重点高中数学必修2测试卷
(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案
第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是容量为100的样本数据质量的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.402.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.83.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对4.根据某跑步团体每月跑步的平均里程(单位:公里)的数据绘制了如图所示的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳5.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一U发生的概率为()次试验中,事件A BA .13B .12C .23D .566.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,估计这时鱼塘中鱼的总质量为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A .①③B .①④C .②③D .②④8.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,10B .100,20C .200,10D .200,209.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A .25B .715C .1130D .1610.如图所示,小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A X 和B X ,方差分别为2A s 和2B s ,则()A .AB X X <,22A B s s >B .A B X X <,22A Bs s <C .A B X X >,22A B s s >D .A B X X >,22A Bs s <11.袋子中有四个小球,分别写有“美”“丽”“中”“国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到时停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中”“国”“美”“丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231131133231031320122130233由此可以估计,恰好第三次停止的概率为( )A .19B .318C .29D .51812.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个人能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(),p q =()A .11,66æöç÷èøB .11,26æöç÷èøC .11,24æöç÷èøD .11,23æöç÷èø二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.某单位青年、中年、老年职员的人数之比为11: 8: 6,从中抽取200名职员作为样本,则应抽取青年职员的人数为__________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.15.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值为__________.16.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为1白1黑的概率等于__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.[10分]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -的值.18.[12分]为了调查某市市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中4a b =.(1)求a,b的值;(2)求被调查的市民的满意程度的平均数、众数、中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,应如何抽取?19.[12分]某地区有小学21所,中学14所,大学7所。
高中数学必修二测试题及答案人教版
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
2024-2025学年高中数学选择性必修二综合测试卷
2024-2025学年高中数学选择性必修二综合测试卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n }的通项公式为a n =n 2+n.则12是该数列的第()A .2项B .3项C .4项D .5项2.中国跳水队是中国体育奥运冠军团队.自1984年以来,中国跳水队已经累计为我国赢得了40枚奥运金牌.在一次高台跳水比赛中,若某运动员在跳水过程中其重心相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=10-5t 2+5t ,则该运动员在起跳后1秒时的瞬时速度为()A .10米/秒B .-10米/秒C .5米/秒D .-5米/秒3.等差数列{a n }中,已知a 3+a 7=6,则S 9=()A .36B .27C .18D .94.设单调递增的等比数列{a n }满足1a 2+1a 4=1336,a 1a 5=36,则公比q =()A .32B .94C .2D .525.已知函数f(x)=sin x -mx 为增函数,则实数m 的取值范围为()A .(-∞,-1]B .[-1,1]C .(-1,1)D .[1,+∞)6.在一次劳动实践课上,甲组同学准备将一根直径为d 的圆木锯成截面为矩形的梁.如图,已知矩形的宽为b ,高为h ,且梁的抗弯强度W =16bh 2,则当梁的抗弯强度W 最大时,矩形的宽b 的值为()A .14dB .13dC .22d D .33d 7.十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段(13,23),记为第一次操作;再将剩下的两个区间[0,13],[23,1]分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:……;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为()(参考数据:lg 2=0.3010,lg 3=0.4771)A .4B .5C .6D .78.过点(0,b)作曲线y =e x 的切线有且只有两条,则b 的取值范围为()A .(0,1)B .(-∞,1)C .(-∞,1]D .(0,1]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知等差数列{a n }的公差为d ,前n 项和为S n ,且S 9=S 10<S 11,则()A .d <0B .a 10=0C .S 18<0D .S 8<S 910.已知函数f(x)与f′(x)的图象如图所示,则下列结论正确的为()A .曲线m 是f(x)的图象,曲线n 是f′(x)的图象B .曲线m 是f′(x)的图象,曲线n 是f(x)的图象C x )>f′(x )的解集为(0,1)D x )>f′(x )的解集为(1,43)11.已知函数f(x)=ln xx ,e 为自然对数的底数,则()A .f(2)<f (11)B .f (e )<f (π)C .f(8)<f(e 2)D .f (22)>1e12.某企业为一个高科技项目注入了启动资金2000万元,已知每年可获利20%,但由于竞争激烈,每年年底需从利润中取出200万元资金进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过n 年之后,该项目的资金为a n 万元.(取lg 2≈0.30,lg 3≈0.48),则下列叙述正确的是()A .a 1=2200B .数列{a n }的递推关系是a n +1=a n ×(1+20%)C .数列{a n -1000}为等比数列D .至少要经过6年,该项目的资金才可以达到或超过翻一番(即为原来的2倍)的目标三、填空题(本大题共4小题,每小题5分,共20分.)13.设数列{a n }为等差数列,若a 2+a 5+a 8=15,则a 5=________.14.在等比数列{a n }中,a 3=2,则前5项之积为____________.15.已知函数f(x)=e x -a(x +3),若f(x)有两个零点,则a 的范围是________________.16.已知函数f(x)=e x (x -1),则f(x)的极小值为____________;若函数g(x)=mx -12,对于任意的x 1∈[-2,2],总存在x 2∈[-1,2],使得f(x 1)>g(x 2),则实数m 的取值范围是____________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}满足a3=2,前4项和S4=7.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b4=a15,求数列{b n}的通项公式.18.(12分)记正项数列{a n}的前n项和为S n,已知a1=2,____________.从①S n=n2+3n2;②a n+1a n=n+2n+1;③a2n+1-a2n=a n+1+a n这三个条件中选一个补充在上面的横线处,并解答下面的问题:(1)求数列{a n}的通项公式;(2)的前n项的和T n,求证:T n<1.19.(12分)已知函数f(x)=-13x3+x2+3x+1.(1)求f(x)的单调区间及极值;(2)求f(x)在区间[0,6]上的最值.20.(12分)已知数列{a n}的通项公式为:a n+1n,0≤a n<12n-1,12≤a n<1,其中a1=67.记S n为数列{a n}的前n项和.(1)求a2021,S2022;(2)数列{b n}的通项公式为b n=S3n·2n-1,求{b n}的前n项和T n.21.(12分)已知函数f(x)=x sin x.(1)判断函数f(x)上的单调性,并说明理由;(2)求证:函数f(x)上有且只有一个极值点.22.(12分)已知函数f(x)=x-x ln x-1.