2019贵州国家公务员考试行测不定方程速解技巧
公务员考试行测备考:行测秒杀之不定方程题型
公务员考试行测备考:行测秒杀之不定方程题型近年来国家公务员行政能力测试,数量关系中题型较多,然而不定方程问题在整个试卷中考查的频度较高,即常考题型。
而方程问题主要包括两种形式,分为定方程和不定方程。
本文将从不定方程方面讲述。
不定方程问题包括不定方程问题和不定方程组。
不定方程的解法通常是代入排除思想、数字特性思想中的奇偶特性和尾数法。
不定方程组又分为求单个未知数和求整体两种。
求单个未知数,主要就是消元法,转化成不定方程,再用不定方程的解法求解。
求整体,主要是赋0法,消去系数复杂的未知项。
【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。
则甲、乙、丙三型产量之比为:( )?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1[答案]D[解析]数字特性思想,由3乙+6丙=4甲,得甲应为3的倍数。
观察选项只有D项满足。
【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?( )A.3B.4C.7D.13[答案]D[解析]不定方程、奇偶特性和尾数法。
设大盒有x个,小盒有y个,则12x+5y=99,解得x=7,y=3(舍去)或者x=2,y=15。
因此y-x=13。
【例4】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )A.36B.37C.39D.41[答案]D[解析]设每位钢琴老师带x人,拉丁老师带y人,则5x+6y=76,通过奇偶特性判定x 为偶数,又是质数,故x=2,y=11,因此还剩学员4×2+3×11=41(人)。
公务员考试行测数量关系答题技巧:快速解不定方程
A、2 B、 5 C、6 D、7
【中公解析】B,通过观察发现,4y是一个偶数,23是一个奇数,所以3x一定是一个奇数,所以x一定为奇数,排除A,C答案,代入B答案,此时y=2,符合题意,所以选择答案B。
方法三:特值法
秒解特征:求解不定式方程组中表达式的值
【中公解析】B,题干中最后求解x+y+z为面的结果产生影响,所以我们取z=0,则可以得到x=50,y=50,所以x+y+z=100。
总的来说,解决不定方程的难度不大,要想快速解决问题,只需要找到题干中的特征,运用相对应的办法,就可以快速得出答案!
公务员考试行测数量关系答题技巧:快速解不定方程
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
方程可以说是解决数学问题的“万精油”,不管是国考省考市考,还是事业单位特殊岗位,行测考试中方程出现的频率可谓是越来越高,很多同学对于方程也是又爱又恨,最头疼的问题是莫过于能列出方程,却解不出来。接下来,中公教育就教大家快速解一类特殊的方程——不定方程。
首先我们看这样一个式子:2x+3y=10,类似这样未知数的个数大于独立方程得个数的方程就叫做不定方程了,那这类式子按道理应该是无数组解,为什么可以快速解出答案呢?这就要说明一下我们这里的解是在正整数的范围内求解,因为一般这样的解会有一个限定条件,比如人的个数,汽车的辆数,羊的头数,他们都是一个正整数,所以我们才可以快速解出答案。
盘点历年国家公务员考试行测不定方程的常用解题方法
盘点历年国家公务员考试行测不定方程的常用解题方法不定方程,指的是未知数的个数多于方程的个数,我们把这样的方程就叫做不定方程。
在国家公务员考试中,不定方程以其列式独特、解法巧妙越来越受到命题者的青睐,在不定方程中,题干往往会有一定的限制性条件,比如最终结果一定要是自然数等等,中公教育专家根据这类特点给大家总结了不定方程中的一些常见方法,如奇偶性、质合性、尾数法、整除法、同余特性、代入排除法、范围法等。
下面结合几道例题,帮助大家了解一下这些方法的应用。
【例1】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A. 36B. 37C. 39D. 41【答案】D【中公解析】设原来每位钢琴教师所带学员为x人,每位拉丁舞教师带学员y人,则有76=5x+6y,因为76和6y为偶数,所以5x也为偶数,即x为偶数,而x又为质数,所以只能x=2则y=11。
