生物化学讲义-核酸代谢创新

合集下载

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。

2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。

3.熟悉代谢调节的三种方式。

掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。

熟悉细胞内酶隔离分布的意义。

熟悉酶活性调节的方式。

4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。

6.熟悉激素种类及其调节物质代谢的特点。

7.熟悉饥饿与应激状态下的代谢改变。

【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。

物质代谢是生命的本质特征,是生命活动的物质基础。

二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。

它们的分解代谢有共同的代谢通路—三羧酸循环。

三羧酸循环是联系糖、脂与氨基酸代谢的纽带。

通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。

对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。

㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。

因此氨基酸转变成糖较为容易。

糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。

㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。

脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。

生物化学核酸与核苷酸代谢

生物化学核酸与核苷酸代谢

生物化学核酸与核苷酸代谢核酸是生物体内重要的生物大分子之一,它在细胞中起着重要的功能。

核苷酸是核酸的基本组成单元,包括核苷和磷酸。

在生物体内,核酸通过一系列复杂的代谢途径参与了许多重要生物过程,如DNA和RNA的合成、信息传递和遗传改变等。

本文将对核酸与核苷酸的代谢过程进行详细介绍。

核酸的合成主要包括两个过程,即碱基合成功能的合成和核苷酸合成功能的合成。

在碱基合成功能的合成中,脱氨核苷酸(dNTP)被氨基酸转氨酶催化生成脱氨核苷酸(dNDP)和谷氨酸。

在核苷酸合成过程中,核苷酸被核苷酸合成酶催化,通过与降解核酸的反应途径相反的途径将核苷酸合成为核苷酸骨架。

核苷酸的合成主要发生在细胞核内。

在细胞质中生成的核苷酸会通过细胞核膜进行运输,然后通过核孔复合体进入细胞核。

核苷酸的合成过程非常复杂,涉及多个酶和辅酶的参与。

核苷酸代谢的主要途径包括核苷酸的降解、拆分和再利用。

核苷酸降解主要通过核苷酸酶催化,将核苷酸分解成核苷和磷酸。

然后,核苷被腺苷脱氨酶催化,去除氨基团形成脱氨核苷。

最后,脱氨核苷被核苷酸酶催化,分解成基础核糖和异黄嘌呤酸。

核苷酸代谢的拆分过程可以产生能量和分子间的信号分子。

其中,核苷酸降解产生的能量在生物体内的许多代谢过程中发挥重要作用。

核苷酸的再利用过程主要发生在细胞质中。

在这个过程中,核苷酸通过多个酶和辅酶的催化作用,被合成为新的核苷酸。

这个过程称为核苷酸逆转录。

核酸和核苷酸代谢的异常可能导致许多疾病的发生。

例如,核酸代谢疾病在新生儿中比较常见,表现为尿中有大量的核苷、核糖和核苷酸。

遗传性疾病X染色体连锁性核苷酸酶缺乏症是由于核苷酸酶缺乏引起的,会导致血清脱氨核苷水平升高。

碱基合成功能的异常或缺陷也会引发一些疾病,如DNA合成的紊乱可能导致DNA复制错误和突变。

总之,核酸和核苷酸在生物体内发挥着重要的生理和生化功能,包括DNA和RNA的合成、遗传修复、能量和信号传导等重要过程。

核酸与核苷酸的代谢过程非常复杂,涉及多个酶和辅酶的参与。

生物化学之核苷酸代谢

生物化学之核苷酸代谢

生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2

生物化学 第十二章 核酸降解及核苷酸代谢

生物化学 第十二章 核酸降解及核苷酸代谢
的过程
利用磷酸核糖、
氨基酸、甲酸 盐及CO2等简 单物质为原料,
经过一系列酶
促反应,合成
核糖核苷酸的 途径
(一)嘌呤核苷酸的从头合成
AMP
GMP
嘌呤碱合成的元素来源
CO2
Gly
Asp
甲酰基 (一碳单位)
甲酰基 (一碳单位)
Gln (酰胺基)
合成过程
1. 在PRPP基础上逐步合成嘌呤环, 首先合成IMP(IMP合成);
核酸酶内切酶
核糖核酸酶(RNase)
RNase:作用于RNA内部的磷酸二酯键,主要有RNaseA; 产物:5′-OH末端和3′-磷酸基末端的寡核苷酸片段。
Py Pu Py Py G A C U G A
p
p
p
p
p
p
p
p
p
p
OH


RNase A
A A RNase T1
A A T1
RNase对RNA的水解位点示意图 (Pu:嘌呤 Py:嘧啶)

