12 第四章时序逻辑电路基础4.2
第4章 时序逻辑电路设计
1模型
时序电路按其状态的改变方式不同,可分为同 步时序逻辑电路和异步时序逻辑电路两种,在 图4.5中,当CLK1与CLK2为相同信号时,该 电路为同步电路;当CLK1与CLK2为不同信号 时,该电路为异步电路。
output q;
reg
q;
always@(posedge clk or posedge rst)
begin
if(rst==1’b1)
q<=1’b0;
else if(en==1’b1)
q<=data;
else ;
end
endmodule
带同步复位、上升沿触发的触发器
module dff_synrst(data,rst,clk,q); input data,rst,clk; output q; reg q; always@(posedge clk) begin if(rst==1’b1) q<=1’b0; else q<=data; end
本设计要求用仿真和测试两种手段来验证 计数器的功能。实验时,可以通过修改十进 制计数器的设计得到六进制、100进制计数器。
三、设计要求
(1) 完成各模块的Verilog HDL设计编码; (2) 进行功能仿真; (3) 下载并验证计数器功能; (4) 如果60进制计数器要求用6进制和10进制
计数器搭建电路,请画出设计连接图,并 完成设计编码和验证。
else q<=data; end endmodule
带异步复位和置位、上升沿触发的触发器
module dff_asynrst(data,rst,set,clk,q);
数字电子技术》电子教案
《数字电子技术》电子教案第一章:数字电路基础1.1 数字电路概述数字电路的基本概念数字电路的特点数字电路的应用领域1.2 数字逻辑基础逻辑门逻辑函数逻辑代数1.3 数字电路的表示方法逻辑电路图真值表卡诺图第二章:组合逻辑电路2.1 组合逻辑电路概述组合逻辑电路的定义组合逻辑电路的特点组合逻辑电路的应用2.2 常见的组合逻辑电路编码器译码器多路选择器算术逻辑单元2.3 组合逻辑电路的设计方法最小化方法卡诺图化简法逻辑函数的优化第三章:时序逻辑电路3.1 时序逻辑电路概述时序逻辑电路的定义时序逻辑电路的特点时序逻辑电路的应用3.2 常见的时序逻辑电路触发器计数器寄存器移位寄存器3.3 时序逻辑电路的设计方法时序逻辑电路的建模状态编码的设计时序逻辑电路的仿真第四章:数字电路的设计与仿真4.1 数字电路设计流程需求分析逻辑设计电路实现测试与验证4.2 数字电路仿真技术数字电路仿真原理常用仿真工具仿真举例4.3 数字电路的测试与维护数字电路测试方法故障诊断与定位数字电路的维护与优化第五章:数字系统的应用5.1 数字系统概述数字系统的定义数字系统的特点数字系统的应用领域5.2 数字系统的设计方法数字系统设计流程数字系统模块划分数字系统的设计工具5.3 数字系统的应用实例数字控制系统数字通信系统数字音频处理系统第六章:数字集成电路6.1 数字集成电路概述数字集成电路的分类数字集成电路的优点数字集成电路的应用6.2 集成电路的制造工艺晶圆制造集成电路布局布线集成电路的封装与测试6.3 常见数字集成电路MOSFETCMOS逻辑门集成电路的封装类型第七章:数字信号处理器(DSP)7.1 数字信号处理器概述数字信号处理器的定义数字信号处理器的特点数字信号处理器的应用7.2 数字信号处理器的结构与工作原理中央处理单元(CPU)存储器输入/输出接口7.3 数字信号处理器的编程与开发编程语言开发工具与环境编程举例第八章:数字系统的可靠性8.1 数字系统的可靠性概述数字系统可靠性的重要性影响数字系统可靠性的因素数字系统可靠性评估方法8.2 数字系统的容错技术冗余设计容错算法故障检测与恢复8.3 数字系统的可靠性测试与验证可靠性测试方法可靠性测试指标可靠性验证实例第九章:数字电子技术的创新与应用9.1 数字电子技术的创新新型数字电路技术数字电子技术的研究热点数字电子技术的未来发展趋势9.2 数字电子技术的应用领域物联网生物医学工程9.3 数字电子技术的产业现状与展望数字电子技术产业概述我国数字电子技术产业发展现状数字电子技术的市场前景第十章:综合实践项目10.1 综合实践项目概述项目目的与意义项目内容与要求项目评价与反馈10.2 综合实践项目案例数字频率计的设计与实现数字音调发生器的设计与实现数字控制系统的设计与实现10.3 项目实施与指导项目实施流程项目指导与支持项目成果展示与讨论重点和难点解析1. 数字电路基础:理解数字电路的基本概念、特点及应用领域,掌握逻辑门、逻辑函数和逻辑代数的基础知识,熟悉数字电路的表示方法。
数字电子技术教案
