八年级数学复习题

合集下载

(必考题)初中数学八年级数学上册(有答案解析)

(必考题)初中数学八年级数学上册(有答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少?A. 26cmB. 27cmC. 28cmD. 18cm2. 已知函数f(x) = 2x + 3,那么f(1)的值为多少?A. 1B. 1C. 2D. 23. 下列哪个数是素数?A. 21B. 29C. 35D. 394. 一个长方体的长、宽、高分别为10cm、6cm、4cm,那么它的对角线长度为多少?A. 12cmB. 14cmC. 16cmD. 18cm5. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 22二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 任何两个奇数之和都是偶数。

()3. 两个负数相乘的结果是正数。

()4. 平方根和立方根都是唯一的。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为5cm,那么这个三角形的周长为______cm。

2. 已知一个正方形的边长为6cm,那么它的对角线长度为______cm。

3. 若一个等差数列的首项为2,公差为3,那么第5项的值为______。

4. 若一个函数f(x) = x^2 2x + 1,那么f(1)的值为______。

5. 两个平行线的夹角是______度。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 解释什么是等差数列。

3. 什么是因式分解?请举例说明。

4. 简述二次函数的定义。

5. 解释什么是相似三角形。

五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是60cm,求长方形的长和宽。

2. 已知一个等差数列的首项为3,公差为2,求第10项的值。

3. 解方程:2x 5 = 3x + 1。

4. 已知一个正方形的对角线长度为10cm,求正方形的面积。

初中数学八年级数学第二学期期末数学复习(5)

初中数学八年级数学第二学期期末数学复习(5)

年级数学第二学期期末数学复习(1)一、选择题:(每题3分,共30分) 1、若分式有意义,则x 的取值范围是( )A .B .C .D .x ≠-12、一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数是( ) A;6 B;8 C;10 D;73、若一组数据1,2,3,x 的极差为6,则x 的值是( ) A .7 B .8 C .9 D .7或-34、矩形的面积为120cm 2,周长为46cm ,则它的对角线长为 ( ) A .15cm B .16cm C .17cm D .18cm5、如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8(D)第5题 第7题 第14题 第17题 6、等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( )A .平行四边形B .矩形C .菱形D .正方形7、函数y 1=x (x ≥0),(x >0)的图象如图所示,则结论: ①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1;③当x =1时,BC =3; ④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确结论的序号是( )A;①② B; ①②④ C; ①②③④ D; ①③④8、如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm9、已知 ,则的值为 ( )A .12B .13C .14D .1510、三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6, 其中可以构成直角三角形的有( )A .1个B .2个C .3个D .4个二、填空题:(每题3分,共24分)11、数据2,x ,9,2,8,5的平均数为5,它的极差为 。

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则(  )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是(  )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。

八年级数学试题及答案

八年级数学试题及答案

八年级数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 计算下列哪个表达式的结果是正数?A. -1 + (-2)B. 3 - 5C. 4 × (-2)D. -3 ÷ 2答案:D3. 如果a > b > 0,那么下列哪个不等式是正确的?A. a < bB. a > bC. b > aD. a = b答案:B4. 一个数的平方根是它本身,这个数可以是:A. 0B. 1C. -1D. 2答案:A5. 下列哪个分数是最简分数?A. 6/12B. 8/16C. 5/10D. 7/3答案:D二、填空题(共10分,每题2分)6. 一个长方形的长是10厘米,宽是5厘米,它的周长是________厘米。

答案:307. 如果一个数的立方根是2,那么这个数是________。

答案:88. 一个数的绝对值是5,这个数可以是________或________。

答案:5或-59. 一个圆的半径是7厘米,它的面积是________平方厘米。

答案:153.9410. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是________平方厘米。

答案:12三、计算题(共30分,每题6分)11. 计算下列表达式的值:(1) (-3) × 2 + 5(2) √(16) - 4答案:(1) -6 + 5 = -1(2) 4 - 4 = 012. 解下列方程:(1) 2x + 5 = 13(2) 3y - 7 = 8答案:(1) 2x = 8,x = 4(2) 3y = 15,y = 513. 计算下列多项式的值,当x = -2时:(1) 3x^2 - 2x + 1(2) x^3 + 4x - 5答案:(1) 3 × (-2)^2 - 2 × (-2) + 1 = 12 + 4 + 1 = 17(2) (-2)^3 + 4 × (-2) - 5 = -8 - 8 - 5 = -21四、解答题(共50分,每题10分)14. 一个班级有40名学生,其中30名学生参加了数学竞赛。

