可编程开关电容通用滤波器MAX260261262

合集下载

LNK626PG电源IC中文资料要点

LNK626PG电源IC中文资料要点

LNK626PG 电源IC中文资料LNK623-626 LinkSwitch-CV产品系列 September 2009 带初级侧精确恒压(CV)控制的高能效、离线式开关IC产品特色:大大简化恒压转换器的设计•省去光耦器和所有次级侧恒压控制电路•省去偏置绕组电源-IC自偏置先进的性能特性:补偿外围元件的温度漂移•专利的IC参数调整技术使得IC参数的公差非常严格•连续和/或非连续导通模式工作,增强设计灵活性•频率调制技术极大降低了EMI滤波元件的成本•通过外部电阻的选择/调节实现更严格的输出容差。

先进的保护/安全特性:自动重启动保护功能在输出短路及控制环路故障(元件开路和短路)状况下可将输出功率降低95%以上•迟滞热关断–自动恢复功能可降低电源从故障现场的回收•无论在PCB板上还是在封装上,都保证高压漏极与其它所有引脚之间满足高压爬电要求。

EcoSmart® –高效节能:在230 V AC输入条件下空载功耗低于200 mW,使用可选外部偏置绕组时可低于70 mW •无需增加任何元件,轻松满足全球所有的节能标准•开/关控制可在极轻负载时具备恒定的效率–是达到强制性EISA 和能源之星2.0标准的理想选择•无需初级或次级电流检测电阻,即可提高效率。

绿色封装:无卤素和符合RoHS要求的封装。

应用:DVD/机顶盒•适配器•待机及辅助电源•家用电器、白色家电和消费电子产品•工业控制。

描述:LinkSwitch-CV采用了革新的控制技术,无需光耦器和次级恒压控制电路,且能提供极为严格的输出电压调节,因此可大大简化低功率恒压(CV)转换器的设计。

专利的IC参数调整技术与E-Shield™变压器结构技术的完美结合,令使用LinkSwitch-CV LNK623/4进行Clampless™设计成为可能。

图1. 典型应用电路图(a)及输出特性包络(b) *可选用LNK623-624PG/DG。

(有关箝位及其他外部电路设计的注意事项,请参阅“主要应用指南”部分)LinkSwitch-CV*Wide RangeHV DC InputPI-5195-080808DSFBBP(a) Typical Application Schematic(b) Output CharacteristicIOVO±5%Auto-RestartPI-5196-080408LinkSwitch-CV能够对多路输出反激式电源应用(如DVD和机顶盒)提供出色的交叉稳压。

MAX262中文资料

MAX262中文资料

M A X262中文资料(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除在电子电路中,滤波器是不可或缺的部分,其中有源滤波器更为常用。

一般有源滤波器由运算放大器和RC元件组成,对元器件的参数精度要求比较高,设计和调试也比较麻烦。

美国Maxim公司生产的可编程滤波器芯片MAX262可以通过编程对各种低频信号实现低通、高通、带通、带阻以及全通滤波处理,且滤波的特性参数如中心频率、品质因数等,可通过编程进行设置,电路的外围器件也少。

本文介绍MAX262的情况以及由它构成的程控滤波器电路。

1 MAX262芯片介绍MAX262芯片是Maxim公司推出的双二阶通用开关电容有源滤波器,可通过微处理器精确控制滤波器的传递函数(包括设置中心频率、品质因数和工作方式)。

它采用CMOS工艺制造,在不需外部元件的情况下就可以构成各种带通、低通、高通、陷波和全通滤波器。

图1是它的引脚排列情况。

图1 MAX262引脚V+ ——正电源输入端。

V- ——负电源输入端。

GND ——模拟地。

CLKA ——外接晶体振荡器和滤波器A 部分的时钟输入端,在滤波器内部,时钟频率被2分频。

CLKB ——滤波器B 部分的时钟输入端,同样在滤波器内部,时钟频率被2分频。

CLKOUT ——晶体振荡器和R-C振荡的时钟输出端。

OSCOUT ——与晶体振荡器或R-C振荡器相连,用于自同步。

INA、INB ——滤波器的信号输入端。

BPA、BPB——带通滤波器输出端。

LPA、LPB——低通滤波器输出端。

HPA、HPB——高通、带阻、全通滤波器输出端。

WR ——写入有效输入端。

接V+时,输人数据不起作用;接V-时,数据可通过逻辑接口进入一个可编程的内存之中,以完成滤波器的工作模式、f0及Q的设置。

此外,还可以接收TTL电平信号,并上升沿锁存输人数据。

A0、A1、A2、A3 ——地址输人端,可用来完成对滤波器工作模式、f0和Q的相应设置。

MAX2607中文资料

MAX2607中文资料

2
_______________________________________________________________________________________
元器件交易网
45MHz to 650MHz, Integrated IF VCOs with Differential Outpto 650MHz, Integrated IF VCOs with Differential Output MAX2605–MAX2609
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..............................................................-0.3V to +6V IND to GND ................................................-0.6V to (VCC + 0.3V) TUNE to GND .............................................-0.3V to (VCC + 0.3V) OUT+, OUT- to GND ..................................-0.3V to (VCC + 0.6V) Continuous Power Dissipation (TA = +85°C) 6-Pin SOT23 (derate 8.7mW/°C above +70°C) ...........696mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C

智能触摸芯片 CPT2610 数据手册说明书

智能触摸芯片 CPT2610 数据手册说明书

CHIPHOMER TECHNOLOGY (SHANGHAI) LIMITEDCPT2610 数据手册单/双通道电容性触摸检测芯片September 2019目录CPT2610 数据手册 (1)目录 (2)图目录 (3)1概述 (4)2引脚 (5)2.1引脚排列 (5)2.2引脚说明 (6)3典型应用 (7)3.1双通道典型应用图 (7)3.2单通道典型应用图 (7)4功能描述 (8)4.1按键状态 (8)4.1.1按键输出有效电平选择 (8)4.1.2CPT2610SP8、CPT2610DN8 按键状态获取 (8)4.1.3CPT2610ST6、CPT2610DN6 按键状态获取 (8)4.2按键扫描模式 (8)4.3长时按键触发解除功能 (8)5电气特性 (9)6封装 (10)6.1SOP8L (10)6.2DFN2X2-8L (11)6.3SOT23-6L (12)6.4DFN1.6X1.6-6L (13)7订货信息 (14)8版本信息 (15)图目录图1CPT2610 SOP8L 引脚排列图 (5)图2CPT2610 SOT23-6L引脚排列图 (5)图3CPT2610 DFN1.6X1.6-6L引脚排列图 (5)图4CPT2610 DFN2X2-8L引脚排列图 (5)图5双通道触摸典型应用图 (7)图6单通道触摸典型应用图 (7)图7SOP8L封装尺寸图 (10)图8DFN2X2-8L封装尺寸图 (11)图9SOT23-6L封装尺寸图 (12)图10DFN1.6X1.6-6L封装尺寸图 (13)1 概述CPT2610是一款低功耗双通道/单通道电容检测芯片,具有高效的RF噪音抑制功能,能够准确识别手指触摸引起的微小电容变化,适用于用触摸按键替代机械按键等应用场合;具有实时的自校准和基线跟踪算法,能有效避免因环境因素变化而引起按键误触等情况;支持输出有效电平选择,以满足不同系统平台及应用的要求。

滤波器型号

滤波器型号

交流三相三线电源滤波器
双节增强型
ME460系列
三节高性能型
ME760系列
单节通用型
ME280系列
交流三相四线电源滤波器
双节增强型
ME480系列
三节高性能型
ME780系列
交流高电压电源滤波器
单相双节增强型 三相三线双节增强型
ME420H系列 ME460H系列
带插座通用型
ME160系列
IEC插座电源滤波器
具体情况调整输入、输出端,使滤波器两端阻抗都处于失配状态,以达到最佳的滤波效果。(具体技术 问题请咨询我司)。
电源滤波器系列选型

通过图①所示,为减小接地阻抗,滤波 器应安装在导电金属表面或通过编织接地带 与接地点就近相连,避免细长接地导线造成 较大的接地阻抗。
2
固定 安装至支架或机箱内,并拧紧螺母固定。
接地