因此目前培训中心剩4×2+3×11=41名学员。
【例2】某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。
已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。
问他们中最多有几人买了水饺?A.1人B.2人C.3人D.4人【答案】C【中公解析】设买盖饭、水饺、面条的员工人数分别为x、y、z,根据题意,列出方程:x+y+z=6,15x+7y+9z=60。
15x、9z、60都可以被3整除,那么7y也一定可以被3整除,则y一定可以被3整除,选项中只有C选项可以被3整除。
故答案选C。
2019贵州国家公务员考试行测如何解决基础不定方程问题
2019贵州国家公务员考试行测如何解决基础不定方程问题在行测考试中我们发现有一类问题,题目中包含等量关系,但我们将所有的等量关系找出后,列出方程后发现这类方程从表面看是无法求解的,比如3x+7y=33我们把这类方程叫做不定方程。
我们给不定方程下一个准确的定义,不定方程指的是未知数的个数大于独立方程的个数我们叫不定方程。
我们先明确什么叫独立方程,独立方程指的是每一个方程不能通过其他方程线性变化而来。
比如我们这里举个例子3x+7y=33,6x+14y=66,表面看是两个方程,两个未知数但是第二个方程可以通过第一个方程乘以二得来,没有实际意义。
明确了不定方程的意义之后,我们现在来说下不定方程如何求解,如果不定方程在实数的范围内,确实是有无数组解,但是因为行测考试中涉及的物体必须是整数,而且是有选项的所以是可以求解的。
下来我们来谈谈不定方程如何求解。
不定方程常见的解法是:1.特值数字法。
2.带入排除法。
两种方法相辅相成。
中公教育专家在这里主要介绍一下特值数字法。
特征数字法里面有包含:一.奇偶性。
(1)体型特征:未知数前的系数出现至少一个奇数项。
(2)例题:3x+2y=34,若x为质数,则x=()。
A2 B3 C5 D7中公解析:我们发现2y这个整体一定是偶数,34为偶数,只有偶数+偶数=偶数所以3x这个整体必须偶数,既然3是奇数,那么x必须是偶数,即是偶数又是质数只有一个2.答案选择A。
二.整除特性(1)题型特值:整除特性是利用常数项和未知数前的系数可以被一个数字整除的特性。
(2)例题:3x+7y=33,已知x,y为正整数,则x+y=( )A11 B10 C8 D7中公解析:我们观察这个式子会发现33可以被3整除,3x可以被3整除,那么7y 这个整体一定可以被3整除,既然7不可以被3整除那么y一定是3的倍数,y可以取3,6,9这些数字,7y当y取3时,7y=21.y取6时,x为负值。
所以y为3,x=4.答案选择D。
2019国家公务员考试行测答题技巧:同余特性解不定方程
2019国家公务员考试行测答题技巧:同余特性解不定方程在行测数学运算部分核心考察数与数的运算关系。
因此,“数字”及其相关的性质就是算术的基础。
该部分内容从表面上看似乎属于只需要牢固记忆的概念性基础知识。
但实际上,如果我们能应用得灵活恰当就会变成实用性非常强的解题技巧。
一、知识点简述我们在解题时,会经常遇到如何求解不定方程,对于不定方程的求解,常用的方法有整除法、特值法、同余特性、代入排除以及奇偶性。
今天重点说一下如何应用同余特性来求解不定方程,帮助我们迅速地排除错误答案,锁定正确答案。
首先我们先来回顾下常用到的两条同余特性的性质1.余数的和决定了和的余数如:求(22+17)÷5.....?直接计算22÷5....2 17÷5....2,则(22+17)÷5的余数为2+2=42.余数的积决定了积的余数如:求(22×17)÷5.....?直接计算22÷5....2 17÷5....2,则(22+17)÷5的余数为2×2=4二、方法应用:消元下面我们通过几道例题来说明如何利用同余特性来求解不定方程:【例1】两个未知数:X+9Y=67,X和Y为正整数,求X?A.10B.11C.12 D13【答案】D【解析】两个未知数一个方程求解未知数时候,我们看问题求谁,本题求X,那我们就消除另外一个未知数Y,利用同余特性,我们把整个方程除以9,那么可以知道9Y的余数为0,67的余数为4,根据同余特性,我们可以知道余数的和决定了和的余数,最终和余数为4,所以可以知道X÷9的余数应该为4,结合四个选项,我们很容易可以看的出来只有D选项满足X这个条件,故正确答案为D。