2022-2023学年八年级数学上学期复习考前必做选择30题

2022-2023学年八年级数学上学期复习考前必做选择30题

选择30题一.选择题(共30小题)1.(2022秋•盐都区期中)下列说法正确的是()A.9的平方根3B.C.﹣9没有立方根D.平方根等于本身的数只有02.(2022秋•江都区期中)估计5﹣的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(2022秋•栖霞区校级月考)在七年上册的《数学实验手册》有一节关于寻找无理数的实验.如图,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则此时A点表示的数是()A.π+1B.﹣π﹣1C.﹣π+1D.π﹣14.(2022•雨花台区校级模拟)+的小数部分是(注:[n]表示不超过n的最大整数)()A.+﹣2B.+﹣3C.4﹣﹣D.[+]﹣25.(2021春•启东市校级月考)如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.13336.(2022秋•崇川区校级月考)平面直角坐标系中,O为坐标原点,点A的坐标为(﹣5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B的坐标为()A.(﹣5,1)B.(﹣1,﹣5)C.(﹣5,﹣1)D.(﹣1,5)7.(2022•建邺区一模)在平面直角坐标系中,点A的坐标是(﹣2,3),将点A绕点C顺时针旋转90°得到点B.若点B的坐标是(5,﹣1),则点C的坐标是()A.(﹣0.5,﹣2.5)B.(﹣0.25,﹣2)C.(0,﹣1.75)D.(0,﹣2.75)8.(2022春•张家港市期中)如图,在△AOB中,OA=AB,顶点A的坐标(3,4),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.(,)B.(,)C.(,)D.(,)9.(2022秋•高邮市期中)如图,点P是∠BAC平分线AD上的一点,AC=9,AB=4,PB=2,则PC的长不可能是()A.3B.4C.5D.610.(2022秋•常州期中)如图,△ABC的面积为12cm2,AP垂直于∠ABC的平分线BP于P,则△PBC的面积为()A.9cm2B.8cm2C.6cm2D.5cm211.(2022秋•大丰区期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个12.(2022秋•江都区期中)根据下列已知条件,能画出唯一的△ABC的是()A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.AB=3,BC=4,CA=813.(2022秋•徐州期中)如图,在四边形ABCD中,对角线BD所在的直线是其对称轴,点P是直线BD上的点,下列判断错误的是()A.AD=CD B.∠DAP=∠DCP C.AP=BC D.∠ABP=∠CBP14.(2022秋•江阴市期中)已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于()A.15°或75°B.30°C.150°D.150°或30°15.(2022秋•姑苏区校级期中)苏州素有“园林之城”美誉,以拙政园、留园为代表的苏州园林“咫尺之内再造乾坤”,是中华园林文化的翘楚和骄傲.如图,某园林中一亭子的顶端可看作等腰△ABC,其中AB=AC,若D是BC边上的一点,则下列条件不能说明AD是△ABC角平分线的是()A.点D到AB,AC的距离相等B.∠ADB=∠ADCC.BD=CD D.AD=BC16.(2021秋•仪征市期中)如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,延长BC至E,使得CE=BC,将△ABC沿AC翻折,使点B落点D处,连接DE,则DE的长为()A.B.C.D.17.(2021秋•东台市期中)如图,从△ABC内一点O出发,把△ABC剪成三个三角形(如图1),边AB,BC,AC放在同一直线上,点O都落在直线MN上(如图2),直线MN∥AC,则点O是△ABC的()A.三条角平分线的交点B.三条高的交点C.三条中线的交点D.三边中垂线的交点18.(2022•达拉特旗一模)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=6,BF=4,△ADG的面积为8,则点F到BC的距离为()A.B.C.D.19.(2022秋•锡山区期中)如图,∠POQ=90°,动点A和C分别在射线OP、OQ上运动,且AC=4cm,作BC⊥AC,且BC=1cm.在运动过程中,OB的最大距离是()A.5cm B.(+2)cm C.cm D.3cm20.(2022秋•惠山区期中)如图,钝角△ABC中,AC=4,BC=5,AB=7,过三角形一个顶点的一条直线可将△ABC分成两个三角形.若分成的两个三角形中有一个三角形为等腰三角形,则这样的直线有()条.A.5B.6C.7D.821.(2022秋•江阴市期中)如图,△ABC中,AB=AC,E为AB的中点,BD⊥AC,若DE=5,BD=8,则CD的长为()A.3B.4C.5D.622.(2022春•海安市期中)《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高度为x尺,则可列方程为()A.x2−3=(10−x)2B.x2−32=(10−x)2C.x2+3=(10−x)2D.x2+32=(10−x)223.(2019春•崇川区期中)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣124.(2021秋•兴化市校级月考)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.若△OCD与△BDE 的面积相等,求点D的坐标为()A.(0,)B.(0,)C.(0,3)D.(0,2)25.(2022春•海安市期中)甲、乙两人在一条400m长的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3s,在跑步过程中,甲、乙两人间的距离y(m)与乙出发的时间x(s)之间的函数关系如图所示,有下列结论:①乙的速度为5m/s;②离开起点后,甲、乙两人第一次相遇时,距离起点12m;③甲、乙两人之间的距离超过32m的时间范围是44<x<89;④乙到达终点时,甲距离终点还有68m.其中正确的个数是()A.4个B.3个C.2个D.1个26.(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是()A.﹣10≤p≤﹣2B.p≥﹣10C.﹣6≤p≤﹣2D.﹣6≤p<﹣227.(2022•鼓楼区一模)甲乙两地相距8km,如图表示往返于两地的公交车离甲地的距离y(单位:km)与从早晨7:00开始经过的时间x(单位:min)之间的关系.小明早晨7点从甲地出发,匀速跑步去乙地,若他在中途与迎面而来的公交车相遇3次,被同向行驶的公交车超越2次,则小明的速度可能是()A.0.2km/min B.0.15km/min C.0.12km/min D.0.1km/min28.(2022春•崇川区校级月考)甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法不正确的是()A.乙车的速度为90千米/时B.a的值为C.b的值为150D.当甲、乙车相距30千米时,甲行走了h或h29.(2022•天宁区模拟)记实数x1,x2,…,x n中的最小数为min{x1,x2,…,x n},例如min{﹣1,1,2}=﹣1,则函数y=min{2x﹣1,x,4﹣x}的图象大致为()A.B.C.D.30.(2020秋•常州期末)周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是()A.小明在迪诺水镇游玩1h后,经过h到达万达广场B.小明的速度是20km/h,妈妈的速度是60km/h C.万达广场离小明家26kmD.点C的坐标为(,25)答案与解析一.选择题(共30小题)1.(2022秋•盐都区期中)下列说法正确的是()A.9的平方根3B.C.﹣9没有立方根D.平方根等于本身的数只有0【分析】利用平方根,算术平方根,以及立方根性质判断即可.【解析】A、9的平方根是3和﹣3,不符合题意;B、=4,不符合题意;C、﹣9的立方根是﹣,不符合题意;D、平方根等于本身的数只有0,符合题意.故选:D.2.(2022秋•江都区期中)估计5﹣的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】根据求平方和不等式的性质进行求算.【解析】∵1<<2,∴﹣2<﹣<﹣1,∴3<5﹣<4,故选:B.3.(2022秋•栖霞区校级月考)在七年上册的《数学实验手册》有一节关于寻找无理数的实验.如图,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则此时A点表示的数是()A.π+1B.﹣π﹣1C.﹣π+1D.π﹣1【分析】先计算出圆的周长,然后用1减去圆的周长,从而得到A点表示的数.【解析】∵圆的周长为1×π=π,∴A点表示的数为1﹣π.故选:C.4.(2022•雨花台区校级模拟)+的小数部分是(注:[n]表示不超过n的最大整数)()A.+﹣2B.+﹣3C.4﹣﹣D.[+]﹣2【分析】根据算术平方根的性质(被开方数越大,则其算术平方根越大)解决此题.【解析】∵1<1.96<2<2.89<3<4,∴1<1.4<.∴1.4<1.7<2.∴的小数部分是.故选:B.5.(2021春•启东市校级月考)如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333【分析】根据立方根,即可解答.【解析】∵≈1.333,∴=≈1.333×10=13.33.故选:C.6.(2022秋•崇川区校级月考)平面直角坐标系中,O为坐标原点,点A的坐标为(﹣5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B的坐标为()A.(﹣5,1)B.(﹣1,﹣5)C.(﹣5,﹣1)D.(﹣1,5)【分析】利用旋转变换的性质,正确作出图形可得结论.【解析】如图,B(﹣1,﹣5).故选:B.7.(2022•建邺区一模)在平面直角坐标系中,点A的坐标是(﹣2,3),将点A绕点C顺时针旋转90°得到点B.若点B的坐标是(5,﹣1),则点C的坐标是()A.(﹣0.5,﹣2.5)B.(﹣0.25,﹣2)C.(0,﹣1.75)D.(0,﹣2.75)【分析】如图,设AB的中点为Q,过点Z作AN⊥x轴于点N,过点Q作QK⊥AN于点K,过点C作CT⊥QK于T,利用全等三角形的性质求解即可.【解析】如图,设AB的中点为Q,∵A(﹣2,3),B(5,﹣1),∴Q(1.5,1),过点Z作AN⊥x轴于点N,过点Q作QK⊥AN于点K,过点C作CT⊥QK于T,则K(﹣2,1)AK=2,QK=3.5,∵∠AKQ=∠CTQ=∠AQC=90°,∴∠AQK+∠CQT=90°,∠CQT+∠TCQ=90°,∴∠AQK=∠TCQ,在△AKQ和△QTC中,,∴△AKQ≌△QTC(AAS),∴QT=AK=2,CT=QK=3.5,∴C(﹣0.5,﹣2.5)故选:A.8.(2022春•张家港市期中)如图,在△AOB中,OA=AB,顶点A的坐标(3,4),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.(,)B.(,)C.(,)D.(,)【分析】过点A作AG⊥OB于G,O'H⊥OB于H,设BH=x,则A'H=5﹣x,由勾股定理得:62﹣x2=52﹣(5﹣x)2,求出BH的长,从而得出点O'的横坐标,再利用等积法求O'H的长即可.【解析】过点A作AG⊥OB于G,O'H⊥OB于H,∵点A的坐标(3,4),∴OG=3,AG=4,由勾股定理得OA=5,∵OA=AB,∴BG=OG=3,AB=OA=5,设BH=x,则A'H=5﹣x,由勾股定理得:62﹣x2=52﹣(5﹣x)2,解得x=,∴OH=OB+BH=6+=,∵S△OAB=S△O'A'B,∴OB×AG=BA'×O'H,∴6×4=5×O'H,∴O'H=,∴点O'(,),故选:A.9.(2022秋•高邮市期中)如图,点P是∠BAC平分线AD上的一点,AC=9,AB=4,PB=2,则PC的长不可能是()A.3B.4C.5D.6【分析】在AC上取AE=AB=4,然后证明△AEP≌△ABP,根据全等三角形对应边相等得到PE=PB=2,再根据三角形的任意两边之差小于第三边即可求解.【解析】在AC上截取AE=AB=4,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣4=5,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,,∴△APE≌△APB(SAS),∴PE=PB=2,∵5﹣2<PC<5+2,解得3<PC<7,∴PC不可能为3,故选:A.10.(2022秋•常州期中)如图,△ABC的面积为12cm2,AP垂直于∠ABC的平分线BP于P,则△PBC的面积为()A.9cm2B.8cm2C.6cm2D.5cm2【分析】延长AP交BC于点D,根据角平分线的定义可得∠ABP=∠DBP,根据垂直定义可得∠BP A=∠BPD=90°,然后利用ASA可证△BAP≌△BDP,从而可得AP=PD,进而可得△ABP的面积=△BDP的面积,△APC的面积=△DPC的面积,最后根据△PBC的面积=△ABC的面积,进行计算即可解答.【解析】延长AP交BC于点D,∵BP平分∠ABD,∴∠ABP=∠DBP,∵BP⊥AP,∴∠BP A=∠BPD=90°,∵BP=BP,∴△BAP≌△BDP(ASA),∴AP=PD,∴△ABP的面积=△BDP的面积,△APC的面积=△DPC的面积,∵△ABC的面积为12cm2,∴△PBC的面积=△BPD的面积+△DCP的面积=△ABC的面积=×12=6(cm2),故选:C.11.(2022秋•大丰区期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个【分析】根据全等三角形的定义画出图形,即可判断.【解析】如图,观察图象可知满足条件的三角形有4个.故选:A.12.(2022秋•江都区期中)根据下列已知条件,能画出唯一的△ABC的是()A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.AB=3,BC=4,CA=8【分析】根据全等三角形的三边关系理逐个判断即可.【解析】A.如图Rt△ACB和Rt△ADB的斜边都是AB,但是两三角形不一定全等,故本选项不符合题意;B.AB=4,BC=3,∠A=30°,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C.∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,能画出唯一的三角形,故本选项符合题意;D.3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C.13.(2022秋•徐州期中)如图,在四边形ABCD中,对角线BD所在的直线是其对称轴,点P是直线BD上的点,下列判断错误的是()A.AD=CD B.∠DAP=∠DCP C.AP=BC D.∠ABP=∠CBP【分析】利用轴对称变换的性质解决问题即可.【解析】∵四边形ABCD是对称轴,∴△APD≌△CPD,△ABD≌△CBD,∴AD=CD,∠DAP=∠DCP,∠ABP=∠CBP,故选项A,B,D正确,故选:C.14.(2022秋•江阴市期中)已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于()A.15°或75°B.30°C.150°D.150°或30°【分析】方法1:首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.方法2:读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【解析】方法1:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠BAC=180°﹣30°=150°.故这个等腰三角形的顶角等于30°或150°.方法2:①当为锐角三角形时可以画图,高与左边腰成60°夹角,由三角形内角和为180°可得,顶角为180°﹣90°﹣60°=30°,②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为30°,∴三角形的顶角为180°﹣30°=150°.故选:D.15.(2022秋•姑苏区校级期中)苏州素有“园林之城”美誉,以拙政园、留园为代表的苏州园林“咫尺之内再造乾坤”,是中华园林文化的翘楚和骄傲.如图,某园林中一亭子的顶端可看作等腰△ABC,其中AB=AC,若D是BC边上的一点,则下列条件不能说明AD是△ABC角平分线的是()A.点D到AB,AC的距离相等B.∠ADB=∠ADCC.BD=CD D.AD=BC【分析】根据到角两边距离相等的点在角的平分线上即可判断选项A,根据等腰三角形的性质(三线合一)即可判断选项B、选项C,选项D.【解析】A.∵点D到AB、AC的距离相等,∴AD是∠BAC的角平分线,故本选项不符合题意;B.∵∠ADB=∠ADC,∠ADC+∠ADB=180°,∴∠ADB=∠ADC=90°,即AD⊥BC,∵AB=AC,∴AD是∠BAC的角平分线,故本选项不符合题意;C.∵BD=CD,AB=AC,∴AD是∠BAC的角平分线,故本选项不符合题意;D.AD=BC不能推出AD是△ABC的角平分线,故本选项符合题意;故选:D.16.(2021秋•仪征市期中)如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,延长BC至E,使得CE=BC,将△ABC沿AC翻折,使点B落点D处,连接DE,则DE的长为()A.B.C.D.【分析】连接BD交AC于点F,由折叠的性质得出AB=AD,∠BAC=∠DAC,由勾股定理求出CF的长,则可由中位线定理求出DE的长.【解析】连接BD交AC于点F,∵将△ABC沿AC翻折,使点B落点D处,∴AB=AD,∠BAC=∠DAC,∴BF=DF,∠BFC=90°,∵AB=8,BC=6,∴AC===10,设CF=x,则AF=10﹣x,∵AB2﹣AF2=BF2,BC2﹣CF2=BF2,∴82﹣(10﹣x)2=62﹣x2,∴x=,∴CF=,∵CE=BC,∴CF=DE,∴DE=.故选:D.17.(2021秋•东台市期中)如图,从△ABC内一点O出发,把△ABC剪成三个三角形(如图1),边AB,BC,AC放在同一直线上,点O都落在直线MN上(如图2),直线MN∥AC,则点O是△ABC的()A.三条角平分线的交点B.三条高的交点C.三条中线的交点D.三边中垂线的交点【分析】利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,然后可作出判断.【解析】如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.∵MN∥AB,∴OD=OE=OF(夹在平行线间的距离处处相等).如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,故选:A.18.(2022•达拉特旗一模)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=6,BF=4,△ADG的面积为8,则点F到BC的距离为()A.B.C.D.【分析】先求出△ABD的面积,根据三角形的面积公式求出DF,设点F到BD的距离为h,根据•BD•h =•BF•DF,求出BD即可解决问题.【解析】∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴•(AF+DF)•BF=16,∴•(6+DF)×4=16,∴DF=2,∴DB===2,设点F到BD的距离为h,则有•BD•h=•BF•DF,∴2h=4×2,∴h=,故选:C.19.(2022秋•锡山区期中)如图,∠POQ=90°,动点A和C分别在射线OP、OQ上运动,且AC=4cm,作BC⊥AC,且BC=1cm.在运动过程中,OB的最大距离是()A.5cm B.(+2)cm C.cm D.3cm【分析】取AC的中点D,连接OD、BD,则OB≤BD+OD,当O、D、B三点共线时,OB取得最大值,由直角三角形斜边上的中线性质得OD=AC=CD=2cm,再由勾股定理得BD=cm,即可得出结论.【解析】如图,取AC的中点D,连接OD、BD,∵OB≤BD+OD,∴当O、D、B三点共线时,OB取得最大值为BD+OD,∵∠POQ=90°,D是AC的中点,AC=4cm,∴OD=AC=CD=2cm,在Rt△BCD中,由勾股定理得:BD===(cm),∴在运动过程中,OB的最大距离为BD+OD=(+2)cm,故选:B.20.(2022秋•惠山区期中)如图,钝角△ABC中,AC=4,BC=5,AB=7,过三角形一个顶点的一条直线可将△ABC分成两个三角形.若分成的两个三角形中有一个三角形为等腰三角形,则这样的直线有()条.A.5B.6C.7D.8【分析】分别以A、B、C为等腰三角形的顶点,可画出直线,再分别以AB、AC、BC为底的等腰三角形,可画出直线,即可得出结论.【解析】分别以A、B、C为等腰三角形的顶点的等腰三角形有4个,∴满足条件的直线有4条;分别以AB、AC、BC为底的等腰三角形有3个,∴满足条件的直线有3条,综上可知满足条件的直线共有7条,故选:C.21.(2022秋•江阴市期中)如图,△ABC中,AB=AC,E为AB的中点,BD⊥AC,若DE=5,BD=8,则CD的长为()A.3B.4C.5D.6【分析】由直角三角形斜边上的中线性质得AB=2DE=10,则AC=AB=10,再由勾股定理得AD=6,即可解决问题.【解析】∵BD⊥AC,∴∠ADB=90°,∵点E为AB的中点,∴AB=2DE=2×5=10,∴AC=AB=10,在Rt△ABD中,由勾股定理得:AD===6,∴CD=AC﹣AD=10﹣6=4,故选:B.22.(2022春•海安市期中)《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高度为x尺,则可列方程为()A.x2−3=(10−x)2B.x2−32=(10−x)2C.x2+3=(10−x)2D.x2+32=(10−x)2【分析】根据题意结合勾股定理列出方程即可.【解析】设折断处离地面x尺,根据题意可得:x2+32=(10﹣x)2,故选:D.23.(2019春•崇川区期中)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣1【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解析】∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选:D.24.(2021秋•兴化市校级月考)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.若△OCD与△BDE 的面积相等,求点D的坐标为()A.(0,)B.(0,)C.(0,3)D.(0,2)【分析】根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y=kx+b,把A、B的坐标代入得出方程组,求出直线AB的解析式,由题意推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y =mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.【解析】∵OB=OC=OA,∠AOB=90°,∴∠OAB=45°;∵B(0,1),∴A(1,0),设直线AB的解析式为y=kx+b.∴,解得,,∴直线AB的解析式为y=﹣x+1;∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且y E>0,∴×AC×y E=×OA×OB,∴×2×y E=×1×1,y E=,把y=代入直线AB的解析式得:=﹣x+1,∴x=,设直线CE的解析式是:y=mx+n,∵C(﹣1,0),E(,)代入得:,解得:m=,n=,∴直线CE的解析式为y=x+,令x=0,则y=,∴D的坐标为(0,).故选:A.25.(2022春•海安市期中)甲、乙两人在一条400m长的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3s,在跑步过程中,甲、乙两人间的距离y(m)与乙出发的时间x(s)之间的函数关系如图所示,有下列结论:①乙的速度为5m/s;②离开起点后,甲、乙两人第一次相遇时,距离起点12m;③甲、乙两人之间的距离超过32m的时间范围是44<x<89;④乙到达终点时,甲距离终点还有68m.其中正确的个数是()A.4个B.3个C.2个D.1个【分析】由图象可知,乙80秒到达终点,行400米,可以求得乙的速度为乙的速度为5米/秒,可判断①正确;由甲3秒行12米求得甲的速度为4米/秒,甲、乙两人第一次相遇,可列方程12+4x=5x,求得x的值为12,则5×12=60,说明此时距离起点60米,可判断②正确;求出当12≤x≤80和当80<x≤97时y与x之间的函数关系式,求出当y=32时的x的值,可判断③正确;乙到达终点时x=80,此时甲跑步的时间为83秒,距离为4×83=332米,甲距离终点400﹣332=68米,可判断④正确.【解析】由图象可知,乙80秒到达终点,∴400÷80=5(米/秒),∴乙的速度为5米/秒,故①正确;由图象可知,甲3秒行12米,∴12÷3=4(米/秒),∴甲的速度是4米/秒,甲、乙两人第一次相遇,则12+4x=5x,解得x=12,∴5×12=60(米),∴甲、乙两人第一次相遇时,距离起点60米,故②错误;当x=12时,两人第一次相遇,即y=0;当x=80时,乙行400米,甲行4×(3+80)=332(米),∴400﹣332=68(米),此时两人的距离是68米,故④正确;当x=80时,y=68,设当12≤x≤80时,y=kx+b,则,解得,∴y=x﹣12,∴当y=32时,x﹣12=32,解得x=44;当乙到达终点时,甲到达终点还需要68÷4=17(秒),设当80<x≤97时,y=mx+n,则,解得,∴y=﹣4x+388,当y=32时,﹣4x+388=32,解得x=89,∴甲、乙两人之间的距离超过32m的时间范围是44<x<89,故③正确.故选:B.26.(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是()A.﹣10≤p≤﹣2B.p≥﹣10C.﹣6≤p≤﹣2D.﹣6≤p<﹣2【分析】根据过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,可以得到m和n的关系,m、n的正负情况,再根据p=3m﹣n,即可用含m的式子表示p和用含n的式子表示p,然后即可得到相应的不等式组,再解不等式组即可.【解析】∵过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,∴﹣m+n=2,m<0,n≥0,∴n=2+m,m=n﹣2,∵p=3m﹣n,∴p=3m﹣(2+m)=3m﹣2﹣m=2m﹣2,p=3m﹣n=3(n﹣2)﹣n=3n﹣6﹣n=2n﹣6,∴m=,n=,∴,解得﹣6≤p<﹣2,故选:D.27.(2022•鼓楼区一模)甲乙两地相距8km,如图表示往返于两地的公交车离甲地的距离y(单位:km)与从早晨7:00开始经过的时间x(单位:min)之间的关系.小明早晨7点从甲地出发,匀速跑步去乙地,若他在中途与迎面而来的公交车相遇3次,被同向行驶的公交车超越2次,则小明的速度可能是()A.0.2km/min B.0.15km/min C.0.12km/min D.0.1km/min【分析】根据题意画出小明的函数图象,得到小明所用时间的范围,即可求出他的速度范围.【解析】∵小明在中途与迎面而来的公交车相遇3次,被同向行驶的公交车超越2次.∴他的函数图象如图在OA和OB之间,∴小明所用的时间在50﹣60分钟之间,8÷50=0.16,8÷60≈0.1333,∴小明的速度在0.133﹣0.16之间,故选:B.28.(2022春•崇川区校级月考)甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法不正确的是()A.乙车的速度为90千米/时B.a的值为C.b的值为150D.当甲、乙车相距30千米时,甲行走了h或h【分析】由两车相遇时甲、乙所走路程的比为2:3及两车相遇所用时间,即可求出A、B两地之间的距离,可判断C正确;由乙车的速度=相遇时乙车行驶的路程÷两车相遇所用时间,即可求出乙车的速度,可判断A正确;求出甲车的速度,再根据时间=两地之间路程的一半÷甲车的速度,即可求出a值,C正确;设出发xh甲、乙车相距30千米,分两种情况列方程解答即可得D错误,据此即可得出结论.【解析】由已知得:A、B两地之间的距离为30×2÷(﹣)=300(千米),∴出发时,甲、乙两车离AB中点C的路程是300÷2=150(千米),即b=150,故C正确,不符合题意;∴乙车的速度为(150+30)÷2=90(千米/小时),故A正确,不符合题意;而甲车的速度为(150﹣30)÷2=60(千米/小时),∴a的值为150÷60=,故B正确,不符合题意;设出发xh,甲、乙车相距30千米,根据题意得:(90+60)x=300﹣30或(90+60)x=300+30,解得:x=或x=,故D错误,符合题意.故选:D.29.(2022•天宁区模拟)记实数x1,x2,…,x n中的最小数为min{x1,x2,…,x n},例如min{﹣1,1,2}=﹣1,则函数y=min{2x﹣1,x,4﹣x}的图象大致为()A.B.C.D.【分析】根据最小数的定义可知:函数y=min{2x﹣1,x,4﹣x}的图象是每一段图象的最低处,即可得函数图象.【解析】如图,由2x﹣1=x得:x=1,∴点A的横坐标为1,由4﹣x=x得:x=2,∴点C的横坐标为2,当x≤1时,y=min{2x﹣1,x,4﹣x}=2x﹣1,当1<x≤2时,y=min{2x﹣1,x,4﹣x}=x,当x>2时,y=min{2x﹣1,x,4﹣x}=4﹣x,则函数y=min{2x﹣1,x,4﹣x}的图象大致为B.故选:B.30.(2020秋•常州期末)周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是()A.小明在迪诺水镇游玩1h后,经过h到达万达广场B.小明的速度是20km/h,妈妈的速度是60km/hC.万达广场离小明家26kmD.点C的坐标为(,25)【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解析】由图象可得,小明在迪诺水镇游玩1h后,经过﹣(2﹣1)=h到达万达广场,故选项A错误;小明的速度为20÷1=20(km/h),妈妈的速度是(20+20×)÷=60(km/h),故选项B正确;万达广场离小明家20+20×=20+5=25(km),故选项C错误;点C的坐标为(,25),故选项D错误;故选:B.。