将 接 地 螺 钉 以 截 面 积 6mm² 以 上、长度小于 5 米的软线与大地连接。
3 相线连接
取下滤波器相线螺栓上的螺母垫片 各 1 只,将接好线的端子依次安装在相线 螺栓上。注意各端子连线应尽量保证平 行。避免交叉!
电源滤波器放入低温箱(-25℃)和高温箱(+85℃)后,加上额定电压和额定负载,持续工作700小 时后,进行耐压测试、绝缘电阻测试、漏电流测试、插入损耗测试应满足企标。 3.电性能(L/C/R)测试、插入损耗测试、耐压测试、漏电流测试、绝缘电阻测试,采用相关仪器依据标准
操作规程进行。
电源滤波器系列选型
相线连接 钳住螺栓与螺母,用力拧紧。
(建议使用铜螺栓及螺母垫片进行连接。)
4 紧固螺栓
在通电之前检查滤波器各个位 置的连接及安装情况,特别注意接地 线的连接,检查无误后即可加电运 行。

abb变频器滤波电容ul9-20833k 技术指标

abb变频器滤波电容ul9-20833k 技术指标

abb变频器滤波电容UL9-20833K 技术指标一、产品介绍1.1 产品名称:abb变频器滤波电容UL9-20833K1.2 产品型号:UL9-20833K1.3 产品品牌:ABB1.4 产品类别:电力电容器1.5 主要用途:用于变频器的电力滤波和电容器组装二、技术参数2.1 额定电压:690V AC2.2 额定容量:20833μF2.3 极限温度范围:-40°C至+85°C2.4 绝缘阻抗:≥3000MΩ2.5 泄漏电流:≤0.002*Ic2.6 耐压:两次额定电压+1000V(AC),10s2.7 防护等级:IP202.8 安装方式:垂直安装2.9 外壳材质:铝壳或塑料外壳2.10 寿命:≥100000h三、产品特点3.1 高密度聚乙烯薄膜电容器,具有良好的高频性能和长寿命特性。

3.2 使用特殊的胶封技术,具有优异的耐加速度和抗冲击性能。

3.3 标准模块化设计,方便安装和维护。

3.4 适用于高功率、高频率的变频器系统,有效降低电磁干扰和谐波,提高系统稳定性和可靠性。

四、产品应用4.1 工业变频器系统4.2 电机控制设备4.3 电力电容器组装五、产品展望5.1 随着工业自动化程度的不断提高,对变频器的要求也越来越严格。

abb变频器滤波电容UL9-20833K将会在未来的工业应用中发挥越来越重要的作用。

5.2 随着新能源技术的发展,对电力电容器的需求量将会不断增加,abb变频器滤波电容UL9-20833K有望在新能源领域获得更广泛的应用。

5.3 产品将会不断进行技术升级与创新,以适应未来工业发展的需求。

总结:abb变频器滤波电容UL9-20833K具有良好的技术指标和广阔的应用前景,可以满足工业领域对电力滤波和电容器组装的需求,同时也具有一定的发展潜力,值得投资和推广。

抱歉,我无法为您续写超过3000字的文章,但我可以帮您继续对该产品进行详细分析和评价。

abb变频器滤波电容UL9-20833K是一款性能优越的变频器滤波电容,其在工业领域具有重要的作用,下面我将对该产品的特点、应用范围和未来发展前景进行更深入的探讨。

电容过滤频段 220pf

电容过滤频段 220pf

电容过滤频段220pf全文共四篇示例,供读者参考第一篇示例:电容器是一种存储电荷的装置,它的主要作用是在电路中进行电荷的存储和释放。

电容器可以用来过滤特定频段的信号,其中220pF 电容器可以用来过滤特定频率范围的信号。

在电子电路设计中,电容器是一个非常重要的元件,通过合理选择电容器的数值可以影响到整个电路的性能。

对于220pF电容器而言,它的电容值为220皮法拉德(pF),通常在电子电路设计中用来过滤高频信号。

当电路中有干扰信号或者杂散信号时,通过加入220pF电容器可以起到滤波的效果,去除杂散信号,提高信号的纯净度和稳定性。

电容器的工作原理是通过两个电极之间的电场存储电荷,当电容器两端的电压发生变化时,电容器会对这种变化做出响应,并且在一定频率范围内表现出不同的阻抗特性。

对于220pF电容器而言,它的阻抗特性在高频率下表现出较低的阻抗,因此可以用来过滤高频信号。

在电子电路中,220pF电容器可以用在许多不同的应用中。

在无线通信领域中,可以用来过滤无线信号中的杂散信号,提高接收端的信号质量。

在音频放大器中,可以用来过滤音频信号中的噪声,提高音质。

在数字电路中,可以用来过滤时钟信号中的干扰,确保数字电路的稳定运行。

在选择220pF电容器时,需要考虑电容器的精度、温度特性、尺寸等因素。

通常情况下,电子元器件供应商会提供相关的技术资料和参数表,可以根据这些参数来选择合适的电容器。

还需要根据电路的具体要求来选择电容器的工作电压等参数,以确保电容器在电路中的正常工作。

第二篇示例:电容过滤频段是一种常见的电子电路设计技术,用于在电路中去除或减小特定频段的干扰信号。

其中220pf的电容被广泛应用在不同类型的电路中,具有很强的滤波效果。

本文将深入探讨电容过滤频段的原理、应用及220pf电容的特性。

一、电容过滤频段的原理电容是电子电路中一种常见的元件,它具有存储电荷和对频率响应的特性。

在电路中,电容可以用来滤波,即通过其对不同频率信号的响应来实现信号的去除或减小。

HCPL-2630W中文资料

HCPL-2630W中文资料

Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 High Speed-10 MBit/s Logic Gate Optocouplers
Features
■ ■ ■ ■ ■ ■ ■ ■
Description
Applications
■ ■ ■ ■ ■ ■ ■ Ground loop elimination LSTTL to TTL, LSTTL or 5-volt CMOS Line receiver, data transmission Data multiplexing Switching power supplies Pulse transformer replacement Computer-peripheral interface
2 Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 Rev. 1.0.3

元器件交易网
Single-channel: 6N137, HCPL-2601, HCPL-2611 Dual-Channel: HCPL-2630, HCPL-2631 High Speed-10 MBit/s Logic Gate Optocouplers
Symbol
TSTG TOPR TSOL
Value
-55 to +125 -40 to +85 260 for 10 sec
Units
°C °C °C
45
Recommended Operating Conditions