(1)证明:f(x)≤0;(2)若e x≥ax+1,求a.答案解析1.解析:令a n=n2+n=12,解得:n=3(n=-4舍去).故选B.答案:B2.解析:由题意,h′(t)=-10t+5,故该运动员在起跳后1秒时的瞬时速度为h′(1)=-10+5=-5,故选D.答案:D3.解析:由题得S9=92(a1+a9)=92(a3+a7)=92×6=27.故选B.答案:B4.解析:因为{a n}为等比数列,所以a1a5=a2a4=36,所以1a2+1a4=a2+a4a2a4=a2+a436=1336,则a2+a4=13,又{a n}单调递增,所以q>1,解得:a2=4,a4=9,则q2=94,因为q>1,所以q=32.故选A.答案:A5.解析:f′(x)=cos x-m,由函数f(x)=sin x-mx为增函数,所以f′(x)=cos x-m≥0恒成立,即m≤cos x,由-1≤cos x≤1,所以m≤-1.故选A.答案:A6.解析:由题意,W=16bh2=16b(d2-b2)=-16b3+16d2b,故W′=-12b2+16d2=-12(b+3 3d)(b-33d),故当0<b<33d时,W′>0,当b>33d时,W′<0,故当b=33d时W取最大值.故选D.答案:D7.解析:第一次操作去掉的区间长度为13,第二次操作去掉两个长度为19的区间,长度和为29,第三次操作去掉四个长度为127的区间,长度和为427,……,第n 次操作去掉2n -1个长度为13n 的区间,长度和为2n -13n,于是进行了n 次操作后,所有去掉的区间长度之和为S n =13+29+…+2n -13n=1311-23=1-(23)n ,由题意可知,1-(23)n ≥45,即n lg 23≤lg 15,解得n ≥3.97,又n 为整数,所以需要操作的次数n 的最小值为4.故选A.答案:A8.解析:设切点为P (x 0,y 0),y ′=e x ,故过P (x 0,y 0)的切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0.故b =(1-x 0)e x 0有且仅有两根.设g (x )=(1-x )e x ,则g ′(x )=-x e x ,令g ′(x )>0则x <0,令g ′(x )<0则x >0,且g (0)=e 0=1,又当x <0时,g (x )>0,g (1)=0.故b=(1-x 0)e x 0有且仅有两根,则b 的取值范围为(0,1).故选A.答案:A9.解析:∵S 9=S 10,∴a 10=S 10-S 9=0,所以B 正确;又S 10<S 11,∴a 11=S 11-S 10=a 10+d >0,∴d >0,所以A 错误;∵a 10=0,d >0,∴a 9<0,S 18=18(a 1+a 18)2=9(a 1+a 18)=9(a 9+a 10)=9a 9<0,故C 正确;∵a 9<0,S 9=S 8+a 9,∴S 8>S 9,故D 错误.故选BC.答案:BC10.解析:对于AB ,若n 是f ′(x )的图象,则当0<x <2时,f ′(x )<0,则f (x )在(0,2)上递减,与曲线m 在(0,2)上不单调相矛盾,所以n 是f (x )的图象,m 是f ′(x )的图象,所以A 错误,B 正确;对于CD x )>f ′(x)x <2x <1x <2,解得0<x <1,所以不等式组的解集为(0,1),所以C 正确,D 错误.故选BC.答案:BC11.解析:由题得f ′(x )=1-ln xx2,x >0,所以当x ∈(0,e)时,f ′(x )>0,函数f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )单调递减.A.11<4,∴f(4)<f(11),∵f(4)=f(2)=ln22,所以f(2)<f(11),所以该选项正确;B.因为0<e<π,所以f(e)<f(π),所以该选项正确;C.因为e<e2<8,所以f(8)<f(e2),所以该选项正确;D.f(x)max=f(e)=1e ,所以f(22)<1e,所以该选项错误.故选ABC.答案:ABC12.解析:根据题意:经过1年之后,该项目的资金为a1=2000(1+20%)-200=2200万元,A正确;a n+1=a n×(1+20%)-200=1.2a n-200,B不正确;∵a n+1=1.2a n-200,则a n+1-1000=1.2(a n-1000),即数列{a n-1000}是以首项为1200,公比为1.2的等比数列,C正确;a n-1000=1200×1.2n-1=1000×1.2n,即a n=1000(1.2n+1),令a n=1000(1.2n+1)≥4000,则n≥log1.23=lg32lg2+lg3-1≈6,至少要经过6年,该项目的资金才可以达到或超过翻一番(即为原来的2倍)的目标,D 正确.故选ACD.答案:ACD13.解析:∵数列{a n}为等差数列,∴a2+a8=2a5,又a2+a5+a8=15,∴3a5=15,解得a5=5.答案:514.解析:由等比数列的性质可得a1a5=a2a4=a23,则a1a2a3a4a5=a53=25=32.答案:3215.解析:f′(x)=e x-a,当a≤0时,f′(x)>0,f(x)在(-∞,+∞)上为增函数,f(x)最多只有一个零点,不符合题意;当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)在(-∞,ln a)上为减函数,在(ln a,+∞)上为增函数,所以f(x)在x=ln a时取得极小值为f(ln a)=e ln a-a(ln a+3)=-2a-a ln a,也是最小值,因为当x趋近于正负无穷时,f(x)都是趋近于正无穷,所以要使f(x)有两个零点,只要-2a-a ln a<0,即a>1e2就可以了.所以a的范围是(1e2,+∞).答案:(1e2,+∞)16.解析:由f(x)=e x(x-1),得f′(x)=e x(x-1)+e x=x e x,令f′(x)=0,得x=0,列表如下:x (-∞,0)0(0,+∞)f ′(x )-+f (x )递减极小值递增所以,函数y =f (x )的极小值为f (0)=e 0(0-1)=-1;∀x 1∈[-2,2],∃x 2∈[-1,2],使得f (x 1)>g (x 2),即f (x )min >g (x )min ,∴g (x )min <f (x )min =-1.①当m >0时,函数y =g (x )单调递增,g (x )min =g (-1)=-m -12,∴-m -12<-1,即m >12;②当m <0时,函数y =g (x )单调递减,g (x )min =g (2)=2m -12,∴2m -12<-1,即m <-14;③当m =0时,g (x )=-12,不符合题意.综上:m ∈(-∞,-14)∪(12,+∞).答案:-1(-∞,-14)∪(12,+∞)17.解析:(1)设等差数列{a n }首项为a 1,公差为d.3=24=7,1+2d =2a 1+4×(4-1)2d =71=1=12,∴等差数列{a n }通项公式a n =1+(n -1)×12=12n +12.(2)设等比数列{b n }首项为b 1,公比为q ,2=a 3=24=a 15=8,1·q =21·q 3=8,解得:q 2=4,1=1=21=-1=-2,∴等比数列{b n }的通项公式为b n =2n -1或b n =-(-2)n -1.18.解析:(1)选择①,当n ≥2时a n =S n -S n -1=n 2+3n 2-(n -1)2+3(n -1)2=n +1,而n =1时,a 1=12+3×12=2满足左式,∴a n =n +1.选择②,n ≥2时,a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=n +1n·n n -1…43×32×2=n +1,n =1时,a 1=2满足上式.选择③,∵a 2n +1-a 2n =a n +1+a n ,∴(a n +1+a n )(a n +1-a n -1)=0,∴a n +1-a n =1,从而得a n =n +1.(2)∵1a n ·(a n -1)=1n ×(n +1)=1n -1n +1,∴T n =(1-12)+(12-13)+(13-14)+…+(1n -1n +1)=1-1n +1,∵n ∈N *,∴1n +1>0,∴1-1n +1<1.∴T n <1.19.解析:(1)函数f (x )的定义域为R ,f ′(x )=-x 2+2x +3=-(x -3)(x +1).令f ′(x )=0,得x =-1或x =3.当x 变化时,f ′(x ),f (x )的变化情况如表所示.x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )-0+0-f (x )单调递减-23单调递增10单调递减故f (x )的单调增区间为[-1,3],单调减区间为(-∞,-1)和(3,+∞).当x =-1时,f (x )有极小值f (-1)=-23;当x =3时,f (x )有极大值f (3)=10.(2)由(1)可知,f (x )在[0,3]上单调递增,在[3,6]上单调递减,所以f (x )在[0,6]上的最大值为f (3)=10.又f (0)=1,f (6)=-17,f (6)<f (0),所以f (x )在区间[0,6]上的最小值为f (6)=-17.20.解析:(1)当n =1时,a 2=2a 1-1=57;当n =2时,a 3=2a 2-1=37;当n =3时,a 4=2a 3=67;∴数列{a n }是以3为周期的周期数列;∴a 2021=a 3×673+2=a 2=57,S 2022=674S 3=674×(67+57+37)=674×2=1348;(2)由(1)得:S 3n =nS 3=2n ,∴b n =2n ·2n -1=n ·2n ,∴T n =21+2×22+3×23+…+(n -1)·2n -1+n ·2n ,2T n =22+2×23+3×24+…+(n -1)·2n +n ·2n +1,两式作差得:T n =n ·2n +1-2-(22+23+ (2))=n ·2n +1-2(1-2n )1-2=(n -1)·2n +1+2.21.解析:(1)函数f(x)在区间(0,π2)上单调递增,f′(x)=sin x+x cos x,因为x∈(0,π2),所以sin x>0,cos x>0,所以f′(x)>0,所以函数f(x)在区间(0,π2)上单调递增.(2)证明:令h(x)=f′(x),则h′(x)=2cos x-x sin x,当x时,h′(x)<0,h(x)单调递减,又因为f=1>0,f′(π)=-π<0,所以存在唯一x0,使得f′(x0)=0,随着x变化f′(x),f(x)的变化情况如下;x(π2,x0)x0(x0,π)f′(x)+0-f(x)递增极大值递减所以f(x)在(π2,π)内有且只有一个极值点.22.解析:(1)证明:f(x)=x-x ln x-1的定义域为(0,+∞),且f′(x)=1-(ln x+x·1x)=-ln x.令f′(x)=0,得x=1.当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=0,所以f(x)≤0.(2)令g(x)=e x-ax-1,则g′(x)=e x-a.当a≤0时,有g(-1)=e-1+a-1<0,与题设矛盾,故舍去.当a>0时,令g′(x)=0,得x=ln a.当x<ln a时,g′(x)<0,g(x)单调递减;当x>ln a时,g′(x)>0,g(x)单调递增,所以g(x)min =g(ln a)=a-a ln a-1≥0.由(1)知,a-a ln a-1≤0(当且仅当a=1时,取等号),所以a-a ln a-1=0,所以a=1.。