【例2】三个未知数:15X+7Y+9Z=60,X Y Z为正整数,求Y?A.1B.2C.3D.4【答案】C【解析】当我们遇到三个未知数一个方程时候,求解其中一个未知数,我们就消去另外两个未知数,这时候我们可以除以另外两个未知数的系数的最大公约数。
行测中不定方程解法都在这
行测考试中不定方程解法都在这不定方程是公务员行测笔试题中经常出现的一类题型。
很多考生在面对这个拦路虎时,往往凭运气,能看出来的就做,不能看出来就放弃了。
然而实际上这类题型在解决的时候是有固定套路的,只要你能掌握好这些套路,基本上大部分的不定方程问题都能搞定。
今天专家就为各位考生梳理一遍:不定方程的那些解法。
不定方程的解法具体可以分为两类.第一类:代入排除法。
所谓的代入排除法就是将选项代入题干里面,看看能够符合题目意思。
这种方法相对简单,考生也非常容易掌握,下面以一道例题来稍微解释一下.【例题1】办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件.每个文件袋可以装7份文件,每个蓝色文件袋可以装4份文件.要使每个文件袋都恰好装满,需要、蓝色文件袋的数量分别为( )个。
A。
1、6 B.2、4C。
3、2 D。
4、1【华图解析】看完题目之后,大家浮现在脑海中的是不是就这么一句话,恰好装满,OK,那我们就可以根据这句话的逻辑关系去列式子了。
假设文件袋x个,蓝色文件袋y个,则有7x4y=29。
在这个式子中出现了x、y两个未知数,只有一个式子,典型的不定方程问题.考生如果能注意到题目中所要求的就是x、y的具体值,在有选项的情况的,直接进行代入排除即可,很容易得出C为正确选项。
当然需要给考生总结的一点是:在不定方程问题中,当题目直接求列出方程关系中的未知数,利用代入排除方法能快速代入选项,选出答案。
第二类:数字特性法.数字特性法又包括三类小方法:1。
奇偶性;2.尾数法;3。
倍数法。
【例题2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?()A。
3 B。
4C。
7 D.13【华图解析】根据题意,设大包装盒x个,小包装盒y个,可得12x5y=99。
此时题目中要求的是x-y的数值,代入排除法就不那么好用了.在这种情况下,要想快速解出该不定方程,就得从数字特性角度入手了。
行测数学运算:不定方程的求解方法汇总
行测数学运算:不定方程的求解方法汇总一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。
在这里解释一下独立方程。
看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。
二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。
设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。
7x+4y=43。
性质:奇偶奇7x为奇数,x也为奇数。
x可能的取值有1、3、5。
当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。
2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。
任何正整数与5的乘积尾数只有两种可能0或5。
【例题】某单位分发报纸,共有59份。
甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。
设甲部门的人数为x人,乙部门的人数为y人,得到方程为:5x+4y=59,性质:奇偶奇5x为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。
但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。
3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。
【例题】某单位分发办公笔用具,甲部门每人分的4个办公用具,乙部门每人分的3个办公用具,正好将32个办公用具分完。
2019贵州国考行测不定方程的几种常用解法