数字电子技术教案第一章:数字电路基础1.1 数字电路概述了解数字电路的定义、特点和应用领域掌握数字电路的基本组成和基本原理1.2 数字逻辑基础学习逻辑代数的基本运算和规则熟悉逻辑函数的表示方法及其相互转换1.3 数字电路的表示方法掌握逻辑函数的图形表示方法(逻辑图、真值表)学习逻辑函数的代数化简方法第二章:数字电路的基本单元2.1 逻辑门电路了解常见的逻辑门电路(与门、或门、非门、异或门等)掌握逻辑门电路的电压传输特性2.2 逻辑函数及其简化学习逻辑函数的代数化简方法(卡诺图、最小项、最大项)熟悉逻辑函数的简化原则和步骤2.3 逻辑门电路的设计与实现学习逻辑门电路的设计方法掌握逻辑门电路的实际制作和调试技巧第三章:组合逻辑电路3.1 组合逻辑电路的基本概念了解组合逻辑电路的定义和特点掌握组合逻辑电路的分析和设计方法3.2 常见的组合逻辑电路学习编码器、译码器、多路选择器、算术逻辑单元等常见组合逻辑电路的原理和应用3.3 组合逻辑电路的设计与实现学习组合逻辑电路的设计方法掌握组合逻辑电路的实际制作和调试技巧第四章:时序逻辑电路4.1 时序逻辑电路的基本概念了解时序逻辑电路的定义、特点和应用领域掌握时序逻辑电路的分析和设计方法4.2 常见的时序逻辑电路学习触发器、计数器、寄存器等常见时序逻辑电路的原理和应用4.3 时序逻辑电路的设计与实现学习时序逻辑电路的设计方法掌握时序逻辑电路的实际制作和调试技巧第五章:数字电路的应用5.1 数字电路在计算机中的应用了解计算机的基本组成和工作原理学习微处理器、存储器、输入输出接口等计算机关键部件的设计和应用5.2 数字电路在通信系统中的应用了解通信系统的基本原理和数字调制技术学习数字通信系统中数字电路的设计和应用5.3 数字电路在其他领域中的应用了解数字电路在数字信号处理、嵌入式系统、工业控制等领域中的应用学习数字电路在不同领域中的设计和应用案例第六章:数字电路仿真与实验6.1 数字电路仿真基础学习数字电路仿真原理和工具熟悉使用仿真软件进行数字电路设计和验证的方法6.2 组合逻辑电路仿真与实验利用仿真软件对组合逻辑电路进行设计和验证分析仿真结果,优化电路性能6.3 时序逻辑电路仿真与实验利用仿真软件对时序逻辑电路进行设计和验证分析仿真结果,优化电路性能第七章:数字电路设计与验证7.1 数字电路设计流程熟悉数字电路设计的基本流程和方法掌握需求分析、模块设计、仿真验证和硬件实现等环节7.2 组合逻辑电路设计实例学习组合逻辑电路设计实例,如编码器、译码器等掌握设计方法和技术要求7.3 时序逻辑电路设计实例学习时序逻辑电路设计实例,如触发器、计数器等掌握设计方法和技术要求第八章:数字电路测试与维护8.1 数字电路测试方法学习数字电路测试的基本方法和策略掌握功能测试、结构测试和边界测试等技术8.2 数字电路调试与优化了解调试过程和方法,提高电路性能学习电路优化技巧,降低功耗和成本8.3 数字电路故障诊断与修复学习故障诊断原理和方法,如逻辑分析仪、示波器等工具的使用掌握故障分析和修复技巧,提高电路可靠性第九章:数字集成电路9.1 数字集成电路概述了解数字集成电路的分类、特点和应用领域掌握数字集成电路的基本结构和原理9.2 常见数字集成电路学习门阵列、触发器、寄存器等常见数字集成电路的原理和应用9.3 数字集成电路的设计与实现学习数字集成电路的设计方法掌握数字集成电路的实际制作和调试技巧第十章:数字电路技术的发展趋势10.1 数字电路技术的创新应用了解数字电路技术在、物联网、生物医疗等领域的创新应用学习数字电路技术在这些领域的发展前景和挑战10.2 新型数字电路技术学习新型数字电路技术,如量子计算、碳纳米管电路等掌握这些技术的原理和优势,了解其发展趋势和应用前景10.3 数字电路技术的未来发展了解数字电路技术在未来的发展趋势和挑战学习如何适应和推动数字电路技术的发展,为人类社会作出贡献重点和难点解析重点环节1:逻辑函数的表示方法及其相互转换补充和说明:逻辑函数的表示方法是理解数字电路的基础,包括逻辑图、真值表及其代数表达式。
《时序逻辑电路分析》课件
采用低功耗、高速的触发器设计,减少资源占用。
提高工作速度的优化方法
并行处理
通过并行处理技术,提高电路的工作 速度。
时钟分频与倍频
根据电路的工作频率需求,合理选择 时钟的分频与倍频方案,以优化工作 速度。
THANKS
感谢观看
REPORTING
PART 03
时序逻辑电路的设计
REPORTING
同步设计法
01
同步设计法定义
同步设计法是一种基于时钟信号 的设计方法,用于构建时序逻辑
电路。
03
优点
同步设计法具有较高的可靠性和 稳定性,能够实现复杂的逻辑功
能。
02
工作原理
在同步设计法中,所有操作都严 格在时钟信号的驱动下进行,保 证了电路的稳定性和可靠性。
《时序逻辑电路分析 》PPT课件
REPORTING
• 时序逻辑电路概述 • 时序逻辑电路的分析方法 • 时序逻辑电路的设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化设计
目录
PART 01
时序逻辑电
时序逻辑电路的定义、特点
时序逻辑电路的特点包括
具有记忆功能、具有时钟信号控制、具有输入信号和输出信号等。
时序逻辑电路的基本组成
时序逻辑电路由触发器、组合逻 辑电路和时钟信号源三部分组成 。
组合逻辑电路用于实现输入信号 到输出信号的逻辑变换,主要由 门电路组成。
总结词:时序逻辑电路的基本组 成