Alu I Bam H I Bgl I EcoR I Hind Ⅲ Sal I Sma I
常用的DNA限制性内切酶的专一性
辨认的序列和切口
说明
‥ ‥A G C T ‥‥ ‥ ‥T C G A ‥ ‥
四核苷酸,平端切口
‥ ‥G G A T C C ‥‥ ‥ ‥C C T A G G ‥‥
六核苷酸,粘端切口
GMP
嘌呤核苷酸从头合成特点
Ø嘌呤核苷酸是在5-磷酸核糖基础上进行的; Ø由IMP转化产生AMP或GMP; ØIMP的合成需5个ATP,6个高能磷酸键; ØAMP或GMP的合成又需1个GTP或ATP。

生物化学讲义

生物化学讲义

第一章绪论一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学;因此生物化学又称为生命的化学简称:生化,是研究生命分子基础的学科;生物化学是一门医学基础理论课;二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能; 蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节;研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容;3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点;三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用;本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程;五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用;2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望;3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习;4.学习后及时做好复习,整理好笔记;5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力;6.实验实训课是完成本课程的重要环节;亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告;第一章蛋白质的化学一、蛋白质的分子组成一蛋白质的元素组成蛋白质分子主要元素组成:C、H、O、N、S;特征元素:N元素含量比较恒定约为16%故所测样品中若含1克N,即可折算成克蛋白质;实例应用二组成蛋白质的基本单位——氨基酸AA一编码氨基酸的概念和种类:蛋白质合成时受遗传密码控制的氨基酸,共有20种二氨基酸的结构通式:L-α-氨基酸甘氨酸除外三氨基酸根据R基团所含的基团,可分为酸性氨基酸羧基、碱性氨基酸氨基及其衍生基团和极性的中性氨基酸羟基、巯基和酚羟基;二、蛋白质的结构与功能一蛋白质的基本结构1.肽键和肽1肽键:一个氨基酸的α-羧基与另一氨基酸的α-氨基脱水缩合而成的共价键称肽键,肽键是蛋白质分子中氨基酸之间相互连接的主键;2肽:氨基酸通过肽键而成的化合物称肽;3生物活性肽2.蛋白质的一级结构概念:蛋白质肽链中氨基酸残基的排列顺序,是蛋白质分子的基本结构;意义:是空间结构及其功能的基础;实例分析:胰岛素、分子病等二蛋白质的空间结构蛋白质在一级结构的基础上进一步折叠、盘曲而成的三维结构,又称构象;维系空间结构的化学键:氢键、盐键、疏水键和二硫键等空间结构可分下列层次:1.蛋白质的二级结构α-螺旋、β-折叠、β-转角和无规卷曲;2.蛋白质的三级结构特点是多肽链中疏水的氨基酸一般集中在分子内部;有些蛋白质仅有一条三级结构的多肽链,其表面可形成活性中心,具有活性;3.蛋白质的四级结构亚基的概念、数目、种类三、蛋白质的理化性质和分类一、蛋白质的理化性质1.两性电离与等电点蛋白质是两性离子,其分子所带电荷受环境pH的影响;蛋白质的等电点:蛋白质分子呈电中性时的溶液pH值称蛋白质的等电点pI;1蛋白质在pH小于其等电点的溶液中呈阳离子,2蛋白质在pH大于其等电点的溶液中呈阴离子,3蛋白质在pH和其等电点相同的溶液中不带电,此时溶解度最低,易于沉淀析出;临床应用:电泳技术电泳:带电颗粒在电场中朝与其所带电荷相反的方向泳动,称电泳electrophoresis;电泳技术是目前分离、提纯、鉴定蛋白质最常用的方法之一;2.蛋白质的亲水胶体性质临床应用:盐析salt precipitaion、有机溶剂沉淀法3.蛋白质的沉淀1盐析法2有机溶剂沉淀法3生物碱试剂法4重金属沉淀法4.