河北 20172018八年级数学下册期末调研试卷 附答案新人教版

合集下载

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案

2017-2018学年下学期人教版八年级数学期末教学质量检测试卷及答案2017-2018学年八年级数学下学期期末教学质量检测试卷一、选择题(1-5每题2分,6-15每题3分,共40分)1.以下各组数能构成直角三角形的是()A。

4,5,6B。

1,1,2C。

6,8,11D。

5,12,232.下列二次根式是最简二次根式的是()A。

$\sqrt{1/2}$B。

4C。

2D。

83.下列函数中,y是x的正比例函数的是()A。

y=x/3B。

y=2x-1C。

y=2x²D。

y=-2x+14.一鞋店试销一款女鞋,销量情况如右表:这个型号 22.5 23 23.5 24 24.5数量/双 5 10 15 8 3鞋店的经理最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A。

平均数B。

众数C。

中位数D。

方差5.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。

已知AB=4,BC=5,EF=3.那么四边形EFCD的周长是()A。

14B。

12C。

16D。

106.顺次连结对角线相等的四边形各边中点所得的四边形必是()A。

菱形B。

矩形C。

正方形D。

无法确定7.下列根式中,与3是同类二次根式的是()A。

$\sqrt{46}$B。

$\sqrt{18}$C。

$\sqrt{3/2}$D。

$\sqrt{12}$8.如图,爷爷从家(点O)出发,沿着扇形AOB上OA→弧AB→BO的路径匀速散步。

设爷爷与家(点O)的距离为s,散步的时间为t,则下列图形中能大致刻画s与t之间函数关系的图象是()A。

B。

C。

D。

9.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD为多少时,∠ABD=90°()A。

13B。

63C。

12D。

6210.如果$(x-2)^2=2-x$,那么()A。

x<2B。

x≥2C。

x>2D。

x≤211.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。

20172018八年级下期末教学质量监测数学试题含答案

20172018八年级下期末教学质量监测数学试题含答案

学年末教学质量监测八年级数学试卷—20182017分钟)分,考试时间120(全卷三个大题,共23个小题,满分120分)324分,满分(本大题共8个小题,每小题只有一个正确选项,每小题一、选择题)、下列各组数中,是勾股数的为( 1 9,7,8,,D、4,5,6,C、3,4,51 A、,2,3,B、Q(升)与行驶时间40升,如果每小时耗油5升,则油箱内的余油量2、汽车开始行驶时,油箱内有油)(t小时)之间的函数关系的图象是() Q(升)升Q(升) Q(升) Q(40 4040 40O OO O ) 8 t(小时) ) 8 t(小时8 t(小时) 8 t(小时A C B D)则这组数据的众数与中位数分别是(32 ,D、16 C、16,16 A、32,32 B、32,16)4、若a<0,则下列不等式不成立的是( Baa、>a<7-a D、<a +7 B、5 a>7 a C5-A、a+575 A′C AOB绕点O顺时针旋转5、如图,在△AOB中,∠B=25°,将△,OB交于点C(A′不在OB上),得到△60°A′OB′,边A′B′与边′BA 的度数为()则∠A′COOD、105°、B、75° C 95°A、85°第5题)6、下列图形中,既是轴对称图形,又是中心对称图形的是()7、下列多项式中不能用公式分解的是(E 5122222D -4-b+25b DB、-ab--2ab C、-a、a A、++a 1 44 A 是五边形ABCDE的外角,52,∠3,∠4,∠18、如图,∠,∠2 )AED的度数是(2=且∠1=∠∠3=∠4=75°,则∠CB 3 D、100°、115°C 、、A120°B110°y 18分)个小题,每小题二、填空题(本大题共63分,满分C33;aba9、分解因式:b- =A 1BO的坐标为10、如图,在直角坐标平面内的△ABC中,点A 与,5),如果要使△ABD0(,2),点C的坐标为(5 ;全等,且点D坐标在第四象限,那么点D的坐标是ABC△,交BC于点D,、在△ABC中,∠C=90°,AC=BC,AD平分∠CAB11 ,则△EDB的周长是________;DE⊥AB于点E,且AB=10 CA D EBCF ABE)13题(第(第11题)22;,则代数式、若m+n=32m +4mn+2n -6的值为12AC交BC 于点F,∥13、如图,E为△ABC中AB边的中点,EF .若EF=3cm,则AC=,,-5) 和+ b y = ax-3的图象交于点P(-214、如图,已知函数y = 3x题14第;x则根据图象可得不等式3+b>ax-3的解集是分)(本大题共9个小题,满分70三、解答题1??0?1?12?3??8?化简:分)615、(本题3分)解下列不等式组,并把它的解集表示在数轴上。

2017-2018学年八年级数学下学期期末考试试题新人教版

2017-2018学年八年级数学下学期期末考试试题新人教版

2017-2018学年八年级数学下学期期末考试试题新人教版一、选择题(每小题3分,满分30分)1.能判定四边形是平等四边形的条件是()A. 一组对边平行,另一组对边相等B. 一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D. 一组对边平行,一组对角相等2.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m的值为()A.2B.-2C.4D.-43.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差4.在4ABC中,AB=1§ AC=20 BC边上高AD=12 则BC的长为()A.25B.7C.25 或7D.不能确定5.估算的运算结果应在()平十声A.3到4之间B.4 到5之间C.5到6之间D.6到7之间6.如图,将平行四边形ABC所叠,使顶电D恰落在AB边上的点M处,折痕为AN 那么对于结论①MM BC②MN=AM下列说法正确的是()A.①②都对B.①②对错C.①对②错D.①错②对7.如图,在口ABCM,已知AD=5cm AB=3cm AE平分/ BAD^ BC边于点E, 则EC等于()A.1cmB.2cmC.3cmD.4cmD第7题图机8理图8.如图所示,已知/ 1 = /2, AD=BD= 4 CH AR 2CE=A C那么CD的长是()A.2B.3C.1D.1.59.如果,,那么各式:①,②,③,其中正确的是()ab>Qa + b<0胡嚼良品1回A.①②③B.①③C.②③D.①②10.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是()',A. B. C. D. 1 二:< ?。

…:‘:二 < ;<:1 ]「:.第10密图或13题图二、填空题(每小题3分,共15分)11.若式子有意义,则x的取值范围是.口12.一组数据:25, 29, 20, x, 14,它的中位数是24,则这组数据的平均数为.13.如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为.14.如图,在矩形ABCW, E是AB边上的中点,将^ BCE沿CE翻折得到4 FCE连接AF,若/ EAF=75那么/ BCF的度数为.15.已知,如图,矩形ABC也AB=6 BC=8再沿EF折叠,使D点与B点重合,C点的对应点为G,将4BEF绕着点B顺时针旋转,旋转角为a (0),记旋转过程中的三角形为^ BE' F',在旋转过程中设直线E' F'与射线EF、射线EM别交于点M N,当EN=MINf,则FM的长为. 一「「三、解答题(共75分)16. (8分)计算:17.(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3 元.设小明快递物品x 千克.(1)当时,请分别直接写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)在(1)的条件下,小明选择哪家快递公司更省钱?18.(9分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%勺学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:3W -0*为K 6 孟* :M(1)初三年级共有学生人.(2)在表格中的空格处填上相应的数字.(3)表格中所提供的学生学习时间的中位数是,众数是.19.(9分)如图,在菱形ABCM, AB=2, / DAB=60点E是ADi的中点,点M是AB边上一动点(不与点A重合),延长M,射线C叶点N,连接MD AN.(1)求证:四边形AMDfNb平行四边形;(2)填空:①当AM的值为时,四边形AMD娼矩形;②当AM的值为时,四边形AMD媚菱形.20.(10分)如图所示,△ AC丽△ECDB是等腰直角三角形,/ ACBhECD=90 D为AB边上一点.(1)求证:△ AC自A BCD(2)若AD=5 BD=12 求DE的长.21.(10分)如图,在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△ DAB&直线AD折叠,点B恰好落在x轴正半轴上的点C处.'=—/+8(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.(10分)已知:如图,平面直角坐标系中,A(0,4) , B(0,2),点C是x轴上一点,点D为OC勺中点.(1)求证:BD/1 AC(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)若点C在x轴正半轴上,且OJAC于点E,当四边形ABD叨平行四边形时,求直线AC的解析式.23.(11分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB, AC与坐标轴围成矩形OBAC当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.1(1)在点P(1,2) , Q(2,-2) , N(,-1),中是“垂点”的点为;2(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件16的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG勺对角线的交点,当正2017-2018学年度下学期八年级期末学业水平测试数学试卷参考答案1、D 2 B 3D 4C 5C 6A 7B 8A 9C 10A11、x>5 12 、22.4 13 、5m 14 、30=-+4 =8.⑵1 %27a -a2 32 分J 3a -a J 3a + a J 3a4 分寸3a乙=16x+3解得:x>4;令丫甲=丫乙,那15x+7=16x+3,y 一—一♦g 3W解得:x=4; .................... 6分令丫甲>丫乙,即15x+7>16x+3解得:x<4,即1<x<4 ................... 7分15三、16、(1) 5+- 3+2」17、(1) y 甲=22+15(x-1)=15x+7(2) x>1时,令y甲<y乙,即15x+7<16x+3 方形DEFG勺边上存在“垂点”时,GE的最值为.综上可知:当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4 时,选甲快递公司省钱. ..................... 8分18、(1) 1440 ................... 1 分(2)72 、108 ................... 5 分(3)2.25、3.5 ................... 9 分19、(1)证明明:•••四边形ABC虚菱形,.二DN// AM「. / NDa / MAE, / DNE= / AME又•••点E是AD中点,DE= AE「.△ND 国A MAE「.NA MA • ................................................................................•・四边形AMD隈平行四边形 ............................................ 5分⑵①1 ..................... 7分②2 ..................... 9分20、(1) AACfS^A BCD(SA0 ......................... 5 分(2)13 ................... 10 分21、(1) ..•直线y=-x+8与x轴,y轴分别交于点A,点B, | • .A (6, 0) , B (0, 8),在RUOAEfr, /AOB=90 , OA=6 OB=8..AB==10 「:::•••△DAB&直线AD折叠后的对应三角形为^ DACAC=AB=10 ....................... 3 分OC=OA+AC=OA+AB=16•・•点C在x轴的正半轴上,(2)设点D的坐标为D (0, v) (y<0),由题意可知CD=BDCD2=BD2在Rtz\OCDK 由勾月定理得162+y2=(8-y) 2,解得y=T2.•・•点D的坐标为D (0, - 12),可设直线CD的解析式为y=kx - 12 (k#0)••点C (16, 0)在直线y=kx—12 上,「.16k— 12=0解得k=, -1• ........................................................................................・・直线CD的解析式为y=x- 12. ....................................... 10分总22、(1) 「A (0, 4) , B (0, 2),・•.OA=4 OB=2点B为线段OA的中点,又点D为OC勺中点,即BD为△AOC勺中位线,・ ............................ •.BD//AC; 3分(2)如图1,作BF,AC于点F,取AB的中点G,则G (0, 3),.「BD//AC, BD 与AC 的距离等于1, BF=1,・・在Rtz\ABF中,/ AFB=90 , AB=2 点G为AB的中点,FG=BG=AB=1,「.△BFG^等边三角形,/ ABF=60 .「. / BAC=30 ,设OC=x 贝U AC=2x根据勾股定理得: OA==x ; OA=4・二x=•・•点C在x轴的正半轴上,.・•点C 的坐标为(,0) ; .................. 7分芈(3)如图2,当四边形ABD 四平行四边形时,AB/1 DE - DELOC ;点 D 为 OC 勺中点,OE=EC「 OELAC,「. / OCA=45 ,OC=OA=4•・•点C 在x 轴的正半轴上,.••点 C 的坐标为(4, 0), 设直线AC 的解析式为y=kx+b (k#0). 将A (0, 4) , C (4, 0)代入AC 的解析式得:4k+b=0 ,b=423、(1) Q .................... 2 分⑵. ..................... 5分群+,职⑶(4),(,4)• (9)分褥+百/(4) 8. .................... 11 分解得:k 二 Tb=4・•・直线AC 的解析式为y= - x+4. 10分。

