16.2二次根式的乘除法(2)
2022-2023学年八年级数学下册《 二次根式的乘除》精讲与精练高分突破含答案解析
2.(2022秋·吉林长春·九年级长春市第四十五中学校考期末)计算()()154154-+,结果为( )A .1-B .1C .11-D .113.(2022春·八年级课时练习)计算:(1)818⨯(2)0.10.4⨯(3)322411⨯(4)243题型二:二次根式的除法4.(2022秋·重庆大渡口·九年级校考期末)估计()4233+÷的值应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.(2023春·八年级课时练习)下列各式计算正确的是( )A .2739÷=B .48163÷=C .2044÷=D .413239÷=6.(2023春·全国·八年级专题练习)某直角三角形的面积为55,其中一条直角边长为10,则其中另一直角边长为( )A .25B .52C .55D .210题型三:二次根式的乘除混算7.(2022秋·河南驻马店·八年级校联考期中)计算:(1)()622-÷(2)()16215362-⨯-(3)2421656++(4)()()()2233232-++⨯-8.(2023春·八年级)计算:(1)21437⨯(2)25136÷(3)954312612÷⨯(4)333123b ab a b a ⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭.9.(2023春·八年级)计算:(1)()12712453-+⨯;(2)()()6565-⨯+;(3)148312242÷-⨯+;(4)()()20222723321π---⨯-+-.题型四:最简二次根式的判断10.(2023秋·辽宁葫芦岛·八年级校考期末)下列二次根式中,属于最简二次根式的是( )A .9aB .23a C .12a +D .22a b -11.(2022秋·上海闵行·八年级校考阶段练习)下列根式中,是最简二次根式的是( )A .3ab B .3a b +C .222a b ab+-D .8a12.(2022秋·黑龙江哈尔滨·八年级哈尔滨市虹桥初级中学校校考阶段练习)在二次根式45、32x 、11、52、4x中,最简二次根式的个数是( )个A .2B .3C .4D .5题型五:化为最简二次根式问题13.(2023春·全国·八年级专题练习)将632化为最简二次根式,其结果是( )A .632B .1262C .9142D .314214.(2022春·山东泰安·八年级统考期末)下列二次根式:①50;②12;③32;④40.将它们都化为最简二次根式后,同类二次根式是( )A .①和②B .②和③C .③和④D .①和④15.(2022春·贵州黔南·八年级校考期末)二次根式2221,12,2,5,3x x x y ++中,最简二次根式有( )A .1个B .2个C .3个D .4个题型六:已知最简二次根式求参数三、解答题+ 40.(2022·全国·八年级专题练习)若实数m、n满足2m n 41.(2023春·八年级课时练习)计算:V的面积;(1)如图1,利用秦九韶公式求ABCV的两条角平分线AD,BE交于点O,求点O (2)如图2,ABC(2)解:0.10.4⨯0.10.4=⨯0.04=0.2=;(3)解:322411⨯111241=⨯12=22=;(4)解:243243=8=22=.【点睛】本题考查二次根式的乘法和除法.掌握二次根式的乘法和除法的运算法则是解题关键.4.C【分析】先根据二次根式的除法进行计算()4233+÷,然后估算14的大小即可求解.【详解】解:∵()4233+÷141=+,∵3144<<∴41415<+<故选C【点睛】本题考查了二次根式的除法,无理数的估算,掌握以上知识是解题的关键.5.B【分析】根据二次根式的除法法则进行计算即可.【详解】解:A .27393÷==,选项不正确,不符合题意;B .48163÷=,选项正确,符合题意;C .2045¸=,选项不正确,不符合题意;D .41491223393¸=´==,选项不正确,不符合题意.故选:B .【点睛】本题考查了二次根式的乘除法,二次根式的性质与化简,准确熟练地进行计算是解题的关键.6.B【分析】利用三角形的面积公式列式计算即可.【详解】解:由题意得,其中另一直角边长为:105102551052102⨯÷===,故选:B .【点睛】此题考查二次根式的除法,掌握三角形的面积公式是解决问题的关键.7.(1)31-(2)65-(3)13(4)426-【分析】(1)根据二次根式的除法运算法则,分母有理化计算即可;(2)利用乘法分配律计算()62153-⨯,利用分数的性质和二次根式的性质化简162;(3)根据二次根式除法和运算法则和分母有理化化简242166+,再计算与5的和即可;(4)先利用完全平方公式、平方差公式分别进行计算,再求和即可.【详解】(1)()622-÷6222=÷-÷31=-(2)()16215362-⨯-263215362=⨯-⨯-⨯1842325=--326532=--65=-(3)2421656++(2462166)5=÷+÷+4365=++265=++13=(4)()()()2233232-++⨯-2222(2)223(3)(3)2=-⨯⨯++-226334=-++-426=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.8.