人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)
人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。
(完整版)高中数学必修一必修二经典测试题100题
ACP B高中数学必修一必修二经典测试题100题(二)一、填空题:本题共25题1、设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)AB =,则:a= b=2、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍3. 已知函数2log (0)()3(0)x x x f x x >⎧=⎨≤⎩,则1[()]4f f 的值是4. 设1,01,x y a >><<则下列关系正确的是○1a a y x -->○2 ay ax <○3yx a a <○4 y x a a log log >5. 函数()23x f x =-的零点所在区间为:6. 函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则()f x 在(,)a b 上是 函数(增或减)7. 在x 轴上的截距为2且倾斜角为135°的直线方程为8. 设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是9、如图所示,阴影部分的面积S 是h (0)h H ≤≤的函数,则该函数的图象是. 10. 将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为11. 函数2()lg(21)5x f x x -=+++的定义域为 12. 已知0>>b a ,则3,3,4aba的大小关系是 13.函数3()3f x x x =+-的实数解落在的区间是14.已知(1,2),(3,1),A B 则线段AB 的垂直平分线的方程是 15. 下列条件中,能判断两个平面平行的是a 一个平面内的一条直线平行于另一个平面;b 一个平面内的两条直线平行于另一个平面;c 一个平面内有无数条直线平行于另一个平面;d 一个平面内任何一条直线都平行于另一个平面16. 如图,在Rt △ABC 中,∠ABC=900,P 为△ABC 所在平面外一点PA ⊥平面ABC ,则四面体P-ABC 中共有 个直角三角形。
高中数学必修2第二章《点、直线、平面之间的位置关系》单元测试(一)
数学必修2第二章《点、直线、平面之间的位置关系》单元测试一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.面α⋂面β=l ,A α∈,B α∈,AB ⋂l =D ,C β∈,C l ∉,则平面ABC 与平面β的交线是()A .有无数条B .有两条C .至多有两条D .有一条2.圆锥的轴截面是边长为2的正三角形,则圆锥的表面积为()A.)π1 B.4π C.3πD.5π3.已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .10B .5-C .5D .54.点E ,F ,G ,H 分别为空间四边形ABCD 中AB ,BC ,CD ,AD 的中点,若AC=BD ,且AC 与BD 所成角的大小为90°,则四边形EFGH 是()A.梯形B.空间四边形C.正方形D.有一内角为60°的菱形5在四棱锥P ABCD -中,底面ABCD 是平行四边形,Q 为AD 中点,点M 在线段PC 上,且PM tPC =,0t >,试确定实数t 的值,使得//PA 面MQB .A .14B .1C .23D .136.在直三棱柱111ABC A B C -中,2BAC π∠=,12AB AC AA ===,点,G E 分别为线段111,A B CC 的中点,点,D F 分别为,AC AB 上的动点,且GD EF ⊥,则线段DF 的最小值为A .12B .1C D .二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.7.设a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴,有以下结论:(1)当直线AB 与a 成60 角时,AB 与b 成30角.(2)当直线AB 与a 成60角时,AB 与b 成60角.(3)直线AB 与a 所成角的最小值为45 .(4)直线AB 与a 所成角的最大值为60.则正确结论的序号为A (1)B(2)C(3)D(4)8.一张A4纸的长宽之比为,E ,F 为AD ,BC 的中点.现分别将ABE ∆,CDF ∆沿BE ,DF 折起,且A ,C 在面BFDE 同侧,下列命题正确的是()(1)A ,G ,H ,C 四点共面.(2)当面ABE //面CDF 时,AC //面BFDE .(3)当A ,C 重合于点P 时,面PDE ⊥面PBF .(4)当A ,C 重合于点P 时,设面PBE ⋂面PDF =l ,则l //面BFDE .A (1)B(2)C(3)D(4)三、填空题:本大题共4题,每小题4分,共16分.9已知长方体ABCD -A 1B 1C 1D 1中,BA 1=C 1D =5,C 1A 1=BD =,DA1=BC 1=.则三棱锥B -A 1DC 1的体积为________10.已知点E ,F 分别为正方体ABCD -A 1B 1C 1D 1的棱AB ,AA 1点,且12AE AB =,113AF AA =.点,M N 分别为线段1D E 和线段1C F 上的动点.则与面ABCD 平行的直线MN 有__________条.11.在正方体1111ABCD A B C D -中,E 是AB 的中点,F 在1CC 上,且12CF FC =.点P 是侧面11AA D D 上一动点,且1//PB 面DEF ,则tan ABP ∠的取值范围是__________.12设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n.其中正确的命题是________和________.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.13.(本小题满分16分)在正四棱柱1111ABCD A B C D -中,2AB BC ==,1AA =E 为1CC 中点,F 为AB 上一点.证明面EBD ⊥面1A FC .14.(本小题满分18分)如图,已知二面角α-MN-β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD=60°,E 是AB 的中点,DO ⊥面α,垂足为O.(1)证明:AB ⊥平面ODE;(2)求异面直线BC 与OD 所成角的余弦值.15.(本小题满分18分)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A 1C 1D 1,且这个几何体的体积为403(1)求棱A 1A 的长;(2)求经过A 1,C 1,B ,D 四点的球的表面积.数学必修2第二章《点、直线、平面之间的位置关系》测试答案一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1选D 2选C 3选C 4选C 5选D 6选C二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.7选B ,C 8选A BCD三、填空题:本大题共4题,每小题4分,共16分.9.20解析:111114B A DC B A B C V V V --=-长方体.设长方体的长宽高分别为,,a b c ,易求得5a =,4b =,3c =.所以111114B A DC B A B C V V V --=-长方体20=.10.无数条解析:取113BH BB =,连接FH ,则//FH AB .在线段1D E 上取113OE D E =,在线段DE 上取13EK DE =.连接,,OH OK BK .则易得四边形OKBH 为矩形.连接HE ,在段1D E 上任取一点M ,过点M 在面1D HE 中,作//HO MG ,交1D H 于G .再过点G 作//GN HF ,交1C F 于N ,连接MN .由面面平行的判定定理可知面MNG //面ABCD ,又MN ⊂面MNG ,所以//MN 面ABCD .由于M 为1D E 上任意一点,故与面ABCD 平行的直线MN有无数条.11.11333⎡⎢⎣⎦,.解析:取112AM MA =,连接11,,B M B F DM .易证四边形1MDFB 为平行四边形,所以1//B M DF .取11D C 中点N ,连接1,B N MN ,则1//B N DE .故面1//B NM 面DEF .作//NG DF ,连接MG ,则1//NG MB .因此面1//B NGM 面DEF .所以点P 落在面11AA D D 与面1B NGM 的交线上,即P MG ∈.易求得tan ABP ∠的取值范围是11333⎡⎢⎣⎦,.12(3)和(4)①不正确,面α,β可能相交.②不正确,当直线m ,n 平行时,α,β还可能相交;根据面面平行的判定定理只有当m ,n 相交时,α∥β.③正确,根据面面平行的定义可知l 与β无公共点,即可知l ∥β.④正确,因为α∩β=l ,可知l ⊂α,又因为l ∥γ,γ∩α=n ,则m ∥n.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.13(本小题满分16分)证明:如图所示,易知BE ⊥1CB .又BE ⊥11A B ,1111CB A B B ⋂=,所以BE ⊥面11A B C .由于1A C ⊂面11A B C ,所以BE ⊥1AC .又BD ⊥CA ,BD ⊥1A A ,1CA A A A ⋂=,所以BD ⊥面1A AC .由于1A C ⊂面1A AC ,所以BD ⊥1AC .由于BE BD B ⋂=,所以1AC ⊥面EBD ,所以面EBD ⊥面1A FC14(本小题满分18分)(1)因为DO ⊥α,AB ⊂α,所以DO ⊥AB.