2017-2018学年人教版八年级下册期末调研考试数学试卷含答案

2017-2018学年人教版八年级下册期末调研考试数学试卷含答案

2018年春部分学校期末调研考试八年级数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确的答案的代号填在答题卷上,填在试题卷上无效. 1.下列式子属于最简二次根式的是 ( )A .2B .5.0C .8D .31 2.点P (2,-1)在一次函数1+=kx y 的图像上,则的值为 ( )A .1B .-1C .2D .33.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )A .45°B .60°C .120°D .135° 4.下列计算结果为32的是( )A .28+B .1218-C .36⨯D .224÷5.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线平分对角 6.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家。

如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min7. 为参加市中学生运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表: 则这10双运动鞋尺码的中位数和众数分别为( )A .25.5,26B .26,25.5,C .25.5,25.5D .25,268.点A (-1,y 1),B (2,y 2)均在直线b x y +-=2的图像上下列结论正确的是( )A .21y y <B .21y y >C .21y y =D .无法确定9.下图是4×4的正方形网格,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A 、B (均在格点上)的位置如图,若以A 、B 为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有( )A .6B .7C .9D .1110.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P`的坐标定义如下:当b a ≥时,P`点坐标为(a ,-b );当b a <时,P`点坐标为(b ,-a )。

2017-2018八年级新人教版数学下学期期末试卷(有完整答案)

2017-2018八年级新人教版数学下学期期末试卷(有完整答案)

2017-2018八年级新人教版数学下学期期末试卷(有完整答案)一、选择题(共10小题,每小题3分,共30分)1.二次根式在实数范围内有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a>1 D.a<12.下列各式中能与合并的二次根式是()A. B. C. D.3.一次函数y=2x-3的图像与y轴交点的坐标是()A.(-3,0) B.(0,-3) C.( ,0) D.(0,) 4.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下表:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.中位数是3 B.中位数是3.5 C.众数是8 D.众数是45.下列计算正确的是()A. B. C. D.6.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.、、 B.2、3、4 C.6、7、8 D.9、12、157.某校组织学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表:甲乙丙丁平均分 92 94 94 92方差 35 35 23 23如果从这四位同学中选出一名晋级(总体水平高且状态稳定),童威会推荐()A.甲 B.乙 C.丙 D.丁8.已知一次函数y=(m-4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.≤m<4 C.≤m≤4 D.m≤9.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1 B.C. D.10.函数y=a|x|与y=x+a的图象恰有两个公共点,则实数a的取值范围是()A.a>1 B.-1<a<1 C.a>1或a<-1 D.a≥1或a≤-1二、填空题(本题共6小题,每小题3分,共18分)11.把化为最简二次根式为__________12.把直线y=-3x+4向下平移2个单位,得到的直线解析式是__________13.一组数据:25、29、20、x、14的中位数是23,则x=__________14.若菱形的两条对角线的长分别为6、8,则菱形的高为__________15.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm.点P从A出发,以1 cm/s的速度向点D运动,点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ=CD需要__________秒16.如图,在四边形ABCD中,∠ABC=∠ADC=90°,连AC、BD,以AD、AB为邻边作□ABED,连EC.若BD=,∠ADB=45°,且以线段AC、BD、CE为边构造的三角形的面积为12,则线段AD的长度为__________三、解答题(共8个小题,共72分)17.(本题8分)计算:(1) (2)18.(本题8分)如图,正方形ABCD的边长为4,点E是BC的中点,点F在CD上,CF=1,求证:∠AEF=90°19.(本题8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:服装统一动作整齐动作准确八(1)班 80 84 87八(2)班 97 78 80八(3)班 90 78 85(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高20.(本题8分)如图,已知E、F分别是□ABCD的边BC,AD上的点,且BE=DF(1) 求证:四边形AECF是平行四边形(2) 若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长21.(本题8分)如图,直线与x轴交于点A,与y 轴交于点B,与直线y=x交于点E,点E的横坐标为3(1) 求点A的坐标(2) 在x轴上有一点P(m,0),过点P作x轴的垂线,与直线交于点C,与直线y=x 交于点D.若CD≥4,则m的取值范围为___________________22.(本题10分)某旅客携带x kg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量x kg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量x kg 的对应关系行李的重量x kg 快递费不超过1 kg 10元超过1 kg但不超过5 kg的部分 3元/kg超过5 kg但不超过15 kg的部分 5元/kg(1) 如果旅客选择托运,求可携带的免费行李的最大重量为多少kg?(2) 如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量x kg之间的函数关系式(3) 某旅客携带25kg的行李,设托运m kg行李(10≤m <24,m为正整数),剩下的行李选择快递.当m为何值时,总费用y的值最小?并求出其最小值是多少元?23.(本题10分)已知四边形ABCD是矩形(1) 如图1,E、F、G、H分别是AD、AB、BC、CD 的中点,求证:四边形EFGH是菱形(2) 若菱形EFGH的三个顶点E、F、H分别在AD、AB、CD上,连BG①如图2,若AE=2ED=4,BG=,BF-AF=,求AB的长②如图3,若AE=2ED=4,AB=8,则△GBF面积的最小值为___________24.(本题12分)在平面直角坐标系xOy中,直线y=-x+m(m>0)与x轴、y轴分别交于A、B两点,点P在直线AB上(1) 如图1,若,点P在线段AB上,∠POA=60°,求点P的坐标(2) 如图2,以OP为对角线作正方形OCPD(O、C、P、D按顺时针方向排列).当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由(3) 如图3,在(1)的条件下,Q为y轴上一动点,连AQ,以AQ为边作正方形AQEF(A、Q、E、F按顺时针方向排列),连接OE、AE,则OE+AE的最小值为___________参考答案1-5:ABBAC6-10:DCBDC11、2 12、y=-3x+213、2314、15、6或716、817、(1)2 (2)14-418、延长FE交AB的延长线于H,可证△AHE≌△AEF,可得∠AEF=90°19、(1)89八(1)(2)各班得分:八(1):84.7八(2):82.8八(3)83.9所以,八(1)班得分最高20、21、(1)A(12,0)(2)m≥6或m≤0设C为(m,-m+4),则D(m,m),CD=|-m+4-m|≥4,解得:m≥6或m≤022、当BF最小时,S最大;当AF最大时,BF最小;当EF最大时,AF最大因为EF=EH所以,当DH最大时,EH最大,所以,EH=2 ,AF=2所以,BF=8-2△GBF面积的最小值为8-2。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析