(1)422(2)2(3)36(4)292a b ab -【分析】(1)根据二次根式的乘法运算进行计算即可求解;(2)根据二次根式的除法运算进行计算即可求解;(3)根据二次根式的乘除混合运算进行计算即可求解;(4)根据二次根式的乘除混合运算进行计算即可求解.【详解】(1)2143⨯7=2672⨯42=2;(2)25136÷5536=÷5635=⨯2=(3)954312612÷⨯954312126=÷⨯112=36=;(4)333123b ab a b a ⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭3392a ab a b b=-⋅⋅=292a b ab -.【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.9.(1)115+(2)1(3)46+(4)1【分析】(1)先用乘法分配律,再利用二次根式的乘法法则,最后合并同类二次根式即可;(2)利用平方差公式计算即可;(3)先算二次根式的乘除法,再算加减法即可;(4)先算乘方和绝对值,再化简各个二次根式最后算加减法即可.【详解】(1)解:()12712453-+⨯111271245333=⨯-⨯+⨯9415=-+3215=-+115=+;(2)解:()()6565-⨯+65=-1=;(3)解:148312242÷-⨯+16626=-+4626=-+46=+;(4)解:()()020222723321π---⨯-+-3323311=--⨯+332331=--+1=.【点睛】本题主要考查二次根式的混合运算以及二次根式的性质,掌握二次根式混合运算法则是关键.10.D【分析】直接根据最简二次根式的定义进行判断即可.【详解】A 、93a a =,故不符合题意;B 、233a a =,故不符合题意;C 、12222a a ++=,故不符合题意;D 、22ab -是最简二次根式;故选:D .【点睛】本题考查了最简二次根式的定义,同时满足下列条件的二次根式,叫做最简二次根式(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.熟记最简二次根式的定义是解题的关键.11.B【分析】根据最简二次根式的定义逐个判断即可.【详解】解:A 、3ab b ab =,被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;B 、3a b +是最简二次根式,故本选项符合题意;C 、()2222a b ab a b a b +-=-=-,被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;D 、822a a =,被开方数中含能开得尽方的因式,不是最简二次根式,故本选项不符合题意;故选:B .【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键.12.A【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,解答即可.【详解】解: 4535=,32x 2x x =,4x 2x =,∴最简二次根式有:11、52共两个.故选:A .【点睛】本题考查二次根,熟练掌握最简二次根的性质是解题关键.13.D【分析】根据二次根式的化简方法即可得.【详解】解:原式6327922242312⨯⨯⨯===⨯,故选:D .【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.14.A【分析】先将各式化为最简二次根式,再结合同类二次根式的定义解答.【详解】解:①50=52;②12=22;③36=22;④40=21052 与22是同类二次根式,故选:A .【点睛】本题考查最简二次根式、同类二次根式等知识,最简二次根式满足两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.15.B【分析】根据最简二次根式的定义(被开方数不含有能开得尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵1233=,1223=、255||x x =,∴在2221,12,2,5,3x x x y ++中,最简二次根式有2x +,22x y +,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.16.D【分析】根据最简二次根式的被开方数相同知开方次数相同,被开方数相同,即可列出二元一次方程组,再解出即可.【详解】根据题意可知3102a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=⎩,∴314a b +=+=.故选D .【点睛】此题考查最简二次根式的定义,解二元一次方程组,正确理解题意列出方程组是解题的关键.17.B【分析】把a 的值依次代入即可判断求解.【详解】当a=6时,42a -=22,不能与2可以合并,当a=5时,42a -=1832=,能与2可以合并,当a=4时,42a -=14,不能与2可以合并,当a=2时,42a -=6,不能与2可以合并,故选B .