初二数学重点练习题

初二数学重点练习题

初二数学重点练习题1. 一辆汽车以每小时60公里的速度行驶,经过5小时,行驶了多少距离?2. 如果三个数的和是75,第一个数是25,第三个数是35,求第二个数是多少?3. 甲、乙两人年龄相差10岁,甲的年龄是乙的2倍,求他们各自的年龄。

4. 如果甲的成绩是乙的80%,而乙的分数是95分,求甲的分数是多少?5. 某物品原价是120元,现在打8折出售,求现价是多少?6. 已知一个圆的半径为3cm,求它的面积和周长。

7. 把一个正方体的棱长增加到原来的两倍,求它的体积是原来的多少倍?8. 已知一个矩形的长是5cm,宽是3cm,求它的面积和周长。

以上是初二数学的重点练习题。

希望通过解答这些问题,能够帮助同学们巩固数学知识,提高解题能力。

题目一要求计算汽车行驶的距离,根据题目中给出的速度和时间,可以使用速度等于距离除以时间的公式来计算。

将速度60公里/小时和时间5小时代入公式,得出距离为300公里。

题目二是一个三个数的求和问题,已知第一个数是25,第三个数是35,可以通过代入法求解。

将已知的两个数代入到式子中,得到第二个数为75-25-35=15。

题目三是一个年龄相差和倍数关系的问题。

已知甲的年龄是乙的2倍,相差10岁,可以通过列方程求解。

设乙的年龄为x岁,则甲的年龄为2x岁。

根据题意得出方程2x-x=10,解得x=10,所以甲的年龄为20岁,乙的年龄为10岁。

题目四是一个百分比计算问题。

已知乙的分数是95分,甲的成绩是乙的80%,可以通过计算得出甲的分数。

甲的成绩为95*80%=76分。

题目五是一个打折计算问题。

已知原价是120元,打8折出售,可以通过计算得出现价是120*0.8=96元。

题目六是一个圆的面积和周长的计算问题。

已知圆的半径为3cm,可以利用公式计算。

圆的面积为π*r^2,周长为2π*r。

代入半径3cm,可以得到面积为π*3^2=9πcm^2,周长为2π*3=6πcm。

题目七是正方体的体积计算问题。

2022-2023学年第一学期八年级数学期末复习冲刺卷(05)

2022-2023学年第一学期八年级数学期末复习冲刺卷(05)

2022-2023学年第一学期八年级数学期末复习冲刺卷(05)一、选择题(本题共10小题,每小题3分,共30分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是( )A .B .C .D .2.在实数3.1415926 1.010010001 (2)2 ,223,2.15中,无理数的个数是( ) A .1 B .2 C .3 D .43.以下列各组数为边长能组成直角三角形的是( )A .2、3、4B .13、14、15C .32、42、52D .6、8、104.已知点P (﹣1,y 1),Q (3,y 2)在一次函数y =(m ﹣1)x +3的图象上,且y 1<y 2,则m 的取值范围是( )A .m <1B .m >1C .m >﹣1D .m <﹣15.等腰三角形的两边长分别为4和9,则它的周长( )A .17B .22C .17或22D .216.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙7.如图,已知直线y 1=x +m 与y 2=kx ﹣1相交于点P (﹣1,2),则关于x 的不等式x +m <kx ﹣1的解集为( )A.x>2B.x<2C.x>﹣1D.x<﹣18.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以下说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km9.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③10.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC'与AB交于点E,连接AC',若AD=AC'=2,BD=3,则点D到BC的距离为()A B C D二、填空题(本题共8小题,每小题3分,共24分)11.实数2的平方根是.12.用四舍五入法,对0.12964精确到千分位得到的近似数为.13.在平面直角坐标系中,点A(5,a﹣2)在第四象限,则a满足的条件是.14.等腰三角形的一个外角是110°,则它的顶角的度数是.15.将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣4),则m的值为.16.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.17.如图,在Rt△ABC中,AC=BC,D是线段AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A'处,当A'D平行于Rt△ABC的直角边时,∠ADC的大小为.18.如图,△ABC中,AB=10,AC=6,BC=14,D为AC边上一动点(D不与A、C重合),将线段BD绕D点顺时针旋转90°得到线段ED,连接CE,则△CDE面积的最大值为.三、选择题(本题共8小题,共66分)19.(12分)(1)计算:(﹣1)2023(2)计算:﹣(﹣2)2+(π﹣3.14)0(3)求x的值:4x2﹣9=0;(4)求x的值:(2x﹣1)3﹣125=0.20.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣1,1)、B(1,5)、C(4,4).(1)作出△ABC关于y轴对称的图形△A1B1C1,并写出顶点B1的坐标.(2)求△A1B1C1的面积.21.(6分)如图,CD∥AB,△ABC的中线AE的延长线与CD交于点D.(1)若AE=3,求DE的长度;(2)∠DAC的平分线与DC交于点F,连接EF,若AF=DF,AC=DE,求证:AB=AF+EF.22.(8分)已知一次函数y1=k1x+b1和y2=k2x+b2图象如图所示,直线y1与直线y2交于A点(0,3),直线y1、y2分别与x轴交于B、C两点.(1)求函数y1、y2的解析式.(2)求△ABC的面积.(3)已知点P在x轴上,且满足△ACP是等腰三角形,请直接写出P点的坐标.23.(8分)某超市销售10套A品牌运动装和20套B品牌的运动装的利润为4000元,销售20套A品牌和10套B品牌的运动装的利润为3500元.(1)该商店计划一次购进两种品牌的运动装共100套,设超市购进A品牌运动装x套,这100套运动装的销售总利润为y元,求y关于x的函数关系式;(2)在(1)的条件下,若B品牌运动装的进货量不超过A品牌的2倍,该商店购进A、B两种品牌运动服各多少件,才能使销售总利润最大?(3)实际进货时,厂家对A品牌运动装出厂价下调,且限定超市最多购进A品牌运动装70套,A品牌运动装的进价降低了m(0<m<100)元,若商店保持两种运动装的售价不变,请你根据以上信息及(2)中的条件,设计出使这100套运动服销售总利润最大的进货方案.24.(8分)A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求y乙与x的函数关系式以及两人相遇地点与A地的距离;(2)求线段OP对应的y甲与x的函数关系式;(3)求经过多少小时,甲、乙两人相距3km.25.(8分)如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)填空:k=;b=;m=;(2)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若动点P在射线DC上从点D开始以每秒1个单位的速度运动,连接AP,设点P的运动时间为t秒.是否存在t的值,使△ACP和△ADP的面积比为1:3?若存在,直接写出t的值;若不存在,请说明理由.26.(10分)如图,在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(6,0),A是第一象限内的一点,且△ABC是等边三角形.点D的坐标为(2,0),E是边AB上一动点,连接DE,以DE为边在DE 右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,直接写出BE的长度.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是( )A .B .C .D .【解析】解:A 、不是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故本题选:B .2.在实数3.1415926 1.010010001…,2,2π,223,2.15中,无理数的个数是()A .1B .2C .3D .4【解析】解:3.1415926是有限小数,属于有理数;4,是整数,属于有理数;223是分数,属于有理数; 2.15是循环小数,属于有理数;无理数有:1.010010001…,2,2π,共3个;故本题选:C .3.以下列各组数为边长能组成直角三角形的是( )A .2、3、4B .13、14、15 C .32、42、52 D .6、8、10【解析】解:A 、22+32≠42,故不能组成直角三角形;B 、(13)2+(14)2≠(15)2,故不能组成直角三角形;C 、(32)2+(42)2≠(52)2,故不能组成直角三角形;D 、62+82=102,故能组成直角三角形;故本题选:D.4.已知点P(﹣1,y1),Q(3,y2)在一次函数y=(m﹣1)x+3的图象上,且y1<y2,则m的取值范围是()A.m<1B.m>1C.m>﹣1D.m<﹣1【解析】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(m﹣1)x+3的图象上,且y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,故本题选:B.5.等腰三角形的两边长分别为4和9,则它的周长()A.17B.22C.17或22D.21【解析】解:9为腰长时,三角形的周长为9+9+4=22,9为底边长时,4+4<9,不能组成三角形,故本题选:B.6.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故本题选:B.7.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集为()A.x>2B.x<2C.x>﹣1D.x<﹣1【解析】解:根据题意得:当x<﹣1时,y1<y2,∴不等式x+m<kx﹣1的解集为x<﹣1,故本题选:D.8.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以下说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km【解析】解:由函数图象可得:甲比乙先到达目的地,故A错误;甲在中途没有停留,乙在中途停留1﹣0.5=0.5(h),故B错误;相遇后,甲的速度大于乙的速度,故C错误;他们都骑了20km,故D正确;故本题选:D.9.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③【解析】解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=12×AE×AB,△BCE的面积=12×CE×AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∴∠DAC+∠ACB=90°,∵∠BAC=90°,∴∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;综上,正确的为①③,故本题选:D.10.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC'与AB交于点E,连接AC',若AD=AC'=2,BD=3,则点D到BC的距离为()A B C D【解析】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,根据题意,点D到BC的距离即点D到BC'的距离,∵AD=AC'=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC'=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=12×60°=30°,在Rt△C'DM中,∵∠DC'C=30°,DC'=2,∴DM=1,C'M∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'∵S△BDC'=12BC'•DH=14BD•CM,=∴DH,∴点D到BC,故本题选:C.二、填空题(本题共8小题,每小题3分,共24分)11.实数2的平方根是.【解析】解:∵(2=2,∴2的平方根是故本题答案为:12.用四舍五入法,对0.12964精确到千分位得到的近似数为.【解析】解:用四舍五入法,对0.12964精确到千分位得到的近似数为0.130,故本题答案为:0.130.13.在平面直角坐标系中,点A(5,a﹣2)在第四象限,则a满足的条件是.【解析】解:∵在平面直角坐标系中,点A(5,a﹣2)在第四象限,∴a﹣2<0,解得:a<2,故本题答案为:a<2.14.等腰三角形的一个外角是110°,则它的顶角的度数是.【解析】解:∵一个外角是110°,∴与这个外角相邻的内角是180°﹣110°=70°,①当70°角是顶角时,它的顶角度数是70°;②当70°角是底角时,它的顶角度数是180°﹣70°×2=40°;综上,它的顶角度数是70°或40°,故本题答案为:70°或40°.15.将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣4),则m的值为.【解析】解:∵直线y=﹣x+1向左平移m(m>0)个单位,∴y=﹣x+m﹣1,将点(1,﹣4)代入y=﹣x+m﹣1,∴﹣1+m﹣1=﹣4,解得:m=﹣2,故本题答案为:﹣2.16.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.【解答】解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=556,故本题答案为:556.17.如图,在Rt△ABC中,AC=BC,D是线段AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A'处,当A'D平行于Rt△ABC的直角边时,∠ADC的大小为.【解析】解:∵Rt△ABC中,AC=BC,∴∠A=∠B=45°,∠ACB=90°,∵把△ACD沿直线CD折叠,∴∠ACD=∠A'CD,∠A=∠A'=45°,若A'D∥BC,∴∠A'=∠BCA'=45°,∴∠ACA'=45°,∴∠ACD=22.5°,∴∠ADC=180°﹣45°﹣22.5°=112.5°;若A'D∥AC,∴∠A+∠A′DA=180°,∴∠ADA'=135°,∴∠ADC=67.5°;综上,∠ADC=112.5°或∠ADC=67.5°,故本题答案为:112.5°或67.5°.18.如图,△ABC中,AB=10,AC=6,BC=14,D为AC边上一动点(D不与A、C重合),将线段BD绕D点顺时针旋转90°得到线段ED,连接CE,则△CDE面积的最大值为.【解析】解:如图,过点E作EF⊥AC于F,作BH⊥AC于点H,∴∠EFD=∠BHD=90°,∵BH2=BC2﹣CH2,BH2=AB2﹣AH2,∴BC2﹣CH2=AB2﹣AH2,∴196﹣(6+AH)2=100﹣AH2,解得:AH=5,∵将线段BD绕D点顺时针旋转90°得到线段ED,∴BD=DE,∠BDE=90°,∴∠BDH+∠EDF=90°,又∠EDF+∠DEF=90°,∴∠BDH=∠DEF,又∠BHD=∠DFE=90°,BD=DE,∴△BDH≌△DEF(AAS)∴EF=DH,∵△CDE面积=12CD×EF=12(6﹣AD)×(5+AD)=﹣12(AD﹣12)2+1518∴△CDE面积的最大值为1518,故本题答案为:1518.三、选择题(本题共8小题,共66分)19.(12分)(1)计算:(﹣1)2023(2)计算:﹣(﹣2)2+(π﹣3.14)0(3)求x的值:4x2﹣9=0;(4)求x的值:(2x﹣1)3﹣125=0.【解析】解:(1)原式=﹣1+2+2=4;(2)原式=﹣4+1+(﹣3)=﹣6;(3)方程整理得:x2=94,开方得:x=±32;(4)方程整理得:(2x﹣1)3=125,开立方得:2x﹣1=5,解得:x=3.20.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣1,1)、B(1,5)、C(4,4).(1)作出△ABC关于y轴对称的图形△A1B1C1,并写出顶点B1的坐标.(2)求△A1B1C1的面积.【解析】解:(1)如图,△A1B1C1即为所求,点B1(﹣1,5);(2)111A B C S ∆=4×5﹣12×2×4﹣12×1×3﹣12×3×5=7. 21.(6分)如图,CD ∥AB ,△ABC 的中线AE 的延长线与CD 交于点D .(1)若AE =3,求DE 的长度;(2)∠DAC 的平分线与DC 交于点F ,连接EF ,若AF =DF ,AC =DE ,求证:AB =AF +EF .【解析】解:(1)∵CD ∥AB ,∴∠B =∠DCE ,∵AE 是△ABC 的中线,∴CE =BE ,在△ABE 和△DCE 中,B DCE BE CEAEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△DCE (ASA ),∴AE =DE =3,∴DE 的长为3;(2)∵△ABE ≌△DCE ,∴AB =DC ,∵AF 平分∠DAC ,∴∠CAF =∠DAF ,∵AC =DE ,AE =DE ,∴AC =AE ,在△CAF 和△EAF 中,AC AE CAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△CAF ≌△EAF (SAS ),∴CF =EF ,∴AB =CD =CF +DF =EF +AF .22.(8分)已知一次函数y 1=k 1x +b 1和y 2=k 2x +b 2图象如图所示,直线y 1与直线y 2交于A 点(0,3),直线y 1、y 2分别与x 轴交于B 、C 两点.(1)求函数y 1、y 2的解析式.(2)求△ABC 的面积.(3)已知点P 在x 轴上,且满足△ACP 是等腰三角形,请直接写出P 点的坐标.【解析】解:(1)由图象得:B (1,0),C (3,0),把A (0,3),C (3,0)代入y 2=k 2x +b 2,得:222330b k b =⎧⎨+=⎩,解得:2213k b =-⎧⎨=⎩, ∴函数y 2的函数关系式y 2=﹣x +3,把A (0,3),B (1,0)代入y 1=k 1x +b 1,得:11133k b b +=⎧⎨=⎩,解得:1133k b =-⎧⎨=⎩, ∴y 1的函数关系式为:y 1=﹣3x +3;(2)S △ABC =12BC •AO =12×2×3=3; (3)∵OA =OC =3,∴AC =①当AP =AC =∴OP =OC =3,∴P (﹣3,0);②当AC =CP =OP =CP ﹣OC =3或OP =OC +CP =,∴P (3﹣,0)或(0);③当AP=CP时,P在AC的垂直平分线上,∵OA=OC,∴P与O重合,∴P(0,0);综上,P点坐标为:(﹣3,0)或(3﹣,0)或(0,0)或(0).23.(8分)某超市销售10套A品牌运动装和20套B品牌的运动装的利润为4000元,销售20套A品牌和10套B品牌的运动装的利润为3500元.(1)该商店计划一次购进两种品牌的运动装共100套,设超市购进A品牌运动装x套,这100套运动装的销售总利润为y元,求y关于x的函数关系式;(2)在(1)的条件下,若B品牌运动装的进货量不超过A品牌的2倍,该商店购进A、B两种品牌运动服各多少件,才能使销售总利润最大?(3)实际进货时,厂家对A品牌运动装出厂价下调,且限定超市最多购进A品牌运动装70套,A品牌运动装的进价降低了m(0<m<100)元,若商店保持两种运动装的售价不变,请你根据以上信息及(2)中的条件,设计出使这100套运动服销售总利润最大的进货方案.【解析】解:(1)设每套A种品牌的运动装的销售利润为a,每套B品牌的运动装的销售利润为b元,得:1020400020103500a ba b+=⎧⎨+=⎩,解得:100150ab=⎧⎨=⎩,∴y=100x+150(100﹣x),即y=﹣50x+15000;(2)根据题意得:100﹣x≤2x,解得:x≥1003,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小.∵x为正整数,∴当x=34时,y取得最大值,此时100﹣x=66,即超市购进34套A品牌运动装和66套B品牌运动装才能获得最大利润;(3)根据题意得:y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,(1003≤x≤70).①当0<m<50时,m﹣50<0,y随x的增大而减小,∴当x=34时,y取得最大值,超市购进34套A品牌运动装和66套B品牌运动装才能获得最大利润;②当m=50时,m﹣50=0,y=15000,即超市购进A品牌的运动装数量满足1003≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴x=70时,y取得最大值,即超市购进70套A品牌运动装和30套B品牌运动装才能获得最大利润.24.(8分)A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求y乙与x的函数关系式以及两人相遇地点与A地的距离;(2)求线段OP对应的y甲与x的函数关系式;(3)求经过多少小时,甲、乙两人相距3km.【解析】解:(1)设y乙与x的函数关系式是y乙=kx+b,∵点(0,12),(2,0)在函数y乙=kx+b的图象上,∴1220bk b=⎧⎨+=⎩,解得:612kb=-⎧⎨=⎩,∴y乙=﹣6x+12,当x=0.5时,y乙=﹣6×0.5+12=9,∴两人相遇地点与A地的距离是9km;(2)设线段OP对应的y甲与x的函数关系式是y甲=ax,∵点(0.5,9)在函数y甲=ax的图象上,∴9=0.5a,解得:a=18,∴线段OP对应的y甲=18x;(3)令|18x﹣(﹣6x+12)|=3,解得:x1=38,x2=58,∴经过38小时或58小时,甲、乙两人相距3km.25.(8分)如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)填空:k=;b=;m=;(2)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若动点P在射线DC上从点D开始以每秒1个单位的速度运动,连接AP,设点P的运动时间为t秒.是否存在t的值,使△ACP和△ADP的面积比为1:3?若存在,直接写出t的值;若不存在,请说明理由.【解析】解:(1)∵直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),∴5=1+b,解得:b=4,∴直线l2:y=﹣x+4,∵直线l2:y=﹣x+4经过点C(2,m),∴m=﹣2+4=2,∴C(2,2),把C(2,2)代入y=kx+1,解得:k=12,故本题答案为:12,4,2;(2)如图,作点C关于x轴的对称点C′,连接BC′交x轴于E,连接EC,则△BCE的周长最小.∵B(﹣1,5),C′(2,﹣2),∴直线BC′的解析式为y=﹣73x+83,令y=0,解得:x=87,∴E(87,0),∴存在一点E,使△BCE的周长最短,E(87,0);(3)∵直线l1:y=12x+1,∴D(﹣2,0),∵C(2,2),∴CD=,∵点P在射线DC上从点D开始以每秒1个单位的速度运动,运动时间为t秒.∴DP=t,分两种情况:①如图,点P在线段DC上,∵△ACP和△ADP的面积比为1:3,∴13 CPDP=,∴34 DPCD=,∴DP=34,∴t;②如图,点P在线段DC的延长线上,∵△ACP和△ADP的面积比为1:3,∴13 CPDP=,∴32 DPCD=,∴DP=32=,∴t=;综上,存在t的值,使△ACP和△ADP的面积比为1:3,t或.26.(10分)如图,在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(6,0),A是第一象限内的一点,且△ABC是等边三角形.点D的坐标为(2,0),E是边AB上一动点,连接DE,以DE为边在DE 右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,直接写出BE的长度.【解答】解:(1)如图1中,过点A作AH⊥OC交OC于点H,∵C(6,0),∴OC=6,∵△AOC是等边三角形,AH⊥OC,∴∠AOH=60°,OH=HC=3,∴AH=∴A(3,;(2)△CDF≌△BED,证明:如图2,∵△ABC是等边三角形,△DEF是等边三角形,∴∠ACB=∠ABC=∠EDF=60°,DE=DF,即∠DCF=∠EBD,∵∠EDC=∠EDF+∠CDF=∠ABC+∠EBD,∴∠CDF=∠BED,在△CDF 和△BED 中,DCF EBD CDF BED DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BED (AAS );(3)如图3﹣1中,当CD =CF 时,过点C 作CJ ⊥DF 交DF 于点J ,过点D 作DK ⊥BE 交BE 于点K ,过点F 作FP ⊥CD 交CD 于点P ,设DE =DF =x ,∵D (2,0),∴OD =2,∵∠DKO =90°,∠DOK =60°,∴∠ODK =30°,∴OK =12OD =1,DK∵CD =CF ,CJ ⊥DF ,∴DJ =FJ =12x , ∵∠EDC =∠ABC +∠DEK =∠EDF +∠FDP ,∴∠DEK =∠FDP ,∵∠DKE =∠FPD =90°,∠DEK =∠FDP ,DE =FD ,∴△DKE ≌△FPD (AAS ),∴DK =FP∵S △CDF =12•CD •FP =12•DF •CJ , ∴12×412×x解得:x 2=32﹣x 2=,∴EK 2=DF 2﹣FP 2=x 2﹣32=29﹣42∴EK=4∴BE=BK+EK=5如图3﹣2中,当FD=FC时,过点F作FT⊥CD交CD于点T.∵FD=FC,FT⊥CD,∴DT=CT=2,∵∠EDC=∠ABC+∠DEK=∠EDF+∠FDT,∴∠DEK=∠FDT,∵∠DKE=∠FTD=90°,∠DEK=∠FDT,ED=DF,∴△EKD≌△DTF(AAS),∴EK=DT=2,∴BE=BK+EK=1+2=3;如图3﹣3中,当DF=DC=4时,DE=DF=4,∴EK∴BE=BK+EK=综上,满足条件的BE的值为53或。