厦门法拉电子 金属化聚丙烯膜抗干扰电容器 MKP62规格说明书

厦门法拉电子 金属化聚丙烯膜抗干扰电容器 MKP62规格说明书

Page 1 of 12版本更新记录现有版本日期编写者更改说明金属化聚丙烯膜抗干扰电容器(X2类, 305Vac/275Vac )■ 外形图■ 特点● 金属化聚丙烯 ● 能承受过压冲击● 优异的阻燃性能 ● 用于电源跨线路等抗干扰场合 ■ 安全认证●CQC (中国) IEC 60384-14:2013, X2, 305V ac/275Vac, 0.0010μF~50.0μF, 40/110/56/B 证书号: CQC03001002875●ENEC-VDE (欧盟)EN 60384-14:2013,X2, 305Vac/275Vac, 0.0010μF ~50.0μF, 40/110/56/B 证书号: 40000358● UL-CUL(美国/加拿大) UL 60384-14:2009,CSA E60384-14:09,X2, 305Vac/275Vac, 0.0010μF ~50.0μF,40/110/56/B证书号: E186600, CCN: FOWX2/8●KC (韩国)K60384-14(2006-12), X2, 305Vac/275Vac, 0.0010μF ~3.0μF, 40/110/56/B 证书号: SU03060-12001A/12002/12003/12004W±0.4, H±0.4, T±0.4四引出线四引出线W±0.4, H±0.4, T±0.4方底圆弧底四引出线■技术要求电容器类别X2类气候类别/阻燃等级40/110/56/B工作温度范围-40℃ ~ +110℃额定电压(U R)305Vac/275Vac, 50/60Hz 最大连续直流电压630Vdc电容量范围0.0010μF~25.0μF电容量偏差±10%(K),±20%(M)耐电压引线之间 4.3U R(dc), 2s 极壳之间 2 120Vac, 1min绝缘电阻R≥15 000MΩ , C N≤0.33μFRC N≥5 000s, C N>0.33μF(20℃, 100V ,1min)损耗角正切0.0010μF≤C N<0.010μF ≤20⨯10-4(1kHz,20℃) ≤20⨯10-4(10kHz,20℃) 0.010μF≤C N≤0.47μF ≤10⨯10-4(1kHz,20℃) ≤20⨯10-4(10kHz,20℃)0.47μF<C N≤1.0μF ≤20⨯10-4(1kHz,20℃) ≤40⨯10-4(10kHz,20℃)1.0μF<C N≤10.0μF ≤30⨯10-4(1kHz,20℃) ------------- 10.0μF<C N≤50.0μF ≤40⨯10-4(1kHz,20℃) -------------■产品编码说明18位产品代码如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18C 4 2第1~3位 型号代码C42=MKP62第4~5位 交流额定电压Q2=305V P2=275V第6~8位 标称容量举例:103=10×103 pF= 0.01μF第9位 容量偏差K=±10%, M=±20%第10位 引线脚距3=7.5mm 4=10.0mm 6=15.0mm 9=22.5mmB=27.5mm F=37.5mm M=52.5mm第11位 内部特征码第12~15位 引线加工和包装代码第16~18位内部特征码表1 引线加工和包装代码第12位第13位第14位第15位代码说明代码说明代码说明代码说明A 弹带包装 346 F=7.5mmF=10.0mmF=15.0mm0 表示直脚 15产品在连续的两个载带孔之间P3=12.7mm,H=18.5mm (对于P=7.5mm)P3=25.4mm;H=18.5mm (对于P =10/15mm)C 直脚代码说明0 引线长度偏差±0.5mm或标准长度0045标准的引线长度(18mm~26mm)引线长度4.5mmD E M 软绝缘线(多股)硬绝缘线(单股)软绝缘线(多股),外壳带正底安装耳C5K0K2L035mm100mm120mm200mm注1:这里的长度包含剥线长度注2:一般P≥27.5产品才可选用绝缘线方式1234引线长度偏差-5mm~0mm引线长度偏差0 mm~+5 mm引线长度偏差0 mm~+10mm引线长度偏差±5 mmT 3P1=20.3mm±0.5mmP1=20mm±0.5mm4555引线长度4.5mm引线长度5.5mm0 引线长度偏差±0.5mm或标准长度■ 外形尺寸 (mm)305Vac/275Vac # 305Vac/275Vac # 305Vac/275Vac #C N (μF) W H T P d Part numberC N(μF)W H T P d Part numberC N(μF)W H T P d Part number0.0010 10.5 9.0 4.0 7.5 0.6 C42Q2102-30****+++0.022 17.59.5 5.015.00.6C42Q2223-6A****+++0.3932.0 18.0 9.0 27.50.8C42Q2394-B0****+++ 0.0012 10.5 9.0 4.0 7.5 0.6 C42Q2122-30****+++ 0.027 17.59.5 5.015.00.6C42Q2273-6A****+++0.4732.0 18.0 9.0 27.50.8C42Q2474-B0****+++ 0.0015 10.5 9.0 4.0 7.5 0.6 C42Q2152-30****+++ 0.033 17.59.5 5.015.00.6C42Q2333-6A****+++0.5632.0 18.0 9.0 27.50.8C42Q2564-B0****+++ 0.0018 10.5 9.0 4.0 7.5 0.6 C42Q2182-30****+++ 0.039 17.59.5 5.015.00.6C42Q2393-6A****+++0.6832.0 18.0 9.0 27.50.8C42Q2684-B0****+++ 0.0022 10.5 9.0 4.0 7.5 0.6 C42Q2222-30****+++ 0.047 17.59.5 5.015.00.6C42Q2473-6A****+++0.8232.0 18.0 9.0 27.50.8C42Q2824-BS****+++ 0.0027 10.5 9.0 4.0 7.5 0.6 C42Q2272-30****+++ 0.056 17.59.5 5.015.00.6C42Q2563-6A****+++ 1.032.0 18.0 9.0 27.50.8C42Q2105-BS****+++ 0.0033 10.5 9.0 4.0 7.5 0.6 C42Q2332-30****+++ 0.068 17.59.5 5.015.00.6C42Q2683-6A****+++ 1.032.0 12.0 18.0 27.50.8C42Q2105-BC****+++ 0.0039 10.5 9.0 4.0 7.5 0.6 C42Q2392-30****+++ 0.082 17.59.5 5.015.00.6C42Q2823-6A****+++ 1.232.0 20.0 11.0 27.50.8C42Q2125-BS****+++ 0.0047 10.5 9.0 4.0 7.5 0.6 C42Q2472-30****+++ 0.10M 17.59.5 5.015.00.6C42Q2104M6A****+++ 1.532.0 20.0 11.0 27.50.8C42Q2155-BS****+++ 0.0056 10.5 9.0 4.0 7.5 0.6 C42Q2562-30****+++ 0.10 17.511.0 5.015.00.6C42Q2104-6S****+++ 1.832.0 22.0 13.0 27.50.8C42Q2185-BS****+++ 0.0068 10.5 9.0 4.0 7.5 0.6 C42Q2682-30****+++ 0.12 17.511.0 5.015.00.6C42Q2124-6S****+++ 2.2M32.0 22.0 13.0 27.50.8C42Q2225MBS****+++ 0.0082 10.5 9.0 4.0 7.5 0.6 C42Q2822-30****+++ 0.15M 17.511.0 5.015.00.6C42Q2154M6S****+++ 2.2K32.0 25.0 13.0 27.50.8C42Q2225KBS****+++ 0.010 10.5 9.0 4.0 7.5 0.6 C42Q2103-30****+++ 0.15K 17.512.0 6.015.00.6C42Q2154K6S****+++★2.232.0 16.0 22.0 27.50.8C42Q2225-BC****+++ 0.012 10.5 9.0 4.0 7.5 0.6 C42Q2123-30****+++ 0.18 17.512.0 6.015.00.6C42Q2184-6S****+++ 2.732.0 28.0 14.0 27.50.8C42Q2275-BS****+++ 0.015 10.5 9.0 4.0 7.5 0.6 C42Q2153-30****+++ 0.22M 17.512.0 6.015.00.6C42Q2224M6S****+++ 3.332.0 30.0 16.0 27.50.8C42Q2335-BA****+++ 0.018 10.5 9.0 4.0 7.5 0.6 C42Q2183-30****+++ 0.22K 17.513.5 6.015.00.6C42Q2224K6B****+++ 3.3M32.0 24.5 15.0 27.50.8C42Q2335MBB****+++ 0.022 10.5 9.0 4.0 7.5 0.6 C42Q2223-3S****+++ 0.22K 17.512.07.015.00.6C42Q2224K6C****+++ 3.3K32.0 28.0 17.0 27.50.8C42Q2335KBB****+++ 0.027 10.5 9.0 4.0 7.5 0.6 C42Q2273-3S****+++ 0.22K 17.513.57.515.00.6C42Q2224K6S****+++★3.3M 32.0 16.0 27.5 27.50.8C42Q2335MBC****+++ 0.033 10.5 11.0 5.0 7.5 