2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析

3 2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析一、选择题(本大题共 16 小题,共 42.0 分)1.下列根式中是最简二次根式的是( )A. √ 2B. √3C. √9D. √122. 三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85, 其中能够构成直角三角形的有( )A. 1 个B. 2 个C. 3 个D. 4 个3.下列哪个点在一次函数1 y =2x +1的图象上( )A. (2,1)B. (2,0)C. (-2,1)D. (-2,0)4.一次函数 y =5x +3 的图象经过的象限是( ) A. 一、二、三 B. 二、三、四C. 一、二、四D. 一、三、四√3 5.下列计算正确的是( )A. √5-√3=√2B. 3√5×2 √3=6√15 C. (2√2)2=16D . 3=16.不能判定一个四边形是平行四边形的条件是( ) A. 两组对边分别平行 B. 一组对边平行另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7. 已知 A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A ,B 两个样本的下列统计量对应相同的是( ) A. 平均数B. 方差C. 中位数D. 众数8. 若√x − 2y + 9与|x -y -3|互为相反数,则 x +y 的值为( ) A. 3B. 9C. 12D. 279.矩形具有而菱形不具有的性质是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线平分一组对角10.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h (厘米)与燃烧时间 t (时)的函数关系的图象是()A. B.C. D.11.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点E 是BC 的中点.若OE=3cm,则AB 的长为()A. 3cmB. 6cmC. 9cmD. 12cm12.直角三角形斜边上的高与中线分别为5cm 和6cm,则它的面积为()cm2.A. 30B. 60C. 45D. 1513.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是()A. B.C. D.D. 9°14.已知:如图,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB =2,AD =4,则图中阴影部分的面积为( )A. 8B. 6C. 4D. 315.如图,矩形 ABCD 中,DE ⊥AC 于 E ,且∠ADE :∠EDC =3:2, 则∠BDE 的度数为( ) A. 36°B. 18°C. 27°16.如图中的图象(折线 ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)和行驶时间 t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车共行驶了 120 千米; ②汽车在行驶途中停留了 0.5 小时;80③汽车在整个行驶过程中的平均速度为 3 千米/时; ④汽车自出发后 3 小时至 4.5 小时之间行驶的速度在逐渐减少. 其中正确的说法共有()√x+1 A. 1个 B. 2 个 C. 3 个 D. 4 个二、填空题(本大题共 4 小题,共12.0 分)17.函数y=1 中自变量x 的取值范围是.18.如图,矩形ABCD 的对角线AC=8cm,∠AOD=120°,则AB 的长为cm.19.已知点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,则a 与b 的大小关系是.20.已知:如图,正方形ABC D中,对角线AC 和BD相交于点O.E、F 分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF 的长为cm.3x 2−y2三、计算题(本大题共 2 小题,共 22.0 分)21.计算(1)√27-√12+√45;(2)√27×√1 -(√5+√3)(√5-√3).22. 已知 x =√3+1,y =√3-1,求x 2 −2xy +y 2的值.四、解答题(本大题共 4 小题,共 44.0 分)23.如图,四边形 ABC D 是菱形,对角线 AC =8cm ,BD =6cm , DH ⊥AB 于 H ,求:DH 的长.24.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数于点(2,a),求(1)a 的值;(2)k,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.1y=2x的图象相交25.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10 次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B 两仓库.已知甲库有粮食100 吨,乙库有粮食80 吨,而A 库的容量为70 吨,B 库的容量为110 吨.从甲、乙两库到A、B 两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送 1 千米所需人民币)(1)若甲库运往 A 库粮食x 吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?答案和解析1.【答案】B【解析】解:A、= ,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2 ,故此选项错误;故选:B.直接利用最简二次根式的定义分析得出答案.此题主要考查了最简二次根式,正确把握定义是解题关键.2.【答案】C【解析】解:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、132+842=6973≠852,∴不能构成直角三角形,故本小题错误.故选:C.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】D【解析】解:A、把(2,1)代入得,×2+1=2≠1,故本题选项错误;B、把(2,0)代入得,×2+1=2≠0,故本选项错误;C、把(-2,1)代入得,×(-2)+1=0≠1,故本选项错误;D、把(-2,0)代入得,×(-2)+1=0,故本选项正确.故选:D.将四个点分别代入函数的解析式进行验证即可.此题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此一次函数的解析式.比较简单.4.【答案】A【解析】解:∵一次函数y=5x+3 中,k=5>0,b=3>0,∴该直线从左往右上升,与y 轴交于正半轴,∴图象经过的象限是:一、二、三.故选:A.直接利用一次函数y=5x+3 的性质得出其经过的象限.此题主要考查了一次函数的性质,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0 时,直线与y 轴交于正半轴;当b<0 时,直线与y 轴交于负半轴.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3 ×=6,所以此选项正确;C、(2)2=4×2=8 ,所以此选项错误;D、= = ,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】B【解析】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A 不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故 B 符合题意;C、一组对边平行且相等,可判定该四边形是平行四边形,故 C 不符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D 不符合题意故选:B.根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.【答案】B【解析】解:设样本 A 中的数据为x i,则样本 B 中的数据为y i=x i+2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.根据样本A,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论.此题主要考查统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8.【答案】D【解析】解:∵与|x-y-3|互为相反数,∴+|x-y-3|=0,∴,②-①得,y=12,把y=12 代入②得,x-12-3=0,解得x=15,∴x+y=12+15=27.故选:D.根据互为相反数的和等于0 列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y 的值,然后代入进行计算即可得解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0 时,必须满足其中的每一项都等于0.9.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.10.【答案】D【解析】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t,是一次函数图象,即t 越大,h 越小,符合此条件的只有D.故选:D.随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.【答案】B【解析】解:∵四边形ABCD 是平行四边形,∴OA=OC;又∵点 E 是BC 的中点,∴BE=CE,∴AB=2OE=2×3=6 (cm)故选:B.因为四边形ABCD 是平行四边形,所以OA=OC;又因为点E 是BC 的中点,所以OE 是△ABC 的中位线,由OE=3cm,即可求得AB=6cm.此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.12.【答案】A【解析】解:解:∵直角三角形的斜边上的中线为6cm,∴斜边为2×6=12 (cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×12×5=30 (cm2),故选:A.据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.13.【答案】C【解析】解:分四种情况:①当a>0,b>0 时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a>0,b<0 时,y=ax+b 的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C 选项符合;③当a<0,b>0 时,y=ax+b 的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C 选项符合;④当a<0,b<0 时,y=ax+b 的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:C.根据a、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.一次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数y=kx+b 的图象经过第一、二、四象限;④当k<0,b<0 时,函数y=kx+b 的图象经过第二、三、四象限.14.【答案】C【解析】解:连接AC,BD,FH,EG,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴AH= AD,BF= BC,∵四边形ABCD 是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB 是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD 是矩形,∴AC=BD,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴HG∥AC,HG= AC,EF∥AC,EF= AC,EH= BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH 是平行四边形,∴平行四边形EFGH 是菱形,∴FH⊥EG,∴阴影部分EFGH 的面积是×HF×EG= ×2×4=4 ,故选:C.连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH 是菱形,根据菱形的面积等于×GH×HF ,代入求出即可.本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.15.【答案】B【解析】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选:B.本题首先根据∠ADE:∠EDC=3:2 可推出∠ADE 以及∠EDC 的度数,然后求出△ODC 各角的度数便可求出∠BDE.本题考查的是三角形内角和定理以及矩形的性质,难度一般.16.【答案】A【解析】解:由图象可知,汽车走到距离出发点120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,①错;从 1.5 时开始到 2 时结束,时间在增多,而路程没有变化,说明此时在停留,停留了2-1.5=0.5 小时,②对;汽车用4.5 小时走了240 千米,平均速度为:240÷4.5=千米/时,③错.汽车自出发后3 小时至4.5 小时,图象是直线形式,说明是在匀速前进,④错.故选:A.根据图象上的特殊点的实际意义即可作出判断.本题考查由图象理解对应函数关系及其实际意义,注意总路程应包括往返路程,平均速度=总路程÷总时间.17.【答案】x>-1【解析】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.根据被开方数大于等于0,分母不等于0 列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.【答案】4【解析】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD 是矩形,∴AC=BD,AO=OC= cm,BO=OD,∴AO=BO=4cm,∴△ABO 是等边三角形,∴AB=AO=4cm,故答案为:4根据矩形的性质求出AO=BO=4cm,求出△AOB 是等边三角形,即可求出AB.本题考查了矩形的性质和等边三角形的性质和判定,能根据矩形的性质求出AO=BO 是解此题的关键.19.【答案】a>b【解析】解:∵点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为:a>b.分别把点A(-1,a),B(2,b)代入函数y=-3x+4,求出a、b 的值,并比较出其大小即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】5【解析】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==5cm.故答案为5.3 连接 EF ,根据条件可以证明△OED ≌△OFC ,则 OE=OF ,CF=DE=3Ccm ,则AE=DF=4,根据勾股定理得到 EF==5cm .根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键. 21.【答案】解:(1)√27-√12+√45=3√3 − 2√3 + 3√5=√3 + 3√5;(2)√27×√1-(√5+√3)(√5-√3)=√9 − (5 − 3)=3-2=1.【解析】(1) 根据二次根式的加减法可以解答本题;(2) 根据二次根式的乘法、平方差公式可以解答本题.= 22. = 本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 【答案】解:原式 (x−y )2 (x +y )(x−y )当 x =√3+1,y =√3-1 时, 原式=√3+1−√3+1=2 √3.x−y=x +y ,√3+1+√3−1 2√3 3【解析】先将分子、分母因式分解,再约分即可化简原式,继而将x 、y 的值代入计算可得.2 22 本题主要考查二次根式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算.23. 【答案】解:∵四边形 ABCD 是菱形,AC =8cm ,BD =6cm ,∴AC ⊥BD ,OA =1AC =4cm,OB =1BD =3cm ,∴Rt △AOB 中,AB =√AO 2 + BO 2 =√32 + 42=5, ∵DH ⊥AB ,∵菱形 ABCD 的面积 1•BD =AB •DH ,S =2AC∴1×6×8=5 DH ,5 2 ∴DH =24. 【解析】先根据菱形对角线互相垂直平分得:OA= AC=4cm ,OB= BD=3cm ,根据勾股定理求得AB=5cm ,由菱形面积公式的两种求法列式可以求得高 DH 的长.本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相 垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.24. 【答案】解:(1)由题知,把(2,a )代入 y =1 x , 解得 a =1;(2) 由题意知,把点(-1,-5)及点(2,a )代入一次函数解析式得:-k +b =-5,2k +b =a , 又由(1)知a =1,解方程组得:k =2,b =-3;(3) 由(2)知一次函数解析式为:y =2x -3,30)直线y=2x-3 与x轴交点坐标为(,233.∴所求三角形面积1=2×1×2=4【解析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a 的值.(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b 的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x 轴的交点即可.本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.25.【答案】8;7.5【解析】解:(1)甲的平均数=故答案为:8;7.5;(2);…==8,乙的中位数是7.5;,= ,∵,∴乙运动员的射击成绩更稳定.(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳70 − x ≥ 0 定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定.26.【答案】解:(1)依题意有:若甲库运往 A 库粮食 x 吨,则甲库运到 B 库(100-x ) 吨,乙库运往 A 库(70-x )吨,乙库运到 B 库(10+x )吨.x ≥ 0则{100 − x ≥ 0,解得:0≤x ≤70. 10 + x ≥y =12×20 x +10×25 (100-x )+12×15 (70-x )+8×20×[110 -(100-x )]=-30x +39200其中 0≤x ≤70(2)上述一次函数中 k =-30<0∴y 随 x 的增大而减小∴当 x =70 吨时,总运费最省最省的总运费为:-30×70+39200=37100 (元)答:从甲库运往 A 库 70 吨粮食,往 B 库运送 30 吨粮食,从乙库运往 A 库 0 吨粮食,从乙库运往 B 库 80 吨粮食时,总运费最省为 37100 元.【解析】弄清调动方向,再依据路程和运费列出 y (元)与 x (吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.。