【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的化简方法.18.D【分析】先将8化简为最简二次根式,再根据最简二次根式的定义即可得.【详解】解:822=,22 与最简二次根式1m +能合并,12m ∴+=,解得1m =,故选:D .【点睛】本题考查了最简二次根式、二次根式的化简,熟练掌握最简二次根式的概念是解题关键.19.D【分析】根据二次根式性质化简关判定A 、B ;根据二次根式乘法法则计算并判定C ;根据二次根式除法法则计算并判定D .【详解】解:A 、()222-=,原计算错误,故此选项不符合题意;B 、1374=93,原计算错误,故此选项不符合题意;C 、322366⨯=,原计算错误,故此选项不符合题意;D 、4312=2÷,原计算正确,故此选项符合题意;故选:D .【点睛】本题考查二次根式化简及乘除运算,熟练掌握二次根的性质与乘除运算法则是解题的关键.20.A【分析】已知226a b ab +=,变形可得28a b ab +=(),24a b ab -=(),可以得出a b +()和a b -()的值,即可得出答案.【详解】解:∵226a b ab +=,∴28a b ab +=(),24a b ab -=(),∵0a b >>,∴8a b ab +=,4a b ab -=,∴824a b ab a b ab+==-,故选:A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.21.C【分析】根据算术平方根、立方根、二次根式的运算可进行排除选项.【详解】解:①497648=,原计算错误,②()3322-=-,原计算正确;③1823÷=,原计算错误;④52535+-=,原计算正确;⑤()()5352510156+-=-+-,原计算错误;∴正确的有2个;故选C .【点睛】本题主要考查算术平方根、立方根、二次根式的运算,熟练掌握算术平方根、立方根、二次根式的运算是解题的关键.22.A【分析】利用二次根式有意义的条件列出不等式即可求解.【详解】解:由题意得:()60060x x x x ⎧-≥⎪≥⎨⎪-≥⎩,解得:6x ≥,故选A .【点睛】本题主要考查二次根式有意义的条件,能够熟练运用二次根式被开方数的非负性列不等式是解题关键.23.A【分析】根据立方根的性质化简、平方根的完全平方公式和性质,即可解答.【详解】解:A 、335050>-<,,故3355≠-,故选项错误.B 、3273=644--,故选项正确.C 、(32)(32)1+-=,故选项正确.D 、(4)(3)43-⨯-=⨯,故选项正确.故选:A .【点睛】本题考查了平方根和立方根的性质,注意:负数开立方还是负数.24.A【分析】根据二次根式的乘法法则ab a b =⋅成立的条件为0a ≥且0b ≥,即可确定答案.【详解】解:根据题意,可得1010x x +≥⎧⎨-≥⎩,解不等式组,得 1x ≥,所以,等式2111x x x -=+⋅-成立的条件是1x ≥.故选:A .【点睛】本题主要考查了二次根式的乘法法则和解一元一次不等式组,理解二次根式有意义的条件是解题关键.25.(1)46(2)32-(3)3a【分析】(1)根据二次根式的除法计算法则求解即可;(2)根据二次根式的除法计算法则求解即可;(3)根据二次根式的除法计算法则求解即可.【详解】(1)解:原式2723=÷224=46=;(2)解:原式55354=-÷55435=-⨯18=-32=-;(3)解:原式33b ab a=÷ 33a ab b=⨯29a =3=a .【点睛】本题主要考查了二次根式的除法,熟知相关计算法则是解题的关键.26.623-【分析】直接将31a =+,31b =-代入2ab b +进行计算即可.【详解】解: 31a =+,31b =-,2ab b ∴+()()()2313131=+-+-()313231=-+-+2423=+-623=-,故答案为:623-.【点睛】本题考查了求代数的值、二次根式的乘法,掌握平方差公式和完全平方公式是解题的关键.27.B【分析】利用二次根式的混合运算将原式化简,再进行无理数的估算即可.【详解】解:2243⨯-2263=⨯-433=-,33=∵252736<<,∴5276<<,即5336<<,∴2243⨯-的值应在5和6之间,故选:B【点睛】本题考查了二次根式的混合运算以及估算无理数的大小,能估算出27的范围是解此题的关键.28.A【分析】先确定出m ,n 的值,再通过计算求解此题.【详解】解:∵2的整数部分是1,∴2的小数部分是21-,即21m -=,∵8的整数部分是2,即2n =,∴()2222211==-+(),故选:A .【点睛】此题考查了实数的估算与计算能力以及乘方,关键是能准确理解并运用相关知识.29.D【分析】通过观察,得出第n 项为:41n -,再根据31199=,得出方程4199n -=,解出即可得出答案.【详解】解:∵数列371115,,,,…,∴通过观察,可得:第n 项为:41n -,∵31191191199=⨯=⨯=,∴4199n -=,解得:25n =,∴311是它的第25项.故选:D【点睛】本题考查了数字规律问题、二次根式的乘法,解本题的关键在正确找出已知数列的规律.30.D【分析】根据二次根式的乘法计算法则求解即可.