,将该不等式两边同时乘以a b b b得,a ab b>a b b a,即证.【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.20.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c 2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.21.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD . 设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC ,那么//EF AB ,13EF AB =.∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|2||||AP n AP n AP n θ⋅=<>==⋅, ∴3πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)22.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.A【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.。