河北省保定市2017-2018学年八年级数学下学期期末调研试题新人教版

河北省保定市2017-2018学年八年级数学下学期期末调研试题新人教版

河北省保定市2017-2018学年八年级数学下学期期末调研试题注意:本试卷共8页,三道大题,26个小题。

总分120分。

时间120分钟。

题号 一 二 21 22 23 24 25 26 总分 得分一、 选择题(本大题有16个小题,共42分。

1~10小题,各3分;11~16小题,各2分。

在每题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)1.函数y =x -1中,自变量x 的取值范围是( ) A .x >1 B .x <1 C .x ≥1 D .x ≤1 2. 下列根式中,不是最简二次根式的是( ) A.10 B.8 C. 6 D. 2 3.下列各组数中,能构成直角三角形的是( )A .1,1, 2B .4,5,6C .5,12,23D . 6,8,11 4.下列各式,计算结果正确的是( )A. 2×5=10 B .3+4=7 C. 35-5=3 D.18÷2=3 5.下列式子中,表示y 是x 的正比例函数的是( )A .5+=x yB .x y 3=C .23x y = D .x y 32= 6.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( ) A .30° B .45° C .60° D .75° 7. 直线y=x+1与y=–2x –4交点在( ) A .第一象限B .第二象限C .第三象限D .第四象限8. 已知一次函数y =(2m -1)x +1的图象上两点A(x 1,y 1)、B(x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是( )A .m <12B .m >12 C .m <2 D .m >-2得分 评卷人题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案9.一次函数b ax y +=与)0(≠=ab abx y ,在同一平面直角坐标系中的图象是( )10.矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为( ) A .20 B. 56 C. 192 D. 以上答案都不对 11.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形 12.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面。

2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)

2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)

2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。

2017-2018人教版初二下册数学期末检测试卷附答案解析[最新]

2017-2018人教版初二下册数学期末检测试卷附答案解析[最新]

人教版初二(下册)数学期末检测试卷
一、选择题:每小题3分,共30分.
1.化简:得()
A.2 B.﹣2 C.±2 D.4
2.八(1)班和八(2)班学生的平均身高分别是 1.63m和1.64m,则下列判断正确的是()
A.八(1)班学生身高数据的中位数是 1.63 m
B.八(1)班学生身高前10名数据可能比八(2)班的都大
C.八(1)班学生身高数据的方差比八(2)班的小
D.八(2)班学生身高数据的众数是 1.64 m
3.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.2
4.下列化简结果正确的是()
A. += B.a=﹣ C.()3=9 D.2+=7
5.下列条件中,不能判定一个四边形是平行四边形的是()
A.两组对边分别平行
B.一组对边平行且相等
C.一组对边相等且一组对角相等
D.两组对角分别相等
6.下列方程中有实数根的是()
A.x2+4=0 B.|x|+1=0 C.=D.x2﹣x﹣=0
7.下列条件中,不能判定一个平行四边形是正方形的是()
A.对角线相等且互相垂直
B.一组邻边相等且有一个角是直角
C.对角线相等且一组邻边相等
D.对角线互相平分且有一个角是直角
8.如图,在△ABC中,∠ACB=90°,CD为高,AC=4,则下列计算结果错误的是()。

河北省八年级数学下学期期末试题(扫描版)新人教版

河北省八年级数学下学期期末试题(扫描版)新人教版

河北省秦皇岛市青龙满族自治县2017-2018学年八年级数学下学期期末试题2017---2018学年度第二学期期末学业水平检测八年级数学答案一、选择题答案(每小题各2分,共32分)1---5 D B D A B 6---10 C D A C D 11---16 C D B A C A二、填空题(本大题共8个小题,每题2分,共16分)17.10元,x 张、y 元 18.-1 19.x ≠2 20.y=-2x+1 21.Q=-5t+40 22.600 23.1 24.1n 414-⎪⎭⎫ ⎝⎛⨯三、解答题(本大题共6个小题;共52分.解答应写出演算步骤、证明过程或文字说明)25.(6分)小亮和爸爸、妈妈到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园景区的平面地图,如图所示:可是她忘记了在图中标出原点和x轴、y 轴.只知道游乐园D 的坐标为(2,﹣2)。

问题:(1)根据题中已知,在图中建立平面直角坐标系 1分(2)写出其他各景点的坐标A(0,4) B(-3,2) C(-2,-1)E(3,3)F(0,0) 每个1分26.(8分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有 50 名学生;(2)在图(1)中,将表示“步行”的部分补充完整;(3)扇形图中表示骑车部分所占扇形的圆心角是 108 °(4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少.∵800×20%=160 ∴该年级步行上学的学生人数约是160人每问2分共8分27. (9分)已知:一次函数y=(2a+4)x+(3-b),根据给定条件,确定a 、b 的值(1)y 随x 的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y 轴的交点在x 轴上方。

河北省保定市2017-2018学年八年级数学下学期期末调研试题(扫描版) 新人教版

河北省保定市2017-2018学年八年级数学下学期期末调研试题(扫描版) 新人教版

河北省保定市2017-2018学年八年级数学下学期期末调研试题八年级数学参考答案及评分标准一、 选择题二、填空题(每小题3分,共12分)17. -2 18.34y x =- 19. 20︒ 20.三、解答题21.(每小题5分,共10分)解:(1)原式=28=-……..2分410=+ ……..4分20= ………………….5分(2)把1x =,代入222x x +-则原式21)1)2=+- ………..1分3122=-+-…………………3分0=………………………………………5分22.解:(1)设一次函数解析式为y =kx +b , ………………………….1分把A (6,﹣3)与B (﹣2,5)代入得:, …………………………………2分解得:, ……………………………………………………………..4分则一次函数解析式为y =﹣x +3; ………………………………………………..5分(2)函数y =﹣x +3图象与坐标轴的交点坐标分别为(0,3)和(3,0) …………7分所以图象与坐标轴围成的三角形的面积是 ………………8分(3)当x =2时,y =﹣2+3=1,所以点(2,2)在直线AB 的上方. ……………….10分23.解:(1证明)∵正方形ABCD , ∴AO =BO ,∠AOF =∠BOE =90° ….1分∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ……………………..2分在△AFO 和△BEO 中∴△AFO ≌△BEO(ASA)…………………………….4分∴AF=BE ………………………………………………………………………….5分(2)过点E 作EN ⊥BC ,垂足为N.∵正方形ABCD 的边长为2,∴AC ==4,CO =2,….6分且∠ECN =450∵E 是OC 的中点,∴OE =EC =1 …………7分由EN ⊥BC ,∠ECN =450,得∠CEN =450∴EN =CN , ……………………………….8分设EN =CN =x ,∵+=∴+=1 …………………9分 ∴212x = 因为x >0,x即:点E 到BC 边的距离是………………..10分24:(1)证明:因为ABCD 为平行四边形,所以AD BC ∥,即AE FC ∥又因为AF CE ∥(已知),所以AECF 为平行四边形。