连接BD ,由题设知,△ABD 是正三角形.又因为E 是AB 的中点,所以DE ⊥AB.而DO∩DE=D ,故AB ⊥平面ODE.(2)因为BC ∥AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即∠ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE.又DE ⊥AB ,于是∠DEO 是二面角α-MN-β的平面角,从而∠DEO=60°.不妨设AB=2,则AD=2,易知DE=3.在Rt △DOE 中,DO=DE·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO=DO AD =322=34.故异面直线BC 与OD 所成角的余弦值为34.15(本小题满分18分)(1)设A 1A=h ,因为几何体ABCD-A 1C 1D 1的体积为403,所以V ABCD−A 1C 1D 1=V ABCD−A 1B 1C 1D 1-V B−A 1B 1C 1=403即S 四边形ABCD ·h-13·S △A 1B 1C 1·h=403,即2×2×h-13×12×2×2×h=403解得h=4.所以棱A 1A 的长为4.(2)如图,连接D 1B ,设D 1B 的中点为O ,连接OA 1,OC 1,OD.因为ABCD-A 1B 1C 1D 1是长方体,所以A 1D 1⊥平面A 1AB.因为A 1B ⊂平面A 1AB ,所以A 1D 1⊥A 1B.所以OA 1=12D 1B.同理OD=OC 1=12D 1B.所以OA 1=OD=OC 1=OB.所以经过A 1,C 1,B ,D 四点的球的球心为点O.因为D 1B 2=A 1D 12+A 1A 2+AB 2=22+42+22=24,所以S 球=4π·(OD 1)2=4π·(D 1B 2)2=π·D 1B 2=24π.故经过A 1,C 1,B ,D 四点的球的表面积为24π.。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
(人教版A版)高中数学必修第二册 第九章综合测试试卷03及答案
第九章综合测试一、选择题(本题共12小题,每小题5分,共60分)1.下面抽样方法是简单随机抽样的是()A .从平面直角坐标系中抽取5个点作为样本B .从仓库中的1 000箱饮料中一次性抽取20箱进行质量检查C .从某连队200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D .从l0个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)2.对某校1 200名学生的耐力进行调查,抽取其中120名学生,测试他们1 500 m 跑步的成绩,得出相应的数值,在这项调查中,样本是指( )A .l20名学生B .1200名学生C .120名学生的成绩D .1200名学生的成绩3.简单随机抽样和分层随机抽样之间的共同点是( )A .都是从总体中逐个抽取的B .将总体分成几部分,按事先确定的规则在各部分抽取C .抽样过程中每个个体被抽到的机会相等D .将总体分成几层,然后各层按照比例抽取4.某市有大型、中型与小型商店共1 500家,它们的数量之比为l:5:9,用分层随机抽样的方法抽取其中的30家进行调查,则中型商店应抽取( )A .10家B .18家C .2家D .20家5.抽样统计甲射击运动员10次的训练成绩分别为86,85,88,86,90,89,88,87,85,92,则这10次成绩的80%分位数为( )A .88.5B .89C .91D .89.56.甲、乙两名同学6次考试的成绩统计如图9-4-1,甲、乙两名同学成绩的平均数分别为x 甲,x 乙,标准差分别为s 甲,s 乙,则()A .x x 乙甲<,s s 乙甲<B .x x 乙甲<,s s 乙甲>C .x x 乙甲>,s s 乙甲<D .x x 乙甲>,s s 乙甲>7.某校高中三个年级的人数扇形统计图如图9-4-2所示,按年级用分层随机抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本量为()A .24B .30C .32D .358.总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第9行的随机数表2635790033709160162038827757495032114919730649167677873399746732274861987164414870862888851916207477011l 163024042979799196835125A .3B .16C .38D .499.对以下两组数据进行分析,下列说法不正确的是( )甲:8121327243722202526乙:9141311181920212123A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.某中学有高中生3 000人,初中生2 000人,高中生中男生、女生人数之比为3:7,初中生中男生、女生人数之比为6:4,为了解学生的学习状况,用分层随机抽样的方法从该校学生中抽取一个容量为n 的样本,已知从初中生中抽取男生12人,则从高中生中抽取女生的人数是( )A .12B .15C .20D .2111.如果一组数据1x ,2x ,…,n x 的平均数是x ,方差是2s 1+2,…n + )A ,2s B +,2sC +,23s D +212.在去年某地区的足球比赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差是1.1;二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差是0.4.下列说法:①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球,其中正确的有()A.l个B.2个C.3个D.4个二、填空题(本题共4小题,每小题5分,共20分)13.某种福利彩票的中奖号码是从1~36个号码中,选出7个号码来按规则确定中奖情况,从36个号码中选出7个号码,适宜的抽样方法是________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.15.气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22 ℃”、现有甲、乙、丙三地连续5天的日平均温度的相关记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2这三地肯定进入夏季的地区有________个.16.某校为了解本校中、老年教师的身体状况,采用分层随机抽样的方法,从中年教师中抽取20人,从老年教师中抽取10人参加体检,经医院反馈信息知某项体检指标:中年教师均值为90,方差为4,老年教师均值为96,方差为6.据此估计该校中、老年教师该项指标的方差为________.三、解答题(本题共6小题,共70分)17.(10分)某电视台举行颁奖典礼,邀请来自三个地区的20名演员演出,其中从30名A地区演员中随机挑选10人,从18名B地区演员中随机挑选6人,从10名C地区演员中随机挑选4人.试用抽签法确定选中的演员,并确定他们的表演顺序.18.(12分)某市组织了一次普法知识竞赛,从甲、乙两单位中各随机抽取了5名职工的成绩,统计如下:甲单位职工的成绩(分)8788919193甲单位职工的成绩(分)8589919293根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定.19.(12分)某大学共有“机器人”兴趣团队1 000个,大一、大二、大三、大四分别有100个、200个、300个、400个.为挑选优秀团队,现用分层随机抽样的方法,从以上团队中抽取20个.(1)应从大三中抽取多少个团队?(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的成绩如下:甲:125,141,140,137,122,114,119,139,121,142乙:127,116,144,127,144,116,140,140,116,140从甲、乙两组中选一组强化训练,备战机器人大赛.从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?20.(12分)某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护仍是百姓最为关心的问题,参与调查者中关注此问题的约占80%现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,56,得到的频率分布直方图如图9-4-3所示。
高中数学必修2直线与圆测试卷
驻市一高2009~2010学年度暑假作业高一数学必修二(直线与圆)第I 卷(选择题60分)一、选择题(下列各题都有四个选择项,其中一项正确,请选出,每题5分,共60分)1.若A (3,5)、B (a ,7)、C (-1,-3)三点共线,则a 值为()A .2B .3C .4D .52.已知 a c > 0 ,b c < 0,那么直线 a x +b y + c =0不通过()A .第一象限B .第二象限C .第三象限D .第四象限3.直线kx -y + 1-3 k = 0,当k 变化时,所有直线都通过点()A .(0,0)B .(0,1)C .( 2 ,1)D .( 3 ,1)4.点A ( a ,6 )到直线3 x -4 y = 2的距离不小于4,则 a 的取值范围是()A .a ≥346B .a ≤-2C .a ≥346或a ≤2 D .a ≤-2或a ≥3465.直线012ay x和直线01)13(ayx a平行则()A .61aB .0aC .32aD .61a或0a 6.过原点O 作直线L 的垂线,垂足为A (2,3),则L 的方程是A .2x -3y -13=0B .2x +3y -13=0C .2x -3y +13=0D .2x +3y +13=0 7.过点P( 2 , 3)并且在两轴上截距的绝对值相等的直线有()条。