2019贵州国考行测不定方程的几种常用解法大家对方程都不陌生,我们从小学就开始接触了,在学生阶段我们常见到的是普通方程,用中学的知识就可以解决的,但在我们公务员考试中,还涉及到不定方程的考查,这部分知识相对简单,只要大家掌握住不定方程的解题方法,这类问题就迎刃而解了。
首先大家要知道什么是不定方程,不定方程:未知数的个数大于独立方程的个数。
比如:2x+3y=21.接下来中公教育专家主要讲解一下这类方程怎样求解。
一、整除法利用不定方程中各数除以同一个除数,也就是根据特点各项都含有一个因数来求解例1、 3x+7y=33,已知x,y是正整数,则y=( )。
A、2B、3C、4D、5【中公解析】因为3x能被3整除,等号右边33也可以被3整除,所以7y也必定能被3 整除,所以y能被3整除,根据选项,只能选B。
二、奇偶性奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数例2、 3a+4b=25,已知a,b是正整数,则a的值是()。
A、1B、2C、6D、7【中公解析】因为4a是偶数,25是奇数,所以3a是奇数,即a是奇数,从1开始代入,解得a=3,b=4或a=7,b=1.结合选项,D正确。
三、尾数法看到以0或5结尾的数,想到尾数法。
例3、 5x+4y=98,已知x,y是正整数,则原方程共有()组解。
A、5B、6C、7D、8【中公解析】5x的尾数是5或0,则4y对应的尾数应是3或8,因为4y是偶数,所以4y的尾数是8,故原方程的解有x=8,y=12;x=14,y=7;x=10,y=12;x=6,y=17;x=2,y=22共5组解,A选项正确。
四、同余特性(余数的和决定和的余数)不定方程中各数除以同一个数,所得余数的关系来进行求解,求x,则消y,除以y 的系数。
例4、 7a+8b=111,已知a,b是正整数,且a>b,则a-b=()。
A、2B、3C、4D、5【中公解析】因为7a能被7整除,111除以7的余数为6,所以8b除以7的余数为6,即b除以7的余数为6,则依次解得a=9,b=6或a=1,b=13。
行测数学运算不定方程的三种常用解法
行测数学运算不定方程的三种常用解法行测数量关系答题技巧你掌握了多少?为大家提供行测数学运算不定方程的三种常用解法,一起来看看吧!祝大家备考顺利!行测数学运算不定方程的三种常用解法在行测运算题当中,设方程是常用的技巧,含有未知数的等式叫做方程。
不定方程中未知数的个数多于独立方程的个数。
比如:x+y=5。
在行测里也经常列出不定方程,但是很多人都不会解。
其实只要掌握好三种常用的方法,问题自然迎刃而解。
1、整除法:利用不定方程中各数能被同一个数整除的关系来求解。
例1:小张的孩子出生的月份乘以29,出生的日期乘以24,所得的两个乘积加起来刚好等于900。
问孩子出生在哪一个季度?A.第一季度B.第二季度C.第三季度D.第四季度【答案】D【解析】关键词:等于,所以找到等量关系。
设出生月份为x,出生的日期为y。
29x+24y=900,24与900的最大公约数为12,意味着24y能被12整除,900能被12整除,29为质数,所以x能被12整除,由于12表示的是月份,所以是第四季度。
2、奇偶性:未知数的系数奇偶性不同例2:办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。
每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。
要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为()个。
A.1、6B.2、4C.4、1D.3、2【答案】D【解析】由题可知袋子的个数肯定是为整数,设红色袋子数量为x,蓝色袋子数量为y,由题意可得7x+4y=29,此时未知数的系数为7和4,奇偶性不同。
4y为偶数,29为奇数,则 7x为奇数,得出x为奇数,排除B、C。
接下来代入A选项,x=1,y不是整数,排除A,选择D。
验证:x=3,y=2满足题意。
3、尾数法:未知数的系数是5的倍数超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13【答案】D【解析】由题可知,大包装盒的个数和小包装盒的个数为整数,设大包装盒的个数为x,小包装盒为y,可得到12x+5y=99,x+y>10。
公务员考试行政职业能力测验备考:3种方法解不定方程