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年人教版初二数学第二学期期末测试卷及答案

2017-2018学年度八年级数学第二学期期末测试卷考 生 须 知1. 本试卷共6页,共三道大题,26道小题。

满分100分。

考试时间90分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在平面直角坐标系xOy 中,点P (2,-3)关于原点O 对称的点的坐标是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 2.如果一个多边形的每个内角都是120°,那么这个多边形是A .五边形B .六边形C .七边形D .八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是① ② ③ ④A .①②B .②③C .②④D .②③④ 4.方程()x x x =-1的解是A .x = 0B .x = 2C .x 1 = 0,x 2 = 1D .x 1 = 0,x 2 = 25.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x 与方差2S :甲 乙 丙 丁 x (秒)30 30 28 28 2S1.211.051.211.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择A .甲B .乙C .丙D .丁 6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB 的度数是 A .40°B .55°C .60°D .70°7.用配方法解方程2210x x --=,原方程应变形为A .2(1)2x -=B .2(1)2x += C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2 A .A →B →C →A B .A →B →C →D C .A →D →O →AD .A →O →B →C二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1)错误!未找到引用源。

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

新人教版2017-2018学年八年级下册期末综合检测数学试卷(解析版)

期末综合检测一、选择题(每小题3分,共30分)1. 下列各式成立的是( )A. =2B. =-5C. =xD. =±6【答案】A【解析】分析:根据算术平方根的定义判断即可.详解:A.,正确;B.,错误;C.,错误;D.,错误.故选A.点睛:本题考查了算术平方根问题,关键是根据算术平方根的定义解答.2. 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是( )A. y=x+5B. y=x+10C. y=-x+5D. y=-x+10【答案】C........... .............解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.3. 如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为( )A. A+B=C+DB. A+C=B+DC. A+D=B+CD. 以上都不对【答案】A【解析】分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.故选A.点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4. 某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A. 这10名同学体育成绩的中位数为38分B. 这10名同学体育成绩的平均数为38分C. 这10名同学体育成绩的众数为39分D. 这10名同学体育成绩的方差为2【答案】C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.5. 如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )A. B. 2 C. 2 D. 4【答案】C【解析】因为平四边形ABCD,所以AD∥BC,所以∠ACB=∠CAD=45°,又因为∠ABC=∠CAD=45°,所以∠ACB=∠ABC=45°,所以△ABC是等腰直角三角形,AB=AC=2,根据勾股定理的BC=2,故选C.6. 如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.视频7. 如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF= ( )A. 3B. 4C. 5D. 6【答案】A【解析】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴.∵点E、F分别为AC、AB的中点,∴EF是△ABC的中位线,∴.故选A .8. 如图,在矩形ABCD 中,AB=1,BC=2,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是 ( )A. (A )B. (B )C. (C )D. (D ) 【答案】C【解析】试题解析:由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则 当0<x≤2,s=x ,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选C .考点:动点问题的函数图象.9. 如图,正方形OABC 中,点B(4,4),点E ,F 分别在边BC ,BA 上,OE=,若∠EOF=45°,则OF的解析式为 ( )A. y=xB. y=xC. y=xD. y=x【答案】B【解析】分析:作辅助线,构建全等三角形,证明△OCE ≌△OAD 和△EOF ≌△DOF ,得EF =FD ,设AF =x ,在直角△EFB中利用勾股定理列方程求出x=,根据正方形的边长写出点F的坐标,并求直线OF的解析式.详解:延长BF至D,使AD=CE,连接OD.∵四边形OABC是正方形,∴OC=OA,∠OCB=∠OAD,∴△OCE≌△OAD,∴OE=OD,∠COE=∠AOD.∵∠EOF=45°,∴∠COE+∠FOA=90°﹣45°=45°,∴∠AOD+∠FOA=45°,∴∠EOF=∠FOD.故选B.点睛:本题是利用待定系数法求一次函数的解析式,考查了正方形的性质及全等三角形的性质与判定,作辅助线构建全等三角形是本题的关键,利用全等三角形的对应边相等设一未知数,找等量关系列方程,求出点F的坐标,才能运用待定系数法求直线OF的解析式.10. 如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )A. 55°B. 65°C. 75°D. 85°【答案】C【解析】分析:本题考查的是菱形的性质,线段的垂直平分线的性质.解析:在菱形ABCD中,∠BAD=70°,∴∠B=110°,∠CAB=35°,∵AB的垂直平分线交对角线AC,∴AF=BF,DF=BF,∴∠FBA=∠CAB=35°,∴∠FBC=∠CDF=75°.故选C点睛:本题的关键是运用菱形的对角线的性质得出角相等,利用菱形的性质得出三角形全等,利用垂直平分线的性质,得出线段相等.二、填空题(每小题3分,共24分)11. 计算:( -3)÷=______________.【答案】-5【解析】分析:先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.详解:原式=(4﹣9)÷=÷=-5.故答案为:-5.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为________cm.【答案】168【解析】试题分析:设男生的平均身高为x,根据题意有:(20×163+30x)÷50 =166,解可得x=168(cm).故答案为:168.考点:加权平均数.13. 已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】试题分析:把点(3,5)代入直线y=ax+b可得3a+b=5,即b-5=-3a,再代入即可求值.考点:一次函数图象上点的坐标的特征.14. 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为__________.【答案】+1【解析】分析:根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,求出BC的长,即可求出△ABC的面积.详解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=.在Rt△ADC中,DC===1,∴BC=+1,∴△ABC的面积=AC•BC=+1.故答案为:+1.点睛:本题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时涉及三角形外角的性质,二者结合,是一道好题.15. 为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):-6,-3,x,2,-1,3,若这组数据的中位数是-1,给出下列结论:①方差是8;②众数是-1;③平均数是-1.其中正确的序号是__________.【答案】②③【解析】分析:分别计算该组数据的平均数,众数,方差后找到正确的答案即可.详解:∵﹣6,﹣3,x,2,﹣1,3的中位数是-1,∴分三种情况讨论:①若x≤-3,则中位数是(-1-3)÷2=-2,矛盾;②若x≥2,则中位数是(-1+2)÷2=0.5,矛盾;③若-3<x≤-1或-1≤x<2,则中位数是(-1+x)÷2=-1,解得:x=﹣1;平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1.∵数据﹣1出现两次,出现的次数最多,∴众数为﹣1;方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9,∴正确的序号是②③;故答案为:②③.点睛:本题考查了方差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题的关键.16. 如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'C,则线段A'C长度的最小值是__________.【答案】2-2【解析】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.视频17. 如图,Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过区域面积为__________.【答案】16【解析】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4,∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5,∴CC′=5﹣1=4,∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为:16.18. 如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t=________秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【答案】2或【解析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.解:∵E是BC的中点,∴BE=CE=BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t﹣8=6﹣t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8﹣3t=6﹣t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题(共66分)19. (1)计算:÷+×-.(2)已知x=2-,求代数式(7+4)x2+(2+)x+的值.【答案】(1)4-;(2)2+【解析】分析:(1)根据二次根式的混合运算法则计算,然后化简即可;(2)直接代入,按照运算顺序,利用完全平方公式和平方差公式计算,进一步合并得出答案即可.详解:(1)原式==;(2)当x=2﹣时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+.点睛:本题考查了二次根式的混合运算,注意利用计算公式计算,先化简,再进一步合并即可.20. 已知直线l1:y=-x+3和直线l2:y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标.(2)经过点A且平行于l2的直线的解析式.【答案】(1)l1与l2的交点为(1,2);(2)所求直线的解析式为y=2x-6.【解析】分析:(1)根据两直线相交时,自变量和函数值均相等列出方程求得x和y的值即可求得交点坐标;(2)首先根据平行确定k的值,然后代入点A求得b值.详解:(1)由题意得:﹣x+3=2x,∴x=1,当x=1时,y=2,∴l1与l2的交点坐标为(1,2);(2)y=﹣x+3与x轴交点A的坐标为(3,0),设所求的直线的解析式为y=2x+b,当x=3时,y=0,∴6+b=0,∴b=﹣6,所求直线的解析式为y=2x﹣6.点睛:本题考查了两条直线平行或相交的问题,解题的关键是了解两直线平行比例系数相等.21. 某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是____________元,众数是____________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)中位数是3400,众数是3000;(2)用中位数或众数来描述更为恰当.理由见解析.【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数22. 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【答案】△ABD为直角三角形.理由见解析.【解析】分析:先在△ABC中,根据勾股定理求出的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.本题解析:△ABD为直角三角形理由如下:∵∠C=90°,AC=3,BC=4,. ∴∵52+122=132,23. 如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.【答案】(1)AC=4;(2)∠AOB=60°;(3)菱形OBEC的面积是2.【解析】解(1)在矩形ABCD中,∠ABC=90°,∴Rt△ABC中, ∠ACB=30°,∴AC=2AB=4.(2)在矩形ABCD中,∴AO=OA=2,又∵AB=2,∴△AOB是等边三角形,∴∠AOB=60°.(3)由勾股定理,得BC=,.,所以菱形OBEC的面积是2.24. 某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.【答案】(1)客车总数为6;(2)租4辆甲种客车,2辆乙种客车费用少.【解析】分析:(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y 元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2.∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400.∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(2)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.25. 某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x间的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想让8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低多少元?【答案】(1)制版费1千元,y甲=x+1,证书单价0.5元;(2)当印制8千个证书时,选择乙厂,节省费用500元;(3)甲厂每个证书印刷费用最少降低0.0625元.【解析】(1)由图得制版费是1000元,通过坐标(0,1)(2,2)求出函数解析式,印刷单价=(印刷费用-制版费)2000;(2)求出y乙第二段的解析式,把x=8分别代入两解析式求值即可(3)由(2)得,8000500即为每个证书最少降低多少元26. 如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E 是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP.(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1)证明见解析;(2)存在点M的坐标为(0,2).【解析】分析:(1)在OC上截取OK=OE.连接EK,求出∠KCE=∠CEA,根据ASA推出△CKE≌△EAP,根据全等三角形的性质得出即可;(2)过点B作BM∥PE交y轴于点M,根据ASA推出△BCM≌△COE,根据全等三角形的性质得出BM=CE,求出BM=EP.根据平行四边形的判定得出四边形BMEP是平行四边形,即可求出答案.详解:(1)在OC上截取OK=OE.连接EK,如图1.∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠P AE=135°,∴CK=EA.∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.在△CKE和△EAP中,∵,∴△CKE≌△EAP,∴EC=EP;(2)y轴上存在点M,使得四边形BMEP是平行四边形.如图,过点B作BM∥PE交y轴于点M,连接BP,EM,如图2,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.在△BCM和△COE中,∵,∴△BCM≌△COE,∴BM=CE.∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形.∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).点睛:本题考查了正方形的性质,全等三角形的性质和判定,平行四边形的性质和判定的应用,能灵活运用知识点进行推理是解答此题的关键,综合性比较强,难度偏大.。