A .3B .2C .1D .08.经过点)1,2(M 作圆522yx的切线,则切线的方程为:A .52yx B .52y xC .052y xD .250xy 9.圆C :1)3()1(22y x 关于直线x -y -1=0对称的曲线方程为()A .1)4(22y x B .1)4(22y x C .1)4(22yxD .1)4(22yx10.设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则 a 的值为()A .±2B .±2B .±2 2D .±411.直线1xy与圆2220(0)xyay a 没有公共点,则a 的取值范围是A.(0,21) B.(21,21) C.(21,21) D.(0,21)12.如果把直线x -2 y + =0按向量a=(-1,-2)平移后所得直线与圆(x +1)2 + ( y -2)2=5相切,则实数的值是()A.13或-3 B.13或3 C.-13 或3 D.-13或-3一、选择题(60分)题号 1 2 3 4 5 6 7 8 9 10 11 12选项第Ⅱ卷(选择题90分)二、填空题(每题5分,共20分)13.已知点A(7 ,-4)、B(-5 ,6)关于直线L对称,则L的方程是14.曲线y = ︳x ︳与圆x 2+ y 2=4所围成的最大区域的面积是15.两圆x 2+ y 2-10 x -10 y=0 ,x 2+ y 2+6 x +2 y -40 = 0公共弦的长是16.已知直线 a x + y + 2 = 0与点 A (-2 ,1),点B(3 ,2),当直线与线段AB总相交时,实数a的取值范围是三、解答题(共6大题,共70分)17.(12分)已知圆过点P (2,-1),和直线x -y=1相切,且它的圆心在直线y=-2x上,求这个圆的方程。
高中数学必修一必修二综合测试题(含答案)
Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。
高中数学必修二综合测试题(全册含答案)
高中数学必修二综合测试题第一章至第四章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外2.直线x-y-4=0与圆x2+y2-2x-2y-2=0的位置关系是( )A.相交B.相切C.相交且过圆心D.相离【补偿训练】(2015·郑州高一检测)对任意实数k,圆C:(x-3)2+(y-4)2=13与直线l:kx-y-4k+3=0的位置关系是( )A.相交B.相切C.相离D.与k取值有关3.已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( )A. B.3 C. D.4.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( )A.外离B.相交C.外切D.内切5.设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个结论:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α⊥β.其中正确的为( )A.①②B.①②③C.①②③④D.③④6.垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( )A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0【补偿训练】过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( )A.3x-y-5=0B.3x+y-7=0C.x+3y-5=0D.x-3y+1=07.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为( )A.(-2,1,-4)B.(2,1,-4)C.(-2,-1,-4)D.(2,-1,4)【变式训练】已知点Q是点P(3,4,5)在平面xOy上的射影,则线段PQ的长等于( ) A.2 B.3 C.4 D.58.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( )A.4B.3C.2D.19.已知直线l与直线4x-3y+5=0关于y轴对称,则直线l的方程为( )A.4x+3y+5=0B.4x+3y-5=0C.3x+4y+5=0D.3x+4y-5=010.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连线PQ的中点的轨迹方程是( )A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(2x+3)2+4y2=111.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8cm3B.12cm3C.cm3D.cm312.方程=lgx的根的个数是( )A.0B.1C.2D.无法确定【延伸探究】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为.14.已知直线a和两个不同的平面α,β,且a⊥α,a⊥β,则α,β的位置关系是.15.已知一个球的表面积为36πcm2,则这个球的体积为cm3.16.方程x2+y2+2ax-2ay=0表示的圆,①关于直线y=x对称;②关于直线x+y=0对称;③其圆心在x轴上,且过原点;④其圆心在y轴上,且过原点,其中叙述正确的是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知直线l1:ax+by+1=0(a,b不同时为0),l2:(a-2)x+y+a=0,(1)若b=0且l1⊥l2,求实数a的值.(2)当b=3且l1∥l2时,求直线l1与l2之间的距离.18.(12分)自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.19.(12分)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.20.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE,BD,BE.(1)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(12分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA.(2)证明:BC⊥PD.(3)求点C到平面PDA的距离.22.(12分)已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.(1)求证:曲线C表示圆,并且这些圆心都在同一条直线上.(2)证明曲线C过定点.(3)若曲线C与x轴相切,求k的值.【补偿训练】已知圆C的圆心为原点O,且与直线x+y+4=0相切.(1)求圆C的方程.(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.高中数学必修二综合测试题(第一至第四章)参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,故点P(3,2)在圆内.2.直线x-y-4=0与圆x2+y2-2x-2y-2=0的位置关系是( )A.相交B.相切C.相交且过圆心D.相离【解析】选D.圆的方程为(x-1)2+(y-1)2=4,则圆心到直线的距离d==2>2,所以直线与圆相离.【补偿训练】(2015·郑州高一检测)对任意实数k,圆C:(x-3)2+(y-4)2=13与直线l:kx-y-4k+3=0的位置关系是( )A.相交B.相切C.相离D.与k取值有关【解析】选A.对任意实数k,直线l:kx-y-4k+3=0恒过定点(4,3),而(4-3)2+(3-4)2<13,故定点(4,3)在圆C内部,所以直线与圆相交.3.(2015·乌海高一检测)已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( )A. B.3 C. D.【解析】选A.==. 4.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.外离 B.相交 C.外切 D.内切【解析】选C.将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.所以两圆的圆心距为=5,又r1+r2=5,所以两圆外切.5.设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个结论:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α⊥β.其中正确的为( )A.①②B.①②③C.①②③④D.③④【解析】选A.①正确,②可用线面垂直证明,正确,③中,n可能在α内;④中,可能有α,β相交或平行,故选A.6.(2015·临汾高一检测)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( )A.x+y-=0B.x+y+1=0C.x+y-1=0D.x+y+=0【解析】选A.由题意可设所求的直线方程为y=-x+k,则由=1,得k=±.由切点在第一象限知,k=.故所求的直线方程y=-x+,即x+y-=0.【补偿训练】过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( )A.3x-y-5=0B.3x+y-7=0C.x+3y-5=0D.x-3y+1=0【解析】选 A.依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得=,即3x-y-5=0.7.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标为( )A.(-2,1,-4)B.(2,1,-4)C.(-2,-1,-4)D.(2,-1,4)【解析】选C.点(-2,1,4)关于x轴的对称点的坐标为(-2,-1,-4).【变式训练】(2014·宁波高一检测)已知点Q是点P(3,4,5)在平面xOy上的射影,则线段PQ 的长等于( )A.2B.3C.4D.5【解析】选D.由题意,Q(3,4,0),故线段PQ的长为5.8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( )A.4B.3C.2D.1【解析】选 B.两圆的方程配方得,O1:(x+2)2+(y-2)2=1,O2:(x-2)2+(y-5)2=16,圆心O 1(-2,2),O2(2,5),半径r1=1,r2=4,所以|O1O2|==5,r1+r2=5.所以|O1O2|=r1+r2,故两圆外切,故有3条公切线.9.已知直线l与直线4x-3y+5=0关于y轴对称,则直线l的方程为( )A.4x+3y+5=0B.4x+3y-5=0C.3x+4y+5=0D.3x+4y-5=0【解析】选B.直线l的斜率与直线4x-3y+5=0的斜率互为相反数,且过点,所以直线l 的方程为4x+3y-5=0.【拓展延伸】直线关于直线对称问题的两种情形(1)两直线平行,我们可转化为点关于直线的对称问题去求解.(2)两直线相交.一般解题步骤是:①在所求曲线上选一点M(x,y);②求出这点关于中心或轴的对称点M'(x0,y0)与M(x,y)之间的关系;③利用f(x0,y0)=0求出曲线g(x,y)=0.10.