人教版八年级上册数学整册复习试题及答案

人教版八年级上册数学整册复习试题及答案

八年级上学期数学整册复习题一、选择题(每小题3分,共30分): 1.下列运算正确的是( )A .4= -2B .3-=3C .24±=D .39=3 2.计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 3b 5D .a 3b 6 3.若式子5-x 在实数范围内有意义,则x 的取值范围是( )A .x>5B .x ≥5C .x ≠5D .x ≥0 4.如图所示,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C ,∠BAD=∠ABCB .∠BAD=∠ABC ,∠ABD=∠BAC C .BD=AC ,∠BAD=∠ABCD .AD=BC ,BD=AC5.下列“表情”中属于轴对称图形的是( )A .B .C .D .6.在下列个数:6、10049、、π1、7、11131、327中无理数的个数是( ) A .2 B .3 C .4 D .57.下列图形中,以方程y-2x-2=0的解为坐标的点组成的图像是( )(第4题图)DCBACB 000012-12-2112xxxy yyy x8.任意给定一个非零实数,按下列程序计算,最后输出的结果是( )A .mB .m+1C .m-1D .m 2 9.如图,是某工程队在“村村通”工程中修筑的公路长度(m )与时间(天)之间的关系图象,根据图象提供的信息,可知道公路的长度为( )米. A .504 B .432 C .324 D .72010.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0)、(5,0)、(2,3),则顶点C 的坐标为( )A .(3,7)B .(5,3)C .(7,3)D .(8,2) 二、填空题(每小题3分,共18分): 11.若x-2+y 2=0,那么x+y= .12.若某数的平方根为a+3和2a-15,则a= . 平方结果+2÷m-mm(第10题图)DCBA 0y x14.如图,已知:在同一平面内将△ABC 绕B 点旋转到△A /BC /的位置时,AA /∥BC ,∠ABC=70°,∠CBC /为 . 15.如图,已知函数y=2x+b 和y=ax-3的图象交于点P (-2,-5),则根据图象可得不等式2x+b>ax-3的解集是 . 16.如图,在△ABC 中,∠C=25°,AD ⊥BC ,垂足为D ,且AB+BD=CD ,则∠BAC 的度数是 .三、解答题(本大题8个小题,共72分): 17.(10分)计算与化简:(1)化简:)1(18--π0)12(21214-+-; (2)计算:(x-8y )(x-y ).18.(10分)分解因式:(1)-a 2+6ab-9b 2; (2)(p-4)(p+1)+3p.(第14题图)AC /CBA /(第15题图)CB D A(第16题图)19.(7分)先化简,再求值:(a 2b-2ab 2-b 3)÷b-(a+b )(a-b ),其中a=21,b= -1.20.(7分)如果52a 3++-b b a 为a-3b 的算术平方根,1221---b a a 为1-a 2的立方根,求2a-3b 的平方根.21.(8分)如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AC 于点D ,垂足为E ,若∠A=30°,CD=2. (1)求∠BDC 的度数; (2)求BD 的长. (第21题图)DCBEA22.(8分)如图,在平面直角坐标系中,点P (x ,y )是第一象限直线y=-x+6上的点,点A (5,0),O 是坐标原点,△PAO 的面积为S. (1)求s 与x 的函数关系式,并写出x 的取值范围; (2)探究:当P 点运动到什么位置时△PAO 的面积为10.23.(10分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋. 为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元3.52.332售价(元/个)成本(元/个)BA24.(12分)如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点,OA 、OB 的长度分别为a 、b ,且满足a 2-2ab+b 2=0. (1)判断△AOB 的形状;(2)如图②,正比例函数y=kx(k<0)的图象与直线AB 交于点Q ,过A 、B 两点分别作AM⊥OQ 于M ,BN ⊥OQ 于N ,若AM=9,BN=4,求MN 的长. (3)如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系写出你的结论并证明.x(第24题图③)x(第24题图②)(第24题图①)x参考答案: 一、选择题:. 二、填空题:11.2; ; ; ; >-2; . 三、解答题:17.(1)解原式=321222212-+--=23223-; (2)解:(x-8y )(x-y )=x 2-xy-8xy+8y 2=x 2-9xy+8y 2.18.(1)原式=-(a 2-6ab+9b 2)=-(a-3b )2; (2)原式=p 2-3p-4+3p=p 2-4=(p+2)(p-2). 19.解原式=a 2-2ab-b 2-(a 2-b 2)=a 2-2ab-b 2-a 2+b 2=-2ab , 将a=21,b=-1代入上式得:原式=-2×21×(-1)=1. 20.解:由题意得:⎩⎨⎧=--=++312252b a b a ,解得:⎩⎨⎧-==21b a ,∴2a-3b=8,∴±22832±=±=-b a .21.(1)∵DE 垂直平分AB ,∴DA=DB ,∴∠DBE=∠A=30°,∴∠BDC=60°; (2)在Rt △BDC 中,∵∠BDC=60°,∴∠DBC=30°,∴BD=2CD=4.22.解:(1)s=-25x+15(0<x<6);(2)由-25x+15=10,得:x=2,∴P 点的坐标为(2,4). 23.解:(1)根据题意得:y=()x+()(4500-x )=+2250;(2)根据题意得:2x+3(4500-x )≦10000,解得:x ≧3500元. ∵k=<0,∴y 随x 的增大而减小,∴当x=3500时,y=×3500+2250=1550.答:该厂每天至多获利1550元.24.解:(1)等腰直角三角形.∵a 2-2ab+b 2=0,∴(a-b )2=0,∴a=b ;∵∠AOB=90o ,∴△AOB 为等腰直角三角形;(2)∵∠MOA+∠MAO=90o ,∠MOA+∠MOB=90o ,∴∠MAO=∠MOB ,∵AM ⊥OQ ,BN ⊥OQ ,∴∠AMO=∠BNO=90o ,在△MAO 和△BON 中,有:⎪⎩⎪⎨⎧=∠=∠∠=∠OB OA BNO AMO MOBMAO ,∴△MAO ≌△NOB ,∴OM=BN ,AM=ON ,OM=BN ,∴MN=ON-OM=AM-BN=5;(3)PO=PD ,且PO ⊥PD. 延长DP 到点C ,使DP=PC ,连结OP 、OD 、OC 、BC , 在△DEP 和△OBP 中,有:⎪⎩⎪⎨⎧=∠=∠=PB PE CPB DPE PC DP ,∴△DEP ≌△CBP ,∴CB=DE=DA ,∠DEP=∠CBP=135o ;在△OAD 和△OBC 中,有:⎪⎩⎪⎨⎧=∠=∠=OB OA CBO DAO CB DA ,∴△OAD ≌△OBC ,∴OD=OC ,∠AOD=∠COB ,∴△DOC 为等腰直角三角形, ∴PO=PD ,且PO ⊥PD.。

人教八年级数学上册期末复习:基础题训练(含解析)

人教八年级数学上册期末复习:基础题训练(含解析)