公务员考试行政职业能力测验备考:3种方法解不定方程例:去商店买东西,如果买7件A商品,3件B商品,1件C商品,一共需要50元,如果是买10件A商品,4件B商品,1件C商品,一共需要69元,若A、B、C三种商品各买2件,需要多少钱?A.28元B.26元C.24元D.20元【解析】很明显,根据题意我们可以很简单地列出方程表达式:7A+3B+C=50;10A+4B+C=69解法一:凑配法根据问题,我们其实只需要算出A+B+C等于多少即可,所以第一个式子乘以3,第二个式子乘以2,相互做差即可得到A+B+C=3×50-2×69=12,故各买两个,答案为24,选C。
这种方法需要考生对数字有比较好的敏感度。
公务员考试频道为大家推出【2017年公务员考试考试课程!】考生可点击以下入口进入免费试听页面!足不出户就可以边听课边学习,为大家的梦想助力!★成功/失败的案例告诉我们,方法不对是导致失败的关键原因!在这里,我们将提供:6大优势课程+线上线下集训教学+协议签约!你准备好了吗?现在我们将给你一次成“公”上岸的机会↓【手机用户】→点击进入免费试听>>【电脑用户】→点击进入免费试听>>解法二:特值法设A=0,式子1变为:3B+C=50;式子2变为:4B+C=69可以解出B为19,C为-7,故2(A+B+C)=24解法三:方程法设所求的(A+B+C)为x,故式子1变为:x+6A+2B=50;式子2变为:x+9A+3B=69同样设3A+B为y,那么可以算出y为19,x为12,那么所求的即为2x等于24。
在对不定方程的学习过程中,专家希望考生不断练习以上三种方法,达到成熟灵活运用的程度。
这样,以后再复杂的不定方程都能够快速求解!。
行测数量关系技巧:如何巧解不定方程
行测数量关系技巧:如何巧解不定方程不定方程在行测中经常考到,为大家提供行测数量关系技巧:如何巧解不定方程,一起来看看吧!希望大家顺利通过考试!行测数量关系技巧:如何巧解不定方程方程法是在公务员考试行测中比较常用且最基础的一种方法。
而在具体使用中,普通方程大家都较为熟悉,而对于不定方程不太了解。
其实,不定方程也是在考试中常考查的一种题型,同时也是较为简单的部分,学习不定方程,巧解方程,不定方程将变为送分题,下面就来带领大家学习了解不定方程。
一、不定方程定义:未知数的个数大于独立方程的个数。
例:3X+4Y=16二、不定方程的求解:方程法主要根据题干的条件,构建等量关系,列出方程式,接下来进行求解。
对于不定方程来说,只看不定方程,如3X+4Y=16是有无数组解的,那要如何求出具体X、Y为多少呢?其实题干一般会给出限制条件,例如:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果共用了十多个盒子刚好装完。
问两种包装盒相差多少个?我们可以直接设大包装盒用了X个,小包装盒用了Y个,列出方程:12X+5Y=99。
接下来就是具体求解,通过题意可以看到无论大小盒子,个数肯定为整数,因此对X、Y就限定了范围便于求解。
在考试中一般题目都会有正整数的限定条件,我们就可以利用这个进行求解。
1、整除法:存在未知数系数与常数存在共同因数时使用例:已知6X+7Y=49,X、Y为正整数,求X=?A.3B.4C.5D.7【解析】D。
我们通过式子可以看出来,7Y和49都可以被7整除,所以6X肯定也可以被7整除,6不能够被7整除,那么X 一定能够被7整除,选择D。
2、奇偶性:利用最多的方式例:已知7X+8Y=43,X、Y为正整数,求X=?A.5B.4C.3D.2【解析】D。
8Y为偶数,43为奇数,所以7X为奇数,所以X 为奇数,排除B、C,代入A选项若X=5,则Y=1,所以选择D。
3、尾数法:利用0、5尾数的特性,0乘任何数尾数为0.5乘奇数尾数为5,乘偶数尾数为0例:已知6X+5Y=41,X、Y为正整数,求X=?A.6B.5C.4D.3【解析】A。
行测技巧:不定方程的求解方法
行测技巧:不定方程的求解方法中公教育研究与辅导专家葛阳我们知道一般情况有几个未知数,对应的给出几个独立的方程我们一定会求解出每个未知数的具体值是多少,这样的方程我们称之为普通方程,而在行测学习过程中,可能会存在这样一类题目,未知数的个数大于独立方程的个数的现象,这样的未知数我们是不能求解的,例如:x+y=10,两个未知量,一个等量关系,我们无法求出X和Y具体是多少,因为有无数个解,只要满足这个等式都是正确的解。