触发器是时序逻辑电路中的核心 元件,用于存储状态信息,常见 的触发器有RS触发器、D触发器 、JK触发器和T触发器等。
04
异步时序逻辑电路是指触发器的时钟输入端接在不同的时钟源上,时 钟信号独立作用于各个触发器,实现状态异步转换。
第四章时序逻辑电路
Q
G1 &
S
G3 &
4.1.2 同步触发器
1、同步RS触发器
Q
& G2
R
& G4
Q
Q
Q
Q
S CP R
Q
Q
1S C1 1R
S CP R (a) 逻辑电路
S CP R (b) 曾用符号
S CP R (c) 国标符号
CP=0时,R=S=1,触发器保持原来状态不变。
CP=1时,工作情况与基本RS触发器相同。
主从RS触发器特性表
CP R S Qn
0 1 000 001 010 011 100 101 110 111
Q n 1
0 1 0 1 1 1 0 0
只有在CP=1的全部时 间里输入状态始终未变 的条件下,用CP下降 沿到达时输入的状态, 遵照其特性表决定触发 器的次态才肯定是对的。 否则必须考虑CP=1期 间输入状态的全部变化 过程,才能确定CP下 沿到达时触发器的次态。
& G4 R
1D C1
D CP
D
CP
(b) D 触发器的简化电路 (c) 逻辑符号
将S=D、R=D代入同步RS触发器的特性方程,得同步 D触发器的特性方程:
Qn1 S RQn D DQn D CP=1期间有效
D=1/
状
态
0/
0
图
1
1/
0/
CP
波 形D 图Q
Q
在数字电路中,凡在CP时钟脉冲控制下,根据输 入信号D情况的不同,具有置0、置1功能的电路, 都称为D触发器。
Qn1 S RQn JQ n KQnQn CP=1期间有效 JQ n KQn
时序逻辑电路PPT课件
工作原理
状态表示
时序逻辑电路中的状态通常由存储元件(如触发器)来存储,根据 输入信号的变化,电路的状态会随之改变。
状态转移
时序逻辑电路中的状态转移是由输入信号和当前状态共同决定的, 根据一定的逻辑关系,电路会从一个状态转移到另一个状态。
。
02
可编程逻辑控制器(PLC)
在工业控制系统中,时序逻辑电路用于实现可编程逻辑控制器,用于自
动化控制和数据处理。
03
传感器接口
时序逻辑电路用于实现传感器接口电路,将传感器的模拟信号转换为数
字信号,并传输给微控制器或可编程逻辑控制器进行处理。
04
CATALOGUE
时序逻辑电路的优化
优化设计
设计
使用基本的逻辑门电路, 根据需求逐一设计电路。
自动化工具设计
使用EDA(电子设计自动 化)工具进行设计,提高 设计效率。
混合设计
结合手工设计和自动化工 具设计,根据具体情况选 择合适的设计方法。
设计工具
硬件描述语言
使用Verilog或VHDL等硬件描述语言进行设计。
EDA工具
时序逻辑电路
目录
• 时序逻辑电路简介 • 时序逻辑电路设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化 • 时序逻辑电路的发展趋势
01
CATALOGUE
时序逻辑电路简介
定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,它能够根据输入信号 的变化,按照一定的逻辑关系, 输出相应的信号。
分类
输出信号
时序逻辑电路的输出信号是根据当前状态和输入信号来确定的,它会 随着状态的变化而变化。
数字集成电路:电路系统与设计(第二版)
数字集成电路:电路系统与设计(第二版)简介《数字集成电路:电路系统与设计(第二版)》是一本介绍数字集成电路的基本原理和设计方法的教材。
本书的内容覆盖了数字电路的基础知识、逻辑门电路、组合逻辑电路、时序逻辑电路、存储器和程序控制电路等方面。
通过学习本书,读者可以了解数字集成电路的概念、设计方法和实际应用。
目录1.数字电路基础知识 1.1 数字电路的基本概念 1.2 二进制系统与数制转换 1.3 逻辑运算与布尔代数2.逻辑门电路 2.1 与门、或门、非门 2.2 与非门、或非门、异或门 2.3 多输入门电路的设计方法3.组合逻辑电路 3.1 组合逻辑电路的基本原理 3.2 组合逻辑电路的设计方法 3.3 编码器和译码器4.时序逻辑电路 4.1 时序逻辑电路的基本原理 4.2 同步时序电路的设计方法 4.3 异步时序电路的设计方法5.存储器电路 5.1 存储器的基本概念 5.2 可读写存储器的设计方法 5.3 只读存储器的设计方法6.程序控制电路 6.1 程序控制电路的基本概念 6.2 程序控制电路的设计方法 6.3 微程序控制器的设计方法内容概述1. 数字电路基础知识本章主要介绍数字电路的基本概念,包括数字电路与模拟电路的区别、数字信号的表示方法以及数制转换等内容。
此外,还介绍了数字电路中常用的逻辑运算和布尔代数的基本原理。
2. 逻辑门电路逻辑门电路是数字电路中的基本组成单元,本章主要介绍了与门、或门、非门以及与非门、或非门、异或门等逻辑门的基本原理和组成。
此外,还介绍了多输入门电路的设计方法,以及逻辑门电路在数字电路设计中的应用。
3. 组合逻辑电路组合逻辑电路是由逻辑门电路组成的,本章主要介绍了组合逻辑电路的基本原理和设计方法。