2022-2023学年人教版八年级数学期末复习基础题训练一、单选题1.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm3.如图,直线m n ∥,1100∠=︒,230∠=︒,则3∠=( )A .70︒B .110︒C .130︒D .150︒4.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,这两个三角形完全一样的依据是( )A .SASB .ASAC .AASD .SSS6.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90B .120C .135D .1807.如图,在△ABD 中,AD =AB ,△DAB =90°,在△ACE 中,AC =AE ,△EAC =90°,CD ,BE 相交于A .4个B .3个C .2个D .1个8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .79.如图,将一个长方形纸条折成如图的形状,若已知△1=110°,则△2为( )A .105°B .110°C .55°D .130°10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD BE ∥,150∠=︒,则2∠的度数是( )A .40︒B .80︒C .90︒D .100︒11.下列运算正确的是( )A .23a a a +=B .()3322a a =C .32a a a ÷=D .23·a a a12.如图所示,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b -=- 13.若多项式21x ax --可分解为()()2x x b -+,则a b +的值为( )A .—2B .—1C .1D .214.化简22222a b a ab b --+的结果是:( ) A .2a b ab- B .a b a b +- C .a b a b -+ D .2a b ab+ 15.把分式+x x y 中的x ,y 都扩大2倍,则分式的值( ) A .扩大2倍 B .扩大4倍 C .缩小一半 D .不变16.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶12千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .304012x x =+B .304012x x =+C .304012x x =-D .304012x x =- 二、填空题17.等腰三角形一边长为5,另一边长为7,则周长为__________.18.如图,△ABC 中,△A =40°,△B =72°,CE 平分△ACB ,CD △AB 于D ,DF △CE ,则△CDF =_________度.19.如图是两个全等的三角形,图中字母表示三角形的边长,则1∠的度数为 __.20.如图,四边形ABCD ,连接BD ,AB △AD ,CE △BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.21.等腰三角形有一个内角为50︒,那么它的顶角的度数为 _____.22.如图,在ABC ∆中,,AB AC 的垂直平分线分别交BC 于点E 、F . 若130BAC ∠=︒则EAF ∠=___________.23.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为_____.24.分解因式:x 2﹣5x ﹣6=_____.25.若分式242a a -+的值为0,则a 的值为______. 26.若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 三、解答题27.一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数.28.解下列方程: (1)122x x =-; (2)127133x x x--=--29.先化简,再求值:2()(2)(2)x y y x y x --+-,其中=1x -,8y =.30.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(1)若△ABC =30°,△ACB =60°,求△DAE 的度数;(2)写出△DAE 与△C ﹣△B 的数量关系 ,并证明你的结论.31.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接,BE BE 平分,ABC AC ∠平分BCF ∠,求A ∠的度数.32.如图,在ABC 中,AB AC =,36A ∠=︒,CD 平分ACB ∠,交AB 于点D ,E 为AC 中点.(1)求证:ACD是等腰三角形;(2)求EDC的度数.参考答案1.B解:设多边形的边数为n .根据题意得:(n −2)×180°=360°,解得:n =4.故选:B .2.C设第三边的长为x ,△ 角形的两边长分别为5cm 和8cm ,△3cm <x <13cm,故选C .3.C设△1的同位角为为△4,△2的对顶角为△5,如图,△m n ∥,△1=100°,△△1=△4=100°,△△2=30°,△2与△5互为对顶角,△△5=△2=30°,△△3=△4+△5=100°+30°=130°,故选:C .4.A以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km , 故选:A .5.B解:由题意得,有两角以及两角的夹边是已知, 因此可以利用ASA 画出一个全等的三角形, 故选:B .6.D解:如图所示:△图中是三个全等三角形,△48,67∠=∠∠=∠,又△三角形ABC 的外角和123456360︒=∠+∠+∠+∠+∠+∠=, 又578180︒∠+∠+∠=,即564180∠+∠+∠=︒, △123360180018︒︒∠+∠+=∠=-︒,故选:D .7.B△90DAB EAC ∠=∠=︒△DAB BAC EAC BAC ∠+∠=∠+∠△在DAC △和BAE 中===AD AB DAC BAE AE AC ∠∠⎧⎪⎨⎪⎩△DAC BAE ≅△DC BE =,①正确ADF ABE ∠=∠△AB ,AE 不确定相等△ABE ∠和AEB ∠不确定相等 △ABD △和ACE △是等腰直角三角形 △45ADB AEC ∠=∠=︒△45BDC ADC ∠=︒-∠,45BEC AEB ∠=︒-∠ △BDC ∠和BEC ∠不确定相等,②错误 △ADF ABE ∠=∠,AOD BOF ∠=∠,90DAB ∠=︒ △90ADF AOD ∠+∠=︒△90ABE BOF ∠+∠=︒△DC BE ⊥,③正确过点AM DC ⊥于点M ,AN BE ⊥于点N △DAC BAE ≅△=AM AN△AF 平分DFE ∠,④正确△①③④正确故选:B .8.D解:△A (-2,5),AD △x 轴, △AD =5,OD =2,△△ABO 为等腰直角三角形, △OA =BO ,△AOB =90°,△△AOD +△DAO =△AOD +△BOE =90°, △△DAO =△BOE ,在△ADO 和△OEB 中,DAO BOE ADO OEB OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADO △△OEB (AAS ),△AD =OE =5,OD =BE =2,△DE =OD +OE =5+2=7.故选:D .9.C解:如图,△纸条的两边互相平行,△△1+△3=180°,△△1=110°,△△3=180°−△1=180°−110°=70°, 根据翻折的性质得,2△2+△3=180°,△△2=()118070552⨯︒-︒=︒, 故选:C .10.B解:延长BC 至G ,如下图所示,由题意得,AF △BE ,AD △BC , △AF∥BE ,△△1=△3.△AD∥BC ,△△3=△4,△△4=△1=50°.△CD∥BE ,△△6=△4=50°.△这条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,△△5=△6=50°,△△2=180°-△5-△6=180°-50°-50°=80°.故选:B .11.C解:A 、a 和2a 不是同类项,无法合并,故本选项错误,不符合题意; B 、()3328a a =,故本选项错误,不符合题意;C 、32a a a ÷=,故本选项正确,符合题意;D 、23a a a -=-,故本选项错误,不符合题意;故选:C12.A解:左边图形的阴影部分的面积=a 2-b 2 右边的图形的面积1222b a a b=(a +b )(a -b ).△()()22a b a b a b -=+-, 故选:A .13.D解:△(x -2)(x +b )=x 2+bx -2x -2b =x 2+(b -2)x -2b =x 2-ax -1,△b -2=-a ,-2b =-1,△b =0.5,a =1.5,△a +b =2.故选:D .14.B解:22222a b a ab b--+()()()2a b a b a b -+=- a b a b +=- 故选:B15.D 解:()22222x x x x x y x y x y x y===++++, 故选:D .16.A解:设甲车的速度为x 千米/小时,则乙车的速度为()12x +千米/小时,由题意得: 304012x x =+ 故选:A .17.17或19△7-5<第三边<7+5,△2<第三边<12,△该三角形是等腰三角形,△第三边为5或7,△周长为5+5+7=17或5+7+7=19,故答案为:17或19.18.74解:△△A =40°,△B =72°,△△ACB =180°-40°-72°=68°,△CE 平分△ACB ,△△BCE =12△ACB =12×68°=34°,△CD △AB 于D ,△△BCD +△B =90°,△△BCD =90°-△B =90°-72°=18°,△△DCE =△BCE -△BCD =34°-18°=16°,△DF △CE ,△△CFD =90°,△△DCF +△CDF =90°,△△CDF =90°-△DCF =90°-16°=74°,故答案为:74.19.70︒或60︒解:如图所示,由三角形内角和定理得,2=1805060=70∠--︒︒︒︒,两个三角形全等,1=2=70∴∠∠︒,或160∠=︒,故答案为:70︒或60︒.20.2 解: AB △AD ,CE △BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD =⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:221.50︒或80︒解:当50︒角为顶角,顶角度数即为50︒;当50︒为底角时,顶角18025080=︒-⨯︒=︒.故答案为:50︒或80︒.22.80︒解:△在ABC ∆中,,AB AC 的垂直平分线分别交BC 于E 、F , △,AE BE AF CF ==,△B BAE ∠=∠,C CAF ∠=∠,△130BAC ∠=︒,△18050B C BAC ︒︒∠+∠=-∠=,△50BAE CAF ︒∠+∠=,△()EAF BAC BAE CAF ∠=∠-∠+∠1305080︒︒︒=-=.故答案为:80︒.23.70解:△长宽分别为a ,b 的长方形的周长为14,面积为10, △a +b =7,ab =10,△()2210770a b ab ab a b +=+=⨯=.故答案为70.24.()()61x x -+解:x 2﹣5x ﹣6()()61x x =-+故答案为:()()61x x -+25.2解;△分式242a a -+的值为0, △24020a a ⎧-=⎨+≠⎩, △2a =,故答案为;2.26.2m >且3m ≠-解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.27.解:设这个多边形的边数是n ,依题意得(2)1803360180n ︒︒︒-⨯=⨯-,261n -=-,7n =.△这个多边形的边数是7.28.(1)解;122x x=- 两边同时乘以()2x x -得:()22x x =-,去括号得:24x x =-,移项得:24x x -=-,合并同类项得:4x -=-,系数化为1得;4x =,经检验,4x =是原方程的解,△原方程的解为4x =;(2)解;127133x x x--=-- 两边同时乘以3x -得:()()1327x x --=--,去括号得:1327x x -+=-+,移项得:2713x x -+=--,合并同类项得:3x =,经检验,3x =不是原方程的解,△原方程无解.29.解:2()(2)(2)x y y x y x --+-,2222(2)(4)x xy y y x =-+--252x xy =-,1x =-,8y =.∴原式5121821=⨯+⨯⨯=.30.解:(1)△△B +△C +△BAC =180°,△ABC =30°,△ACB =60°, △△BAC =180°﹣30°﹣60°=90°.△AE 是△ABC 的角平分线,△△BAE =12 △BAC =45°.△△AEC 为△ABE 的外角,△△AEC =△B +△BAE =30°+45°=75°.△AD 是△ABC 的高,△△ADE =90°.△△DAE =90°﹣△AEC =90°﹣75°=15°.(2)由(1)知,△DAE =90°﹣△AEC =90°﹣(12B BAC∠+∠ )又△△BAC =180°﹣△B ﹣△C .△△DAE =90°﹣△B ﹣12(180°﹣△B ﹣△C ),=12(△C ﹣△B ).31.(1)证明:△E 为AC 中点,△AE CE =,在ADE 和CFE 中,AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩,△ADE CFE ≌,△A ECF ∠=∠,△CF AB ∥;(2)解:由(1)得:A ECF ∠=∠,△AC 平分BCF ∠,△ACB ECF ∠=∠,△ACB A ∠=∠,△50ABC ∠=︒,△()1180652A ABC ∠=︒-∠=︒ 32.(1)△36AB AC A ∠==︒,, △72ACB B ∠∠==︒. △CD 平分ACB ∠, △36ACD DCB ∠∠==︒,36A ∠=︒, △CD AD =,即ACD 是等腰三角形; (2)△点E 是AC 的中点, △AE EC =,△90DEC ∠=︒,△90903654BDE ACD ∠∠=︒-=︒-︒=︒.。