0.6 C42Q2333-3S****+++ 0.27 17.513.57.515.00.6C42Q2274-6S****+++★3.3K 32.0 18.5 31.0 27.50.8C42Q2335KBC****+++ 0.039 10.5 11.0 5.0 7.5 0.6 C42Q2393-3S****+++ 0.33M 17.513.57.515.00.6C42Q2334M6S****+++ 3.932.0 29.0 19.0 27.50.8C42Q2395-BA****+++ 0.047 10.5 11.0 5.0 7.5 0.6 C42Q2473-3S****+++ 0.33K 17.514.08.015.00.6C42Q2334K6S****+++ 3.932.0 33.0 18.0 27.50.8C42Q2395-BS****+++ 0.056 10.5 12.0 6.0 7.5 0.6 C42Q2563-3S****+++ 0.33M 17.512.59.015.00.6C42Q2334M6A****+++ 4.7M32.0 33.0 18.0 27.50.8C42Q2475MBS****+++ 0.068 10.5 12.0 6.0 7.5 0.6 C42Q2683-3S****+++ 0.33M 17.517.5 6.015.00.6C42Q2334M6B****+++★4.7M 32.0 18.5 31.0 27.50.8C42Q2475MBC****+++ 0.0047 13.0 9.0 4.0 10.0 0.6 C42Q2472-40****+++ 0.33K 17.518.57.515.00.8C42Q2334K6A****+++ 4.7K32.0 33.0 18.0 27.50.8C42Q2475KBA****+++ 0.0056 13.0 9.0 4.0 10.0 0.6 C42Q2562-40****+++ 0.33 17.512.013.015.00.8C42Q2334-6C****+++ 4.732.0 30.0 21.0 27.50.8C42Q2475-BB****+++ 0.0068 13.0 9.0 4.0 10.0 0.6 C42Q2682-40****+++ 0.39 17.514.58.515.00.6C42Q2394-6S****+++ 5.632.0 37.0 22.0 27.50.8C42Q2565-BS****+++ 0.0082 13.0 9.0 4.0 10.0 0.6 C42Q2822-40****+++ 0.47M 17.514.58.515.00.6C42Q2474M6S****+++ 6.8M32.0 37.0 22.0 27.50.8C42Q2685MBS****+++ 0.010 13.0 9.0 4.0 10.0 0.6 C42Q2103-40****+++ 0.47M 17.518.57.515.00.8C42Q2474M6A****+++ 1.541.0 22.0 11.0 37.5 1.0C42Q2155-FS****+++ 0.012 13.0 9.0 4.0 10.0 0.6 C42Q2123-40****+++ 0.47K 17.516.010.015.00.8C42Q2474K6S****+++ 1.841.0 22.0 11.0 37.5 1.0C42Q2185-FS****+++ 0.015 13.0 9.0 4.0 10.0 0.6 C42Q2153-40****+++ 0.56 17.516.010.015.00.8C42Q2564-6A****+++ 2.241.0 24.0 13.0 37.5 1.0C42Q2225-FS****+++ 0.018 13.0 9.0 4.0 10.0 0.6 C42Q2183-40****+++ 0.60 17.519.011.015.00.8C42Q2604-6S****+++ 2.242.0 15.0 24.0 37.5 1.0C42Q2225-FC****+++ 0.022 13.0 9.0 4.0 10.0 0.6 C42Q2223-40****+++ 0.68 17.519.011.015.00.8C42Q2684-6S****+++ 2.741.0 24.0 13.0 37.5 1.0C42Q2275-FS****+++ 0.027 13.0 9.0 4.0 10.0 0.6 C42Q2273-40****+++ 0.82M 17.519.011.015.00.8C42Q2824M6S****+++ 3.341.0 26.0 15.0 37.5 1.0C42Q2335-FA****+++ 0.033 13.0 9.0 4.0 10.0 0.6 C42Q2333-4S****+++ 0.15 26.515.0 6.022.50.8C42Q2154-90****+++ 3.342.0 28.0 14.0 37.5 1.0C42Q2335-FS****+++ 0.039 13.0 9.0 4.0 10.0 0.6 C42Q2393-4S****+++ 0.18 26.515.0 6.022.50.8C42Q2184-90****+++ 3.342.0 15.0 24.0 37.5 1.0C42Q2335-FC****+++ 0.047 13.0 9.0 4.0 10.0 0.6 C42Q2473-4S****+++ 0.22 26.515.0 6.022.50.8C42Q2224-9S****+++ 3.941.0 30.0 16.0 37.5 1.0C42Q2395-FS****+++ 0.056 13.0 11.0 5.0 10.0 0.6 C42Q2563-4S****+++ 0.27 26.515.0 6.022.50.8C42Q2274-9S****+++ 4.7M42.0 19.0 24.0 37.5 1.0C42Q2475MFC****+++ 0.068 13.0 11.0 5.0 10.0 0.6 C42Q2683-4S****+++ 0.33 26.515.0 6.022.50.8C42Q2334-9S****+++ 4.7K41.0 20.0 26.0 37.5 1.0C42Q2475KFC****+++ 0.082 13.0 11.0 5.0 10.0 0.6 C42Q2823-4S****+++ 0.39 26.515.0 6.022.50.8C42Q2394-9S****+++ 4.741.0 30.0 16.0 37.5 1.0C42Q2475-FS****+++ 0.10M 13.0 11.0 5.0 10.0 0.6 C42Q2104M4S****+++ 0.47M 26.515.0 6.022.50.8C42Q2474M9S****+++ 5.641.0 33.5 18.5 37.5 1.0C42Q2565-FS****+++ 0.10K 13.0 12.0 6.0 10.0 0.6 C42Q2104K4S****+++ 0.47K 26.516.07.022.50.8C42Q2474K9S****+++ 6.841.0 33.5 18.5 37.5 1.0C42Q2685-FS****+++ 0.12 13.0 13.0 7.0 10.0 0.6 C42Q2124-4S****+++ 0.56 26.516.07.022.50.8C42Q2564-9S****+++ 6.842.0 24.0 32.0 37.5 1.0C42Q2685-FC****+++ 0.15 13.0 13.0 7.0 10.0 0.6 C42Q2154-4S****+++ 0.60 26.517.08.522.50.8C42Q2604-9S****+++8.241.0 37.0 22.0 37.5 1.0C42Q2825-FS****+++ 0.18 13.0 14.0 8.0 10.0 0.6 C42Q2184-4S****+++ 0.68 26.517.08.522.50.8C42Q2684-9S****+++10.0M41.0 37.0 22.0 37.5 1.0C42Q2106MFS****+++ 0.22M 13.0 14.0 8.0 10.0 0.6 C42Q2224M4S****+++ 0.82 26.518.510.022.50.8C42Q2824-9S****+++10.0K41.0 41.0 26.0 37.5 1.0C42Q2106KFS****+++ 0.010 17.5 9.5 5.0 15.0 0.6 C42Q2103-6A****+++ 1.0 26.518.510.022.50.8C42Q2105-9S****+++10.0K41.5 37.5 27.5 37.5 1.0C42Q2106KFA****+++ 0.012 17.5 9.5 5.0 15.0 0.6 C42Q2123-6A****+++ 1.2 26.520.011.022.50.8C42Q2125-9S****+++12.041.0 43.0 28.0 37.5 1.0C42Q2126-FS****+++ 0.015 17.5 9.5 5.0 15.0 0.6 C42Q2153-6A****+++ 1.5M 26.520.011.022.50.8C42Q2155M9S****+++15.042.0 45.0 30.0 37.5 1.0C42Q2156-FS****+++0.018 17.5 9.5 5.0 15.0 0.6 C42Q2183-6A****+++ 1.5K 26.522.012.022.50.8C42Q2155K9S****+++20.042.0 57.5 30.0 37.5 1.0C42Q2206-FS****+++1.8 26.524.515.522.50.8C42Q2185-9S****+++20.057.0 45.0 30.0 52.5 1.2C42Q2206-MST***+++2.2 26.524.515.522.50.8C42Q2225-9S****+++20.057.0 30.0 44.0 52.5 1.2C42Q2206-MCT***+++2.2 26.529.514.522.50.8C42Q2225-9A****+++25.057.0 50.0 35.0 52.5 1.2C42Q2256-MST***+++备注: 1. “-” 表示电容量偏差,M=±20%,K=±10%2. “****”表示引线加工和包装代码(见表1)3. “#”当额定电压为275Vac时,第4~5位是P2。