(2015·大连高一检测)当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连线PQ的中点的轨迹方程是( )A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1【解析】选C.设P(x1,y1),Q(3,0),设线段PQ中点M的坐标为(x,y),则x=,y=,所以x 1=2x-3,y1=2y.又点P(x1,y1)在圆x2+y2=1上,所以(2x-3)2+4y2=1.故线段PQ中点的轨迹方程为(2x-3)2+4y2=1.11.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8cm3B.12cm3C.cm3D.cm3【解析】选 C.由题意得,该几何体为一正方体与四棱锥的组合,所以体积V=23+×22×2=(cm3).12.(2015·潍坊高一检测)方程=lgx的根的个数是( )A.0B.1C.2D.无法确定【解析】选B.设f(x)=,g(x)=lgx,则方程根的个数就是f(x)与g(x)两个函数图象交点的个数.如图所示,在同一平面直角坐标系中画出这两个函数的图象.由图可得函数f(x)=与g(x)=l gx仅有1个交点,所以方程仅有1个根.【延伸探究】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )A. B.C. D.【解析】选D.如图所示,曲线y=1+变形为x2+(y-1)2=4(y≥1),直线y=k(x-2)+4过定点(2,4),当直线l与半圆相切时,有=2,解得k=.当直线l过点(-2,1)时,k=.因此,k的取值范围是<k≤.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为.【解析】BC的中点为D(1,-2,3),则|AD|==2.答案:214.已知直线a和两个不同的平面α,β,且a⊥α,a⊥β,则α,β的位置关系是. 【解析】垂直于同一直线的两个平面互相平行.答案:平行15.已知一个球的表面积为36πcm2,则这个球的体积为cm3.【解析】设球的半径为r,因为4πr2=36π,所以r=3,故体积为πr3=36π.答案:36π16.(2015·大庆高一检测)方程x2+y2+2ax-2ay=0表示的圆,①关于直线y=x对称;②关于直线x+y=0对称;③其圆心在x轴上,且过原点;④其圆心在y轴上,且过原点,其中叙述正确的是.【解析】已知方程配方,得(x+a)2+(y-a)2=2a2(a≠0),圆心坐标为(-a,a),它在直线x+y=0上,所以已知圆关于直线x+y=0对称.故②正确.答案:②三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知直线l1:ax+by+1=0(a,b不同时为0),l2:(a-2)x+y+a=0,(1)若b=0且l1⊥l2,求实数a的值.(2)当b=3且l1∥l2时,求直线l1与l2之间的距离.【解题指南】(1)当b=0时,直线l1的斜率不存在,此时l1⊥l2,即l2的斜率为0,a-2=0.(2)l1∥l2,即A1B2-A2B1=0且B1C2-B2C1≠0,求出a的值,利用平行线间距离公式d=求解. 【解析】(1)当b=0时,l1:ax+1=0,由l1⊥l2知a-2=0,解得a=2.(2)当b=3时,l1:ax+3y+1=0,当l1∥l2时,有解得a=3,此时,l1的方程为:3x+3y+1=0,l2的方程为:x+y+3=0,即3x+3y+9=0,则它们之间的距离为d==.18.(12分)自A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.【解析】连接OP,则OP⊥BC,设P(x,y),当x≠0时,k OP·k AP=-1,即·=-1.即x2+y2-4x=0.①当x=0时,P点坐标为(0,0)是方程①的解,所以BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内).【一题多解】由上述解法可知OP⊥AP,取OA中点M,则M(2,0),|PM|=|OA|=2,由圆的定义,知P点轨迹方程是以M(2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x-2)2+y2=4(在已知圆内).19.(12分)(2015·滁州高一检测)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.【解析】由圆M与圆N的方程易知两圆的圆心分别为M(m,-2),N(-1,-1).两圆的方程相减得直线AB的方程为2(m+1)x-2y-m2-1=0.因为A,B两点平分圆N的圆周,所以AB为圆N的直径,所以AB过点N(-1,-1).所以2(m+1)×(-1)-2×(-1)-m2-1=0,解得m=-1.故圆M的圆心M(-1,-2).20.(12分)(2015·湖北高考)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE,BD,BE.(1)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P-ABCD的体积为V1,四面体EBCD的体积为V2,求的值.【解析】(1)因为PD⊥底面ABCD,所以PD⊥BC.由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB.(2)由已知,PD是阳马P-ABCD的高,所以V1=S ABCD·PD=BC·CD·PD;由(1)知,DE是鳖臑D-BCE的高,BC⊥CE,所以V2=S△BCE·DE=BC·CE·DE.在Rt△PDC中,因为PD=CD,点E是PC的中点,所以DE=CE=CD,于是===4.21.(12分)(2015·广东高考)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA.(2)证明:BC⊥PD.(3)求点C到平面PDA的距离.【解析】(1)因为四边形ΑΒCD是长方形,所以ΒC∥ΑD,因为ΒC⊄平面ΡDΑ,ΑD⊂平面ΡDΑ,所以ΒC∥平面ΡDΑ.(2)因为四边形ΑΒCD是长方形,所以ΒC⊥CD,因为平面ΡDC⊥平面ΑΒCD,平面ΡDC∩平面ΑΒCD=CD,ΒC⊂平面ΑΒCD,所以ΒC⊥平面ΡDC,因为ΡD⊂平面ΡDC,所以ΒC⊥ΡD.(3)取CD的中点Ε,连接ΑΕ和ΡΕ,因为ΡD=ΡC,所以ΡΕ⊥CD,在Rt△ΡΕD中,ΡΕ===,因为平面ΡDC⊥平面ΑΒCD,平面ΡDC∩平面ΑΒCD=CD,ΡΕ⊂平面ΡDC,所以ΡΕ⊥平面ΑΒCD,由(2)知:ΒC⊥平面ΡDC,由(1)知:ΒC∥ΑD,所以ΑD⊥平面ΡDC,因为ΡD⊂平面ΡDC,所以ΑD⊥ΡD,设点C到平面ΡDΑ的距离为h,因为V三棱锥C-ΡDΑ=V三棱锥Ρ-ΑCD,所以S△ΡDΑ·h=S△ΑCD·ΡΕ,即h===,所以点C到平面ΡDΑ的距离是.22.(12分)(2015·杭州高一检测)已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.(1)求证:曲线C表示圆,并且这些圆心都在同一条直线上.(2)证明曲线C过定点.(3)若曲线C与x轴相切,求k的值.【解析】(1)原方程可化为(x+k)2+(y+2k+5)2=5(k+1)2.因为k≠-1,所以5(k+1)2>0.故方程表示圆心为(-k,-2k-5),半径为|k+1|的圆.设圆心的坐标为(x,y),则消去k,得2x-y-5=0.所以这些圆的圆心都在直线2x-y-5=0上.(2)将原方程变形为(2x+4y+10)k+(x2+y2+10y+20)=0,所以上式对于任意k≠-1恒成立,所以解得所以曲线C过定点(1,-3).(3)因为圆C与x轴相切,所以圆心(-k,-2k-5)到x轴的距离等于半径.即|-2k-5|=|k+1|.两边平方,得(2k+5)2=5(k+1)2.解得k=5±3.【补偿训练】已知圆C的圆心为原点O,且与直线x+y+4=0相切.(1)求圆C的方程.(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点. 【解题指南】求出圆的半径即可写出圆的方程,而公共弦的方程只需将两圆的方程相减即可得到.【解析】(1)依题意得:圆C的半径r==4,所以圆C的方程为x2+y2=16.(2)因为PA,PB是圆C的两条切线,所以OA⊥AP,OB⊥BP,所以A,B在以OP为直径的圆上,设点P的坐标为,b∈R,则线段OP的中点坐标为,所以以OP为直径的圆方程为+=42+,b∈R, 化简得:x2+y2-8x-by=0,b∈R,因为AB为两圆的公共弦,所以直线AB的方程为8x+by=16,b∈R,所以直线AB恒过定点.。
高中数学必修2测试题附答案
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
高中数学必修二 期末考测试(提升)(含答案)
期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。
高中数学必修二综合测试题(含答案)
高中数学必修二综合测试题(含答案)高二数学必修二综合测试题一、选择题(本大题共12小题,每小题5分,共60分)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①② B.②④ C.①③ D.②③2.过点P(1,3)且垂直于直线x2y3的直线方程为()A.2x y1 B.2x y5 C.x2y5D.x2y73.圆(x-1)2+y2=1的圆心到直线y=3x的距离是()A.2 B.2 C.1 D.34.已知F1,F2是椭圆x2/16+y2/9=1的左右焦点,P为椭圆上一个点,且A.2 B. C. D.5.已知空间两条不同的直线m,n和两个不同的平面α,β,则下列命题中正确的是()A.若m//α,n⊥α,则m//n B.若α∩β=m,m⊥n,则n⊥αC.若m//α,n//α,则m//n D.若m//α,m⊥β,αβ=n,则m//n6.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0所得的弦长为8,则c的值是()A.10 B.10或-68 C.5或-34 D.-687.已知ab0,则直线ax+by=c通过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限8.正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED与D1F所成角的大小是()A.1/5 B.113° C. D.232°9.在三棱柱ABC—A1B1C1中,各棱长相等,侧面BC1C 的中心为D,则AD与平面BC1C所成角的大小是()10.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD 成60°的角;④AB与CD所成的角是60°。