【详解】解:∵711a b ==,,∴111170.1171001010ab a ⨯=⨯=⨯=,故选D .【点睛】本题主要考查了二次根式的乘法,熟知二次根式的乘法计算法则是解题的关键.31.D【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行判断即可.【详解】解:A 、原式22=,不符合题意.B 、原式14x x =,不符合题意.C 、原式32y =,不符合题意.D 、22x xy y ++是最简二次根式,符合题意.故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的概念,本题属于基础题型.32.C【分析】根据最简二次根式的定义逐项分析判断即可求解.【详解】A. 1223x x =不是最简二次根式,故该选项不正确,不符合题意;B.()2222x xy y x y x y ++=+=+,不是最简二次根式,故该选项不正确,不符合题意;C.22x y +,是最简二次根式,故该选项正确,符合题意; D. 1=x x x,含有分母,故不是最简二次根式.故选:C .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.33.5x >##5x<【分析】利用二次根式商的性质,商的算术平方根等于算术平方根的商,其中要满足的条件是分子的被开方数必须大于等于0,分母的被开方数大于0,列出关于x 的一元一次不等式组求解即可.【详解】要使4455x x x x --=--有意义,则4050x x -≥⎧⎨->⎩,解得:5x >,故答案为:5x >.【点睛】本题考查了二次根式商的性质,掌握二次根式商的性质是解题的关键.34.2ab b【分析】根据二次根式的性质进行化简即可.【详解】解:∵0a >,0b >,∴2342a b ab b =.故答案为:2ab b .【点睛】本题考查的是最简二次根式的概念与化简,掌握二次根式的性质是解题关键.35. 2 625- 4 5【分析】(1)根据平方差公式和二次根式的运算法则求解即可;(2)根据完全平方公式和二次根式的运算法则求解即可;(3)根据二次根式的性质和除法运算法则求解即可;(4)根据二次根式的性质和乘法运算法则求解即可.【详解】解:(1)()()3131312-+=-=故答案为:2;(2)()2515251625-=-+=-,故答案为:625-;(3)483164÷==,故答案为:4;(4)1502552⨯==故答案为:5.【点睛】此题考查了二次根式的性质,二次根式的乘法和除法运算法则,平方差公式和完全平方公式等知识,解题的关键是熟练掌握以上运算法则.36.2y-【分析】根据二次根式的乘法运算法则进行计算即可.【详解】解:22212124233y y x x y y x x⋅=⋅==,∵0y <,∴212223y x y y x⋅==-,故答案为:2y -.【点睛】本题考查了二次根式的乘法以及二次根式的性质,熟练掌握相关运算法则是解本题的关键.37.63【分析】设ABC V 底边上的高为h ,根据三角形的面积公式12S ah =列方程求解即可.【详解】解:设ABC V 底边上的高为h ,根据题意,得123182h ⨯=,解得:63h =,故答案为:63.【点睛】本题考查解一元一次方程、二次根式的除法运算、三角形的面积公式,正确计算是解答的关键.38.15【分析】根据二次根式的运算法则即可进行解答.【详解】解:2y y x x xy x x=⋅=,∵35x y ==,,∴原式3515=⨯=.【点睛】本题主要考查了二次根式的运算法则,解题的关键是熟练掌握二次根式的定义,性质和运算法则.39.3【分析】根据题意和图形中的数据,可以发现数字的变化规律,从而可以得到()82,与()100100,表示的两个数,进而()82,与()100100,表示的两个数的积,本题得以解决.【详解】解:由题意可得:每三个数一循环,1,2,3,()82,在数列中是第()1772230+⨯÷+=个,30310÷=,()82,表示的数正好是第10轮的最后一个,即()82,表示的数是3,由题意可得:每三个数一循环,1,2,3,()100100,在数列中是第()1999921005050+⨯÷+=个,5050316831÷=⋯,()100100,表示的数正好是第1684轮的第一个,即()100100,表示的数是1,故(()82,与()100100,表示的两个数的积是:313⨯=.故答案为3.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的两个数的乘积.40.1113±【分析】先根据2710m n m n +-+--=求出8353m n ⎧=⎪⎪⎨⎪=⎪⎩,然后求出4m n +的值,即可得出答案.【详解】解:∵2710m n m n +-+--=,∴27010m n m n +-=⎧⎨--=⎩,解得:8353m n ⎧=⎪⎪⎨⎪=⎪⎩,∴853744333m n +=⨯+=,373的平方根为3711133±=±,即4m n +的平方根是1113±.【点睛】本题主要考查了算术平方根的非负性和绝对值的非负性,求代数式的值,求平方根,解题的关键是根据算术平方根的非负性和绝对值的非负性求出m 、n 的值.41.