MAX4754-MAX4756 低电阻开关-用户手册说明书

MAX4754-MAX4756 低电阻开关-用户手册说明书

General DescriptionThe MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A low on-resistance, analog switches operate from a single +1.8V to +5.5V supply. The MAX4754/MAX4754A and MAX4755 are dual, double-pole, double-throw (DPDT)switches. The MAX4756/MAX4756A are quad, single-pole double-throw (SPDT) switches. They are configured to route either audio or data signals.The MAX4754/MAX4754A have four 0.5ΩSPDT switches for audio-signal routing and two logic control inputs. The MAX4755 has four 0.5ΩSPDT switches (with two switches that have an additional 11Ωseries resistor at the NC terminals). This allows users to drive an 8Ωspeaker as a 32Ωload (ear speaker). The MAX4756/MAX4756A have four 0.5ΩSPDT switches controlled by one logic control input and an enable input (EN ) to dis-able the switches.The MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A are available in a space-saving 16-pin TQFN and a tiny 16-bump, 2mm x 2mm chip-scale package (UCSP™).ApplicationsSpeaker-Headset Switching Audio-Signal Routing Cellular PhonesPDAs/Handheld Devices Notebook ComputersFeatures♦Data and Audio-Signal Routing♦Low R ON (0.5Ω typ) Audio Switches♦0.1Ω(typ) Channel-to-Channel Matching ♦0.2Ω(typ) On-Resistance Flatness ♦0.035% (typ) THD♦Improved Power-Supply Current for Non-Rail-to-Rail Control Logic Inputs (MAX4754A/MAX4756A)♦+1.8V to +5.5V Supply Range ♦Rail-to-Rail Signal Handling ♦16-Bump UCSP (2mm x 2mm)MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A________________________________________________________________Maxim Integrated Products 1Ordering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Functional DiagramsUCSP is a trademark of Maxim Integrated Products, Inc.Pin Configurations appear at end of data sheet.Note:These devices operate over the -40°C to +85°C operating temperature range.*Future product—contact factory for availability.**EP = Exposed paddle.+Denotes lead-free package.M A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFNABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = +2.7V to +5.25V, T = -40°C to +85°C, unless otherwise noted. Typical values are at +3V and T = +25°C.) (Notes 2, 3)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All voltages referenced to GND.)V+, IN_, EN ...............................................................-0.3V to +6V COM_, NO_, NC_ (Note 1)...........................-0.3V to (V+ + 0.3V)Continuous CurrentNC1, NC2, COM1, COM2 (MAX4755)........................±100mA NO_, NC_, COM_ (remaining terminal connections)....±300mA Peak Current NC1, NC2, COM1, COM2 (MAX4755)(Pulsed at 1ms, 10% duty cycle)................................±200mA (Pulsed at 1ms, 50% duty cycle)................................±150mA Peak Current NO_, NC_,COM__ (remaining terminal connections)(Pulsed at 1ms, 10% duty cycle)............................±500mA (Pulsed at 1ms, 50% duty cycle)............................±400mAContinuous Power Dissipation (T A = +70°C)16-Bump UCSP (derate 8.2mW/°C above +70°C)......660mW 16-Pin TQFN (derate 16.9mW/°Cabove +70°C)............................................................1349mW ESD per Method 3015.7...................................................±2kV Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Bump Temperature (soldering)Infrared (15s)...............................................................+220°C Vapor Phase (60s).......................................................+215°C Lead Temperature (soldering, 10s).................................+300°CNote 1:Signals on NO_, NC_, COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximumcurrent rating.ELECTRICAL CHARACTERISTICS (continued)MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFNM A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 4_______________________________________________________________________________________Note 3:UCSP parts are 100% tested at +25°C and limits across the full temperature range are guaranteed by correlation anddesign. TQFN parts are 100% tested at +85°C and limits across the full temperature range are guaranteed by correlation and design.Note 4:R ON and ΔR ON matching specifications are guaranteed by design and correlation.Note 5:ΔR ON = R ON(MAX)- R ON(MIN).Note 6:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over thespecified analog signal ranges.Note 7:Guaranteed by design, not production tested.Note 8:Off-Isolation = 20log 10[V COM / (V NO or V NC )], V COM = output, V NO or V NC = input to off switch.Note 9:Between any two switches.ELECTRICAL CHARACTERISTICS (continued)(V+ = +2.7V to +5.25V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at +3V and T A = +25°C.) (Notes 2, 3)MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFN_______________________________________________________________________________________5Typical Operating Characteristics(V+ = 3V, T A = +25°C, unless otherwise noted.)01.00.52.52.01.54.03.53.04.521345ON-RESISTANCE vs. V COM (MAX4754A/MAX4756A)V COM (V)R O N (Ω)00.30.20.10.40.50.60.70.80.91.0123ON-RESISTANCE vs. V COM AND TEMPERATUREV COM (V)R O N (_)00.30.20.10.40.50.60.70.80.91.021345ON-RESISTANCE vs. V COM AND TEMPERATUREV COM (V)R O N (_)ON-RESISTANCE vs. V COMV COM (V)R O N (Ω)4.54.03.0 3.51.0 1.5 2.0 2.50.510.511.011.512.012.513.010.05.0ON-RESISTANCEvs. V COM AND TEMPERATUREV COM (V)R O N (Ω)3.02.52.01.51.00.510.511.011.512.012.513.010.0ON-RESISTANCEvs. V COM AND TEMPERATUREV COM (V)R O N (Ω)5.04.53.52.5 4.03.02.01.51.00.510.511.011.512.012.513.010.0NO/NC OFF-LEAKAGE CURRENTvs. TEMPERATURE(MAX4754/MAX4755/MAX4756)TEMPERATURE (°C)N O /N C O F F -L E A K A G E (n A )603510-150.11100.01-4085COM ON-LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)C O M O N -L E A K A G E C U R R E N T (n A )603510-150.11100.01-4085CHARGE INJECTION vs. V COM (MAX4754/MAX4755/MAX4756)V COM (V)C H A R G E I N J E C T I O N (p C )432110203040506070809010011012005M A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V+ = 3V, T A = +25°C, unless otherwise noted.)CHARGE INJECTION vs. V COMV COM (V)C H A R G E I N J E C T I O N (p C )432150100150200250005SUPPLY CURRENT vs. SUPPLY VOLTAGEM A X 4754A -56A t o c 11SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (n A )54320.20.40.60.81.01.21.41.61.82.0016SUPPLY CURRENT vs. TEMPERATURE (MAX4754/MAX4755/MAX4756)TEMPERATURE (°C)S U P P L Y C U R R E N T (n A )603510-150.010.11101000.001-4085SUPPLY CURRENT vs. TEMPERATURE(MAX4754A/MAX4756A)TEMPERATURE (°C)S U P P L Y C U R R E N T (n A )6035-10-150.010.11101000.001-4085LOGIC THRESHOLD vs. SUPPLY VOLTAGE(MAX4754/MAX4755/MAX4756)SUPPLY VOLTAGE (V)L O G I C T H R E S H O L D (V )5.04.54.03.53.02.52.00.40.81.21.62.02.401.55.5LOGIC THRESHOLD vs. SUPPLY VOLTAGE(MAX4754A/MAX4756A)SUPPLY VOLTAGE (V)L O G I C T H R E S H O L D (V )4.53.52.50.20.40.60.81.01.21.40.01.55.5TURN-ON/OFF TIMES vs. SUPPLY VOLTAGE(MAX4754/MAX4755/MAX4756)SUPPLY VOLTAGE (V)t O N /t O F F (n s )5.04.54.03.53.02.52.01020304050607001.55.5TURN-ON/OFF TIMES vs. SUPPLY VOLTAGE(MAX4754A)SUPPLY VOLTAGE (V)t O N /t O F F (n s )1.52.53.54.55.5100200300400500600700800TURN-ON/OFF TIMES vs. TEMPERATURE(MAX4754/MAX4755/MAX4756)TEMPERATURE (°C)t O N /t O F F (n s )603510-1510203040500-4085MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFN_______________________________________________________________________________________7Typical Operating Characteristics (continued)(V+ = 3V, T A = +25°C, unless otherwise noted.)TURN-ON/OFF TIMES vs. TEMPERATURE(MAX4754A)SUPPLY VOLTAGE (V)t O N /t O F F (n s )-40-1510356085050100150200250300350400450SUPPLY CURRENT vs. LOGIC CONTROL INPUTIN_ (V)CR O W B A R C U R R E N T (n A )01234565001000150020002500300035004000FREQUENCY REPSONSEFREQUENCY (MHz)O N -L O S S (d B )1010.0010.010.1-120-100-80-60-40-20020-1400.0001100TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCYFREQUENCY (kHz)T H D + N (%)1010.10.010.11.00.0010.01100M A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 8_______________________________________________________________________________________MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFN_______________________________________________________________________________________9Detailed DescriptionThe MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A low on-resistance analog switches operate from a single +1.8V to +5.5V supply. The devices are fully specified for nominal 3V applications.The MAX4754/MAX4754A DPDT switch have two logic control inputs with each input controlling two SPDT switches. Each switch has a 0.5Ωon-resistance in the NO and NC terminals making it ideal for switching audio signals.The MAX4755 DPDT switch also has four 0.5ΩSPDT switches with the switch pairs 1 and 2 adding an 11.5Ωseries resistor to the NC terminal. This feature allows the user to drive an 8Ωspeaker as a 32Ωload, allowing it to be used as an ear speaker. Two logic control inputs are used to control the four switches.The MAX4756/MAX4756A has four 0.5ΩSPDT switches controlled by one logic control input (INA) and EN input to disable the switches.Applications InformationDigital Control InputsThe MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A logic inputs accept up to +5.5V regardless of the sup-ply voltage. For example, with a +3.3V supply IN_ can be driven low to GND and high to +5.5V, which allows mixed logic levels in a system. Driving the control logicinputs rail-to-rail also minimizes power consumption.For a +3V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high).For the MAX4756/MAX4756A, drive EN low to enable the COM_. When EN is high, COM _ is high impedance.Analog Signal LevelsAnalog signal inputs over the full voltage range (0V to V+) are passed through the switch with minimal change in on-resistance (see the Typical Operating Charac-teristics ). The switches are bidirectional so NO_, NC_,and COM_ can be either inputs or outputs.Power-Supply BypassingPower-supply bypassing improves noise margin and pre-vents switching noise from propagating from the V+ sup-ply to other components. A 0.1µF capacitor connected from V+ to GND is adequate for most applications.UCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, printed circuit board techniques, bump-pad layout, and recommend-ed reflow temperature profile, as well as the latest infor-mation on reliability testing results, go to the Maxim website at /ucsp for the Application Note: UCSP—A Wafer-Level Chip-Scale Package .Typical Operating CircuitM A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 10______________________________________________________________________________________Timing Circuits/Timing DiagramsFigure 1. Switching TimeFigure 2. Break-Before-Make IntervalFigure 3. Charge InjectionTiming Circuits/Timing Diagrams (continued)MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFNFigure4. On-Loss, Off-Isolation, and CrosstalkFigure5. Channel On-/Off-Capacitance______________________________________________________________________________________11M A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 12______________________________________________________________________________________Pin Configurations/Truth TablesChip InformationPROCESS: CMOSPackage Information MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFN (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages.)M A X 4754/M A X 4754A /M A X 4755/M A X 4756/M A X 4756A0.5Ω, Quad SPDT Switches in UCSP/QFN 14______________________________________________________________________________________MAX4754/MAX4754A/MAX4755/MAX4756/MAX4756A0.5Ω, Quad SPDT Switches in UCSP/QFNMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2006 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Revision HistoryPages changed at Rev 1: 1–5, 7, 8, 13, 14, 15。

max262

max262

MAX262 原理说明2011-04-30 13:56:48| 分类:默认分类| 标签:|字号大中小订阅2 多频段切比雪夫型带通滤波器2.1 MAX262简介MAX262作为MAXIM公司推出的双二阶通用开关电容有源滤波器,其中心频率范围为1.0 Hz ~140 kHz,输入时钟最大为4 MHz,可以通过微处理器精确控制滤波器的传递函数,利用对中心频率和品质因数的编程设置,实现64级中心频率、128级品质因数的智能控制,并且可以通过附带的滤波器设计软件,任意改善滤波特性。

其工作原理图如图2所示。

与此同时,硬件电路采用CMOS工艺制造完成,无需外部元件即可构成各种带通、低通、高通、陷波及全通滤波器。

MAX262内部有2个二阶滤波器A和B,它们可以单独使用,也可级联成四阶滤波器使用。

每个滤波器组件都有其各自的输入时钟fCLK、独立的中心频率fO和品质因数Q。

实际滤波器的中心频率fO 由滤波器的输入时钟频率fCLK、6位中心频率控制字(F0~F5)和工作方式(M0,M1)三者共同确定。

每个组件的品质因数Q是由7位控制字(Q0~Q6)独立设置的。

外部时钟分别从引脚CLKA、CLKB引入,对外部时钟无占空比要求。

但需要注意的是,在MAX262滤波器的内部,其采样速率是输入(CLKA或CLKB)的一半。

2.2 在8通道声发射监测仪中的应用2.2.1 硬件设计在声发射监测仪的信号采集模块中,通过单片机C8051F020改变MAX262的控制字和工作方式来实现不同截止频率之间的切换。

滤波模块的硬件电路如图3所示。

MAX262内部的两个二阶滤波器是完全独立的,利用MAX262内部的滤波器A实现低通滤波,滤波器B实现高通滤波,再将两个滤波器级联起来,以实现满足系统设计要求的四阶切比雪夫型带通滤波器。