蛋白质的变性:蛋白质在理化因素作用下,使蛋白质分子的空间结构破坏,理化性质及生物学活性丧失的过程;引起蛋白质变形的因素:举例:物理因素、化学因素和生物因素变性的本质:非共价键断裂,使蛋白质分子从严密有规则的空间结构变成松散紊乱的结构状态;蛋白质变性的实际应用举例:应用变性的实例、防止变性的实例5.紫外吸收性质及呈色反应在280 nm具有紫外吸收的特点临床应用:用280nm 吸收值测定对蛋白质进行定性和定量;二蛋白质的分类1.按分子形状分类球状蛋白质、纤维状蛋白质2.按组成分类单纯蛋白质、结合蛋白质第二章核酸的化学核酸的分类、分布与生物学功能一组成成份1.碱基 A G C U T2.戊糖3.磷酸比较两类核酸的化学组成组成成分DNA RNA磷酸磷酸磷酸戊糖2-脱氧核糖核糖碱基 A G C T A G C U二组成核酸的基本单位——核苷酸1.核苷2.核苷酸二、核酸的分子结构一核酸分子的一级结构二核酸分子的空间结构1.DNA的二级结构——双螺旋结构,其主要特点是:1两条链方向相反、相互平行、主链是磷酸戊糖链,处于螺旋外侧;2碱基在螺旋内侧并配对存在,A与T配对的G与C配对,A与T之间二个氢键相连A-T,G与C之间三个氢键相链G-C;3螺旋直径2nm,二个碱基对平面距,10bp为一螺距,距离为;4稳定因素主要是碱基之间的氢键和碱基对平面之间的堆积力;DNA的二级结构的生物学意义:1提出了遗传信息的贮存方式、DNA的复制机理2是DNA复制、转录和翻译的分子基础2.RNA的空间结构tRNA二级结构特点:呈三叶草形,有三环四臂;第三章酶一、酶的概述一酶的概念1.酶的定义:酶是由活细胞产生的生物催化剂,本质为蛋白质,具有高度专一性和高效的催化作用;2.酶促反应、底物和作用物二酶促反应的特点1.高度的催化效率在常温常压及中性pH条件下,酶比一般催化剂的催化效率高107 -1013 倍;2.高度催化专一性酶对所作用的底物有严格的选择性,从酶对底物分子结构要求不同,可分三种专一性:1对专一性:一种E只能催化一种S 脲酶2相对专一性:一种E只能催化一类S 一种化学键/水解酶类3立体异构专一性:一种E只能催化一种S的某一种特定构型LDH --- 乳酸脱氢酶3.高度的不稳定性易受变性因素影响而失活二、酶的结构与功能一酶的分子组成1.单纯蛋白酶如蛋白酶、淀粉酶、脂酶等水解酶;2.结合蛋白酶:酶蛋白+ 辅助因子结合成全酶才有活性1酶蛋白:决定催化反应的特异性选择E催化的S2辅助因子:决定催化反应的类型递电子、氢或一些基团主要有金属离子和有机小分子辅基/辅酶参与组成二酶的活性中心与必需基团1.活性中心:存在于酶分子表面的局部空间区域构象,由必需基团所组成功能:结合底物并催化底物进行反应2.必需基团:与酶活性中心有关的功能基团酶发挥催化作用所需要基团,一般指分布在酶分子表面的极性基团,包括-COOH、-NH2、-OH、 -SH、咪唑基等;功能:在活性中心内活性中心的组份——有结合基团和催化基团在活性中心外——维持构象稳定三酶原与酶原激活1.概念:在细胞内合成或初分泌时,只是酶的无活性前体——酶原2.酶原激活:在一定条件下,使酶原转化成活性的酶,称酶原的激活;酶原激活的过程通常是在酶原分子中切除部分肽段,从而有利于酶活性中心的形成或暴露;3.意义:在特定条件下被激活,可调节代谢、保护自体避免细胞自身消化,保持血流畅通许多蛋白水解酶如消化腺分泌的蛋白酶、参于血液凝固的酶和溶解纤维蛋白凝块的酶均以酶原形式存在,发挥作用前需先经过加工;实例:胰蛋白酶原激活四同工酶1.概念:催化功能相同,但酶蛋白的组成与结构等均不同的一组酶特点:a. 存在于同一种属或同一个体的不同组成或同一组织同一细胞中;b. 一级结构不同,理化性质包括带电性质不同,免疫学性质不同,但空间结构中的活性中心相同或相似;c. 往往是四级结构的酶类;d. 已发现一百多种酶具有同工酶性质;发现最早研究最多的是乳酸脱氢酶,它有五种同工酶;临床测定同工酶酶谱的变化,多用于疾病的诊断和鉴别诊断;2.组成、分型、分布、命名和医学应用以乳酸脱氢酶为例:LDH是由2种亚基组成的四聚体,共有5种分型;LDH同工酶在诊断中的意义:心肌炎:LDH1↑,肺梗塞:LDH3↑,肝炎:LDH5↑三、酶催化反应的动力学影响酶促反应的因素有酶浓度、底物浓度、pH、温度、激活剂等;必需采用测定反应初速度的条件;一底物浓度的影响——矩形双曲线二酶浓度的影响在底物浓度足够高时,酶促反应速度与酶浓度呈正比;三pH的影响酶活性最高时的pH值称酶的最适pH;大多数酶最适pH值在7左右,亦有偏酸和偏碱的例外;四温度的影响最适温度:最大酶促反应速度时的温度;五激活剂对反应速度的影响1.凡能提高酶活性的物质称激活剂activator;2.