这样的方程我们称之为不定方程,不定方程在题目中如何出现呢,一般考察不定方程会有两种考察方式:第一种,求解正整数解;第二种,求解组合解。
我们应该如何求解呢?中公教育专家用几个例子说明一下。
一、求正整数解(题目要求所求未知量为正整数)常用方法:带入排除,整除,奇偶,尾数例一:某药店对于口罩的售价有两种:医用口罩5元一个,普通口罩2元一个。
小明共买了不到10个口罩,共花费36元,请问小明一共买了几个医用口罩?A.3B.6C.4D.8中公解析:法一:根据题干,设医用口罩买了x个,普通口罩买了y个。
有共花费36元可列等量关系:5x+2y=36。
由于,x和y表示数量,一定是正整数。
一个等式,两个未知数,是不定方程,那我们如何求解?2是偶数,2的正整数倍一定是偶数,而36是偶数,想让等式成立,5X也必须是偶数,5的正整数倍数的尾数只能是0或者5,又因为是偶数所以尾数是0,因此判定2y的尾数是6,y=3时,x=6;y=8时,x=4;根据共买了不到十个,可知x+y不到10,第一组解成立,医用口罩一共买了6个。
选B。
法二:根据题干,设医用口罩买了x个,普通口罩买了y个。
有共花费36元可列等量关系:5x+2y=36。
之后带入选项排除,选择B。
例二:一个工厂为了提高工作效率,新引进三种设备14台,共投入成本75万。
A类设备5万元一台,B类设备6万元一台,C类设备3万元一台,问最多引进B类设备多少台?A.6B.3C.9D.12中公解析:根据题干,设A类设备买了x台,B类设备买了y台,C类设备Z台。
公考行测中的不定方程如何解
公考行测中的不定方程如何解中公教育资深专家李海军方程思想在近几年公务员考试行测中占据很大的比例,是国考数量关系考察频率较高的知识点,尤其是不定方程的求解,所以这一部分知识是至关重要的,中公教育专家建议考生们要引起足够重视。
一、什么就是不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。
例如:3x+2y=10。
二、不定方程的数学分析1、利用奇偶性解题原理:奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数,奇数*奇数=奇数,奇数*偶数=偶数,偶数*偶数=偶数。
例题:某地劳动部门租用甲、乙两个教室开展农村实用人才计划。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
问甲教室当月共举办了多少次这项培训?【国考-2021】a.8b.10c.12d.15【中公解析】d。
根据题意,甲教室一次可以坐50人,乙教室可以坐45人,设甲教室举办x次,乙教室举办y次,则可以得到:x+y=27,50x+45=1290。
很多人会去计算,实际上,利用我们讲的方法,就可以“看出”答案。
由x+y=27可知x,y一定是一个奇数,一个偶数。
若x是偶数,y是奇数,则50x是偶数,45y是奇数,加和是奇数,与题干加和为1290(偶数)矛盾,所以x是奇数,y是偶数,答案显然为d。
2、利用质合性解题原理:一般和奇偶性结合使用。
2是唯一的偶质数(既是质数,又是偶数)。
例题:某儿童艺术培训中心存有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均值地让给各个老师老师率领,刚好能分配回去,且每位老师所带的学生数量都就是质数。
后来由于学生人数增加,培训中心只留存了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量维持不变,那么目前培训中心剩学员多少人?【国考-2021】a.36b.37c.39d.41【中公解析】d。
2019贵州事业单位职业能力测评:解不定方程的几种常用方法
2019贵州事业单位职业能力测评:解不定方程的几种常用方法【导读】贵州中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系题库《解不定方程的几种常用方法》。
在事业单位考试中,常常会碰到利用方程建立等量关系求解的题目。
而有些题目在列出方程后,会发现未知数的个数大于不定方程数,这样的方程我们称之为不定方程。
不定方程其实有无数组解,但是由于题目中所设定的条件限制,我们也只能在有限的解中选出正确答案。
那碰到不定方程,我们通常是怎么进行求解的呢?接下来给大家介绍几种常用的方法。