由于低通三档和高通三档所要求的截止频率都是低频且间隔宽,所以针对不同的截止频率和工作模式,在不超过MAX262的比率的范围情况下,必须提供多种不同的时钟频率。

0.75KW 1.5KW变频器专用滤波器5A

0.75KW 1.5KW变频器专用滤波器5A

泄露电流 250VAC/50Hz
<5.0mA <5.0mA <5.0mA <7.5mA <15mA <20mA <25mA <25mA <30mA <30mA <30mA <45mA <45mA
变频器功率 (KW)
0.75/1.5 2.2/3.7 5.5/7.5 11/15 18.5/22 30/37

上海民恩-输入滤波器系列
ME920 系列
◆ 技术参数
额定电压 工作频率
试验电压
◆ 内部参数
产品型号
ME920-5 ME920-8 ME920-16 ME920-30 ME920-45 ME920-75 ME920-100 ME920-120 ME920-150 ME920-200 ME920-250 ME920-300 ME920-420
ME920-600
32 45 80 72 50 39 27
ME920-800
35 41 65 72 70 50 38
ME920-1000
38 42 68 75 72 48 40
ME920-1100
38 44 75 75 70 48 38
LINE TO LINE(P---N) 差模 (dB)
.1 .15 .5 1 5 10 30 62 75 76 78 87 72 55 75 80 90 86 78 70 51 60 66 88 88 82 80 67 70 80 88 87 81 77 67 72 85 87 85 75 69 59 85 92 85 81 72 70 59 93 91 83 84 73 70 58 92 91 84 84 73 70 58 87 86 80 78 70 61 52 85 81 75 75 70 70 52 85 80 71 75 70 70 50 86 81 73 75 70 69 44 86 81 73 75 70 69 44 78 87 79 56 40 39 38 78 87 79 56 40 39 38 29 70 79 80 80 79 52 35 70 76 78 75 70 45 40 68 78 78 78 70 48

基于MAX291的无限增益多路反馈带通滤波器

基于MAX291的无限增益多路反馈带通滤波器
A/ D转 换 。
C L K
v _
I N
V+
O P O U T O P I N -
GN D O U T
图 i M AX2 9 1的 引 脚 示 意 图
2 无 限 增 益 多 路 反 馈 二 阶 带 通 滤 波 器
图 2为无 限增益 多路 反馈 二 阶带 通 滤波 器 的一般 形 式 。其 中 , U。 为 滤波器 输 出端 , U 为滤 波 器输 入 端 , 尺 。和 c 构 成两 个 反 馈 支路 , 因 为理 想 运 放 的增 益 为 无限 大 , 所 以称 为 无 限增 益 多路 反 馈 滤 波 器 , 一 般 令 C —C 。 一C 。利用 电路 理论 中 的节 点 电压 法 和 运放 的 “ 虚 断” 概 念可得 到该 电路 的传 递 函数 为 :

后得 到 台阶状 的离 散 时 间信 号 , 它不 仅 在 时 域 上 不 连 续, 而 且还 在 频 域 上增 添 了新 的高 频 成分 [ 2 ] , 因此, 须
通 过适 当 的后 置滤 波来 重建 所需 的波 形 。本文 利用 构 成 的无 限增 益多路 反馈 二 阶带 通滤波器来进 行二次滤 波 , 这样 可 以消除 由开关 电容 滤波器 5 . 7 k Hz 采样时钟所产生的时钟干扰, 并 且 可 以对 信 号 的振 幅进 行 适 当 调整 , 以便 进 行 之 后 的
第 4期 ( 总第 2 0 3期 )
2 0 1 7年 8 月
机 械 工 程 与 自 动 化 ME CHANI CAL ENGI NEERI NG & AUT0M AT1 0N
N O. 4 A ug.
文章编 号 : 1 6 7 2 — 6 4 1 3 ( 2 0 1 7 ) 0 4 — 0 1 4 2 — 0 2

MAX2769 MAX2769C PLL循环滤波器设计计算器指南说明书

MAX2769 MAX2769C PLL循环滤波器设计计算器指南说明书

MAX2769/MAX2769C PLL Loop Filter Calculator User GuideUG6444; Rev 0; 6/17AbstractThis document briefly covers PLL basics and explains how to use the PLL loop filter spreadsheet calculator for the MAX2769/MAX2769C. The calculator allows users to design and implement the loop filter values specific to their application.Table of Contents1.Introduction (3)2.Back to Basics: Phase-Locked Loops (3)3.Phase Noise in PLLs (4)3.1.Phase Noise Contributions from Different Blocks (4)4.Loop Filter (5)4.1.Design Considerations (5)5.How to Work with the MAX2769/MAX2769C Loop Filter Spreadsheet Calculator (6)5.1.Overview (6)5.2.Inputs Control (Cells Highlighted in Light Yellow) (6)5.3.Understanding the Simulation Results (8)List of FiguresFigure 1. Block diagram of a typical PLL. (3)Figure 2. Phase noise plot. (4)Figure 3. Phase noise contributions from different blocks. (4)Figure 4. Different order loop filters. (5)Figure 5. Loop filter spreadsheet calculator. (6)Figure 6. Loop filter spreadsheet calculator: Steps 3 and 12. (7)Figure 7. Loop filter spreadsheet calculator mode. (7)Figure 8. Simulation results. (8)1.IntroductionThe MAX2769and MAX2769C are next-generation Global Navigation Satellite System (GNSS) receivers covering L1/E1, B1, G1 bands for GPS, Galileo, BeiDou, and GLONASS satellite systems on a single chip. These single-conversion GNSS receivers are designed to provide high performance for industrial applications and a wide range of consumer applications, including mobile handsets.The MAX2769/MAX2769C include an integrated VCO, a crystal oscillator, and a fractional-N frequency synthesizer to program the LO frequency using different reference input frequencies.A spreadsheet calculator for PLL loop filter design has been developed and is downloadable from the IC QuickView webpage under Design Resources. This user guide explains in detail how to work with the calculator.2.Back to Basics: Phase-Locked LoopsFigure 1 shows the blocks included in a typical PLL.CRYSTALN-DIVIDERFigure 1. Block diagram of a typical PLL.•The reference crystal oscillator frequency, f REF, is divided by using R-Divider to produce the comparison frequency (f COMP), which is also called the phase frequency detector (PFD) frequency.•The VCO frequency, f VCO, is divided to produce the same f COMP frequency by using N-divider.•The PFD compares the frequency and phase difference between f VCO/N and f REF /R. The charge pump (CP) generates current pulses proportional to the mismatch.•The loop filter smoothens and integrates the error signal to produce a DC voltage to tune the VCO in the direction to eliminate the error in phase and frequency.Based on the implementation of the N-divider, the PLLs can be divided into integer-N or fractional-N types, each of which have their own advantages and disadvantages. Deeper discussion of fractional-N PLLs is outside the scope of this document.3.Phase Noise in PLLsPhase noise is a measure of short-term frequency deviation from the ideal frequency due to random phase fluctuation, also called jitter in the time domain. It is defined as the ratio of power measured in a 1Hz bandwidth at a known offset to the total carrier power and is specified of units of dBc/Hz. It is customary to characterize an oscillator in terms of its single-sideband phase noise as shown in Figure 2.Figure 2. Phase noise plot.3.1.Phase Noise Contributions from Different Blocks•Phase noise inside the loop filter bandwidth is a combination of phase noise contributed by the reference input, PLL, and VCO.•The PLL noise contributors are the charge pump, PFD, and dividers.•Phase noise is dominated by the VCO noise outside the loop bandwidth.•VCO phase noise is highpass filtered by the closed-loop PLL response.•All other noise sources are lowpass filtered and are multiplied by N.Figure 3. Phase noise contributions from different blocks.4.Loop FilterThe loop filter integrates and filters the current pulses from the charge pump to generate the required VCO tuning voltage. The higher the loop filter order, the better the suppression of f COMP related spurs. The loop filter can be passive or active depending on the Vcc of the PLL device that should drive the VCO tuning voltage.2nd Order3rd OrderFigure 4. Different order loop filters.The loop filter design is critical to get the desired performance from the PLL, as there are many trade-offs between the design specifications that need to be met.4.1.Design Considerations•PFD Frequency: The higher the PFD frequency, the lower the N-divider value is and the better the phase noise, as it is directly proportional to the N-divider value, (20 x log (N)).•Lock Time: Time it takes to lock from one specified frequency to another specified frequency within a given frequency tolerance.•Loop Bandwidth: Lowpass filter bandwidth that is achieved from the filter components.•The wider the loop bandwidth, the faster the lock time, but the trade-off is worse spurious performance.•The narrower the loop bandwidth, the better the spurious performance, but the lock time increases.•PLL Stability: In theory, a phase margin of 0 degrees or less in the PLL open-loop response results in an unstable PLL.• A rule of thumb is that 45 degrees is generally the minimum required phase margin.5.How to Work with the MAX2769/MAX2769C Loop Filter SpreadsheetCalculator5.1.OverviewThe loop filter spreadsheet calculator models the PLL as a linear model in the phase domain and is used to calculate the loop filter values and further simulate the phase noise.The loop filter is a third-order passive filter with one of the poles determined by a resistor and capacitor within the IC. The remaining components in the filter are external with the values designated as c1, r2, c2. All cells highlighted in light yellow are inputs and cells in white are outputs derived based on relevant formulae and are not supposed to be changed.5.2.Inputs Control (Cells Highlighted in Light Yellow)Respective step numbers are highlighted in the GUI snapshot figures.1.The MAX2769/MAX2769C have an integrated VCO so the phase noise of the VCO is fixed andcannot be controlled.2.Xtal model can be selected from three options named xtal1, xtal2, and ideal.3.The phase noise of reference input can be entered as explained.4.The reference input frequency can be entered under the cell ref(MHz), as shown in Figure5. Itranges from 8MHz to 32MHz.5.The R-divider value can be entered and it ranges from 1 to 1023.6.Charge pump current, CP(mA), can be selectable as either 0.5mA or 1mA.7.outA(MHz) is the desired output from the PLL that varies from 1550MHz to 1610MHz.Figure 5. Loop filter spreadsheet calculator.Figure 6. Loop filter spreadsheet calculator: Steps 3 and 12.8.Enter the desired loop bandwidth under the BW(KHz) cell.9.Enter the desired phase margin value under the pm(deg) cell.10.Once all the required inputs are entered, set the Mode to calc and the user can see the loopfilter values calculated and displayed under cells c1(nF), r2(K), and c2(nF)11.The user has an option to simulate the phase noise with pre-loaded values by selecting freezeunder Mode.12.Also, the user can enter pre-loaded loop filter values (filter1, filter2, filter3) and see the phasenoise simulation results by selecting freeze under Mode.13.Based on the parameters and loop filter values calculated, the phase noise is simulated andshown in Figure 7.Figure 7. Loop filter spreadsheet calculator mode.5.3.Understanding the Simulation Results1.Phase noise contribution from different blocks and the total closed-loop phase noise hasbeen plotted.2.Achieved loop bandwidth and phase margin are displayed.3.Integration limits can be changed via the LL(KHz) and HL(KHz) cells.4.Based on the integration limits, different parameters such as SSB phase noise (dB-SSB), DSBphase noise (dB-DSB), phase noise in degrees (deg), mrad, RMS jitter (ps), and FM(KHz)can be calculated.The user can observe the phase noise at the desired offsets as shown in5.Figure 8.6.Loop filter cutoff bandwidth with the calculated values is plotted.7.Open loop gain and phase (Open loop Gain/Phase) is also plotted.Figure 8. Simulation results.©2017 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners.。