新课标高中数学测试题(必修2)全套含答案(K12教育文档)
新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新课标高中数学测试题(必修2)全套含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)的全部内容。
(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A。
棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A 。
3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.235.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72π C 。
52π D 。
32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和视图15,则这个棱柱的侧面积是( )A .130B .140C .150D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱.2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
高中数学必修二测试题及答案人教版
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
高中数学必修2测试试卷
高中数学测试试卷(4)1)0(0=+≠=++y x abc c by ax 与圆|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 2. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件3.点M (x 0,y 0)是圆x 2+y 2=a 2 (a>0)内不为圆心的一点,则直线x 0x+y 0y=a 2与该 圆的位置关系是( )A .相切B .相交C .相离D .相切或相交 4.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个5.命题“∀x >0,都有x 2-x ≤0”的否定是 ( ).A .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >06.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27π B .56π C .14π D .64π7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28.如图8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图8-25,在三棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q ,且满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1B .2∶1C .4∶1D .3∶110.图8-23中多面体是过正四棱柱的底面正方形ABCD 的顶点A 作截面AB 1C 1D 1而截得的,且B 1B=D 1D 。
人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案
高中数学必修第2册第六章、第七章综合测试一、单选题(共8小题)1. 在△ABC中,角A,B,C所对边分别为a,b,c,则下列结论正确的是( )A. a2=b2+c2+2bc cos AB. a2=b2+c2+bc cos AC. a2=b2+c2-2bc cos AD. a2=b2+c2-bc cos A2. 如果将直角三角形的三边分别增加同样的长度,那么新三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 由增加的长度确定3. 已知复数z=-i,则复平面内对应的点Z的坐标为( )A. (0,-1)B. (-1,0)C. (0,0)D. (-1,-1)4. 设复数z1=,z2=6,则z1z2为( )A. 3iB. 3C. -3iD. 35. “复数z=(a∈R)在复平面内对应的点位于第三象限”是“a≥0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 若(1+i)=1-i,则z=( )A. 1-iB. 1+iC. -iD. i7. 在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于()A. B. C. D.8. 已知三个力F1=(-2,-1),F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F4,则F4等于( )A. (-1,-2)B. (1,-2)C. (-1,2)D. (1,2)二、多选题(共4小题)9. 如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中一定成立的是( )A. ||=||B. 与共线C. 与共线D. =10. 已知△ABC是边长为2a(a>0)的等边三角形,P为△ABC所在平面内一点,则·(+)的值可能是( )A. -2a2B. -a2C. -a2D. -a211. 下列各式中结果为零向量的是( )A. +++B. ++C. +++D. -+-12. △ABC的内角A,B,C所对的边分别为a,b,c,对于△ABC,有如下命题,其中正确的有( )A. sin(B+C)=sin AB. cos(B+C)=cos AC. 若a2+b2=c2,则△ABC为直角三角形D. 若a2+b2<c2,则△ABC为锐角三角形三、填空题(共4小题)13. 已知|a|=|b|=1,且a⊥b,若|a+b+m|≤1恒成立,则|m|的取值范围是________.14. 方程x2-2x+5的复数根为________.15. 设复数z=a+b i(a,b∈R),1≤|z|≤2,则|z+1|的取值范围是________.16. 小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若=(x1,y1),=(x2,y2),则S△OAB=|x1y2-x2y1|.试用上述成果解决问题:已知A(1,1),B(2,3),C(4,5),则S△ABC=______.四、解答题(共6小题)17. 如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AF⊥DE.18. 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,(a+b+c)(b+c-a)=3bc.(1)求A的大小;(2)若b+c=2a=2,试判断△ABC的形状.19. 在△ABC中,已知A=15°,B=45°,c=3+,解这个三角形.20. 如图所示,四边形ABCD是矩形,点A和B对应的复数分别为-1+2i,1+i,并且|BA|∶|DA|=1∶,求点C和点D分别对应的复数.21. 设复数z=(a2+a-2)+(a2-7a+6)i,其中a∈R,当a取何值时,(1)z∈R;(2)z 是纯虚数;(3)z是零.22. 如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)++;(2)+++.参考答案1. 【答案】C【解析】由余弦定理的结构特征易知选C.2. 【答案】A【解析】设直角三角形的三条边长分别为a,b,c,且a2+b2=c2,三条边均增加同样的长度m,三边长度变为a+m,b+m,c+m,此时最长边为c+m,设该边所对角为θ,则由余弦定理,得cosθ==.因为m2>0,a+b-c>0,所以cosθ>0,所以θ为锐角,其他各角必为锐角,故新三角形是锐角三角形.3. 【答案】A【解析】由z=-i可知,复平面内对应的点Z的坐标为(0,-1).4. 【答案】A【解析】z1z2=×6=3=3i.5. 【答案】A【解析】易得z==-a-3i,则z在复平面内对应的点位于第三象限⇔a>0.又a>0⇒a≥0,a≥0D⇒/a>0,所以“a>0”是“a≥0”的充分不必要条件,即“z在复平面内对应的点位于第三象限”是“a≥0”的充分不必要条件.6. 【答案】D【解析】由(1+i)=1-i,得===-i,故z=i.7. 【答案】A【解析】=-=8. 【答案】D【解析】为使物体平衡,则合力为零,即F4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).9. 【答案】ABD【解析】由向量相等及共线的概念,由∠EDB与∠HED不一定相等可知C选项不一定正确.10. 【答案】BCD【解析】建立如图所示的平面直角坐标系.设P(x,y),因为A(0,a),B(-a,0),C(a,0),则=(-x,a-y),=(-a-x,-y),=(a-x,-y).所以·(+)=(-x,a-y)·[(-a-x,-y)+(a-x,-y)]=(-x,a-y)·(-2x,-2y)=2x2+2y2-2ay=2x2+22-a2≥-a2,当且仅当x=0,y=a时取等.故选项B,C,D满足,故选BCD.11. 【答案】BD【解析】由向量加法的法则得A:+++=++=,故结果不为零向量;B:++=+=0,结果为零向量;C:+++=+=,结果不为零向量;D:-+-=+-(+)=-=0,结果为零向量.12. 【答案】AC【解析】依题意,在△ABC中,B+C=π-A,sin(B+C)=sin(π-A)=sin A,A正确;cos(B+C)=cos(π-A)=-cos A,B不正确;因为a2+b2=c2,则由余弦定理的推论得cos C==0,而0<C<π,即有C=,则△ABC为直角三角形,C正确;因为a2+b2<c2,则cos C=<0,而0<C<π,即有<C<π,则△ABC为钝角三角形,D不正确.13. 【答案】[-1,+1]【解析】建立平面直角坐标系(图略),设a=(1,0),b=(0,1),a+b=(1,1),m=(x,y),a+b+m=(x+1,y+1).由题意可知(x+1)2+(y+1)2≤1,|m|表示以点(-1,-1)为圆心,1为半径的圆面(包括边界)上的动点与原点连线段的长度,易知|m|的最大值为+1,最小值为-1.14. 【答案】1±2i【解析】由求根公式得x===1±2i.15. 