通常分必需激活剂和非必需激活剂两类,前者多为金属离子;六抑制剂对酶促反应速度的影响凡使酶活性降低或丧失的作用称抑制作用,使酶活性起抑制作用的物质称抑制剂;根据抑制剂与酶结合的方式不同,抑制作用可分为不可逆抑制和可逆抑制两大类;1.不可逆抑制:例子:重金属离子对巯基酶的抑制作用;有机磷农药对羟基酶如胆碱酯酶的抑制作用; 2.可逆抑制:1竞争性抑制:重要实例:丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物的抑菌作用;2非竞争性抑制作用:抑制剂可逆地与酶的非活性中心区结合,由于抑制剂不与底物竞争酶的活性中心,故称非竞争性抑制作用;四、酶与医学的关系一酶与疾病发生酶的质、量异常可致疾病白化病/ 蚕豆黄二酶与疾病诊断酶活性高低可反映疾病主要是血浆中的细胞酶类三酶与疾病治疗多酶片:治疗消化不良尿激酶酶:治疗血栓、抢救心梗糜蛋白酶:治疗老慢支、清创溶酶片:治疗口腔溃疡维生素维生素是人体必需的小分子有机物,在体内不能合成或合成不足,必需由食物提供,一旦缺乏会导致缺乏症;维生素分为脂溶性和水溶性两种;脂溶性维生素包括A、D、K、E;缺乏维生素A易导致夜盲症和干眼病;缺乏维生素D会导致佝偻病及软骨病;维生素E是体内重要的抗氧化剂;维生素K促进多重凝血因子形成;水溶性维生素包括B族维生素和维生素C两大类;缺乏维生素B1会导致脚气病;缺乏维生素B2可引起口角炎等;缺乏维生素PP易导致癞皮病;维生素B6构成转氨酶的辅酶磷酸吡哆醛;生物素是羧化酶辅酶;泛酸构成的HSCoA 是酰基转移酶辅酶;叶酸是一碳单位的载体,维生素B12是甲基转移酶辅酶,缺乏叶酸和B12都会导致巨幼红细胞性贫血;维生素C是羟化酶辅酶,参与胶原蛋白形成及体内多种氧化还原反应,缺乏维生素C导致坏血病;维生素、辅酶与相关酶之间的关系维生素活性形式辅助因子形式相关酶B1焦磷酸硫胺素TPPα-酮酸脱氢酶复合体B2黄素单核苷酸FMN黄素腺嘌呤二核苷酸FAD黄素酶PP 尼克酰胺腺嘌呤二核苷酸NAD+尼克酰胺腺嘌呤二核苷酸磷酸NADP+不需氧脱氢酶B6磷酸吡哆醛、磷酸吡哆胺转氨酶、脱羧酶泛酸辅酶AHSCoA酰基转移酶生物素生物素羧化酶叶酸四氢叶酸FH4一碳单位转移酶B12甲基B12CH3- B12甲基转移酶C L-抗坏血酸羟化酶第四章糖代谢一、糖的分解代谢一糖的酵解1.糖酵解的概念:糖的无氧分解是指葡萄糖或糖原在无氧条件下,分解成乳酸的过程;因其反应过程与酵母的生酵发酵相似,故又称糖酵解;反应部位:在细胞浆内进行,因酵解过程中所有的酶均存于胞浆;2.反应过程:可分二个阶段:第一阶段:葡萄糖分解生成丙酮酸的过程第二阶段:丙酮酸还原成乳酸3.糖无氧氧化的生理意义1糖无氧氧化是机体在缺氧或无氧条件下迅速获得能量的有效方式;2有些组织细胞,如神经、白细胞、骨髓、成熟红细胞、肿瘤等,即使氧供充足,也主要依靠糖无氧氧化获得能量;3成熟红细胞因缺乏线粒体不能依靠糖的有氧氧化来获得能量,所需能量的90%——95%来自于糖酵解;二糖的有氧氧化1.糖的有氧氧化的概念:在有氧情况下,葡萄糖或糖原彻底氧化成C02和H20的过程;是糖氧化产能的主要方式;2.糖有氧氧化的过程:分为三个阶段:3.糖有氧氧化的生理意义 1在有氧条件下,人体内大多数组织细胞主要利用糖的有氧氧化获得能量 1分子葡萄糖经有氧氧化可净得38或36分子ATP,是无氧氧化的19或18倍 2三羧酸循环是糖、脂肪和蛋白质彻底氧化分解的共同途径3三羧酸循环是糖、脂肪和蛋白质三大物质代谢相互联系与转化的枢纽; 三磷酸戊糖途径二、糖原合成与分解一糖原的合成由单糖合成糖原的过程称为糖原合成; 二糖原的分解由糖原分解为葡萄糖的过程称为糖原分解,习惯上指肝糖原的分解;三、 糖异生作用糖异生作用是指非糖物质转变为葡萄糖或糖原的过程; 一糖异生途径糖异生途径基本上是糖无氧氧化的可逆过程, 二糖异生的生理意义1.维持空腹或饥饿情况下血糖浓度的相对恒定 2.有利于乳酸的利用 3.调节酸碱平衡;四、 血糖一血糖的来源与去路1.血糖:血液中的葡萄糖;空腹血糖浓度为~L 葡萄糖氧化酶法2.血糖恒定的意义:血糖浓度的相对稳定对保证组织器官,特别是对脑组织的正常生理活动具有重要意义; 二血糖浓度的调节1.组织器官的调节 肝 2.激素的调节调节血糖的激素有两大类,一类是降低血糖的激素,即胰岛素;另一类是升高血糖的激素,有胰高血糖素、肾上腺素、糖皮质激素和生长素等; 三高血糖和低血糖 1.高血糖和糖尿临床上将空腹血糖浓度高于L 称为高血糖;当血糖浓度超过肾糖阈~L 时,一部分葡萄糖从尿中排出,称之为糖尿;引起高血糖和糖尿的原因有生理性和病理性两种; 2.