新人教版五年级数学上册第六单元教学设计-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育教科书《数学》五年级下册第六单元
《多边形的面积》教学设计
一、教材分析:
单元主要内容:平行四边形面积的计算,三角形面积的计算,梯形面积的计算,组合图形面积的计算。
本单元教材是在学生掌握了平行四边形、三角形和梯形的特征,认识了组合图形,知道了面积概念并会计算长方形、正方形面积的基础上安排的。本单元内容分四个模块:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等一系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。
单元学习内容的前后联系
编排特点:
全单元内容在编排上有四个特点。
--------→
------------→
1.先教学平行四边形的面积公式,然后以它为基础教学三角形、梯形的面积公式。因为把三角形、梯形转化成平行四边形比化成长方形简便,从平行四边形面积公式推理出三角形、梯形的面积公式比较容易。
2.注重动手操作的学习方式。
本单元教材在认识多边形的特征,探索多边形面积的计算方法的过程中,注重动手操作,并在操作过程中,渗透平移、旋转等思想方法,让学生在活动中体会知识形成、发展的过程,了解知识之间的内在联系。
3.渗透数学方法与思想。
本单元在探索新知识的过程中,渗透了学习数学知识的一般方法与思路。如研究平行四边形的特征时,教材提示“可以从边和角两方面来研究。”再如研究平行四边形面积时,教材呈现出“联想—猜测---实验---验证---得出结论”的推导过程,提示了科学研究的基本思路。在研究平行四边形、三角形、梯形面积的时候,都体现了转化的思想方法。
二、单元教学目标:
1. 利用割补等方法,探索并掌握平行四边形、三角形和梯形的面积公式,会用公式计算图形面积。
2. 能综合运用平行四边形、三角形和梯形的面积公式解决组合图形面积以及一些简单的实际问题。
3. 在探索图形面积公式的过程中,渗透转化的数学思想方法,进一步发展学生的空间观念。
4. 能探索解决面积问题的有效方法,感受有些问题解决方法的多样化,表达解决问题的过程,并尝试解释所得结果。
5. 通过观察、操作、归纳、类比等数学活动,感受数学问题的探索性和挑战性,体验公式推导过程的科学性和数学结论的确定性。
三、教学重点、难点
教学重点:平行四边形、三角形、梯形的面积计算公式。
教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。四、学情分析:
学生已有知识基础:这部分内容是在学生初步掌握了平行四边形、三角形和梯形的特征,长方形、正方形的面积计算方法,以及初步认识图形的平移、旋转等基础上进行教学的。
对后继学习的作用:一是使学生基本掌握多边形面积计算的方法,能相对独立地探索并解决实际生活中与多边形面积计算相关的实际问题;二是为学生进一步探索并掌握其他平面图形的面积计算方法,进一步学习空间与图形领域的其他内容奠定基础。
五、教学措施:
1.注重让学生经历知识的探索过程。
教学时,通过动手操作等活动,突出图形面积计算的探索过程,使学生不仅掌握面积计算的方法,还要学会面积计算公式的推导方法。避免重计算轻认识、重结果轻过程的倾向。只有这样,才能有效地培养学生的分析、判断、推理、抽象、概括能力,发展学生的空间观念。
2.发挥直观操作在探索活动中的作用。
教学时,教师要注重紧密联系学生的生活实际,从学生已有的认知基础和生活经验出发,指导学生利用学具开展操作活动。在操作活动中,学生通过观察、猜想、测量、推理、验证,完成对新知的建构过程。如学习平行四边形、三角形、梯形的面积计算时,通过量、折、剪、拼等操作活动,运用类推、转化等思想方法,探索出图形面积的计算方法,体会知识之间的内在联系。
3.重视多样化的学习,鼓励个性化的思考。
学生的求知欲和好奇心较强,不同的学生认识事物的方法、手段不尽相同。教学时,要重视发展学生的个性。如:在探索平行四边形面积计算时,可给学生充分的时间和空间,进行独立思考,探索计算方法,鼓励解决问题策略的多样化。再引导学生进行交流,学生的思路可能各不相同,可以互相补充,进而培养学生的参与意识和合作意识。
六、课时安排:
共12课时
第1课时平行四边形面积(1)
教学内容:教学P79-P81及练习十五的1-3题
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
学具准备:每个学生准备一个平行四边形。
教学过程:
一、孕伏新知
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
3、导入新课:根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、出示目标:
1.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展空间观念,培养运用转化的思考方法解决问题的能力和逻辑思维能力。
3.初步理解辩诈唯物主义的观点。
三、自主学习
(一)、数方格的方法计算面积
出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
四、合作探究
学习割补法