2017-2018学年八年级数学下学期期末试卷(新人教版)word版含解析

2017-2018学年八年级数学下学期期末试卷(新人教版)word版含解析

2017-2018学年八年级数学下学期期末试卷一、选择题(共6小题,每小题3分,满分18分)1.下列计算正确的是()A.3﹣=3 B. +=C.×=D. =﹣152.直角三角形的一条直角边长为cm,斜边长为cm,则此三角形的面积为()A.2 B.2 C.2 D.4p的值为())C.2200元、2200元D.2200元、2300元5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.26.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3二、填空题(共8小题,每小题3分,满分24分)7.函数y=的自变量x的取值范围是.8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为.9.一个直角三角形的两边长分别为3cm和5cm,则此三角形的第三边长为cm2.10.一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,那么m的取值范围是.11.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了米.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为.13.点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的大小关系是.14.直线y=﹣0.75x+3分别与x轴、y轴交于点A、B,点P是x轴上一点且在点A的左侧,若△PAB是等腰三角形,则点P的坐标为.三、(共4小题,满分24分)15.化简:﹣a2+3a﹣.16.一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),求此函数的解析式.17.直线y=x+5和直线y=2x+7﹣k的交点在第二象限,求k的取值范围.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处,求重叠部分△AFC的面积.四、(共4小题,共32分)19.如图,直线l1与l2相交于点P,l1的解析式为y=2x+3,点P的横坐标为﹣1,且l2交y轴于点A(0,﹣1).(1)求直线l2的函数解析式;(2)求这两条直线与y轴围成的图形的面积.20.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.21.在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,(1)求EF的长;(2)四边形OEBF的面积.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD 上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.五、23.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?六、(共12分)24.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?2017-2018学年八年级数学下学期期末试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.下列计算正确的是()A.3﹣=3 B. +=C.×=D. =﹣15【考点】二次根式的混合运算.【分析】根据二次根式的化简求值,合并同类二次根式以及二次根式的乘法进行计算即可.【解答】解:A、3﹣=2,故错误;B、+不能合并,故错误;C、×=,故正确;D、=﹣15,故错误;故选C.2.直角三角形的一条直角边长为cm,斜边长为cm,则此三角形的面积为()A.2 B.2 C.2 D.4【考点】勾股定理.【分析】先根据一个直角三角形的一条直角边长和斜边长,利用勾股定理计算出另一直角边长,根据三角形面积公式即可求出此三角形面积.【解答】解:∵直角三角形的一条直角边长为cm,斜边长为cm,∴由勾股定理得另一直角边长为=2,则S△=××2=2.故此三角形的面积为2.故选A.p的值为()【考点】一次函数图象上点的坐标特征.【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣2,y=3;x=1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故选A.)C.2200元、2200元D.2200元、2300元【考点】众数;中位数.【分析】根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是÷2=2400;故选A.5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【考点】菱形的性质;勾股定理.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.二、填空题(共8小题,每小题3分,满分24分)7.函数y=的自变量x的取值范围是x≤3且x≠﹣2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2.故答案为:x≤3且x≠﹣2.8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为73.【考点】算术平均数.【分析】根据平均数的性质,可将8个数相加进而表示出平均数,即可求出x的值.【解答】解:依题意得:(80+82+79+69+74+78+x+81)÷8=77,解得:x=73.故答案为:73.9.一个直角三角形的两边长分别为3cm和5cm,则此三角形的第三边长为4或cm2.【考点】勾股定理.【分析】分5cm是直角边和斜边两种情况讨论求解.【解答】解:5cm是直角边时,第三边==cm,5cm是斜边时,第三边==4cm,所以,第三边长为或4.故答案为或4.10.一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,那么m的取值范围是m<﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,则m+1<0,并且﹣4m+3≥0,解两个不等式即可得到m的取值范围.【解答】解:∵一次函数y=(m+1)x﹣(4m﹣3)的图象不经过第三象限,∴m+1<0,并且﹣4m+3≥0,由m+1<0,得m<﹣1;由﹣4m+3≥0,得m≤﹣.所以m的取值范围是m<﹣1.故答案为:m<﹣1.11.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了0.5米.【考点】勾股定理的应用.【分析】由题意知,AB=DE=2.5米,CB=1.5米,BD=0.5米,则在直角△ABC中,根据AB,BC可以求AC,在直角△CDE中,根据CD,DE可以求CE,则AE=AC﹣CE即为题目要求的距离.【解答】解:在直角△ABC中,已知AB=2.5米,BC=1.5米,∴AC==2米,在直角△CDE中,已知CD=CB+BD=2米,DE=AB=2.5米,∴CE==1.5米,∴AE=2米﹣1.5米=0.5米.故答案为:0.5.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为4﹣2.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故答案为:4﹣2.13.点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的大小关系是y1>y2>y3.【考点】一次函数图象上点的坐标特征.【分析】利用一次函数的增减性判断即可.【解答】解:在直线y=﹣3x+b中,∵k=﹣3<0,∴y随x的增大而减小,∵﹣2<﹣1<1,∴y1>y2>y3,故答案为:y1>y2>y3.14.直线y=﹣0.75x+3分别与x轴、y轴交于点A、B,点P是x轴上一点且在点A的左侧,若△PAB是等腰三角形,则点P的坐标为(﹣4,0)或(﹣1,0)或(,0).【考点】一次函数图象上点的坐标特征;等腰三角形的性质.【分析】可先求得A、B两点坐标,再设出P点坐标为(x,0),从而可分别表示出AB、PA、PB,再分PA=AB、PA=PB和AB=PB三种情况分别求x即可.【解答】解:在y=﹣0.75x+3中,令y=0可得x=4,令x=0可得y=3,∴A(4,0),B(0,3),∴AB==5,设P点坐标为(x,0),由题意可知x<4,则PA=4﹣x,PB=,∵△PAB是等腰三角形,∴有PA=AB、PA=PB和AB=PB三种情况,①当PA=AB时,即4﹣x=5,解得x=﹣1,此时P点坐标为(﹣1,0);②当PB=AB时,即=5,解得x=4(舍去)或x=﹣4,此时P点坐标为(﹣4,0);③当PA=PB时,4﹣x=,解得x=,此时P点坐标为(,0);综上可知P点坐标为:(﹣4,0)或(﹣1,0)或(,0),故答案为:(﹣4,0)或(﹣1,0)或(,0).三、(共4小题,满分24分)15.化简:﹣a2+3a﹣.【考点】二次根式的加减法.【分析】根据二次根式的计算解答即可.【解答】解:﹣a2+3a﹣==﹣7.16.一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),求此函数的解析式.【考点】两条直线相交或平行问题.【分析】先根据两直线平行,可以求得系数k的值,再根据直线经过已知的点,可以求得常数项b的值.【解答】解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵一次函数y=2x+b图象经过点(﹣3,4),∴4=﹣6+b,解得b=10,∴一次函数的解析式为:y=2x+10.17.直线y=x+5和直线y=2x+7﹣k的交点在第二象限,求k的取值范围.【考点】两条直线相交或平行问题.【分析】首先求出直线y=x+5和直线y=2x+7﹣k的交点坐标,然后根据第二象限内点的坐标特征,列出关于k的不等式组,从而得出k的取值范围.【解答】解:解方程组,得,即交点坐标为(k﹣2,k+3)∵交点在第二象限,∴,解得:﹣3<k<2.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处,求重叠部分△AFC的面积.【考点】翻折变换(折叠问题);矩形的性质.【分析】矩形翻折后易知AF=FC,利用直角三角形BFC,用勾股定理求出CF长,也就是AF长,S△AFC=AF•BC.【解答】解:设AF=x,依题意可知,矩形沿对角线AC对折后有:∠D′=∠B=90°,∠AFD′=∠CFB,BC=AD′∴△AD′F≌△CBF∴CF=AF=x∴BF=8﹣x在Rt△BCF中有BC2+BF2=FC2即42+(8﹣x)2=x2解得x=5.∴S△AFC=AF•BC=×5×4=10.四、(共4小题,共32分)19.如图,直线l1与l2相交于点P,l1的解析式为y=2x+3,点P的横坐标为﹣1,且l2交y轴于点A(0,﹣1).(1)求直线l2的函数解析式;(2)求这两条直线与y轴围成的图形的面积.【考点】两条直线相交或平行问题.【分析】(1)根据l1的解析式求出P点的坐标,再设出l2的解析式,利用待定系数法就可以求出l2的解析式.(2)设l1交y轴于点B,求出B点坐标,得到AB的长,再利用P点的横坐标就可以求出△PAB的面积.【解答】解:(1)设点P坐标为(﹣1,y),代入y=2x+3,得y=1,则点P(﹣1,1).设直线l2的函数表达式为y=kx+b,把P(﹣1,1)、A(0,﹣1)分别代入y=kx+b,得1=﹣k+b,﹣1=b,解得k=﹣2,b=﹣1.所以直线l2的函数表达式为y=﹣2x﹣1;(2)设l1交y轴于点B,如图.∵l1的解析式为y=2x+3,∴x=0时,y=3,∴B(0,3),∵A(0,﹣1),∴AB=4,∵P(﹣1,1),S△PAB=×4×1=2.20.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.【考点】勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9.在Rt△ACD中,CD===5∴BC=9﹣5=4∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.21.在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,(1)求EF的长;(2)四边形OEBF的面积.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)可以先求出△AEO≌△BFO,得出AE=BF,则BE=CF,根据勾股定理求出EF即可;(2)求出AB的长,求出OA×OB,求出△ABO的面积,即可得出四边形OEBF的面积.【解答】解:(1)∵四边形ABCD是正方形∴OA=OB,∠EAO=∠FBO=45°又∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°∴∠AOE=∠BOF,在△AEO和△BFO中,,∴△AEO≌△BFO(ASA),∴AE=BF=4,∴BE=CF=3,在Rt△EBF中,由勾股定理得:EF===5;(2)∵AE=4,BE=3,∴AB=3+4=7∴OA×OB=∴S四边形OEBF=S△AOB=×OA×OB=.22.在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD 上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【考点】矩形的性质;含30度角的直角三角形;平行四边形的判定;菱形的性质;翻折变换(折叠问题).【分析】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;解法二:证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.五、23.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?【考点】折线统计图;统计表;算术平均数;中位数;方差.【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环.【解答】解:(1)根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),中位数为7.5(环),方差为 [(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.中位数为7(环),方差为 [(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.补全表格如下:(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出;(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,有可能乙的射击成绩越来越好.六、(共12分)24.某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x);(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式y=300x+12000的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=x+(30﹣x)=300x+12000(0≤x≤30);(2)依题意,有,解得10≤x≤12.∵x为整数,∴x=10,11,12.即商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台;(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大,即当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元.。