14组程控滤波器之欧阳科创编

14组程控滤波器之欧阳科创编

程控滤波器摘要:本系统采用单片机和FPGA构成的最小系统为控制核心,实现程控放大器和程控滤波器的功能。

本系统主要包括三个部分:程控放大器部分、程控滤波器部分、和幅频特性测试部分。

增益设置为0~60dB可调,步进为10dB, 误差小于5%o程控滤波器可实现高通、低通和带通滤波,- 3dB截止频率《在1kHz〜20kHz范围内可调,调节的频率步进为1kHz。

同时又制作了带内起伏WldB, -3dB通带为50kHz的椭圆滤波器。

此外,还可精确地测量幅频特性并在LCD上显示幅频特性曲线。

系统各项指标均达到甚至超过要求。

测试结果均可在LCD上实时地显示,界面友好。

关键词:程控放大程控滤波MAX266幅频特性—■方案比较设计与论证1•程控放大方案比较与论证方案一:采用可控增益运放AD603实现。

AD603虽然能够提供很宽的带宽,但在低频段,AD603则失去优势。

且AD603输出峰峰值只有6-7V,且外围电路较复杂,需两片级联级间耦合较复杂,容易自激。

所以放弃此方案。

方案二:采用D/A转换器来实现。

利用D/A转换器内部的电阻网络加上运放,便可控制放大倍数。

此种方案虽然外围电路较简单,但是由于D/A转换器本身的速度问题,频率范围只能达到几十加乙对后级要求频率达到200KHZ的测试造成影响,而且其噪声也很大,所以放弃此方案。

方案三:运放+模拟开关十电阻网络。

这种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。

由于题目中只要求测步进为10dB的7种增益,动态范围为60dB,只需将运放的反馈电阻接7种不同的阻值,通过模拟开关切换即可达到要求。

此种方法实现上较直观容易,控制起来比较方便也较精确,故采用此方案。

2 •程控滤波方案比较与论证方案一:数字滤波。

通过在FPGA内部写入数字滤波器改变其参数来实现。

此种方案主要靠软件来实现,可以获得较好的截止特性,但是要消耗FPGA内部大量的资源,增加了软件的难度,同时又需加外部的取样保持及抗混叠滤波电路,综合考虑放弃此方案。

ISIS7Professional元件库列表及中英文对照整理版

ISIS7Professional元件库列表及中英文对照整理版

模拟芯片(Analog ICs)放大器(Amplifiers)比较器(Comparators)显示驱动器(Display Drivers)过滤器(Filters)数据选择器(Multiplexers)稳压器(Regulators)定时器(Timers)基准电压(V oltage Reference)杂类(Miscellananeous)电容(Capacitors)可动态显示充放电电容(Animated)音响专用轴线电容(Audio Grade Axial)轴线聚苯烯电容(Axial Lead Polypropene)轴线聚苯烯电容(Axial Lead Polystyrene)陶瓷圆片电容(Ceramic Disc)去耦片状电容(Decoupling Disc)普通电容(Generic)高温径线电容(High Temp Radial)高温径线电解电容(High Temperature Axial Electrolytic)金属化聚酯膜电容(Metallised Polyester Film)金属化聚烯电容(Metallised Polypropene)金属化聚烯膜电容(Metallised Polypropene Film)小型电解电容(Miniture Electrolytic)多层金属化聚酯膜电容(Multilayer Metallised Polyestern Film) 聚脂膜电容(Mylar Film)镍栅电容(Nickel Barrier)无极性电容(Non Polarised)聚脂层电容(Polyester Layer)径线电解电容(Radial Electrolytic)树脂蚀刻电容(Resin Dipped)钽珠电容(Tantalum Bead)可变电容(Variable)VX轴线电解电容(VX Axial Electolytic)连接器(Connectors)音频接口(Audio)D 型接口(D-Type)双排插座(DIL)插头(Header Blocks)PCB转接器(PCB Transfer)带线(Ribbon Cable)单排插座(SIL)连线端子(Terminal Blocks)杂类(Miscellananeous)数据转换器(Data Converter)模/数转换器(A/D converters)数/模转换器(D/A converters)采样保持器(Sample & Hold)温度传感器(Temperature Sensore) 调试工具(Debugging Tools)断点触发器(Breakpoint Triggers)逻辑探针(Logic Probes)逻辑激励源(Logic Stimuli)二极管(Diode)整流桥(Bridge Rectifiers)普通二极管(Generic)整流管(Rectifiers)肖特基二极管(Schottky)开关管(Switching)隧道二极管(Tunnel)变容二极管(Varicap)齐纳击穿二极管(Zener)ECL 10000系列(ECL 10000 Series) 各种常用集成电路机电(Electromechanical)各种直流和步进电机电感(Inductors)普通电感(Generic)贴片式电感(SMT Inductors)变压器(Transformers)拉普拉斯变换(Laplace Primitives) 一阶模型(1st Order)二阶模型(2st Order)控制器(Controllers)非线性模式(Non-Linear)算子(Operators)极点/零点(Poles/Zones)符号(Symbols)存储芯片(Memory Ics)动态数据存储器(Dynamic RAM) 电可擦除可编程存储器(EEPROM) 可擦除可编程存储器(EPROM)I2C总线存储器(I2C Memories) SPI总线存储器(SPI Memories)存储卡(Memory Cards)静态数据存储器(Static Memories) 微处理器芯片(Microprocess ICs) 6800 系列(6800 Family)8051 系列(8051 Family)ARM 系列(ARM Family)A VR 系列(A VR Family)Parallax 公司微处理器(BASIC Stamp Modules)HCF11 系列(HCF11 Family)PIC10 系列(PIC10 Family)PIC12 系列(PIC12 Family)PIC16 系列(PIC16 Family)PIC18 系列(PIC18 Family)Z80系列(Z80 Family)CPU 外设(Peripherals)杂项(Miscellaneous)含天线、ATA/IDE硬盘驱动模型、单节与多节电池、串行物理接口模型、晶振、动态与通用保险、模拟电压与流符号、交通信号灯建模源(Modelling Primitives)模拟(仿真分析)(Analogy-SPICE)数字(缓冲器与门电路)(Digital--Buffers&Gates)数字(杂类)(Digital--Miscellaneous)数字(组合电路)(Digital--Combinational)数字(时序电路)(Digital--Sequential)混合模式(Mixed Mode)可编程逻辑器件单元(PLD Elements)实时激励源(Realtime Actuators)实时指示器(Realtime Indictors)运算放大器(Operational Amplifiers)单路运放(Single)二路运放(Dual)三路运放(Triple)四路运放(Quad)八路运放(Octal)理想运放(Ideal)大量使用的运放(Macromodel)光电子类器件(Optoelectronics)七段数码管(7-Segment Displays)英文字符与数字符号液晶显示器(Alphanumeric LCDs)条形显示器(Bargraph Displays)点阵显示屏(Dot Matrix Display)图形液晶(Grphical LCDs)灯泡(Lamp)液晶控制器(LCD Controllers)液晶面板显示(LCD Panels Displays)发光二极管(LEDs)光耦元件(Optocouplers)串行液晶(Serial LCDs)可编程逻辑电路与现场可编程门阵列(PLD&FPGA)无子类电阻(Resistors)0.6W金属膜电阻(0.6W Metal Film)10W 绕线电阻(10W Wirewound)2W 金属膜电阻(2W Metal Film)3W 金属膜电阻(3W Metal Film)7W 金属膜电阻(7W Metal Film)通用电阻符号(Generic)高压电阻(High Voltage)负温度系数热敏电阻(NTC)排阻(Resisters Packs)滑动变阻器(Variable)可变电阻(Varistors)仿真源(Simulator Primitives)触发器(Flip-Flop)门电路(Gates)电源(Sources)扬声器与音响设备(Speaker&Sounders)无子分类开关与继电器(Switch&Relays)键盘(Keypads)普通继电器(Generic Relays)专用继电器(Specific Relays)按键与拨码(Switchs)开关器件(Switching Devices)双端交流开关元件(DIACs)普通开关元件(Generic)可控硅(SCRs)三端可控硅(TRIACs)热阴极电子管(Thermionic Valves)二极真空管(Diodes)三极真空管(Triodes)四极真空管(Tetrodes)五极真空管(Pentodes)转换器(Transducers)压力传感器(Pressures)温度传感器(Temperature)晶体管(Transistors)双极性晶体管(Bipolar)普通晶体管(Generic)绝缘栅场效应管(IGBY/Insulated Gate Bipolar Transistors 结型场效应晶体管(JFET)金属-氧化物半导体场效应晶体管(MOSFET)射频功率LDMOS晶体管(RF Power LDMOS)射频功率VDMOS晶体管(RF Power VDMOS)单结晶体管(Unijunction)CMOS 4000系列(CMOS 4000 seriesTTL 74系列(TTL 74 series)TTL 74增强型低功耗肖特基系列(TTL 74ALS Series) TTL 74增强型肖特基系列(TTL 74AS Series)TTL 74高速系列(TTL 74F Series)TTL 74HC系列/CMOS工作电平(TTL 74HC Series) TTL 74HCT系列/TTL工作电平(TTL 74HCT Series)TTL 74低功耗肖特基系列(TTL 74LS Series)TTL 74肖特基系列(TTL 74S Series)加法器(Adders)缓冲器/驱动器(Buffers&Drivers)比较器(Comparators)计数器(Counters)解码器(Decoders)编码器(Encoders)存储器(Memory)触发器/锁存器(Flip-Flop&Latches)分频器/定时器(Frequency Dividers & Timers)门电路/反相器(Gates&Inverters)数据选择器(Multiplexers)多谐振荡器(Multivibrators)振荡器(Oscillators)锁相环(Phrase-Locked-Loop,PLL)寄存器(Registers)信号开关(Signal Switches)收发器(Tranxceivers)杂类逻辑芯片(Misc.Logic)Proteus isis 的元件库中英对照Proteus 元件名称对照1元件名称中文名说明7407 驱动门1N914 二极管74Ls00 与非门74LS04 非门74LS08 与门74LS390 TTL 双十进制计数器7SEG 4针BCD-LED 输出从0-9 对应于4根线的BCD码7SEG 3-8译码器电路BCD-7SEG[size=+0]转换电路ALTERNATOR 交流发电机AMMETER-MILLI mA安培计AND 与门BATTERY 电池/电池组BUS 总线CAP 电容CAPACITOR 电容器CLOCK 时钟信号源CRYSTAL 晶振D-FLIPFLOP D触发器FUSE 保险丝GROUND 地LAMP 灯LED-RED 红色发光二极管LM016L 2行16列液晶可显示2行16列英文字符,有8位数据总线D0-D7,RS,R/W,EN三个控制端口(共14线),工作电压为5V。