低血糖空腹血糖浓度低于L 称为低血糖;低血糖影响脑组织的功能,会出现头晕、心悸、倦怠无力等,严重时血糖浓度低于L 出现昏迷,称为低血糖休克;如不及时给病人静脉补充葡萄糖,可导致死亡;CO 2+H 2O+ATP葡萄糖或糖原丙酮酸丙酮酸乙酰辅酶A胞液 线粒体第一阶段第二阶段引起低血糖的病因有:①胰性胰岛β-细胞功能亢进、胰岛α-细胞功能低下等;②肝性肝癌、糖原累积病等;③内分泌异常垂体功能低下、肾上腺皮质功能低下等;④肿瘤胃癌等;⑤饥饿或不能进食者等;第六章脂类代谢脂类包括三脂酰甘油甘油三酯及类脂;一、概述一脂类的分布与含量二脂类的生理功能必需脂肪酸:亚油酸、亚麻酸、花生四烯酸;二、甘油三脂的中间代谢一三脂酰甘油的分解代谢1.三脂酰甘油动员2.脂肪酸的氧化产物:二氧化碳和水3.酮体的生成和利用:酮体是脂肪酸在肝内氧化不完全所产生的一类中间产物的统称,包括乙酰乙酸、β-羟丁酸和丙酸1.酮体的生成:生成部位:肝脏2.酮体的利用:利用部位:肝外组织意义:当糖供应不足时,酮体是脑组织的主要能源;饥饿、糖尿病等情况下,脂肪动员增加,肝内生酮增加,血中酮体增加,可产生酮血症、酮尿症甚至酮症酸中毒;二甘油三脂的合成代谢三、类脂代谢一甘油磷脂代谢二胆固醇代谢1. 胆固醇的合成合成部位肝脏合成原料乙酰辅酶A合成过程 1.二羟戊酸的合成 2.鲨烯的生成 3.胆固醇的生成2.胆固醇的转化与排泄转化为:胆汁酸;转化为类固醇激素;转化为维生素D3四、血脂与血浆脂蛋白一血脂的组成与含量血浆中的脂质,包括甘油三酯、磷脂、胆固醇及其酯以及游离脂肪酸;二血浆脂蛋白1.血浆脂蛋白的分类1电脉分类法α-脂蛋白、前β-脂蛋白、β-脂蛋白、乳糜微粒2超速离心法高密度脂蛋白、低密度脂蛋白、极低密度脂蛋白、乳糜微粒2.血浆脂蛋白的性质、组成、功能见表6-2三高脂血症又称高脂蛋白血症;标准:空腹12-14小时血甘油三酯>2;26mmol/L200mg/dl,血胆固醇>6;21mmol/L240mg/dl为标准;第七章氨基酸分解代谢一、蛋白质的营养作用一蛋白质的生理功能1.维持组织细胞的生长、更新和修复2.参与体内各种生理活动3.氧化供能二蛋白质的需要量1.氮平衡 16%2.蛋白质的需要量 80克/天二、氨基酸的一般代谢一氨基酸代谢概况血中氨基酸的来源和去路来源1食物蛋白质消化吸收2组织蛋白质降解3体内合成的非必需氨基酸去路:1合成组织蛋白质此为蛋白质的主要生理功能2分解成CO2 + H2O + 尿素 + 能量;3转变成其它含氮化合物;二氨基酸的脱氨基作用1.转氨基作用重要的转氨酶:谷丙转氨酶/ALT肝脏活性最强和谷草转氨酶/ASP心肌细胞活性最强,这两种酶均为细胞内酶,借此用于临床疾病的诊断;2.氧化脱氨基作用3.联合脱氨基作用——主要方式联合脱氨基作用是指转氨基作用由转氨酶催化和谷氨酸的氧化脱氨基作用由谷氨酸脱氢酶催化偶联的过程;这是体内主要的脱氨基方式;三氨的代谢1.体内氨的来源氨对机体有毒,因此机体必需及时消除氨的毒性作用;氨的来源有三:1氨基酸脱氨生成是NH3的主要来源,2肠道NH3的吸收,此途径的NH3由蛋白质的腐败作用及尿素的肠肝循环产生,酸性的肠道环境可减少NH3的吸收;3肾脏产NH3,部分可吸收入血;2.氨的主要去路——合成尿素尿素生成部位:肝脏生成过程:鸟氨酸循环;尿素合成的意义:NH3有毒,尿素是中性无毒高度溶解的化合物,可随血由肾排出,故尿素的生成是体内解除氨毒的最主要方式,是NH3的主要去路;四α–酮酸的代谢1.合成非必需氨基酸2.转化为糖和脂质3.氧化供能三、个别氨基酸代谢一氨基酸脱羧基作用1.组胺来自于组胺酸组胺有扩血管降血压,促进胃液分泌等作用2.GABA 来自于谷氨酸γ-氨基丁酸为抑制性神经递质3.5-HT 来自于色氨酸 5-羟色胺与睡眠疼痛和体温调节有关二一碳单位的代谢:1.概念:指蛋白质代谢中所生成的含有一个碳原子的有机基团如:-CH3、-CH2-、-CH=、-CHO等;2.转运载体:四氢叶酸FH4;3.生理功用:参与嘌呤、嘧啶和某些重要物质的合成;三芳香族氨基酸的代谢1.苯丙氨酸代谢先天性缺乏苯丙氨酸羟化酶,引起苯丙酮酸尿症;2.酷氨酸代谢先天性缺乏酪氨酸酶,可导致白化病;肝脏生化肝是人体内最大的实质器官,成人约1500克,占体重的%左右;肝有“物质代谢中枢”之称,不仅影响食物的消化、吸收,而且在物质代谢、生物转化及排泄中均具有十分重要作用;溶血性黄疸、肝细胞性黄疸及阻塞性黄疸的鉴别指标正常 溶血性黄疸 肝细胞性黄疸 阻塞性黄疸 血清总胆红素浓度 <1mg/dl >1mg/dl>1mg/dl >1mg/dl 结合胆红素 极少 ↑ ↑↑ 未结合胆红素 0~dl ↑↑ ↑ 尿三胆尿胆红素 - - ++ ++ 尿胆素原 少量 ↑ 不一定 ↓ 尿胆素 少量 ↑ 不一定 ↓ 粪胆素原 40~280mg/24h↑ ↓或正常 ↓或-粪便颜色正常 深变浅或正常完全梗阻时白陶土色肝胆生化。