(1)46+(2)2【分析】(1)直接利用二次根式的乘除运算法则、二次根式的性质化简,进而得出答案;(2)将原式用平方差公式化简,再求值即可【详解】(1)解:148318243÷-⨯+148318263=÷-⨯+16626=-+46=+(2)03(51)(51)(2)27+-+--()25113=-+-53=-2=【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和混合运算法则.42.(1)22(2)63(3)62(4)269(5)3(6)0.092(7)32(8)255【详解】(1)()211|11|-+-1111=+,22=;(2)108363=⨯,63=;(3)2382+648=+,72=,362=⨯,62=;(4)82783273⨯=⨯,4681⨯=,269=;(5)333333⨯=⨯,3=;(6)0.060.27⨯0.010.812=⨯⨯,0.10.92=⨯,0.092=;(7)114-34=,32=;(8)41154点O 为ABC V 的角平分线交点,∴点O 到AB ,AC ,BC 的距离相等,长度为设,OF h =,则ABC ACO S S =+V V 111。
16.2二次根式的乘除(教案)-初中八年级下册数学同步教学(人教版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
16.2二次根式的乘除(教案)-初中八年级下册数学同步教学(人教版)
一、教学内容
本节课选自初中八年级下册数学人教版第十六章《二次根式》第二节《二次根式的乘除》。教学内容主要包括以下两部分:
1.掌握二次根式的乘法法则:am·bm=(ab)m(a≥0,b≥0),并能够熟练运用该法则进行二次根式的乘法运算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个平方根的乘积或商的情况?”(例如:计算一块边长为√2的正方形地毯的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。
3.数学运算:使学生能够熟练运用二次根式的乘除法则,提高数学运算速度和准确性。
4.数学建模:通过实际问题的引入,引导学生运用二次根式乘除法则建立数学模型,增强数学应用意识。
5.跨学科融合:将二次根式的乘除与其他学科知识相结合,培养学生的跨学科思维和综合运用能力。
三、教学难点与重点
1.教学重点
-核心内容一:二次根式乘法法则。即am·bm=(ab)m(a≥0,b≥0)。
-举例:计算√2·√3,学生需理解并运用乘法法则得到结果√6。
人教版八年级数学下册_16.2二次根式的乘除
特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
人教版八年级下册16.2《二次根式的乘除》教案
1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
16.2 二次根式的乘除
例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2
÷
2
1
2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二
16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
16.2二次根式的乘除法(教案)
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。
人教版八年级数学下册第十六章 二次根式16.2二次根式的乘除课件(2课时66张)
22
35
3 4
32 3 4 4
2
3
2
巩固练习
连接中考
(2019•株洲) 2 8 =( B )
A.4 2
B.4
C.10
D.2 2
课堂检测
基础巩固题
1.下面计算结果正确的是 ( D )
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
人教版 数学 八年级 下册
16.2二次根式的乘除
第一课时 第二课时
第一课时
二次根式的乘法
返回
导入新知
如何计算 5 3?
苹果ios手持操作系统的图标为圆角矩形,长为 5 cm, 宽为 3cm,则它的面积是多少呢?
素养目标
2. 会运用二次根式的乘法法则和积的算术平 方根的性质进行简单运算. 1. 掌握二次根式乘法法则.
不成立!
- 4、- 9 没有意义!
因此被开方数a,b需要满足什么条件?
a,b是非负数,即a≥0,b≥0
探究新知
二次根式的乘法法则是:
在本章中, 如果没有特 别说明,所 有的字母都 表示正数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘.
语言表述: 算术平方根的积等于各个被开方数积的算术平方根.
探究新知
方法点拨
比较两个二次根式大小的方法: (1)被开方数比较法,即先将根号外的非负因数移到根号内, 当两个二次根式都是正数时,被开方数大的二次根式大.
(2)平方法,即把两个二次根式分别平方,当两个二次根式 都是正数时,平方大的二次根式大. (3)计算器求近似值法,即先利用计算器求出两个二次根式的 近似值,再进行比较.