中考数学八年级专题训练50题含答案

中考数学八年级专题训练50题含答案

中考数学八年级专题训练50题含答案一、单选题1.不等式23x -<的解集是( )A .23x <-B .23x >-C .32x <-D .32x >- 2.下列各式中,一定是二次根式的是()A .BCD 3.下列各组数中,能组成勾股数的是( )A .0.2,0.3,0.4B .1,4,9C .5,12,13D .5,11,124.设a =a 在两个相邻整数之间,则这两个整数是( )A .-1和-2B .-2和-3C .-3和-4D .-4和-5 5.从下列不等式中选择一个与x +1≥2组成不等式组,如果要使该不等式组的解集为x ≥1,那么可以选择的不等式是( )A .x >-1B .x >2C .x <-1D .x <26.如图,将△ABC 绕点B 顺时针旋转50°得△DBE ,点C 的对应点恰好落在AB 的延长线上,连接AD ,下列结论不一定成立的是( )A .AB =DB B .△CBD =80°C .△ABD =△E D .△ABC △△DBE 7.规定一种新的运算“JQx →+∞A B ”,其中A 和B 是关于x 的多项式.当A 的次数小于B 的次数时,JQx →+∞0A B =;当A 的次数等于B 的次数时,JQx →+∞A B的值为A 和B 的最高次项的系数的商;当A 的次数大于B 的次数时,JQx →+∞A B 不存在.例:JQx →+∞21x -=0,JQx →+∞22212312x x x +=+-.若223615(2)11A x xB x x -=-÷--,则JQx →+∞A B的值为( )A .0B .12C .13D .不存在8.在227,π-,0,3.14,,0.333,0.1010010001⋯(两个“1”之间依次多一个“0”)中,无理数的个数是( )A .1B .2C .3D .49.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a <﹣bB .|a|>|b|C .|a|<|b|D .﹣a >b 10.下列说法中正确的是( )A .若||a b >,则22a b >B .若a >b ,则11a b <C .若a b >,则22ac bc >D .若,a b c d >>,则a c b d ->- 11.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是( )A .a b >B .a b =C .a b <D .a b =- 12.如图,E ,F 分别是 □ABCD 的边AB ,CD 的中点,则图中平行四边形的个数共有( ).A .2个B .3个C .4个D .5个13.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .1614.下列说法: △已知△ABC 中,AB =6,AC =8,则中线AD 的取值范围是1≤AD≤7;△两边和一角对应相等的两个三角形全等;△如果两个三角形关于某直线成轴对称,那么它们是全等三角形;△一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有( )A .1个B .2个C .3D .4个15.如图,在矩形ABCD 中,AE 平分BAD ∠交BC 于点E ,5,3ED EC ==,则矩形的周长为( )A .18B .20C .21D .22 16.关于x 的方程32211x m x x --=++有增根,则m 的值为( ) A .2 B .7- C .5 D .5-17.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y (米)与乙出发的时间t (秒)之间的关系如图所示给出以下结论:△8a =;△72b =;△98c =.其中正确的是( )A .△△B .△△△C .△△D .△△18.如图,ABC 是等边三角形,ABD △是等腰直角三角形,90BAD ∠=︒,AE BD ⊥于点E ,连接CD ,分别交、AE AB 于点F 、G ,过点A 作AH CD ⊥交BD 于点H ,1EH =,则下列结论:△15ACD =︒∠;△AFG 是等腰三角形;△ADF BAH △△≌;△2DF =.其中正确的有( )A .△△△B .△△△C .△△△D .△△△19.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …别在直线1y x =+和x 轴上,则点2019A 的坐标是( )A .()201820192,2B .()2018201821,2-C .()201920182,2D .()2018201921,2-二、填空题20.如果等腰三角形腰上的高是腰长的一半,那么它顶角的度数是_____.21.“迎面穿梭接力”是北关中学历届校运动会最具吸引力的集体项目之一,单程100米,该比赛项目要求班级超过半数的学生参加,是衡量一个班级整体田径实力的重要项目,取胜的一个至关重要的因素是接力棒交接时不掉棒.今年运动会上,初二21班和初二22班两个班级在比赛中出现了惊心动魄的一幕,21班最后一个参赛同学甲在接棒时掉棒,掉棒的同时22班倒数第二位参赛同学乙距离下一个接棒同学丙还有一段距离,并随后顺利与丙交接棒(交接棒时间忽略不计),最后冲刺中丙反超甲赢得了比赛,在比赛过程中,甲乙丙均匀速前进,两个班跑步中的队员之间的距离y(米)与甲成功接棒后出发的时间x(分钟)之间的关系如图所示,则丙到达终点时,甲距终点的距离是______米.22.如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=18,则△BOC的周长为_____.23a,小数部分为b,则2a b+_________.24.已知正方形的对角线长为______.1),则点25.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点CA的坐标是______________.26.如图,将5个边长为1cm的正方形按如图所示摆放,点A1,A2,……,An分别是正方形的中心,则5个正方形重叠形成的重叠部分的面积和为______.27.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则△A 的度数为______.28.将矩形添加一个适当的条件:_____,能使其成为正方形.29.已知钝角三角形的三边分别为2,3,4,则该三角形的面积为__________. 30.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆.如果2GC =, 4.5DF =, 那么AG =____.31.一等腰三角形的一条边长为6,一个外角为120° , 则这个三角形的周长为_____. 32.已知直线y =kx ﹣3与y =(3k ﹣1)x +2互相平行,则直线y =kx ﹣3不经过第_____象限.33.菱形的周长是24,两邻角比为1﹕2,较短的对角线长为_________34.已知在△ABC 和△A 1B 1C 1中,AB =A 1B 1,△A =△A 1,要使△ABC △△A 1B 1C 1,还需添加一个条件,这个条件可以是____________________.35.如图,直线4y x =+与y 轴交于1A ,按如图方式作正方形11122213332A B C O A B C C A B C C ⋯,,,,点123A A A ⋯,,在直线4y x =+上,点123C C C ⋯,,,在x 轴上,图中阴影部分三角形的面积从左到右依次记为123n S S S S ⋯,,,,则1S =_________,n S = __(用含n 的代数式表示,n 为正整数).36.已知关于x 的一元一次不等式组21x m n x m-≥⎧⎨-≤⎩的解集为35x ≤≤,则n m 的值是_____.37.若关于x 的方程3101ax x +-=-无解,则a 的值为__________. 38.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 、F 在BD 上,请你添加一个条件_____使四边形AECF 是平行四边形(填加一个即可).39.如图,在正方形ABCD 中,AD =5,点E 、F 是正方形ABCD 外的两点,且AE =FC =3, BE =DF =4,则EF 的长为_______.三、解答题40.已知2a ﹣1的平方为9,b ﹣1的算术平方根是2,c a ﹣b +c 的值.41.已知:如图,△ABC 是等边三角形,点D 、E 分别在边AB 、BC 的延长线上,且AD =BE ,联结DC 、AE .(1)试说明△BCD △△ACE 的理由;(2)如果BE =2AB ,求△BAE 的度数.42小数部分我们不可能全部写出来,而12<<1分.请解答下列问题:(1__________,小数部分是__________;(2a b ,求a b +43.两张矩形纸片ABCD 和CEFG 完全相同,且AB=CE ,AD >AB .操作发现:(1)如图1,点D 在GC 上,连接AC 、CF 、CG 、AG ,则AC 和CF 有何数量关系和位置关系?并说明理由.实践探究:(2)如图2,将图1中的纸片CEFG 以点C 为旋转中心逆时针旋转,当点D 落在GE 上时停止旋转,则AG 和GF 在同一条直线上吗?请判断,并说明理由.44.先阅读短文,然后回答短文后面所给出的问题:对于三个数a 、b 、c 的平均数,最小的数都可以给出符号来表示,我们规定M {a ,b ,c }表示a ,b ,c 这三个数的平均数,m i n {a ,b ,c }表示a ,b ,c 这三个数中最小的数,max {a ,b ,c }表示a ,b ,c 这三个数中最大的数.例如:M {﹣1,2,3}=123433-++=,m i n {﹣1,2,3}=﹣1,max {﹣1,2,3}=3;M {﹣1,2,a }=12133a a -+++=,m i n {﹣1,2,a }=()()111a a a ⎧≤-⎪⎨->-⎪⎩.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,m i n{3m,(n+3)m,﹣mn}=;(2)若m i n{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=m i n{2,x+1,2x},求x的值.45.计算:(1(2)+46.如图,BAD是由BEC在平面内绕点B逆时针旋转60︒而得,且⊥=,,连接DE.求证:BDE≌BCE.AB BC BE CE47.(1)解方程(1)(x+5)=16 (2x-1)=64(2)解下列不等式,并将它解集在数轴上表示出来:48.如图,中,,是上一点,是延长线上一点,且,若与相交于,求证:.答案第1页,共26页 参考答案:1.D【分析】不等式的两边都除以2-,即可得到答案.【详解】解:23x -<,两边都除以2-得:32x >-,故D 正确. 故选:D .【点睛】本题考查的是一元一次不等式的解法,掌握“利用不等式的基本性质解一元一次不等式”是解本题的关键.2.D0a ≥,的式子称为二次根式,利用定义解题即可.【详解】解:A 中根号里面为负数,不是二次根式;B 中是三次根,不是二次根式;C 中未说明1a ≥,可能不是二次根式;D 中210a +>,故一定是二次根式.故选D .【点睛】本题主要考查二次根式的定义,注意0a ≥的条件是否满足.3.C【分析】根据勾股数的定义进行分析,从而得到答案.【详解】A 、不是,因为它们不是正整数;B 、不是,12+42≠92 ;C 、是,满足勾股数的定义;D 、不是,因为52+112≠122;故选:C .【点睛】此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.4.D【分析】先确定19的大小,再根据算术平方根的定义、不等式的性质即可得到答案.【详解】△16<19<25,△45<,△54-<-,故选:D.【点睛】此题考查算术平方根的定义、不等式的性质、实数的大小比较.5.A【详解】试题分析:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选A.考点:不等式的解集.6.C【分析】利用旋转的性质得△ABC△△DBE,BA=BD,BC=BE,△ABD=△CBE=50°,△C=△E,再由A、B、E三点共线,由平角定义求出△CBD=80°,由三角形外角性质判断出△ABD>△E.【详解】解:△△ABC绕点B顺时针旋转50°得△DBE,△AB=DB,BC=BE,△ABD=△CBE=50°,△ABC△△DBE,故选项A、D一定成立;△点C的对应点E恰好落在AB的延长线上,△△ABD+△CBE+△CBD =180°,.△△CBD=180°-50°-50°=80°,故选项B一定成立;又△ △ABD=△E+△BDE,△△ABD>△E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.C【分析】先对223615211A x xB x x-⎛⎫=-÷⎪--⎝⎭进行计算,然后再根据规定的新运算,解答即可.【详解】解:223615211A x xB x x-⎛⎫=-÷⎪--⎝⎭=()()()325 25111x xxx x x--÷-+-=()()()11251325x x x x x x +--⨯-- =13x x+, △A 的次数等于B 的次数,△JQx →+∞A B =13, 故选:C .【点睛】本题考查了新定义,以及分式的混合运算,理解已知规定的新运算是解题的关键.8.C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在227,π-,0,3.14,,0.333,0.1010010001⋯(两个“1”之间依次多一个“0”)中,227,0,3.14,0.32-,33是有理数, π-, ,0.1010010001⋯(两个“1”之间依次多一个“0”)是无理数,共3个, 故选:C .【点睛】本题考查了有理数、无理数的概念,求一个数的立方根.以下几类无理数应知道:π或含有π的式子;开不尽方的数以及它们与有理数的和、差、积、商也都是无理数;还有如0.070070007⋯(每两个7之间依次多一个0)这样的数也是无理数. 9.C【分析】根据绝对值的定义可求解.【详解】由图可得:﹣1<a <0,1<b <2△|a|<|b|故选:C .【点睛】本题考查了实数与数轴,解决本题的关键是熟练掌握绝对值的定义.10.A【分析】利用两个非负数的平方性质可判断A ,利用不等式性质可判断B ,C ,利用举反例可判断D .【详解】解:A . 若||a b >,则22a b >,故选项A 正确;B . 若a >b >0,则11a b <;若0>a >b ,则11a b <;若a >0>b ,则11a b>,故选项B 不正确;C . 若a b >,c≠0,则22ac bc >;若a b >,c=0则22=ac bc ,故选项C 不正确;D . 若,a b c d >>,例如0>-2,-3>-7,则0-(-3)<-2-(-7),则a c b d ->-不一定成立,故选项D 不正确.故选择A .【点睛】本题考查不等式的性质,掌握不等式的性质以及举反例方法是解题关键. 11.C【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,0a <,0b >,△a b <,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,a b -<,故D 错误.故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.12.C【分析】首先根据四边形ABCD 是平行四边形,可得DC△AB ,DC=AB ,再根据E 、F 分别是边AB 、CD 的中点,可得DF=FC=12DC ,AE=EB=12AB ,进而可根据一组对边平行且相等的四边形是平行四边形证明四边形DFBE 和CFAE 都是平行四边形,再根据平行四边形的性质可得DE△FB ,AF△CE ,进而可证出四边形FHEG 是平行四边形.【详解】解:△四边形ABCD 是平行四边形, △DC△AB ,DC=AB ,△E 、F 分别是边AB 、CD 的中点,△DF=FC=DC,AE=EB=AB,△DC=AB,△DF=FC=AE=EB,△四边形DFBE和CFAE都是平行四边形,△DE△FB,AF△CE,△四边形FHEG是平行四边形,故选C.【点睛】此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形的性质定理和判定定理.13.B【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】△AB的垂直平分线交AB于点D,△AE=BE,△△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,△AB=△ABC的周长-△ACE的周长=19-13=6,故答案为:B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.14.B【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【详解】解:△已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.△两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.△如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.△一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.【点睛】本题考查了轴对称的性质,等边三角形的判定,全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.D【分析】根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.【详解】解:△四边形ABCD 是矩形,△△C=90°,AB=CD ,AD△BC ,AD=BC ,△ED=5,EC=3,△DC 2=DE 2-CE 2=25-9=16,△DC=4,AB=4;△AD△BC ,△△AEB=△DAE ;△AE 平分△BAD ,△△BAE=△DAE ,△△BAE=△AEB ,△BE=AB=4,△BC=BE+EC=7,△矩形ABCD 的周长=2(4+7)=22.故选:D .【点睛】该题主要考查了矩形的性质、勾股定理、等腰三角形的判定等知识;解题的关键是灵活运用矩形的性质和等腰三角形的判定.16.D【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x 的值,代入整式方程求出m 的值即可.【详解】分式方程去分母得:322(1)x m x --=+,解得,4x m =+,由分式方程有增根,得到x+1=0,即x=-1,△4+1m =-解得,m=-5;故选:D .【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:△让最简公分母为0确定增根;△化分式方程为整式方程;△把增根代入整式方程即可求得相关字母的值. 17.B【分析】易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s 跑完总路程400可得乙的速度,进而求得80s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c 的值.【详解】由函数图象可知,甲的速度为824÷=(米/秒),乙的速度为400805÷=(米/秒),8(54)8∴÷-=(秒),8a ∴=,故△正确;5804(802)400328b =⨯-⨯+=-72=(米)故△正确;4004298c =÷-=(秒)故△正确;∴正确的是△△△.故选B .【点睛】本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键.18.C【分析】△由等边三角形与等腰直角三角形知△CAD 是等腰三角形且顶角△CAD =150°,据此可判断;△求出△AFG 和△F AG 度数,从而得出△AGF 度数,据此得出答案;△根据ASA 证明△ADF △△BAH 即可判断;△由△BAE =45°,△ADC =△BAH =15°,则△EAH =30°,DF =2EH 即可得出.【详解】解:△△ABC 为等边三角形,△ABD 为等腰直角三角形,△△BAC =60°,△BAD =90°,AC =AB =AD ,△ADB =△ABD =45°,△△CAD 是等腰三角形,且顶角△CAD =150°,△△ADC =15°,故△正确;△AE △BD ,即△AED =90°,△△DAE =45°,△△AFG =△ADC +△DAE =60°,△F AG =45°,△△AGF =75°,△△AFG 三个内角都不相等,△△AFG 不是等腰三角形,故△错误;由AH △CD 且△AFG =60°知△F AH =30°,则△BAH =△ADC =15°,在△ADF 和△BAH 中,△ADF =△BAH ,DA =AB ,△△ADF △△BAH (ASA ),故△正确;△△ABE =△EAB =45°,△ADF =△BAH =15°,△DAF =△ABH =45°,△△EAH =△EAB -△BAH =45°-15°=30°,△AH =2EH ,△EH =1,△ADF △△BAH (ASA )△DF =AH ,△DF =AH =2EH =2,故△正确;故选:C .【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握直角三角形的性质、等腰三角形与等边三角形的性质、全等三角形的判定与性质等知识点的应用.19.B【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点1234,,,B B B B 的坐标,根据点的坐标的变化可找出变化规律“点n B 的坐标为()n n-12-12,(n 为正整数)”,再代入n=2019即可得出n B 的坐标,然后再将其横坐标减去纵坐标得到n A 的横坐标,n A 和n B 的纵坐标相同.【详解】解:当0x=时,y=x+1=0+1=1,△点A 1的坐标为(0,1).△四边形A 1B 1C 1O 为正方形,△点B 1的坐标为(1,1),点C 1的坐标为(1,0).当x=1时,y=x+1=1+1=2,△点A 2的坐标为(1,2).△A 2B 2C 2C 1为正方形,△点B 2的坐标为(3,2),点C 2的坐标为(3,0).同理,可知:点B 3的坐标为(7,4),点B 4的坐标为(15,8),点B 5的坐标为(31,16),…,△点n B 的坐标为()n n-12-12,(n 为正整数), △点2019B 的坐标为()2019201821,2- ,△点2019A 的坐标为()2019201820182-1-22,,即为()201820182-12, . 故选B .【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.20.30°或150°.【分析】利用等腰三角形的性质和含30度角的直角三角形的性质,分三角形是锐角三角形和钝角三角形,两种情况,即可求解.【详解】解:△如图,△ABC 中,AB =AC ,CD △AB 且CD =12AB , △△ABC 中,CD △AB 且CD =12AB ,AB =AC , △CD =12AC , △△A =30°.△如图,△ABC 中,AB =AC ,CD △BA 的延长线于点D ,且CD =12AB , △△CDA =90°,CD =12AB ,AB =AC , △CD =12AC , △△DAC =30°,△△A =150°.故答案为30°或150°.【点睛】本题考查含30度角的直角三角形,等腰三角形的性质,注意要分三角形是锐角三角形和钝角三角形两种情况.21.10【分析】由图可知甲乙相距10m ,在1s 时两人相遇,当x=2.5s 时乙丙完成交接,然后x=15s时,丙到达终点,进而可根据此信息求出乙的速度,设甲的速度为am/s,然后可求解.【详解】解:由图可知:甲乙相距10m,在1s时两人相遇,当x=2.5s时乙丙完成交接,然后x=15s时,丙到达终点,△乙跑完10m用时2.5s,则速度为:10 2.54÷=m/s,设甲的速度为a m/s,则有:()4110a+⨯=,a=,故甲的速度为6m/s,解得:6-⨯=;则丙到达终点时,甲距终点的距离为:10061510m故答案为10.【点睛】本题主要考查函数图像,关键是根据函数图像得到相关信息,然后求解即可.22.15【分析】根据平行四边形的性质,三角形周长的定义即可解决问题.【详解】解:△四边形ABCD是平行四边形,△AD=BC=6,OA=OC,OB=OD,△AC+BD=18,△OB+OC=9,△△BOC的周长=BC+OB+OC=6+9=15.故答案为:15.【点睛】本题考查平行四边形的性质,三角形的周长等知识,解题的关键是熟练掌握平行四边形的对角线互相平分,属于中考常考题型.23.6【分析】根据题意表示出a和b的值,进而得出答案.【详解】解:3<13<4∴=,33ab=2∴+a b2=33=6故答案为:6.【点睛】本题考查了估计无理数的大小,代数式求值等知识点的应用,解题的关键是求出无理数的取值范围.24.25算出边长,从而求算面积.【详解】△正方形的对角线长为△正方形的边长为5=△正方形的面积为25故答案为:25是解题关键.25.(-【分析】分别过点A 作AD x ⊥轴于点,D CE x ⊥于点E ,由“一线三等角”证明()ADO OEC AAS ≅,结合正方形的性质解得1AD OE DO EC ====,由此解题.【详解】解:如图,分别过点A 作AD x ⊥轴于点,D CE x ⊥于点E ,90AOC ∠=︒90AOD COE ∴∠+∠=︒+90DAO AOD ∠∠=︒DAO COE ∴∠=∠在正方形AOCB 中,ADO OEC AO OC ∠=∠=,()ADO OEC AAS ∴≅,AD OE DO EC ∴== (3,1)C1AD OE DO EC ∴====(A ∴-故答案为:(-.【点睛】本题考查全等三角形的判定与性质、正方形的性质、坐标与象限等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.21cm【分析】过正方形ABCD 的中心O 作OM △CD 于M ,作ON △BC 于N ,则易证△OEM △△OFN ,根据已知可求得一个阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n −1阴影部分的和,即可得出结果.【详解】解:如图,过正方形ABCD 的中心O 作OM △CD 于M ,作ON △BC 于N ,则△EOM =△FON ,OM =ON ,在△OEM 和△OFN 中,OME ONF OM ONEOM FON ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△OEM △△OFN (ASA ),则四边形OECF 的面积就等于正方形OMCN 的面积,如正方形ABCD 的边长是1,则OMCN 的面积是214cm , △得阴影部分面积等于正方形面积的214cm ,△5个这样的正方形重叠部分(阴影部分)的面积和为21414cm ⨯=, 故答案为:21cm . 【点睛】考查了正方形的性质、全等三角形的判定与性质,解决本题的关键是找到规律,难点是求得一个阴影部分的面积.27.75°【分析】由旋转的性质可得AO =CO ,△AOC =30°,由等腰三角形的性质可求解.【详解】解:△△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,△AO =CO ,△AOC =30°,△△A =△ACO =280013︒-︒=75°, 故答案为:75°.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键. 28.邻边相等(或对角线互相垂直)【分析】根据正方形的性质及判定方法在矩形的基础上只要邻边相等或对角线互相垂直就可以.【详解】解:当邻边相等(或对角线互相垂直)时,矩形就是正方形.故答案为:邻边相等(或对角线互相垂直).【点睛】本题考查正方形的判定,熟练掌握正方形的判定方法是解答的关键.29 【分析】首先利用勾股定理列方程求出AD 的长,再代入求BD ,进而利用三角形的面积公式即可.【详解】解:如图,2AB =,3BC =,4AC =,过点B 作BD AC ⊥于D ,设AD x =,4CD x =-,BD AC ⊥,90ADB BDC ︒∴∠=∠=,222223(4)x x ∴-=--,解得118x =, 118AD ∴=,BD ∴=11422S AC BD ∴=⨯=⨯=,. 【点睛】本题考查了勾股定理,解题的关键是根据题意求出三角形的高.30.2.5【分析】根据平移的性质可得AC DF =,从而由AG AC GC =-求解即可.【详解】由平移的性质可得:45AC DF .==,△45225AG AC GC ..=-=-=,故答案为:2.5.【点睛】本题考查图形平移的性质,理解基本性质是解题关键.31.18【分析】由等腰三角形的一个外角为120°,则这个外角所对的内角为60°,即可判定这个等腰三角形是等边三角形,由此求得该三角形的周长即可.【详解】一个外角为120°,则这个外角所对的内角为60°,又因为是等腰三角形,所以这个三角形为等边三角形,所以周长为6×3=18.故答案为18.【点睛】本题考查了等边三角形的判定与性质,证得这个三角形为等边三角形是解决问题的关键.32.二【分析】根据两直线平行一次项系数相等,可列出关于k 的方程,求出k ,即可判断y=kx-3经过的象限;【详解】△y=kx-3与y=(3k-1)x+2互相平行,△ k=3k-1,解得:k=12, △ y=kx-3=12x-3,经过一、三、四象限,不经过第二象限;故答案为:二.【点睛】本题考查了一次函数图象的性质与系数之间的关系,熟练掌握知识点是解题的关键;33.6【详解】画出图形如下所示:△菱形的周长为24,△菱形的边长为6,△两邻角之比为1:2,△较小角为60°,△△ABC=60°,AB=BC=6,△△ABC 是等边三角形,△AC=6,故答案为:6.34.AC=A 1C 1(或△B=△B 1,△C=△C 1,答案不唯一).【分析】根据全等三角形的判定定理添加即可.【详解】添加AC=A 1C 1后可根据SAS 判定ABC△△A 1B 1C 1,添加△B=△B 1后可根据ASA 判定ABC△△A 1B 1C 1,添加△C=△C 1后可根据AAS 判定ABC△△A 1B 1C 1,故答案为:AC=A 1C 1(或△B=△B 1,△C=△C 1,答案不唯一).【点睛】此题考查全等三角形的判定定理,熟记判定定理并运用解题是关键.35. 8 212n +【分析】设直线4y x =+与x 轴交于H ,求出14OA OH ==,得到145A HO =︒∠,则直线与坐标轴相交构成的三角形是等腰直角三角形,再求出第n 个正方形的边长为12n +,再根据三角形面积公式进行求解即可.【详解】解:设直线4y x =+与x 轴交于H ,当0x =时,4y =,当0y =时,4x =-,△14OA OH ==,△145A HO =︒∠,△直线4y x =+与x 轴的夹角为45°,△直线与坐标轴相交构成的三角形是等腰直角三角形,△14OA =,即第一个正方形的边长为4,△114OC OA ==,△2118A C HC ==,即第二个正方形的边长8,同理可得3316A C =,即第三个正方形的边长为16,…,△可知第n 个正方形的边长为12n +, △41124422S =⨯⨯=, 62128822S =⨯⨯=, 8212161622S =⨯⨯=, …,2211211222222n n n n n S ++++=⨯⨯== 故答案为:8;212n +.【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质,等腰直角三角形的性质与判定,根据直线解析式判断出等腰直角三角形是解题的关键,也是本题的难点.36.23-【分析】根据不等式组的解集情况列方程求,m n 的值,从而求解.【详解】解:21x m n x m -≥⎧⎨-≤⎩①②, 由△得x m n ≥+,由△得()112x m ≤+, 关于x 的一元一次不等式组21x m n x m -≥⎧⎨-≤⎩的解集为35x ≤≤, ()31152m n m +=⎧⎪∴⎨+=⎪⎩,解得96m n =⎧⎨=-⎩, 6293n m -∴==-. 【点睛】本题考查代数式求值,涉及到解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.37.1或-3.【分析】分式方程去分母转化为整式方程,去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0. 【详解】3101ax x +-=-, ()310ax x +-=﹣即:()14a x -=-△当1a =时,整式方程无解,分式方程无解;当1a ≠时,41x a -=- 1x =时,分式的分母为0,方程无解, 即411a --,解得:3a =-, 因此3a =-时,方程无解.故答案为:1或-3.【点睛】本题主要考查解分式方程,去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.38.BE =DF【分析】添加BE =DF ,证明四边形AECF 的对角线互相平分即可.【详解】添加BE =DF ,△四边形ABCD 是平行四边形,△AO =CO ,BO =DO ,△BE =DF ,△BO −BE =DO −DF ,△EO =FO ,△四边形AECF 是平行四边形.故答案为BE =DF .【点睛】本题考查的是平行四边形.熟练掌握平行四边形的判定与性质是解题的关键. 39.【分析】延长EA 交FD 的延长线于点M ,可证明EMF 是等腰直角三角形,而EM=MF=AE+DF=7,所以利用勾股定理即可求出EF 的长.【详解】解:如图所示,延长EA 交FD 的延长线于点M ,△四边形ABCD 是正方形,△AB=BC=CD=AD=5,又△AE=FC=3,BE=DF=4,△222AE BE =AB +,222FC DF =CD +, △ABE 和CDF 皆是直角三角形, 在ABE 和CDF 中,AE=CF BE=DF AB=CD ⎧⎪⎨⎪⎩△ABE△CDF (SSS ),△△EAB=△FCD ,△EBA=△FDC ,△EAB+△EBA=90°,△CDF+△FDC=90°,△△EAB+△CDF=90°,△MAD+△MDA=90°,故△M=90°, △EMF 是直角三角形,△△EAB+△MAD=90°,△MAD +△MDA=90°,△△EAB=△MDA ,在ABE 和DMA 中,AEB=M=90EAB=MDA AB=DA ∠∠︒⎧⎪∠∠⎨⎪⎩△ABE△DMA (AAS ),△AM=BE=4,MD=AE=3,△EM=MF=7,△故答案为:【点睛】本题考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性较强,证明出EMF 是等腰直角三角形是解题的关键.40.-3【分析】先依据平方根算术平方根的定义得到2a−1=±3,b−1=4小,于是可得到c 的值.【详解】2a ﹣1的平方为9,△2a ﹣1=±3,解得:a =2或a =﹣1.△b ﹣1的算术平方根是2,△b ﹣1=4,解得b =5.△c△c =3. 当a =2时,a ﹣b +c =2﹣5+3=0;当a =﹣1时,ab +c =﹣1﹣5+3=﹣3.【点睛】本题考查估算无理数的大小,求得a 、b 、c 的值是解题的关键.41.(1)见解析(2)90°【分析】(1)由等边三角形的性质得出AB =BC =AC ,△ABC =△ACB =60°.可证明△BCD △△ACE ;(2)证得AC =CE ,得出△CAE =△E ,可求出△E =30°,由三角形的内角和定理可求出答案.(1)解:△△ABC 是等边三角形,△AB =BC =AC ,△ABC =△ACB =60°.△△DBC =△ECA =120°.△AD =BE ,△AD ﹣AB =BE ﹣BC ,即BD =CE .在△BCD 和△ACE 中,BC CA DBC ECA BD CE =⎧⎪∠=∠⎨⎪=⎩,△△BCD △△ACE (SAS );(2)解△△BE =2BC ,△BC =CE ,△AC =BC ,△AC =CE ,△△CAE =△E ,△△ACB =△CAE +△E =60°,△△E =30°,△△ABE +△E +△BAE =180°,△ABE =60°,△△BAE =180°﹣△ABE ﹣△E =90°.【点睛】本题主要考查等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.42.(1)55;(2)0【分析】(1的取值范围进而得出答案;(2【详解】解:(1)<56∴<,55;故答案为:55;。