抗干扰电容器MKP62

抗干扰电容器MKP62

第 12 位 Digit 12
代码
说明
Code
explanation
A 弹带包装
ammo-pack
第 13 位 Digit 13
代码 说明 Code explanation
3 F=7.5mm 4 F=10.0mm 6 F=15.0mm
第 14 位 Digit 14
代码
说明
Code explanation
第 6~8 位 标称容量
举例:103=10×103pF=0.01µF
Digit 6 to 8 Rated capacitance value
For example : 103=10×103pF=0.01µF
第9位
容量偏差 K=±10%, M=±20%
Digit 9
Capacitance tolerance K=±10%, M=±20%
-------------
110
10/2008
C42
®
MKP62 series
产品编码说明 Part number system ■ 18位产品代码如下: The 18 digits part number is formed as follow:
1 2 3 4 5 6 7 8 9 10 11 1213 1415 16 17 18 C42
第 12~15 位 引线加工和包装代码
Digit 12 to 15 Lead form and packaging code
第 16~18 位 内部特征码
Digit 16 to 18 Internal use
■Table 1 引线加工和包装代码 lead form and packaging code
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国外电子元器件
International Electronic
Elements
2003年第1卷第3期
可编程开关电容通用滤波器MAX260/261/262
山东大学信息科学与工程学院菅维乐姜威李文明孔勇摘要:MAX260/261/262是MAXIM公司推出的可编程开关电容通用滤波器,通过单片机(89C51)
,而且Q值可达128。

文中介绍对该芯片的6个输入端进行有效设置可实现64个不同的中心频率f
了这些通用滤波器的功能、特性以及典型应用电路。

关键词:可编程;滤波器;微处理器;MAX260/261/262
1 MAX260/261/262的结构及功能
MAX260/261/262芯片是采用CMOS工艺制造的双列直插式开关电容通用滤波器。

图1是它们的原理图。

MAX260/261/262由两个二阶滤波器(A和B两部分)、两个可编程ROM及逻辑接口组成,每个滤波器部分又都包含两个级联的积分器和一个加法器。

该电路的主要特性如下:
●配有滤波器设计软件,可改善滤波特性,带有微处理器接口;
●可控制64个不同的中心频率f
、128个不同的品质因数Q及四种工作模式;
和品质因数Q可独立编程;
●对中心频率f
)可达到1%(A级);
●时钟频率与中心频率比值(fclk/f
●中心频率f
的范围为75kHz(MAX262)。

MAX260/261/262引脚排列如图2所示,各管脚(管脚分布见图2)的功能如下:
V+:正电源输入端;
V-:负电源输入端;
GND:模拟地;
CLK
A
:外接晶体振荡器和滤波器A部分的时钟输入端,在滤波器内部,时钟频率被2分频;
CLK
B
:滤波器B部分的时钟输入端,同样在滤波器内部,时钟频率被2分频;
CLKOUT:晶体振荡器和R-C振荡的时钟输出端;
OSCOUT:与晶体振荡器或R-C振荡器相连,用于自同步;
IN
A ,IN
B
:滤波器的信号输入端;
BP
A ,BP
B
:带通滤波器输出端;
LP
A ,LP
B
:低通滤波器输出端;
HP
A ,HP
B
:高通、带阻、全通滤波器输出端;
:写入有效输入端.接V+时,输入数据不起作用;接V-时,数据可通过逻辑接口进入
一个可编程的内存之中,以完成滤波器的工作模式、f
及Q的位置。

此外,还可以接收TTL电平信号,并上升沿锁存输入数据;
A0、A1、A2、A3:地址输入端,可用来完成对滤波器工作模式、f
和Q的相应设置;
D0,D1:数据输入端,可用来对f
和Q的相应位进行设置。

其时序图见图3所示;
OPOUT:MAX261/262的放大器输出端;
OPIN:MAX261/262的放大器反向输入端。

MAX260/261/262的工作原理见图4所示,图中,2位数据值在4位地址位的控制下(地址分配
表见表1所列),可在WR的下降沿经逻辑接口给滤波器A、B中的fclk/f
、Q及工作模式控制字分
别赋予不同的值,从而实现各种功能的滤波。

表1中,F0~F5是f
clk /f
的控制字,Q0~Q6是Q值
的控制字,M0、M1为工作模式控制字。

2 典型应用
图5是以MAX261为例给出的一种典型滤波电路,该电路由芯片89C51的P0口及P1.4管脚来控制。

通过设置相应的参数,可实现带宽为30kHz~50kHz的带通滤波(汇编程序略)。

下面给出具体参数的计算与N值的选择。

中心频率根据输入晶振频率(6MHz),可设定为40kHz左右,晶振二分频后为3MHz,即f
clk

3MHz,f
clk /f
=75.53,通过查表可得N
f
=4,其工作模式为模
式2,F5~F0为000100,品质因数Q6~Q0=0100000,M1M0为01,编程输入为:010000000010001。

实验证明,以上这些参数设置可获得很好的带通滤波效果。

另外,该电路稍加改动后便可通过对不同参数和N值的设置,来实现全通、低通、高通、带阻等滤波器的设计。

相关文档
最新文档