沪教版数学八年级上册16.2《二次根式的运算》(第2课时)教学设计
沪教版数学八年级上册16.2《二次根式的运算》(第2课时)教学设计一. 教材分析《二次根式的运算》是沪教版数学八年级上册第16章第2节的内容。
这一节主要介绍了二次根式的加减乘除运算方法,以及运用二次根式的性质进行化简。
教材通过实例引导学生掌握二次根式的运算规律,培养学生运用数学知识解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了实数、有理数、无理数的基本概念,对数学运算有了一定的认识。
但在实际操作中,部分学生可能对二次根式的运算规律把握不准,尤其是对含有字母的二次根式运算。
因此,在教学过程中,需要关注学生的学习需求,引导他们积极参与课堂讨论,提高运算能力。
三. 教学目标1.知识与技能:使学生掌握二次根式的加减乘除运算方法,能熟练进行二次根式的运算。
2.过程与方法:通过实例分析,让学生体会数学知识在实际问题中的应用,提高解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:二次根式的加减乘除运算方法。
2.难点:含有字母的二次根式运算,以及运用二次根式的性质进行化简。
五. 教学方法1.引导法:通过实例引导学生发现二次根式的运算规律,培养学生独立思考的能力。
2.互动法:鼓励学生积极参与课堂讨论,提高学生的合作意识。
3.练习法:通过适量练习,使学生巩固所学知识,提高运算能力。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题及答案。
3.教学黑板、粉笔。
七. 教学过程1.导入(5分钟)利用实例引入二次根式的运算,激发学生的学习兴趣。
2.呈现(10分钟)讲解二次根式的加减乘除运算方法,引导学生发现运算规律。
3.操练(10分钟)让学生分组进行练习,教师巡回指导,纠正错误。
4.巩固(10分钟)针对学生练习中的共性问题进行讲解,巩固所学知识。
5.拓展(10分钟)运用二次根式的性质进行化简,引导学生解决实际问题。
6.小结(5分钟)总结本节课所学内容,强调二次根式运算的注意事项。
16.2二次根式的乘除(教案)
1.加强基础运算的训练,特别是合并同类项和分数除法的复习。
2.提供更具针对性的讨论指导,确保学生能够围绕核心概念展开讨论。
3.增加口语表达和逻辑思维的训练,提高学生的表达能力和思考深度。
4.引入更多生活实例,激发学生的学习兴趣,提高课堂参与度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题,如计算不同形状的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用几何模型来演示如何计算长方体的体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-难点举例:\(\sqrt{18} \times \sqrt{2}\)。难点在于识别\(\sqrt{18}\)可以简化为\(\sqrt{9 \times 2}\),即\(3\sqrt{2}\),然后进行乘法运算。
-熟练运用除法法则时,对根号内分母与分子关系的理解和处理。
-难点举例:\(\frac{\sqrt{54}}{\sqrt{3}}\)。难点在于将\(\sqrt{54}\)简化为\(\sqrt{18}\),然后应用除法法则,得到\(\sqrt{\frac{18}{3}} = \sqrt{6}\)。
-将实际问题转化为二次根式的乘除运算,并正确应用法则。
-难点举例:如果一个长方体的长、宽、高分别是\(2\sqrt{3}\)、\(\sqrt{6}\)和\(\sqrt{2}\),求体积。难点在于建立正确的数学模型,应用乘法法则得到体积为\(2\sqrt{3} \times \sqrt{6} \times \sqrt{2} = 6\sqrt{6}\)。
人教版数学八年级下册16.2二次根式的乘除(教案)
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。
人教版八年级数学下册:16.2二次根式的乘除(2)
3 25x 25x 5 x
9y2 9y2 3y
练习一:
7 (1) 2
9
(2)
81 25x2
x
0
(3)
16b2c a2
a
0,
b
0
0.09 ×169 (4)
0.64 ×196
解:(4(3)()(2100))1..606a4922b2××57892c=x111296=69=295==16a2b0052822..x1960c5249==××=11534965b969ax
算术平方根的积等于各个被开方数积的算术平方根
ab a b (a 0,b 0)
积的算术平方根等于积中各因式的算术平方根.
思考:二次根式的除法有没有类似的法则呢?
计算下列各式,观察计算结果,你发现什么规律?
1.
4 9
2 3
,
2.