此外,还介绍了编码器和译码器的原理和应用,以及在数字电路设计中的实际应用场景。
4. 时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上引入了时序元件并进行时序控制的电路。
本章主要介绍了时序逻辑电路的基本原理和设计方法,包括同步时序电路和异步时序电路的设计。
数字电子技术教案
数字电子技术教案第一章:数字电路基础1.1 数字电路概述介绍数字电路的定义、特点和应用领域解释数字电路与模拟电路的区别1.2 数字逻辑基础介绍数字逻辑的基本概念和术语解释逻辑运算符和逻辑表达式介绍逻辑门电路的原理和应用1.3 数字电路的特性与参数介绍数字电路的特性和参数解释电压、电流和阻抗的概念介绍逻辑门的开口电压和漏电流第二章:组合逻辑电路2.1 组合逻辑电路概述介绍组合逻辑电路的定义和特点解释组合逻辑电路的输入输出关系2.2 常用的组合逻辑电路介绍编码器、译码器、多路选择器和算术逻辑单元等常用的组合逻辑电路解释它们的原理和应用2.3 组合逻辑电路的设计方法介绍组合逻辑电路的设计方法和步骤解释利用逻辑门搭建组合逻辑电路的过程第三章:时序逻辑电路3.1 时序逻辑电路概述介绍时序逻辑电路的定义和特点解释时序逻辑电路的输入输出关系3.2 常用的时序逻辑电路介绍触发器、计数器和寄存器等常用的时序逻辑电路解释它们的原理和应用3.3 时序逻辑电路的设计方法介绍时序逻辑电路的设计方法和步骤解释利用触发器搭建时序逻辑电路的过程第四章:数字电路的设计与仿真4.1 数字电路设计概述介绍数字电路设计的目标和方法解释数字电路设计的步骤和原则4.2 数字电路设计的工具与软件介绍常见的数字电路设计工具和软件解释它们的功能和应用4.3 数字电路的仿真与验证介绍数字电路仿真的目的和方法解释数字电路仿真软件的使用和仿真结果的分析第五章:数字系统的应用5.1 数字系统概述介绍数字系统的定义和特点解释数字系统的组成部分和功能5.2 数字系统的应用领域介绍数字系统在通信、计算机、医疗、交通等领域的应用解释数字系统在这些领域的作用和重要性5.3 数字系统的未来发展探讨数字系统未来的发展趋势和挑战分析数字系统对人类社会的影响和机遇第六章:数字电路与系统的测试与维护6.1 数字电路测试概述介绍数字电路测试的目的和方法解释数字电路测试的基本概念和术语6.2 数字电路的测试方法介绍静态测试和动态测试两种方法解释故障诊断和功能测试的实施步骤6.3 数字电路的维护与优化介绍数字电路在使用过程中的维护注意事项解释数字电路性能优化的方法和技巧第七章:数字集成电路7.1 数字集成电路概述介绍数字集成电路的定义、分类和特点解释集成电路的封装和封装形式7.2 集成电路的制造工艺介绍集成电路的制造工艺和流程解释CMOS和TTL两种常用数字集成电路的制造工艺7.3 集成电路的应用与选择介绍集成电路在数字电路设计中的应用解释如何根据需求选择合适的集成电路第八章:数字系统的可靠性分析8.1 数字系统可靠性概述介绍数字系统可靠性的定义和重要性解释可靠性分析的目标和方法8.2 可靠性指标与模型介绍常见的可靠性指标,如失效率、平均失效间隔时间等解释可靠性模型的建立和应用8.3 提高数字系统可靠性的方法介绍提高数字系统可靠性的技术和方法分析这些方法在实际应用中的效果和优势第九章:数字信号与系统的特点及发展趋势9.1 数字信号与系统的特点介绍数字信号与系统相较于模拟信号与系统的优势解释数字信号与系统的稳定性和抗干扰性等特点9.2 数字信号处理技术的发展介绍数字信号处理技术的发展历程和现状分析未来数字信号处理技术的发展趋势和应用领域9.3 数字系统与社会的互动探讨数字系统对社会发展的影响分析数字系统在人类社会中的作用和地位第十章:数字电子技术的实验与实践10.1 数字电子技术实验概述介绍数字电子技术实验的目的和重要性解释实验内容和实验步骤的安排10.2 常见数字电子实验介绍常见的数字电子实验项目,如逻辑门电路、触发器电路等分析实验原理和实验操作方法解释实验报告的评价标准和评价方法重点和难点解析重点环节1:数字电路的定义、特点和应用领域补充和说明:数字电路是利用数字逻辑进行信息处理和传输的电路系统。
《数字电子技术基础简明教程(第三版)答案》
《数字电子技术基础简明教程(第三版)答案》《数字电子技术基础简明教程(第三版)答案》数字电子技术是现代电子工程中的重要领域之一,它涉及到数字信号的处理和电子电路的设计。
《数字电子技术基础简明教程(第三版)》是一本经典教材,本文将为读者提供此教材的答案,以帮助读者更好地学习和理解数字电子技术的基础知识。
第一章:数字系统基础1.1 数字系统的表示与计数1.1.1 二进制数的表示答案:二进制数是一种使用0和1表示数值的数制。
它与我们日常生活中常用的十进制数不同,但在数字电子技术中却是最基本和常用的表示方式。
1.1.2 进制转换答案:进制转换是指将一个数从一种进制表示转换为另一种进制的表示。
常见的进制转换包括二进制转十进制、十进制转二进制、二进制转八进制、八进制转二进制等。