【全国市级联考】河北省保定市2017-2018学年度第二学期期末调研考试八年级数学试题(解析版)

【全国市级联考】河北省保定市2017-2018学年度第二学期期末调研考试八年级数学试题(解析版)

河北省保定市2017-2018学年度第二学期期末调研考试八年级数学试卷及答案一、选择题(本大题有16个小题,共42分。

)1. 函数y=中,自变量x的取值范围是( )A. x>1B. x<1C. x≥1D. x≤1【答案】C【解析】分析:根据二次根式有意义,被开方数是非负数即可求解.详解:根据题意得:x-1≥0,解得x≥1.故自变量x的取值范围是x≥1.故选:C............................(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2. 下列根式中,不是最简二次根式的是( )A. B. C. D.【答案】B【解析】试题分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.因为==,因此不是最简二次根式.故选B.考点:最简二次根式3. 下列各组数中,能构成直角三角形的是( )A. 1,1,B. 4,5,6C. 5,12,23D. 6,8,11【答案】A【解析】分析:根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.详解:A、∵12+12=()2,∴能构成直角三角形,故A正确;B、∵42+52≠62,∴不能构成直角三角形,故B错误;C、∵52+122≠232,∴不能构成直角三角形,故C错误;D、∵62+82≠112,∴不能构成直角三角形,故D错误.故选:A.点睛:此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4. 下列各式,计算结果正确的是( )A. ×=10B. +=C. 3-=3D. ÷=3【答案】D【解析】分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.详解:A、原式=,所以A选项错误;B、与不是同类二次根式,不能合并,所以B选项错误;C、原式=2,所以C选项错误;D、原式=,所以D选项正确.故选:D.点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5. 下列式子中,表示是的正比例函数的是()A. B. C. D.【答案】B【解析】分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.详解:A、y=x+5,是和的形式,故本选项错误;B、y=3x,符合正比例函数的含义,故本选项正确;C、y=3x2,自变量次数不为1,故本选项错误;D、y2=3x,函数次数不为1,故本选项错误,故选:B.点睛:本题考查了正比例函数的定义,难度不大,注意基础概念的掌握.6. 若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A. 30°B. 45°C. 60°D. 75°【答案】B【解析】设较小的角为x,较大的是3x,x+3x=180,x=45°.故选B.7. 直线y=x+1与y=–2x–4交点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限。

人教版八年级数学下学期期末调研检测试题扫描版

人教版八年级数学下学期期末调研检测试题扫描版

河北省保定市曲阳县2017-2018学年八年级数学下学期期末调研检测试题八年级数学答案一,CBBBADABD A二,1,; 2,二;3,; 4,a>b;5,<;6,9;7,1.5;8,45°;9,;10,AC⊥BD、 AC=BD 、 AC⊥BD且 AC=BD三,1,(1) 11(2) ①出租车的起步价是5元②出租车起步价的路程范围是3公里之内(包括3公里)(3)y=1.2x+1.4(x≥3)2(1)a=60×0.25=15,b=0.3(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),3,解:(1)猜想:∠MBN=30°.证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.4,(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60,所以,A、C港口间的距离为:25+60=85km,海巡船的速度为:25÷0.5=50km/h,∴a=85÷50=1.7h.故答案为:85,1.7h;(2)当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,∵函数图象经过点(0,25),(0.5,0),所以,y=-50x+25;当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,∵函数图象经过点(0.5,0),(1.7,60),.所以,y=50x-25;(3)由-50x+25=15,解得x=0.2,由50x-25=15,解得x=0.8.所以,该海巡船能接受到该信号的时间为:0.6h.5,(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM,AM=DM,∠A=∠D,AB=CD∴△A BM≌△DCM(SAS);(2)答:四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM MF= CM,∴NE=FM,NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由是:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形,故答案为:2:1.。

八年级数学下学期期末调研检测试题(扫描新人教版(2021年整理)

八年级数学下学期期末调研检测试题(扫描新人教版(2021年整理)

(扫描版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省保定市曲阳县2017-2018学年八年级数学下学期期末调研检测试题(扫描版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省保定市曲阳县2017-2018学年八年级数学下学期期末调研检测试题(扫描版)新人教版的全部内容。

题八年级数学答案一,CBBBADABD A二,1,; 2,二;3,; 4,a>b;5,<;6,9;7,1。

5;8,45°;9,;10,AC⊥BD、 AC=BD 、 AC⊥BD且 AC=BD三,1,(1) 11(2) ①出租车的起步价是5元②出租车起步价的路程范围是3公里之内(包括3公里)(3)y=1.2x+1。

4(x≥3)2(1)a=60×0。

25=15,b=0。

3(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),3,解:(1)猜想:∠MBN=30°.证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.4,(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60, 所以,A、C港口间的距离为:25+60=85km,海巡船的速度为:25÷0.5=50km/h,∴a=85÷50=1.7h.故答案为:85,1.7h;(2)当0<x≤0。