八年级数学月考必考题试卷

八年级数学月考必考题试卷

一、选择题(每题5分,共25分)1. 若方程2x - 3 = 5的解为x = 3,则方程4x - 6 = 10的解为()A. x = 3B. x = 4C. x = 5D. x = 62. 在△ABC中,若∠A = 45°,∠B = 90°,∠C = 45°,则△ABC是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形3. 若a、b、c是三角形的三边,且a + b = c,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不存在4. 若等差数列{an}的首项为a1,公差为d,则第n项an =()A. a1 + (n - 1)dB. a1 + ndC. a1 - (n - 1)dD. a1 - nd5. 若函数f(x) = 2x + 3,则f(-1) =()A. -1B. 1C. 2D. 3二、填空题(每题5分,共25分)6. 若方程2(x - 3) + 4 = 5的解为x = 3,则方程4(2x + 1) - 3 = 11的解为______。

7. 在△ABC中,若∠A = 60°,∠B =30°,则∠C = ______。

8. 若等差数列{an}的首项为2,公差为3,则第5项an = ______。

9. 若函数f(x) = -x + 4,则f(2) = ______。

10. 若点A(2, 3)关于x轴的对称点为B,则点B的坐标为______。

三、解答题(每题10分,共40分)11. (10分)已知方程2x - 5 = 3的解为x = 4,求方程3x + 2 = 11的解。

12. (10分)在△ABC中,若∠A = 90°,∠B = 45°,求∠C的大小。

13. (10分)已知等差数列{an}的首项为1,公差为2,求第10项an。

14. (10分)若函数f(x) = x^2 + 2x - 3,求f(2)的值。

八年级数学测试题及答案

八年级数学测试题及答案

八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333…(循环小数)答案:C2. 已知a > 0,b < 0,c < 0,下列不等式成立的是:A. a + b < 0B. a - c > 0C. b - c < 0D. a × b < 0答案:D3. 若x² + 5x + 6 = 0,下列哪个是方程的解?A. x = -1B. x = -6C. x = -2 或 x = -3D. x = 2 或 x = 3答案:C4. 下列哪个是二次根式?A. √3x²C. √xD. √x²答案:B5. 函数y = 3x + 5的斜率是:A. 3B. 5C. -3D. -5答案:A6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A7. 已知一个数列1, 3, 5, 7, ...,这个数列的第10项是:A. 17B. 19C. 21D. 23答案:B8. 下列哪个是完全平方数?B. 25C. 27D. 29答案:B9. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B10. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是:A. 24B. 12C. 36D. 48答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。

答案:1612. 一个数的相反数是-7,这个数是________。

答案:713. 一个数的绝对值是5,这个数可能是________或________。

答案:5 或 -514. 一个二次方程的一般形式是________。

答案:ax² + bx + c = 0(a≠0)15. 一个正数的倒数是1/8,这个正数是________。

八年级上册数学必刷题人教版

八年级上册数学必刷题人教版

八年级上册数学必刷题人教版一、三角形部分1. (1)已知三角形的两边长分别为3和5,第三边的长为偶数,则第三边的长可以是多少?解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则5 3<x<5+3,即2<x<8。