1.2 逻辑代数与逻辑函数1.2.1 逻辑代数基本概念答案:逻辑代数是一种用于描述和分析逻辑函数的代数系统。
它包括逻辑运算符、逻辑表达式和逻辑常数等基本概念。
1.2.2 基本逻辑函数答案:基本逻辑函数是逻辑代数中的基本构成元素,包括与、或、非等逻辑运算。
常见的基本逻辑函数有与门、或门、非门等。
第二章:组合逻辑电路2.1 组合逻辑电路的基本概念答案:组合逻辑电路是由逻辑门和其他逻辑元件组成的电路,其输出只与当前输入有关,与过去的输入和未来的输入无关。
2.2 组合逻辑电路的设计2.2.1 真值表法答案:真值表法是一种根据逻辑函数的真值表推导出逻辑电路的设计方法。
通过真值表可以清晰地了解逻辑函数的各种输入输出组合。
2.2.2 卡诺图法答案:卡诺图法是一种用于简化逻辑函数的方法。
通过在卡诺图上标示出逻辑函数的主项和次项,可以得到较为简化的逻辑函数,从而减少逻辑门的使用数量。
第三章:时序逻辑电路3.1 时序逻辑电路的基本概念答案:时序逻辑电路是一种具有存储功能的电路,其输出不仅与当前输入有关,还与过去的输入有关。
3.2 触发器与寄存器3.2.1 SR 触发器答案:SR 触发器是一种常见的时序逻辑电路元件,它具有两个输入端(S和R)和两个输出端(Q和Q)。
电子技术应用《数电》教案
电子技术应用《数电》教案第一章:数字电路基础1.1 数字电路概述了解数字电路的定义、特点和应用领域熟悉数字电路与模拟电路的区别1.2 数制和码制学习二进制、八进制、十六进制的表示方法掌握不同码制(如ASCII码、BCD码)的转换方法1.3 逻辑门学习与门、或门、非门、异或门等基本逻辑门电路掌握逻辑门的功能和真值表第二章:组合逻辑电路2.1 组合逻辑电路概述了解组合逻辑电路的定义和特点熟悉组合逻辑电路的分类和应用2.2 常用组合逻辑电路学习译码器、编码器、多路选择器、多路分配器等电路掌握组合逻辑电路的设计方法2.3 组合逻辑电路的设计实例设计一个4x1多路选择器设计一个全加器第三章:时序逻辑电路3.1 时序逻辑电路概述了解时序逻辑电路的定义和特点熟悉时序逻辑电路的分类和应用3.2 触发器学习SR触发器、JK触发器、T触发器、CTR触发器等电路掌握触发器的真值表、时序图和功能3.3 时序逻辑电路的设计实例设计一个2位同步计数器设计一个顺序检测器第四章:数字电路仿真4.1 数字电路仿真概述了解数字电路仿真的定义和意义熟悉数字电路仿真工具的使用4.2 常用数字电路仿真工具学习Multisim、Proteus等仿真工具的基本操作掌握仿真工具中元器件的选型和连接方法4.3 数字电路仿真实例利用仿真工具验证组合逻辑电路的功能利用仿真工具验证时序逻辑电路的功能第五章:数字电路实验5.1 数字电路实验概述了解数字电路实验的目的和意义熟悉数字电路实验步骤和注意事项5.2 数字电路实验器材和仪器学习数字电路实验所需的器材和仪器使用方法掌握实验器材和仪器的连接和调试方法5.3 数字电路实验实例完成一个组合逻辑电路的实验完成一个时序逻辑电路的实验第六章:数字电路测试与维护6.1 数字电路测试概述理解数字电路测试的目的和方法熟悉测试用例的设计和测试过程6.2 数字电路测试方法学习静态测试和动态测试两种方法掌握测试电路的搭建和测试结果的分析6.3 数字电路维护与故障排除了解数字电路维护的基本原则学习故障排除的步骤和方法第七章:数字系统设计流程7.1 数字系统设计概述理解数字系统设计的基本流程熟悉各个设计阶段的任务和目标7.2 需求分析与规格说明学习如何进行需求分析掌握编写数字系统规格说明书的方法7.3 数字系统设计实现学习数字系统设计的具体步骤掌握硬件描述语言(如Verilog)的使用第八章:数字信号处理器(DSP)8.1 DSP概述理解DSP的定义、特点和应用熟悉DSP与其他处理器的比较8.2 DSP的结构与工作原理学习DSP的内部结构和工作流程掌握DSP的指令集和编程方法8.3 DSP应用实例学习DSP在音频处理、图像处理等领域的应用设计一个简单的DSP应用系统第九章:数字电路与系统的安全与保护9.1 数字电路与系统的安全了解数字电路与系统的安全问题学习加密算法和数字签名技术9.2 硬件安全措施学习物理不可克隆功能(PUF)和硬件安全模块(HSM)掌握安全启动和安全存储的实现方法9.3 系统保护与版权保护了解系统保护的重要性学习数字版权管理(DRM)和软件保护的方法第十章:未来数字电路技术的发展趋势10.1 新兴数字电路技术了解量子计算、神经形态计算等新兴技术学习这些技术对传统数字电路的影响10.2 数字电路设计的未来趋势分析数字电路设计的发展方向探讨可持续发展和环保在数字电路设计中的作用10.3 教育与培训强调终身学习在数字电路技术发展中的重要性探讨在线教育和虚拟实验室在数字电路教学中的应用重点和难点解析一、数字电路基础:理解不同数制和码制之间的转换,以及逻辑门的功能和真值表。
数字电路第四章答案
数字电路第四章答案【篇一:数字电路答案第四章时序逻辑电路2】p=1,输入信号d被封锁,锁存器的输出状态保持不变;当锁存命令cp=0,锁存器输出q?d,q=d;当锁存命令cp出现上升沿,输入信号d被封锁。