【答案】[0,3]【解析】由复数的模及复数加减运算的几何意义可知,1≤|z|≤2表示如图所示的圆环,而|z+1|表示复数z的对应点A(a,b)与复数z1=-1的对应点B(-1,0)之间的距离,即圆环内的点到点B的距离d.由图易知当A与B重合时,d min=0,当点A与点C(2,0)重合时,d max=3,所以0≤|z+1|≤3.16. 【答案】1【解析】因为A(1,1),B(2,3),C(4,5),所以=(1,2),=(3,4),又当=(x1,y1),=(x2,y2)时,S△OAB=|x1y2-x2y1|,所以S△ABC=×|1×4-3×2|=1.17. 【答案】证明方法一设=a,=b,则|a|=|b|,a·b=0.又=+=-a+,=+=b+,所以·=·=-a2-a·b+=-|a|2+|b|2=0.故⊥,即AF⊥DE.方法二如图所示,建立平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),则=(2,1),=(1,-2).因为·=(2,1)·(1,-2)=2-2=0.所以⊥,即AF⊥DE.18. 【答案】解(1)∵(a+b+c)(b+c-a)=3bc,∴a2=b2+c2-bc,由余弦定理得a2=b2+c2-2bc cos A,∴cos A=.∵A∈(0,π),∴A=.(2)∵在△ABC中,a2=b2+c2-2bc cos A,且a=,∴()2=b2+c2-2bc·=b2+c2-bc.①又∵b+c=2,与①联立,解得bc=3,∴∴b=c=,又∵a=,∴△ABC为等边三角形.19. 【答案】解由三角形内角和定理,得C=180°-(A+B)=180°-(15°+45°)=120°.由正弦定理,得a=====,b======+.20. 【答案】解要求出点C对应的复数,即求出向量对应的复数,结合图形并注意到=+,可以先求向量对应的复数.向量可以看成向量的长度扩大为原来的倍,并绕点B按顺时针方向旋转90°后得到,又向量对应的复数为(-1+2i)-(1+i)=-2+i,故向量对应的复数为(-2+i)··[cos(-90°)+isin(-90°)]=+2i.于是点C对应的复数为(+2i)+(1+i)=(+1)+(2+1)i.同理可得点D对应的复数是(-1)+(2+2)i.21. 【答案】解(1)z∈R,只需a2-7a+6=0,所以a=1或a=6.(2)z是纯虚数,只需所以a=-2.(3)因为z=0,所以所以a=1.22. 【答案】解(1)++=++=++=+=;(2)+++=+++=++=+=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点高中数学必修2测试卷
————————————————————————————————作者:————————————————————————————————日期:
2
3
x y O x y O x y O x
y
O
高中数学必修2测试试卷
一、选择题
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x 3. 下列说法不正确的....
是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )
A .
B .
C .
D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )
A.一定是异面
B.一定是相交
C.不可能平行
D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:
①若m ⊥α,n //α,则mn ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n
// ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )(A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆2
2
(1)1x y -+=与直线3
3
y x =
的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心
9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( ) A .-1 B .2 C .3 D .0
4 10. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( ) A .点P 必在直线AC 上 B.点P 必在直线BD 上 C .点P 必在平面DBC 内 D.点P 必在平面ABC 外 11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是( ) A.MN ∥β B.MN 与β相交或MN ⊂≠β
C. MN ∥β或MN ⊂≠β
D. MN ∥β或MN 与β相交或MN ⊂≠β
12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 二 填空题
13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ; 15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __;
16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,圆C 的方程为 . 三 解答题
17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0,求AC 边上的高所在的直线方程.
5 18(12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE
的中点,求证:(1) FD ∥平面ABC; (2) AF ⊥平面EDB.
19.(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.
F E
D C
B
A
M
F
G
E
C1D1
A1
B1
D
C
A
B
20.(12分) 已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为27;③圆心在直线x-3y=0上. 求圆C的方程.
21.(12分) 设有半径为3km的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
6
7 22.(14分)已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(1) 当l 经过圆心C 时,求直线l 的方程;
(2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.
8 一、选择题(5’×12=60’) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
A
D
B
C
C
A
A
C
A
C
A
二、填空题:(4’×4=16’)
13. (0,0,3) 14. 6 15 y=2x 或x+y-3=0 16. (x-2)2
+(y+3)2
=5
三 解答题 .
17.由⎩⎨
⎧=+-=++0
16364012463x x 解得交点B (-4,0),211,=-=∴⊥AC BD k k AC BD Θ. ∴AC 边上的高线BD 的方程
为042),4(2
1=+-+=y x x y 即.
18 ∵ F 、M 分别是BE 、BA 的中点 ∴ FM ∥EA, FM=12
EA ∵ EA 、CD 都垂直于平面ABC ∴ CD ∥EA ∴ CD ∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD 是平行四边形 ∴ FD ∥MC FD ∥平面ABC
(2) 因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 CM ⊥AE,所以CM ⊥面EAB, CM ⊥AF, FD ⊥AF, 因F 是BE 的中点, EA=AB 所以AF ⊥EB.
19(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,
(2) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.
20设所求的圆C 与y 轴相切,又与直线交于AB ,
∵圆心C 在直线03=-y x 上,∴圆心C (3a ,a ),又
圆 与y 轴相切,∴R=3|a |. 又圆心C 到直线y -x =0的距
离
7||,72||.||22
|
3|||===-=BD AB a a a CD Θ
在Rt △CBD 中,33,1,1.729,)7(||2
22222±=±===-∴=-a a a a a CD R .
∴圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .
21解:如图建立平面直角坐标系,由题意
可设A 、B 两人速度分别为3v 千米/小时 , v 千米/小时,再设出发x 0小时,在点P 改变 方向,又经过y 0小时,在点Q 处与B 相遇.
F
G
E
C1D1A1
B1
D
C
A
B
F E
D C
B
A
M
9 则P 、Q 两点坐标为(3vx 0, 0),(0,vx 0+vy 0).
由|OP|2+|OQ|2=|PQ|2
知,………………3分
(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2
, 即0)45)((0000=-+y x y x .
000045,
0y x y x =∴>+Θ……①………………6分
将①代入.4
3
,3000-=+-
=PQ PQ k x y x k 得……………8分 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两个相遇的位置.
设直线9:43
22=++-
=y x O b x y 与圆相切, 则有
.415
,343|4|2
2=∴=+b b ……………………11分 答:A 、B 相遇点在离村中心正北4
3
3千米处………………12分 22.
(1) 已知圆C :()2
2
19x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,
直线l 的方程为y=2(x-1),即 2x-y-20.
(2) 当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为1
2(2)2
y x -=-
-, 即 x+2y-6=0 (3) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0
圆心C 到直线l 的距离为
1
2
,圆的半径为3, 弦AB 的长为34.。