生物化学课件核苷酸代谢模板

生物化学课件核苷酸代谢模板
+
H 2O
dCM P
dTMP
FH4
NADP
2.从头合成的调节
A T P + C O 2 + G ln
氨基甲酰磷酸 哺 乳 动 物
细菌 嘌呤核苷酸
氨基甲酰天冬氨酸 PRPP UMP
A T P + R -5 -P
嘧啶核苷酸 UTP CTP
(二) 嘧啶核苷酸的补救合成
嘧啶磷酸核糖转移酶
嘧啶 + PRPP
N H XMP
N R - 5 '- P
合成酶
H 2N
N
N R - 5 '- P GMP
AMP
激酶 ATP ADP
ADP
激酶 ATP ADP
ATP
GMP
激酶 ATP ADP
GDP
激酶
GTP
ATP ADP
嘌呤核苷酸从头合成特点

嘌呤核苷酸是在磷酸核糖分子上逐步合成的。 先合成 IMP,再转变成 AMP或GMP。 PRPP是5-磷酸核糖的活性供体。
COOH
5 -氨 基 咪 唑 -4 -(N -琥 珀 酸 ) 甲 酰 胺 核 苷 酸 ( S A IC A R )
O C HN HC N C C N CH N R -5'-P IM P 环水解酶 O H 2O H 2N H C
O C C C N H N
转甲酰基酶 N CH N R -5'-P FH 4
3
2AD P+Pi
H 2N C OPO
3H 2
+ Glu
氨甲酰磷酸合成酶Ⅱ (CPS- Ⅱ )
O 氨甲酰磷酸
氨甲酰磷酸合成酶Ⅰ和 Ⅱ的区别
CPSⅠ 分布 氮源 变构激活剂 变构抑制剂 功能 线粒体 (肝) NH3 AGA 无 尿素合成 CPSⅡ 胞液 (所有细胞) Gln 无 UMP 嘧啶合成