根据上述分析,画出锁存器输出q及 q的波形如习题4.3图(c)所示。
习题4.4 习题图4.4是作用于某主从jk触发器cp、j、k、 rd及 sd 端的信号波形图,试绘出q端的波形图。
解:主从jk触发器的 rd、且为低有效。
只有当rd?sd?1 sd端为异步清零和复位端,时,在cp下降沿的作用下,j、k决定输出q状态的变化。
q端的波形如习题4.4图所示。
习题4.5 习题4.5图(a)是由一个主从jk触发器及三个非门构成的“冲息电路”,习题4.5图(b)是时钟cp的波形,假定触发器及各个门的平均延迟时间都是10ns,试绘出输出f的波形。
cpf cp100ns10nsq(a)f30ns10ns(b)(c)习题4.5图解:由习题4.5图(a)所示的电路连接可知:sd?j?k?1,rd?f。
当rd?1时,在cp下降沿的作用下,且经过10 ns,状态q发生翻转,再经过30ns,f发生状态的改变,f?q。
rd?0时,经过10ns,状态q=0。
根据上述对电路功能的分析,得到q和f的波形如习题4.5图(c)所示。
习题4.6 习题4.6图(a)是一个1检出电路,图(b)是cp及j端的输入波形图,试绘出 rd端及q端的波形图(注:触发器是主从触发器,分析时序逻辑图时,要注意cp=1时主触发器的存储作用)。
cpj(a)qd(c)cp j(b)习题图解:分析习题4.6图(a)的电路连接:sd?1,k?0,rd?cp?q;分段分析习题4.6图(b)所示cp及j端信号波形。
(1)cp=1时,设q端初态为0,则rd?1。
j信号出现一次1信号,即一次变化的干扰,且k=0,此时q端状态不会改变;(2)cp下降沿到来,q端状态变为1,rd?cp,此时cp=0,异步清零信号无效;(3)cp出现上升沿,产生异步清零信号,使q由1变为0,在很短的时间里 rd又恢复到1;(4)同理,在第2个cp=1期间,由于j信号出现1信号,在cp下降沿以及上升沿到来后,电路q端和 rd端的变化与(2)、(3)过程的分析相同,其波形如习题4.6图(c)所示。
时序逻辑电路课件
E
控制单元
Clk
B[0]
Init Add Done Cnt Shr
Init: DX, BY, T0 , A0, C0
Cnt: TT-1
Add: {C, A}A+D
Shr: {C, A, B}{C, A, B}>>1ZLeabharlann , C0时序逻辑电路
10
乘法器控制单元
• 状态图
Start Reset
Reset
S0
• 寄存器组
• 8个8位寄存器,记为 R0~R7
• ALU为前例
• MEM为存储器
• DI/DO: 输入/输出数据 • MA: 地址 • MW: 写使能
R0 R1-R2
8
3
DA D
WE Register
3
3
AA File BA
A
B
8 8
K
8
01
MUX
MB
8
4
X
Y
ALU
SF H
DI MA MW
MEM
Reset
S0
Done
!Start
Start/Init
S1
Cnt
!B[0]
B[0]/Add
S2
E
Shr
!E
时序逻辑电路
17
乘法器仿真波形
时序逻辑电路
18
寄存器传送
• 寄存器之间传输数据 • 每个寄存器的数据输入
处配置多路数据选择器 (MUX) • 每个寄存器的输出数据 连接到所有MUX • 灵活实现多个数据同时 传送
S2
else next_state = S0;
E
Shr
时序逻辑电路的基本概念
3.时序逻辑电路的状态表和状态图
1)状态转换表
状态转换表类似于组合逻辑电路的真值表,它是将时序逻 辑电路的输入变量、现态变量、次态变量和输出变量写入表格 而形成的,因此也称为状态转换真值表。例如,分析时序逻辑 电路时,将时序逻辑电路的现态 Qn填入表中,当输入为 X 时, 输出为Z ,在时钟脉冲CP的作用下,电路进入次态 Qn +1,将相 关数据依次填入表中,就形成了一个状态转换真值表。
图5-1 触发器构成的时序逻辑电路结构框图
2.时序逻辑电路的分类
(1)根据电路状态转换情况的不同,时序逻辑电路可分为同步 时序逻辑电路和异步时序逻辑电路。 (2)根据电路中输出变量是否和输入变量直接相关,时序逻辑 电路可分为米里(Mealy)型电路和莫尔(Mooer)型电路。其中, 米里型电路的外部输出Z 既与触发器的状态 Qn有关,又与外部输 入 X有关;而莫尔型电路的外部输出 Z仅与触发器的状态Qn 有关, 而与外部输入 X无关。
2)状态转换图
状态转换图是用来描述时序逻辑电路的输入变量、现态变量、 次态变量和输出变量之间关系的图形。如图5-2所示为状态转换图 示例。
图5-2 状态转换图示例
数字电子技术
数字电子技术
时序逻辑电路的基本概念
1.时序逻辑电路的组成结构
时序逻辑电路一般包含组合逻辑电路、存储电路和反馈电 路。其中,反馈电路可以将存储电路的输出状态反馈到组合逻 辑电路的输入端,与输入信号共同决定整个电路的输出;存储 电路则是将组合逻辑电路的输出状态作为输入信号存储到存储 器件中。