16 49
4 7
,
除,作为商的被开方数
例4:计算 1 24
解:
3
2 3 1
2 18
1 24 24 8 4 2 2 2
3
3
2 3 1
2 18
3 1 2 18
3 18 2
39
3 3
试一试
计算:
(1)
32 2
(2) 50 10
3 4 1 7
5 10
解:1 32 32 16 4
a+b • a+b
=
2a a+b a+b
(3) 3
2=
2 =
40 3 • 2 10 6
2 • 10
=
10 • 10
人教版八年级下册数学 第十六章 二次根式 二次根式的乘除(第二课时)
已知
,求a的值.
S 2 3,b 10
解:∵
∴ a S 2 3 2 3 10 30 . b 10 10 10 5
巩固练习
高空抛物现象被称为“悬在城市上空的痛”.据报道:一个30g的
鸡蛋从18楼抛下来就可以砸破行人的头骨,从25楼抛下可以使
人当场死亡.据研究从高空抛物时间t和高度h近似的满足公
探究新知
素养考点 1 分母有理化
例 计算: (1) 3 ; (2) 3 2 ; (3) 8 .
5
27
2a
解:(1) 3 3 5 15 . 5 5 5 5
(2) 3 2 3 2 2 3 6 . 27 3 3 3 3 3
(3) 8 2 2 2 2 a 2 a . 2a 2a a a a a
表示电流(单位:安培),R表示电阻(单位:欧姆),t表示时间
(单位:秒),如果已知W、R、t,求I,则有
.若
W=2400焦耳,R=100欧姆,t=15秒.试求电流I I.
W Rt
解:当W=2400,R=100,t=15时,
I W 2400 8 2 2 2 10(安培). Rt 100 15 5 5 5
按 a 计算,则a≥0,a-3>0或a≤0,a-3<0,解得a>3或a≤0; a3
而按 a 计算,则a≥0,a-3>0,解得a>3. a3
课堂小结
二次根式 除法
法则 拓展法则
a a (a 0,b 0) bb
m a n b=(m n) a b (a 0,b 0)
性质 相关概念
a a (a 0,b 0). bb
式
.从100米高空抛物到落地所需时间t2是从50米高空抛
物到t 落 地2h所需时间t1的多少倍?
16.2二次根式的运算(第2课时)讲解与例题
【例2】计算:
(1)-2-3+5+4;
(2)(-)-(-).
分析:进行二次根式的加减法可按一化(把二次根式化成最简二次根式)、二看(看被开方数是否相同)、三合并(把被开方数相同的二次根式进行合并)的步骤进行.(1)题中的每个二次根式都是最简二次根式,可直接识别出:-2与5,-3与4被开方数相同,因此可直接进行合并.
___________________________________________________________________________
___________________________________________________________________________
二次根式加减时,先将二次根式化成最简二次根式,再将同类二次根式进行合并.
(5)二次根式的加减法的一般步骤:
①将每一个二次根式化成最简二次根式;
②找出其中的同类二次根式;
③合并同类二次根式.
知识点拓展:(1)①当式子中有括号时要先去括号,并且在运算过程中应注意符号;②二次根式的加减与整式的加减相类似,体现了数学中的类比思想,在学习时应注意对比理解和应用.
__________________________________________________________________________
____________________________________________________________________________
解:(1)-2-3+5+4
=(-2+5)+(-3+4)=3+.
八年级数学下册第十六章二次根式16.2《二次根式的乘除》课件
巩固新知 深化理解
1.下列运算正确的是( D ) A.2 18 3 5 6 80 B. 52 32 52 32 5 3 2 C. (4)(16) 4 16 (2)(4) 8 D. 52 32 52 32 53 15
用你发现的规律填空:
(1) 2 3 = 23; (2) 3 5 = 35.
(1) 4 9 = 4 9; (2) 16 25= 16 25; (3) 25 36 = 25 36.
实战演练 运用新知
例1 计算:
(1) 3 5; (2) 1 27; 3
(3) 2 3 5.
是 3 x5 .
巩固新知 深化理解
5.设长方形的面积为S,相邻两边分别为 a ,b . (1)已知 a 8 , b 12 ,求S;
解:由题意得:
S = *b = 8 12
= 8 12 = 42 23
= 4 6.
(2)已知 a 2 50 , b 3 32 ,求S.
4 2.
合作探究 获取新知 分母有理化
把分母中的根号化去,使分母变成有理数的这个过程就
叫做分母有理化.