人教版2017_2018学年八年级数学下学期期末质量监测试题扫描版

人教版2017_2018学年八年级数学下学期期末质量监测试题扫描版

河北省定州市2017-2018学年八年级数学下学期期末质量监测试题八年级数学参考答案及评分标准一、选择题(本大题共12个小题;每小题3分,共36分.)1—6: BBCCAD; 7—12:CCBACC.二、填空题(本大题共6个小题;每小题3分,共18分.13、4;14、y=2x+3;15、16.5;16、2;17、(2,1);18、三、解答题19.解:(1)0; ------- 4分(2)22﹣ b------- 8分20.解:(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),∴2m=2,m=1. ------- 2分把(1,2)和(﹣2,﹣1)代入y=kx+b,得则一次函数解析式是y=x+1; ------- 5分(2)令y=0,则x=﹣1.则△AOD的面积1×2=1. ------- 8分21. 解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13, ------- 4分∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20.------- 8分22. 解:(1)由题意可得,7.5﹣(3+0.5)=4(小时),答:小李从乙地返回甲地用了4小时; ------- 3分(2)设小李返回时直线解析式为y=kx+b,将(3.5,240)、(7.5,0)分别代入得,∴y=﹣60x+450, ------- 6分∴当x=5时,y=﹣60×5+450=150,答:小李出发5小时后距离甲地150千米; ------- 8分23.(1)证明:∵AG∥DC,AD∥BC,∴四边形AGCD是平行四边形,∴AG=DC, ------- 2分∵E、F分别为AG、DC的中点,∴GE=AG,DF=DC,即GE=DF,GE∥DF,∴四边形DEGF是平行四边形; ------- 4分(2)连接DG,∵四边形AGCD是平行四边形,∴AD=CG,∵G为BC中点,∴BG=CG=AD, ------- 6分∵AD∥BG,∴四边形ABGD是平行四边形,∴AB∥DG,∵∠B=90°,∴∠DGC=∠B=90°,∵F为CD中点,∴GF=DF=CF,即GF=DF,∵四边形DEGF是平行四边形,∴四边形DEGF是菱形. ------- 8分24.解:(1)由统计图可得,本次接受随机抽样调查的学生人数为:4÷8%=50,m%=1﹣8%﹣16%﹣20%﹣24%=32%,故答案为:50,32; ------- 2分(2)如图: ------- 4分(3=16(元),本次调查获取的样本数据的众数是10(元);中位数是15(元);---- 6分(4)该校本次活动捐款金额为10元的学生人数为:1900,即该校本次活动捐款金额为10元的学生有608人. ------- 8分25.解:(1)当x=0时,y=,∴B(0,2)当y=0时,y=,∴x=4,∴A(4,0);------- 2分(2)设P(x,y),因为点P在直线y=,且OP=AP,∴x=2,把x=2代入y=,y=1,所以点P的坐标是(2,1),因为点P在直线y=kx上,所以 -------5分(3)设点C(x),则D(x),E(x,0),因为CD=2DE,解得:x=1所以点C的坐标为(1. ------- 8分26.解:(1)设购买A种树苗x棵,则购买B种树苗(1000﹣x)棵,由题意,得y=(20+5)x+(30+5)(1000﹣x)=﹣10x+35000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北 20172018八年级数学下册期末调研试卷附答案新人教版注意:本试卷共8页,三道大题,26个小题。

总分120分。

时间120分钟。

题号一二 21 22 23 24 25 26 总分得分得分评卷人一、选择题(本大题有16个小题,共42分。

1~10小题,各3分;11~16小题,各2分。

在每题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16答案1.函数y=x-1中,自变量x的取值范围是( )A.x>1 B.x<1 C.x≥1 D.x≤12. 下列根式中,不是最简二次根式的是( )A.10B.8C.6D.23.下列各组数中,能构成直角三角形的是( )A.1,1,2 B.4,5,6 C.5,12,23 D. 6,8,114.下列各式,计算结果正确的是( )A. 2×5=10 B.3+4=7 C. 35-5=3 D.18÷2=35.下列式子中,表示是的正比例函数的是()A. B. C. D.6.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A.30° B.45° C.60° D.75°7. 直线y=x+1与y=–2x–4交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8. 已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是( )A.m<12 B.m>12 C.m<2 D.m>-29.一次函数与,在同一平面直角坐标系中的图象是( )10.矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为( )A.20 B. 56 C. 192 D. 以上答案都不对11.已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形12.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面。

然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m。

则旗杆高度为( ) (滑轮上方的部分忽略不计)A.12 m B.13 m C.16 m D.17 m13.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( )尺码(cm) 22 22 .5 23 23.5 24 24.5 25销售量(双) 4 6 6 10 2 1 1A.平均数 B.中位数 C.众数 D.方差14.如图,矩形ABCD中,AC与BD交于点O,若,,则对角线AC的长为( )A.5 B.7.5 C.10 D.1515. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.36,=0.60,=0.50,=0.45,则成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁16. 如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。

那么,这四个图形中,其面积满足的个数是( )。

A.1 B.2 C.3 D.4得分评卷人二、填空题(本大题4个小题,每小题3分,共12分.把答案写在题中横线上)17.在数轴上表示实数a的点如图所示,化简(a-5)2+|a-2|的结果为__________18.如图,O为数轴原点,A、B两点分别对应-3、3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________(18题图) (20题图)19.已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是_________________20. 如图,在△ABC中,BC =10,AB = 6,AC = 8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值是.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)得分评卷人21、计算题(本小题10分)(1)27-12 (2)27×13-(5+3)(5-3)得分评卷人22、(本小题10分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km。

(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小。

请在图中画出P的位置,并作简单说明。

(2)求这个最短距离.得分评卷人23、(本小题10分)如图,在菱形中,、相交于点,为的中点,。

(1)求的度数;(2)若,求的长。

得分评卷人24.(本小题12分)某旅游风景区,门票价格为元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打折。

设团体游客人,门票费用为元,与之间的函数关系如图所示。

(1)填空:=;=。

(2)请求出:当>10时,与之间的函数关系式;(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?得分评卷人25、(本小题12分)甲校成绩统计表成绩 7分 8分 9分 10分人数 11 0 8甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。

比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。

根据这些材料,请你回答下列问题:(1)在图①中,“7分”所在扇形的圆心角等于(2)求图②中,“8分”的人数,并请你将该统计图补充完整。

(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。

请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?得分评卷人26、(本小题12分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒。

(1)填空:直线AB的解析式是;(2)求t的值,使得直线CD∥AB;(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。

2 017—2018学年度第二学期期末调研考试八年级数学参考答案一、本大题共16小题,1-10小题每3分,11-16小题每2分.共42分题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16答案 C B A D B B C B C C D D C C A D二、本大题共4个小题;每小题3分,共12分17. 3 18. 7 19. y=3x-2 20. 2.4三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21、(本小题满分10分)(1)解:解:(1)原式=33-23 …………4分=3 …………5分(2)原式=3-(5-3)………4分=1…………5分22、(本小题10分)如图,作点B关于MN的对称点C,连接AC交MN于点P,则点P即为所建出口……3分此时A、B两城镇到出口P的距离之和最小,最短距离为AC的长.作AD⊥BB′于点D,在Rt△ADC中,AD=A′B′=8 km,DC=6 km.∴AC=AD2+DC2=10 km,∴这个最短距离为10 km………..10分23、本小题满分10分(1)∵四边形ABCD是菱形,,∥∴ .…………2分∵为的中点,∴∴ .∴△为等边三角形……………………………………………4分∴∴…………………………5分(2)∵四边形是菱形∴于………………6分∵于∴.∵……………8分∴.……………9分∴ .…………………………10分(此题解法很多,学生解答合理即可)24、(本小题满分12分)解:(1)80,8 …………………………每空2分(共4分)(2)当 >10时,………………(7分)………………………………………………………(8分)(3)∵2720>800,∴ >10 ……………………………………………(9分)2720=64 +160……………………………………………………(10分)=40…………………………………………………………………(11分)∴A旅游团有40人.……………………………………………………(12分)25. (本小题满分12分)解:(1)144°………………2分(2)4÷72°360°=20(人),20-8-4-5=3(人)补全统计图如图所示.………5分(3)由(2)知乙校的参赛人数为20人.因为两校参赛人数相等,所以甲校的参赛人数也为20人,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×120=8.3(分),中位数为7分.………8分由于两个学校学生成绩的平均数一样,因此从中位数的角度进行分析.因乙校学生成绩中位数8分,大于甲校学生成绩中位数,所以乙校成绩较好…10分(4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5人的成绩是10分,所以应选甲校.……………………………………………………………………… 12分26、(本小题满分12分).解:(1)直线AB的解析式是…………………………3分(2)根据题意,当直线AB∥CD时,………………4分∵……………………6分∴解得:∴时,直线AB∥CD…………………………………8分(3)存在。

事实上,当EO=OD时,△ECD就是等腰三角形……9分此时,EO=2,OD=8-2t由…………………………………………………………10分解得,…………………………………………………………11分∴存在时刻T,当时,△ECD是等腰三角形………………12分注:存在性问题,只要能找到一种比较简单的情况求解说明就可。

不必找到并求解所有,除非题意要求求出所有情况外。

画蛇添足,得不偿失,希望大家引起注意。

相关文档
最新文档