存储器件是时序逻辑电路的重要组成部分,常用的存储器件 主要有触发器、延迟线和磁性器件等。如图5-1所示为触发器构成 的时序逻辑电路结构框图。
时序逻辑电路基础知识
时序逻辑电路可按时钟控制时间和逻辑功能进行分类。 1)按各触发器的时钟控制时间分类,时序逻辑电路可分为同步时序逻辑 电路和异步时序逻辑电路。在同步时序逻辑电路中,各触发器的状态变化是在 同一时钟信号控制下同时发生的;而在异步时序逻辑电路中,所有触发器的时 序端并不都接在一个时钟信号上,其状态转换有先有后。
2)按逻辑功能分类,时序逻辑电路可分为数码寄存器、移位寄存器、计 数器等。
计算机电路基础计算机电源自基础本项目主要介绍时序逻辑电路。组合逻辑电路和时序逻辑电路是数字电 路的两大重要组成部分。
时序逻辑电路在任何时刻 的输出不仅取决于该时刻的输 入,还与电路的原状态有关, 即具有记忆功能。时序逻辑电 路方框图如右图所示。
时序逻辑电路方框图
由上图可知,时序逻辑电路包含组合逻辑电路和存储电路两部分。图中 代表时序逻辑电路的输入, 代表时序逻辑电路的输出,组合电路的一部分输 出 和存储电路的原状态共同决定了存储电路的输出, 代表存储电路的输出, 同时又反馈到组合电路的输入端。这是时序逻辑电路的一般结构,某些时序 逻辑电路会和该方框图有一些差别,但存储电路是必不可少的。它是由具有 记忆功能的触发器组成的,可以说触发器是最简单的时序逻辑电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C =0,C=1,
C CP C
C
C
Q G2
G4
TG1断开,TG2导通——输入信号D 不能送入主锁存器。 主锁存器维持原态不变。 TG3导通,TG4断开——从锁存器Q的信号送Q端。
触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号
1. 边沿D触发器
74HC/HCT74 中D触发器的逻辑图
C TG1 D TG G1 C C C CP C TG2 TG C C C TG3 TG C TG4 TG C G3 Q Q
主锁存器
G1 Q
C TG3 C C
从锁存器
G3 Q Q
存器结构相同
TG1和TG4的工 作状态相同 TG2和TG3的工 作状态相同
C
TG4
C
Q G2
G4
C CP C
1. 边沿D触发器
工作原理
C 主锁存器 C G1 D TG1 C C TG2 Q G3 TG3 C C TG4 从锁存器 Q Q
Q
n1 0
DI, Q
n1 1
Q0, Q
n1 2
Q1, Q
n1 3
Q2
二 移位寄存器(Shift Register)
n1 n1 Q0n1 DI, Q1n1 Q0, Q2 Q1,Q3 Q2
假设初始状态:DIQ3Q2Q1Q0 = 10000 若DI 1011
置 1 翻 转
1 1
1 1
0 1
1 0
J=0 K=×
0 J=× K=1
1
J=× K=0
集成边沿JK触发器
VCC 1RD 2RD 2CP 2K 2J 2SD 2Q 16 15 14 13 12 11 10 9 VDD 2Q 2Q 2CP 2RD 2K 2J 2SD 16 15 14 13 12 11 10 9
串入-并出
FF FF FF
并入-串出
FF FF FF
并入-并出
二 移位寄存器(Shift Register)
边沿DFF组成的右移移位寄存器
Q0
串行输入
Q1 FF1 1D C1 R FF2 1D C1 R
Q2 FF3 1D C1 R
Q3 DO
串行输出
FF0 1D C1 R
DI
移位脉冲
CP
清0
当移位脉冲 CP↑ 到来时:
74HC/HCT74的逻辑符号和功能表 74HC/HCT74的功能表 输
1S 1 C D 1D P 1R D 2S 2 C D 2D P 2R
D
S C1 1D R S C2 2D R
国标逻辑符号
1Q 1Q 2Q 2Q
SD
L H L
RD H L L
入 CP × × × CP ↑ ↑
输 出 D × × × D L H Q Q H L L H H H Qn+1 Q n1 L H H L
2. 双向移位寄存器 (74LS194A)
1 1 1 1
DIR
Q0
* * * * 当S1S0=00,且CLK↑到来时: Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 保持 * * * * Q1 Q2 Q3 DIRQ0 Q1 Q2 右移 当S1S0=01,且CLK↑到来时: Q0
2. 双向移位寄存器 (74LS194A)
4.2 时序电路记忆单元
4.3 寄存器与移位寄存器 4.4 计数器 4.5 随机存取存储器
4.6 时序可编程逻辑器件
4.3
寄存器与移位寄存器
1. 寄存器的定义 (Register) 寄存器是用来暂时存放一组二值代码(数据 或指令)的单元电路。 一个触发器可以储存1位二值代码,N个触发 器组成的寄存器能储存一组N位二值代码。 2. 寄存器的分类 寄存器 移位寄存器
触发器小结
二、触发器的逻辑功能、逻辑符号及特征方程