化简: (1) 3 ; 5
解:(1) 3 3 5 5 5 5
(2) 1 . 3 2
(2) 1
1( 3+ 2)
3 2 ( 3 2)( 3+ 2)
15 . 5
归纳 有理化因式确定方法:形如
合作探究 获取新知 归纳总结
想一想:3 5 2 2 如何计算呢? 解:3 5 2 2=(3 2)( 5 2)=6 10.
二次根式的乘法扩充法则: m a n b =mn ab(a 0,b 0)
16.2二次根式的乘除
定义
条件 应用 2,要使二次根式在实数范围内有意义, 必须满足被开方数是非负数。 3,二次根式的应用 a (a≥0) 0 (a=0) -a (a<0)
回顾练习
①下列式子不是二次根式的是
1-2x≥0且x≠0
X=1,y=1
∴要想让原等式成立则3x-2y-1=0;x+y-2=0 ∴ 3x-2y-1=0 x+y-2=0 X=1 y=1
二次根式的除法
拓展2
最简二次根式
在二次根式的运算中,一般要把最后结果化为最简二次根式,并且 分母中不含二次根式
方法 特点
利用二次根式的乘除运算可以对二次根式进行化简
①被开方数不含有分母 ②被开方数中不含能开得尽方的因数或因式
如何化简二次根式
①化:将根号下的数化成分数形式 若是带分数,则化成假分数形式
性质1
①下列计算正确的是 a (a≥0) 0 (a=0) -a (a<0)
B:1 C:2a—3 D:3-2a
性质2
A:—1
代数式
用基本的运算符号(基本运算包括加、减、乘、除、乘方和 开方)把数或表示数的字母连接起来的式子,我们称这样的 式子为代数式!
①下列式子中不是代数式的为
B:5a+8=7
C:2
二次根式的四则运算
二次根式的乘法
二次根式是一个代数式,所以它也有相应的加减乘除运算!
本章中,如果没有特殊说明,所有的字母都表示正数。
拓展1
如何将因式移入根号内
所以 原代数式<0,
∴把a挪进去的时候要把负号留在外面
a (a≥0) 0 (a=0) -a (a<0)
练习
练习册第5页
1—5、9、10、11。
16.2二次根式的乘除法
二次根式相除:
把被开方数的商作为商的被开方数
商的算术平方根:
a b a b
a 0, b 0
商的算术平方根等于被除式的算术 平方根除以除式的算术平方根.
与积的算术平方根的性质比较:
ab
a b
a 0, b 0
共同点:一个根号变成两个根号. 区别:取值范围不同。
例4:化简
解法1:2000 400 5 400 5 20 5
解法2:2000 102 (22 5) 102 22 5 102 22 5 20 5
你从上面的例子中发现了什么?
如果a1、a2、 ......、an 0 则:a1 a2 ... an a1 a2 ... an
探讨2:
(1)
9 3 2 ( ) = 16 4
3 4
观察1、2小题 的结果,他们 有什么特点? 你能列出怎样的 等式呢?
(2)
9 16
3 4
(1)、(2)题结果相同。
9 16
9 16
这个等式用字母 怎么表示呢?
a b
请同学们用文字表达 该等式。
a b
a 0, b 0
思考:等式中 的a和b有没有 条件的限制?
40 9
2 10 4 10 3 3
练习:
3 (1) 2 16
解:原式 35 35 35 16 4 16
15 ( 2) 1 49
解:原式 64 64 8 1 1 49 49 7 7
例5:计算
25 x 5 6 xy 3 9y
25 x5 25 x5 52 x 4 52 6x 4 5x2 解: 6 xy 6 3 3 4 2 4 2 9y 9 y 6 xy 96y 18 y 18 y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空:
=
=
=
=
二、预习自测:
三、合作研讨:
• 变式训练: 化简
• 归纳:一般地,对二次根式的除法规定:
小 结
你有什么收获?
你还有什么不足?
达标测试:
郭庙中心校
董倩倩
• 有志者,事竟成,破釜沉舟,百二秦关终属 楚。
• 【课标要求】 了解二次根式、最简二次根式的概念,了解二 次根式(根号下仅限于数)加、减、乘、除运算法 则,会用它们进行有关的简单四则运算。 • 【考纲要求】 了解二次根式、最简二次根式的概念,理解二 次根式(根号下仅限于数)加、减、乘、除运算法 则,会用它们进行有关的简单四则运算。