生物化学合工大第十二章核酸的酶促降解和核苷酸代谢ppt课件

生物化学合工大第十二章核酸的酶促降解和核苷酸代谢ppt课件

核糖核苷酸的生物合成
1、嘌呤核苷酸的生物合成
(1) 从头合成途径 (2) 补救途径(自学)
2、嘧啶核苷酸的生物合成
(1) 从头合成途径 (2) 补救合成途径(自学)
嘌呤环上各原子的来源
来自CO2 来自天冬氨酸
来自甘氨酸
来自“甲酸盐”
来自“甲酸盐”
来自谷氨酰胺的酰胺氮
5-磷酸核糖焦磷酸
甘氨酸
5-磷酸 核糖胺
HCHLeabharlann CH2N5N,5-NC1H0-OC-HF2H-F4 H4
一碳基团的 S-腺苷蛋氨酸 来源与转变
参与 甲基化反应
N5-CH2-FH4
丝氨酸 FH4
NAD+
NDAH+H+ N5 , N10 -CH2-FH4还原酶
N5 N10 - CH2-FH4
为胸腺嘧啶合 成提供甲基
NAD+ NDAH+H+
N5 , N10 -CH2-FH4脱氢酶
1、核酸酶的分类
(1)根据对底物的 专一性分为
核糖核酸酶(RNase) 脱氧核糖核酸酶(DNase)
非特异性核酸酶
核酸内切酶 (2)根据切割位点分为 核酸外切酶
2、核酸酶的作用特点
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
p
p
p
p
p
p
p
OH 3´
牛脾磷酸二酯酶
( 5´端外切5得3)
蛇毒磷酸二酯酶
组氨酸 苷氨酸
FH4
N5, N10 = CH-FH4
参与嘌呤合成
HCOOH FH4
H2O 环水化酶
H+
N10 -CHO-FH4

核酸的结构、功能与核苷酸代谢—核酸的理化性质(生物化学课件)

核酸的结构、功能与核苷酸代谢—核酸的理化性质(生物化学课件)

核酸的结构与功能
(1)mRNA
3.RNA的结构与功能 (2)tRNA
(3)rRNA
(1)核酸的紫外吸收 4.核酸的理化性质 (2)DNA变性和复性
点滴积累
• 1.核酸具有紫外吸收特性,其最大吸收峰在260nm。 • 2.Tm值的大小与G、C含量成正比关系。 • 3.核酸杂交技术用于定性、定量检测目标DNA或RNA片段,
基tR本N单A 位
血糖
**
4.1
核酸的紫分分类类 外吸收
• 一、核酸的一般理化性质
分子量大,两性电解质,通常表现为酸性。 DNA为白色纤维状固体;RNA为白色粉末状固体。 溶解性:均微溶于水;不溶于一般有机溶剂,在70%
乙醇中形成沉淀。 粘度:DNA粘度很大,而RNA粘度小得多。 DNA对碱稳定,而RNA被稀碱水解。
• 二、核酸的紫外吸收性质
吸光度
碱基具有共轭双键,因此 具有紫外吸收性质,其吸收 高峰接近260nm。 考点
可利用这一性质定量测定 核酸的含量
波长(nm)
DNA 紫外吸收光谱 1.天然DNA;2.变性DNA;3.核苷酸吸收值
在基因结构分析、基因定位、遗传病诊断等方面应用广泛。
《生物化学》
目录
CONTENTS
核酸结构、功能与核苷酸代谢
1
核酸的分子组成
2
DNA的结构与功能
3
RNA的结构与功能
4
核酸的理化性质
5
*核*酸的代谢
目录
CONTENTS
核酸结构、功能与核苷酸代谢
4.核酸的理化性质
4.1
核酸的紫外吸收
4.2
DNA的变性和复性
核酸的变性、复性与分子杂交 (一)核酸的变性

生物化学-生化知识点_第八章 核酸的降解和核苷酸的代谢

生物化学-生化知识点_第八章  核酸的降解和核苷酸的代谢

第八章核酸的降解和核苷酸的代谢下册 P3878-1 核酸和核苷酸的分解代谢核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。