Q* S RQ RS触发器: S R 0
JK触发器: D触发器: T触发器:
Q* JQ K Q
Q* D
Q* TQ T Q
触发器的电路结构与逻辑功能没有固定对应关系
第 4 时序逻辑电路基础
4.1 时序逻辑电路概述
边沿触发器分类: 以符号“>”表示边沿触发器 正边沿触发器 上升沿有效触发
只在CP上升沿到来时接受输入信号,其它 时刻触发器保持状态不变。
负边沿触发器 下降沿有效触发 只在CP下降沿到来时接受输入信号,其它 时刻触发器保持状态不变。
1. 边沿D触发器
电路结构
主锁存器与从锁
C D TG1 C C TG2
74LS112 1 2 3 4 5 6 7 8 1 2 3
CC4027 4 5 6 7 8
1CP 1K 1J 1SD 1 Q 1Q 2Q GND (a) 74LS112 的引脚图
1Q 1Q 1CP 1 RD 1K 1 J 1SD VSS (b) CC4027 的引脚图
注 意
①74LS112为CP下降沿触发。 ② CC4027 为 CP上升沿触发,且其异 步输入端RD和SD为高电平有效。
左移
右移 寄存器 (b)
寄存器
(a)
双向 移位 寄存器 ( c)
二 移位寄存器(Shift Register)
根据移位数据的 输入-输出方式, 可分为四种:
•串行输入-串行输出 •串行输入-并行输出 •并行输入-串行输出 •并行输入-并行输出 FF FF FF
FF
FF
FF
串入-串出
FF FF
FF
FF
5.5.2 JK 触发器
2.特性方程 1.特性表
J K Qn Qn+1 说 明 状态不变
KQn J 0 1 00 01 11 10
0 1
1 1
n
0 0
0 1
n
0 0
0 0 1 1
0 0
1 1 0 0
0 1
0 1 0 1
0 1
0 0 1 1
置
0
Q
n1
JQ KQ
3.状态转换图
J=1 K=×
第 4 时序逻辑电路基础
4.1 时序逻辑电路概述
4.2 时序电路记忆单元
4.3 寄存器与移位寄存器 4.4 计数器 4.5 随机存取存储器
4.6 时序可编程逻辑器件
二 、边沿触发器
为提高触发器的可靠性,增强抗干扰能力,希望FF 的次态仅仅取决于CLK↓(或↑)到达时 (前瞬间) 的输入状态, 而与此前和此后的输入状态无关。
D0 D1 D2 D3 DSL GND
74LS194芯片引脚结构图
[例] 用两片74LS194接成8位双向移位寄存器。
DSR
S1 S0
D0 D1
DIR D0 D1 S1
D2 D3 D2 D3 DSL
D4 D5 D6 D7
4.3
寄存器与移位寄存器
并行输出端
一 寄存器(74175)CP↑到来时:
Q3Q2Q1Q0 D3 D2 D1 D0
二 移位寄存器(Shift Register)
“移位”就是将寄存器所存各位数据,在每 个移位脉冲的作用下,向左或向右移动1位。
根据移位方向不同,有以下三种:
Q
1. 边沿D触发器
带异步复位、置位端的上升沿触发D触发器
S d ——异步置位端 S d =1时,Q直接置1 R d ——异步复位端 R d =1时,Q直接置0 S d R d CP D Q
0 1 0 1 1 1 1 0 0 1 1 1 Φ Φ Φ Φ Φ Φ 1 0 Φ
n1
D
1D S C1
Q
Sd
SD
H H
RD
H H
具有直接置1、直接置0,正边沿触发的D功能触发器
例:边沿触发的D触发器,画 Q和 Q 端的波形。
D
1D S C1 R
Q
Sd
CP
Rd
CP
Sd Rd
Q
D Q
Q
2. 边沿JK触发器
边沿JK触发器逻辑功能与主从JK触发器相同。 解决了主从JK触发器的一次翻转问题,增强了抗干扰能力。
逻辑功能
CP
Rd
Q
n1
R
Q
1 0 禁 1 0
0
Q
0 1 止 0 1 Q
清0作用与时钟脉 冲无关。
S d 和 R d 的置1和
1. 边沿D触发器
集成边沿D触发器
VCC 2RD 2D 2CP 2SD 2Q 2Q 14 13 12 11 10 9 8
CP上升沿触发
VCC 2Q 2Q 2CP 2RD 2D 2SD 14 13 12 11 10 9 8
CP D Q tset th
tpd
建立时间(tset):输入信号要先于时钟CP信号达 到稳定的时间。 保持时间(th):为保证触发器可靠翻转,输入 信号应当保持不变的时间。 延迟时间(tpd):触发器从CP有效跳变沿到来时 刻起到建立稳定的输出状态所需时间。
触发器小结
一、触发器的电路结构及动作特点
双向移位寄存器(74LS194)
VCC Q0 Q1 Q2 Q3 CP S1 S0
16 15 14 13 12 11 10 9 Q0 Q1 Q2 Q3 CP S1 S0 R 741LS194 RD 741LS94A I DSR SL B C D DIL R A 1 2 3 4 5 6 7 8
R D DSR
特征方程
特性表
J 0 0 1 1 K 0 1 0 1
*1 n QQ
说 明 保持 置 0 置 1 计 数
Q n 1 J Q K Q
状态改变只发生在CP的上
Q 0 1 Q’ Q
升沿或下降沿。