因为x为偶数,所以x = 4或6。

2. (2)在△ABC中,∠A=30°,∠B = 60°,求∠C的度数。

解析:因为三角形内角和为180°,在△ABC中,∠C=180°∠A ∠B = 180°-30° 60° = 90°。

二、全等三角形部分1. (1)如图,在△ABC和△DEF中,AB = DE,∠B=∠E,BC = EF,求证:△ABC ≌△DEF。

解析:在△ABC和△DEF中,已知AB = DE,∠B = ∠E,BC = EF。

根据全等三角形判定定理中的“边角边”(SAS),可以得出△ABC≌△DEF。

2. (2)已知△ABC≌△A'B'C',△ABC的周长为20cm,AB = 8cm,BC = 6cm,求A'C'的长。

解析:因为△ABC≌△A'B'C',全等三角形的对应边相等。

△ABC的周长为AB+BC + AC=20cm,已知AB = 8cm,BC = 6cm,则AC=20 8 6 = 6cm,所以A'C'=AC = 6cm。

三、轴对称部分1. (1)点A(2, 3)关于x轴对称的点A'的坐标是多少?解析:关于x轴对称的点,横坐标相同,纵坐标互为相反数。

所以点A(2, 3)关于x轴对称的点A'的坐标是(2,3)。

2. (2)已知等腰三角形的一个角为70°,求这个等腰三角形的顶角度数。

解析:当70°角为底角时,顶角为180° 70°×2 = 40°;当70°角为顶角时,顶角度数就是70°。

八年级上册数学复习题及答案

八年级上册数学复习题及答案

八年级上册数学复习题及答案做数学复习题时要有自己的思路。

下面是小编为大家精心整理的八年级上册数学复习题,仅供参考。

八年级上册数学复习题一、选择题.1.如图6,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是( ).A.BD+ED=BCB.DE平分∠ADBC.AD平分∠EDCD.ED+AC>AD2.如图7:△ABC中,∠C=90°,E是AB中点,D在∠B的平分线上,DE⊥AB,则( ).A.BC>AEB.BC=AEC.BC3.下列命题正确的是( ).A.三角形的一个外角等于两个内角和B.三角形的一个外角大于任何一个内角C.有两边和一角对应相等的两个三角形全等D.有两边对应相等的两个直角三角形全等二、证明题.4.如图,AD是∠BAC的角的平分线,DB⊥AB,DC⊥AC,B、C 是垂足,那么EB与EC•的关系是怎样的呢?请证明你的结论.5.如图,在△ABC中,外角∠CBD和∠BCE的平分线交于F,那么点F是否在∠DAE的平分线上?请证明你的结论.三、探索题:6.△ABC中,∠C=90°,AC=BC,AD是角的平分线,探索:在AB 上是否存在点E,DE•不与AB垂直,而△BDE之周长等于AB的长.若点E存在,请你出证明;若点E不存在,请说明理由.四、聚焦中考:7.下面是一个正确的命题:在下图中,如果BD⊥AC,CE⊥AB,CE与BD相交于点O,并且BO=CO,那么∠1=∠2,如果把上面的命题中的“BO=CO”改为结论,把“∠1=∠2”移入条件,所得到的命题是正确的命题,还是不正确的命题?请给出证明:如果是不正确的命题,则举出反例.八年级上册数学复习题参考答案一、1.B 2.B 3.D二、4.提示:∵∠BAD=∠CAD,AD=AD,∠DBA=∠DCA,∴△ABD≌△ACD,∴∠ADB=∠ADC,BD=DC,又∵DE=DE,∴△BDE≌△CDE,∴BE=EC5.过F作FM⊥AD于M,作FN⊥AE于N,作FP⊥BC于P,∵BF是∠DBC平分线, ∴FM=FP,同理FN=FP,∴FM=FN,∴F在∠DAE平分线上.三、6.不存在,作DH⊥AB于H,设点F在AB上,且AF=BD,点E是HB上任一点,有FE=FH+HE,又可证得DH=DC,△BDE的周长等于AB的长,由三角形三边关系得FE=•EH+•DH>DE,所以“周长”BD+DE+EB同样可证:AH•上任一点也不满足题目要求.四、7.是正确命题,可先用“AAS”证△AOE≌△AOD,再证△DEG≌△DFH.。

八年级数学目标复习检测卷附答案

八年级数学目标复习检测卷附答案

八年级数学目标复习检测卷附答案一、选择题共10小题,每题3分,共30分1.下列各式中是二次根式的是a.b.c.d.2.要使二次根式有意义,x的取值范围是a.x≠b.x>c.x≥d.x≥6-3.下列计算正确的是a.b.c.d.4.等式成立的条件是a.x>1b.x<-1c.x≤-1d.x≥15.△abc的三边分别为下列各组值,其中不是直角三角形三边的是a.a=41,b=40,c=9b.a=1.2,b=1.6,c=2c.a=,b=,c=d.a=,b=,c=16.例如图,平行四边形abcd中,e、f就是对角线bd上的两点,如果嵌入一个条件并使△abe≌△cdf,则嵌入的条件无法就是a.ae=cfb.be=fdc.bf=ded.∠1=∠27.若,,则x2-y2的值a.b.c.0d.28.△abc中,ab=15,ac=13,bc边上的高ad=12,则△abc的周长为a.42b.32c.42或32d.37或339.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠bac=90°,ab=3,ac=4,点d,e,f,g,h,i都在矩形klmj的边上,则矩形klmj的面积为a.90b.100c.110d.12110.如图,ad为等边△abc边bc上的高,ab=4,ae=1,p为高ad上任意一点,则ep+bp的最小值为a、b.c.d.二、填空题共6小题,每题3分,共18分11.若是整数,则最轻的正整数a的值就是_________12.化简:=________;=________;=________;13.例如图,圆柱形容器杯低16cm,底面周长20cm,在距杯底3cm的点b处为一滴蜂蜜,此时蚂蚁在离杯上沿2cm与蜂蜜相对的a处为,则蚂蚁从a处爬到至b处的蜂蜜最短距离为________14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=________15.例如图就是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸单位:mm,排序两圆孔中心a和b的距离为_________mm16.如图,在等边三角形△abc中,射线ad四等分∠bac交bc于点d,其中∠bad>∠cad,则=________三、答疑题共8小题,共72分后17.本题8分排序:1218.本题8分如图,在平行四边形abcd中,∠c=60°,m、n分别是ad、bc的中点,bc=2cd1澄清:四边形mncd就是平行四边形2求证:bd=mn19.本题8分后1未知,,谋的值2求代数式20.本题8分如图①就是一个直角三角形纸片,∠a=30°,bc=4cm,将其卷曲,使点c 落到斜边上的点c′处,折痕为bd,例如图②,再将②沿de卷曲,使点a落到dc′的延长线上的点a′处,例如图③1求证:ad=bd2谋折痕de的长21.本题8分正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.1三角形三边短为4,、2平行四边形有一锐角为45°,且面积为622.本题10分如图,在平行四边形abcd中,ab=6,∠bad的平分线与bc的延长线处设点e、与dc处设点f,且点f为边dc的中点,∠adc的平分线交ab于点m,交ae于点n,相连接de1求证:bc=ce2若dm=2,谋de的长23.本题10分在四边形abcd中,ab=ac,∠abc=∠adc=45°,bd=6,dc=41当d、b在ac同侧时,谋ad的长2当d、b在ac两侧时,求ad的长24.本题12分如图,在平面直角坐标系则中,∠aco=90°,∠aoc=30°,分别以ao、co为边向外并作等边三角形△aod和等边三角形△coe,df⊥ao于f,连de交ao于g1求证:△dfg≌△eog2b为ad的中点,连hg,澄清:cd=2hg3在2的条件下,ac=4,若m为ac的中点,求mg的长一、1c2c3c4d5c6a7a8c9c10b9.提示:如图,延长ab交kf于点o,延长ac交gm于点p∴四边形aolp就是正方形,边长ao=ab﹢ac=3﹢4=7∴kl=3﹢7=10,lm=4﹢7=11,∴矩形klmj的面积为10×11=110二、11.512.;;13.14.2<<32<5-<3m=2,n=3-23-a+3-2b=16a+16b-2a+6b=1,∵a、b为有理数,∴6a+16b=1且2a+6b=0,解得a=1.5,b=-0.52a+b=3-0.5=2.515.15016.作dm⊥ab或nd⊥bc三、17.求解:1;218.证明:1∵abcd是平行四边形∴ad=bc,ad∥bc∵m、n分别就是ad、bc的中点∴md=nc,md∥nc∴mncd是平行四边形2例如图:相连接nd∵mncd是平行四边形∴mn=dc∵n是bc的中点∴bn=cn∵bc=2cd,∠c=60°∴△ncd就是等边三角形∴nd=nc,∠dnc=60°∵∠dnc是△bnd的外角∴∠nbd﹢∠ndb=∠dnc∵dn=nc=nb∴∠dbn=∠bdn=∠dnc=30°∴∠bdc=90°∴db=dc=mn19.解:18;2120.证明:1由凸状所述,bc′=bc=4在rt△abc中,∠a=30°,bc=4cm∴ab=2bc=8cm∴ac′=8-4=4cm∴ac′=bc′又∠dc′b=∠c=90°∴dc′为线段ab的垂直平分线∴ad=bd2∠edc′=30°在r t△dcb中,∠dbc′=30°∴dc′==在rt△dc′e中,∠edc′=30°∴de=dc′=21.例如图:22.证明:1ae平分∠bad∠dae=∠bae=∠afd∴ad=fd又∠efc=∠afd,∠fec=∠fad∴∠efc=∠cef∴ce=cf∵f为cd的中点∴ce=cf=df=ad=bc2连接fm则四边形adfm为菱形∴dm⊥af,dn=mn=1∴an=nf=,en=在rt△dne中,23.解:1过点a作ae⊥ad交dc的延长线于e∵∠adc=45°∴△ade为等腰直角三角形∵ab=ac,∠abc=45°∴△abc为全等直角三角形可以证:△abd≌△acesas∴ce=bd=6,de=10∴ad=de=2过点a作ae⊥ad且使ae=ad,相连接ce由此可知:△abd≌△acesas ∴bd=ec=6,∠cde=∠adc﹢∠ade=90°在rt△cde中,∴ad=de=24.证明:1∵∠aoc=30°∴∠goe=90°设ac=a,则oa=2a,oe=oc=在等边△aod中,df⊥oa∴df=∴df=oe由此可知:△dfg≌△eogaas2连接ae∵h、g分别为ad、de的中点∴hg∥ae,hg=ae根据共顶点等腰三角形的转动模型可以证:△doc≌△aoesas∴dc=ae∴dc=2hg 3连接hm∵h、m分别为ad、ac的中点∴hm=cd∴hm=hg又∠dhg=∠dae=60°+∠oae=60°+∠odc∠ahm=∠adc∴∠mhg=180°-∠ahm-∠dhg=180°-∠adc-60°-∠odc=120°-∠adc-∠odc=120°-∠aod=60°∴△hmg为等边三角形∵ac=4∴oa=od=8,oc=,cd=∴mg=hg=cd=猜你感兴趣:。

八年级数学基础题

八年级数学基础题

八年级数学基础题
一、三角形相关基础题
1. 已知三角形的两边长分别为3cm和5cm,第三边的长为偶数,则第三边的长可能是多少?
- 解析:
- 根据三角形三边关系,三角形任意两边之和大于第三边,任意两边之差小于第三边。

- 设第三边的长为公式cm,已知两边长为3cm和5cm,则公式
,即公式。

- 因为第三边的长为偶数,所以公式或公式。

2. 在公式中,公式,求公式的度数。

- 解析:
- 因为三角形内角和为公式,设公式,则公式。

- 根据三角形内角和公式可得公式。

- 合并同类项得公式,解得公式,即公式。

二、全等三角形基础题
1. 如图,已知公式,公式,公式,求证:公式。

- 解析:
- 因为公式,所以公式(等角的补角相等)。

- 在公式和公式中,公式。

- 根据“公式”(角角边)全等判定定理,可得公式。

- 全等三角形的对应边相等,所以公式。

2. 已知公式,公式的周长为公式,公式,公式,求公式的长。

- 解析:
- 因为公式的周长为公式,公式,公式
,根据三角形周长公式公式,可得公式。

- 又因为公式,全等三角形对应边相等,所以公式。

三、整式乘法与因式分解基础题
1. 计算公式。

- 解析:
- 根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。

- 公式
- 公式。

2. 分解因式公式。

- 解析:
- 这是一个平方差的形式,根据平方差公式公式
,这里公式,公式。

- 所以公式。

初二数学复习练习题

初二数学复习练习题

初二数学复习练习题1. 计算下列各题:a) 5 + 3 × 2 = ?b) (7-2)² = ?c) 24 ÷ 4 × 2 = ?d) (√9)² = ?2. 将下列各题中的代数式化简:a) 3x + 2 + 5x - 3b) 4(2x - 3) - 3(x + 2)c) 2(x - 3) + 4(x + 1) - 5xd) 12 - (3x + 2) + (4x - 5)3. 求解下列方程:a) 2x + 3 = 9b) 5(x + 2) = 35c) 3(x - 1) = 21d) 4(2x - 3) = 404. 计算下列各题中的面积和周长:a) 一个长方形的长为5cm,宽为3cm。

b) 一个正方形的边长为6cm。

c) 一个圆的半径为2.5cm。

d) 一个三角形的底边长为4cm,高为3cm。

5. 解决下列关于比例的问题:a) 如果6个苹果卖价为3美元,那么9个苹果的卖价是多少?b) 如果1辆汽车耗油7升可以行驶200公里,那么耗油13升可以行驶多少公里?c) 如果8个砖块修建一座墙需要10天,那么12个砖块修建同样的墙需要多少天?d) 在一副地图中,1英寸表示15英里的比例尺。

如果两个城市的距离是6英寸,那么实际距离是多少英里?6. 计算下列各题中的百分数:a) 35% × 80b) 20% of 250c) 15% off a $60 shirtd) 75% ÷ 25%7. 解决下列几何问题:a) 两条平行线间的夹角是多少?b) 一个四边形的内角和是多少?c) 一个正五边形的外角是多少?d) 一个圆的周长和面积是多少?8. 解决下列统计问题:a) 一组数据的平均值是35,如果增加10个数据后,平均值会是多少?b) 一个骰子投掷6次,出现4的次数是多少?c) 一袋中有8个红色球和12个蓝色球,如果随机取出一个球,取到红色球的概率是多少?d) 一组数据的中位数是75,如果增加一个最小值为80的数据,中位数会变为多少?这些题目覆盖了初二数学的多个知识点,帮助你巩固复习数学的各个方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学复习题
1.计算题
(1

(2)解方程组⎩⎨⎧=+-=-23342152y x y x
2.(本题共6分)如图,菱形ABCD 的面积等于24,对角线BD =8。

(1
)求对角线AC 的长;
(2)建立适当的直角坐标系,表示菱形各顶点的坐标。

3、在矩形ABCD 中,两条对角线AC 、BD 相交于O ,︒=∠30ACB ,AB=4
(1)判断△AOB 的形状;并说明理由。

(2)求对角线AC 、BD 的长。

4、甲、乙两人骑自行车分别从相距一定距离的A 、B A 地的距离s(千米)都是骑车时间t(时)的函数,图象如图所示.根据图像解决下列问题:
(1)出发时 在A 地,A 、B 两地相距 千米
(2)=甲v 千米/时,=乙v 千米/时。

(3)分别求出甲、乙在行驶过程中s(千米)与t(时)的函数关系式。

A B D C
5、“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产
小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生
产小麦、玉米各多少吨?
6. 已知:如图,在平行四边形ABCD 中,E 、F 分别在AB 、CD 上,且BE=DF ,问:AF ∥EC 吗?试说
明理由.
7、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农
随机摘下了10
①这10个西瓜质量的众数和中位数分别是 和 ;②计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?
8.
8
A
9、如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对角线AC BD , 相交于点O ,将
直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,.
(1)当旋转角为90 时,试说明四边形ABEF 是平行四边形;
(2)试说明在旋转过程中,线段AF 与EC 总保持相等;
F
E
D
C B
A 如左图,四边形ABCD 是平行四边形,D
B ⊥AD 求(1)BC,CD 的长度?
(2)OB,AC 的长度? (3)平行四边形ABCD 的面积?
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;
如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
A
B C D
O F E。

相关文档
最新文档