一、奇偶性结合代入排除在自然数中,我们可以将数字分成两类,即奇数和偶数。
在进行加减乘除运算中,我们可以利用奇偶之间的运算性质进行求解。
在加减法中:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数;在乘法中:奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
利用奇偶性确定答案是奇数还是偶数,再将剩余的无法排除的选项代入验证。
例1 某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐2 0元,某部门所有人员共捐款320元,已知该部门总人数超过10人,问该部门可能有几名部门领导?A. 1B. 2C. 3D. 4解析:设部门领导X人,普通员工Y人,可以列出一下的方程:50X+20Y=3 20且X+Y>10,将方程进行化简可得:5X+2Y=32。
由于32是偶数,2Y是偶数,因此5X肯定也是偶数,由于5是奇数,X必须得是偶数。
因此我们就可以排除A、C这两个选项。
将B选项2代入到式子中,Y等于11,X+Y>10,符合条件。
因此答案就选择B。
二、利用尾数法在有些式子中,我们可以利用式子中各数的尾数关系,进行求解,尤其是一些未知数前面系数是5或者是5的倍数的时候,我们就可以利用尾数法。
因为一个数乘以5的位数是较为固定的,要么是5要么是0。
例2 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装和每个装5个苹果,公用了十多个盒子刚好装完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019贵州国家公务员考试行测不定方程速解技巧在国家公务员行政职业能力测试数量关系专项中,经常会运用到方程法解答各类文字应用题型,但是在运用方程法的过程中,常会遇到所设的未知数个数多于方程个数的情况。
未知数个数多于方程个数,这种方程我们称之为“不定方程”。
解不定方程最典型的方法为代入排除法,即直接将选项代入方程中,验证是否能使其他未知数都有符合题目要求的解。
【例1】有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。
为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是( )?
A.1辆
B.3辆
C.2辆
D.4辆
【答案】B
【中公解析】每位游客均有座位且车上没有空座位,可知座位总数与游客人数相等。
假设需要大客车x辆,需要小客车y辆,根据题意列出方程:37x+20y=271。
未知数个数多于方程个数,此为不定方程问题。
20的倍数尾数一定为0,则37x的尾数应为1,代入四个选项,只有当x=3时,37x的尾数为1,B选项正确。
【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果共用了十多个盒子刚好装完。
问两种包装盒相差多少个?( )
A.3
B.4
C.7
D.13
【答案】D
【中公解析】假设大包装盒用了x个,小包装盒用了y个,根据题意可列出方程:12x+5y=99。
题干中只有一个等量关系,2个未知数,1个方程,此为不定方程问题。
结合数字的奇偶特性,偶数的倍数一定是偶数,可知12x为偶数。
两个数的和99为奇数,这两个数的奇偶性一定相反,因此5y的值一定为奇数。
5的倍数尾数不是0就是5,因此可以确定5y尾数为5,12x尾数为9-5=4。
由此推出x=2,y=15。
或者x=7,y=3。
题目条件“共用了10多个盒子”,x=7,y=3不符合题意,结果为x=2,y=15,差是13。
D选项正确。
在解不定方程时可结合数字的奇偶特性、尾数特性等数字特性思想,然后通过代入选项得出答案。
当题目要求的是所有未知数的和时,可用设“0”法简化计算。
【例3】小刚买了3支钢笔、1个笔记本、2瓶墨水,花去35元钱,小强在同一家店买同样的5支钢笔、1个笔记本、3瓶墨水花去52元,则买1支钢笔、1个笔记本、1瓶墨水共需( )元。
A.9
B.12
C.15
D.18
【答案】D
中公教育专家认为,运用设“0”法的前提是所要求的结果是所有未知数之和,假设其中一个未知数为0时不会影响所有未知数之和的大小。
当题目要求其中一个未知数大小时,则不可通过设“0”简化计算。