一一一嘌呤碱的分解代谢: P390 图33-2首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。

人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。

尿酸过多是痛风病起因,病人血尿酸 > 7mg%,为嘌呤代谢紊乱引起的疾病。

可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。

别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。

一一一嘧啶碱的分解代谢:见P391 图33-3C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。

T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。

8-2 核苷酸的生物合成一一一核糖核苷酸的生物合成一1一从头合成:从一些简单的非碱基前体物质合成核苷酸。

1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。

然后再生成A、G等嘌呤核苷酸。

2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。

一2一补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。

特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。

外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。

生物化学讲义第二章核酸化学

生物化学讲义第二章核酸化学

核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。

2.掌握核酸的化学组成、核苷酸的连接方式。

3.归纳区分两类核酸在化学组分上的异同点。

4.说出DNA二级结构的模型及其主要特点。

5.简述RNA分子组成和结构的特点。

6.简述三种RNA结构特点和主要功能。

7.了解核酸重要的理化特性及其在医学上的应用。

8.能说出生物体内重要的单核苷酸及其生化功能。

【本章重难点】1.核酸的种类、分布和生物学功能。

2.核酸的化学组成。

3.DNA和RNA的分子结构与功能。

4.核酸的变性、复性及杂交。

5.生物体内重要的单核苷酸。

学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。

二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。

2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。

生物化学第33章核酸的降解和核苷酸代谢

生物化学第33章核酸的降解和核苷酸代谢

THANK YOU
感谢聆听
01
02
03
04
药物治疗
针对核酸降解和核苷酸代谢异 常的疾病,可采用药物治疗, 如使用核酸酶抑制剂、核苷酸 类似物等。
基因治疗
对于由基因突变引起的核酸降 解和核苷酸代谢异常疾病,基 因治疗是一种潜在的治疗方法 ,如通过基因编辑技术修复突 变基因。
饮食调整
饮食调整可帮助改善核苷酸代 谢异常,如减少高嘌呤食物的 摄入以降低血尿酸水平。
调节代谢
核酸降解产生的核苷酸及其代谢产物可以调节细胞 内核苷酸代谢相关酶的活性,从而影响核苷酸代谢 的速率和方向。
维持平衡
核酸降解与核苷酸代谢之间的动态平衡对于维持细 胞内核苷酸稳态至关重要,核酸降解的异常可能导 致核苷酸代谢紊乱。
核苷酸代谢对核酸降解的反馈作用
80%
产物反馈
核苷酸代谢产生的某些产物可以 反馈抑制核酸降解相关酶的活性 ,从而调节核酸降解的速率。
嘧啶核苷酸的ቤተ መጻሕፍቲ ባይዱ谢
嘧啶核苷酸的合成
先合成嘧啶环,再与磷酸核糖相连生 成嘧啶核苷酸。合成的部位主要在肝 和小肠黏膜中。
嘧啶核苷酸的分解
嘧啶碱基分解代谢是先去除环外氨基生 成嘧啶,再氧化开环,最终生成CO2、 β-丙氨酸及β-氨基异丁酸等。
核苷酸代谢的调控与意义
核苷酸代谢的调控
核苷酸代谢受到多种因素的调控,包括底物浓度、酶活性、基因表达等。此外, 核苷酸代谢还与细胞周期、细胞增殖和分化等生理过程密切相关。
核苷酸代谢的意义
核苷酸是生物体内重要的组成成分,参与遗传信息的传递和表达。同时,核苷 酸也是多种生物活性物质的合成前体,如辅酶、激素等。因此,核苷酸代谢对 于维持生物体的正常生理功能具有重要意义。

生物化学基础(靳利娥)第9章 核酸代谢

生物化学基础(靳利娥)第9章 核酸代谢

鸟嘌呤+ 鸟嘌呤+H2O
鸟嘌呤脱氨酶
黄嘌呤+ 黄嘌呤+NH3
尿酸的生成
尿酸 尿酸氧化酶
尿囊素
尿囊素酶
尿囊酸
尿囊酸酶
尿素 尿素酶
尿酸的排泄方式
尿酸 人,灵长类,短毛狗,鸟类、爬虫类、软 灵长类,短毛狗,鸟类、爬虫类、 体动物、海鞘类、 体动物、海鞘类、昆虫 哺乳动物(灵长类除外)、腹足类 哺乳动物(灵长类除外)、腹足类 )、 硬骨鱼 大多数鱼类、两栖类、 大多数鱼类、两栖类、淡水瓣鳃类
单核苷(DNA 与RNA特异) 单核苷酸
特异DNA 顺序
限制性内切酶
• 定义:特定核苷酸序列处切开核苷酸之间3’,5’-磷酸二酯 定义:特定核苷酸序列处切开核苷酸之间 磷酸二酯 断裂或产生缺口。 键,使DNA断裂或产生缺口。 断裂或产生缺口 • 如果识别序列的碱基经过修饰,限制性内切酶就不作用。 如果识别序列的碱基经过修饰,限制性内切酶就不作用。 通常寄主DNA在特定核苷酸序列处被甲基化而得到保护 在特定核苷酸序列处被甲基化而得到保护 通常寄主 则被分解。 ,但外源DNA则被分解。 但外源 则被分解 • Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化 的甲基化, 型限制性内切酶既能催化宿主 的甲基化 非甲基化的DNA的水解; 的水解; 非甲基化的 的水解 • Ⅱ型限制性内切酶只催化非甲基化的 的水解。 型限制性内切酶只催化非甲基化的DNA的水解。 只催化非甲基化的 的水解
IMP合成四至六步 合成四至六步 合成
4. 甲酰甘氨酰胺核苷酸与谷氨酰胺反应为 甲酰甘氨咪唑核苷酸 酶: 甲酰甘氨咪唑核苷酸合成酶 5.甲酰甘氨咪唑核苷酸脱水环化为5-氨基 5.甲酰甘氨咪唑核苷酸脱水环化为5 甲酰甘氨咪唑核苷酸脱水环化为 咪唑核苷酸( 生成嘌呤完整五元环) 咪唑核苷酸( 生成嘌呤完整五元环) 5-氨基咪唑核苷酸与羧化生成5 6. 5-氨基咪唑核苷酸与羧化生成5-氨基咪 唑-4-羧酸核苷酸 酶: 氨基咪唑核苷酸羧化酶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档