开关电容滤波器详解
9-2三种典型的滤波特性和开关电容滤波器
只有该模式可以构成高通滤波器,也可以构成低通和带 通滤波器,其最大输入时钟频率小于模式1中采用的频率。 若采用独立的运算放大器,将模式3的高通输出和低通输出 相加,就可以构成带阻滤波器。
9.3.4 集成开关电容滤波器MAX260
模式4:
IN SCN
SCN
A
S
ò
AAP=-1
AP
ABP=-2Q
BP
ò
LP
IN SCN
SCN
A
S
ò
BE
ABP=-Q
BP
ò
LP
ALP=-1
SCN
可以构成巴特沃斯、切比雪夫、贝塞尔型滤波器,实现 低通和带通滤波功能,也可以构成二阶带阻滤波器;该模式 与模式4支持高时钟频率。
9.3.4 集成开关电容滤波器MAX260
模式2:
ABE1=-0.5,ABE2=-1
IN SCN
SCN
ALP=-2
SCN
仅有此模式提供全通滤波器输出方式,也能提供低通 和带通输出;该模式为最快的工作方式,但也应当注意此 模式下的f0和Q值具有四种模式中最大的取样误差。
9.3.3 一阶开关电容低通滤波器
1
2
SW3
SW4 C2
1
2
C
ui
SW1
SW2
C1
A
uo
R2
C
ui R1
A
uo
一阶开关电容滤波器及其等效电路
设 R1
TCP C1
,
R2
TCP C2
A usU U O IssR R 1 21s1 R 2CC C 1 21sT 1 C PC C 2
2. 三种频率响应函数的比较
开关电源EMI滤波器原理与设计
提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。
开关电容滤波器MF10的应用
开关电容滤波器MF10的应用*名:***指导老师:***班级:仪器024班内容摘要MF10是MOS开关电容有源滤波器。
电路通过改变反馈方式可实现带通,全通,高通,低通,带阻 5 种滤波器的功能,改变外接电阻的阻值可以改变滤波器的增益及品质因数Q 值,改变外部时钟可以改变中心频率w0。
由于它具有使用简单,体积小,功耗低,精度高,稳定性好等优点,因而它得到了广泛的应用。
开关电容滤波器MF10的应用一:MF10的简述MF10为MOS开关电容有源滤波器,它由2个独立的滤波器模块组成。
这2个滤波器模块可以单独使用,构成一个一阶或二阶的滤波器电路;这2个模块也可级联构成四阶滤波器电路。
MF10集带通,全通,高通,低通,带阻5种滤波器于一体,它对外部的唯一要求是滤波器所需的电阻。
二:MF10的框图三:MF10的引脚及其功能简介特殊引脚的说明:1 引脚6(S A/B):当S A/B接V A—,滤波器求和端之一接模拟地AGND,当S A/B接V A+ ,滤波器求和端之一接低通(LP A或LP B)输出端。
2 引脚12(50/100):用于设定时钟频率f CLK与滤波频率f0的比例。
当12脚接高电平时,f CLK / f0 =50 ;当12脚接低地时,f CLK / f0 =100 。
四:MF10的应用举例MF10由模拟信号通道和时钟控制电路2大部分组成,模拟信号通道由运算放大器,加减电路和2级积分电路组成。
每级积分电路的传输函数均为w0 / s ,其中w0 = 2πf0,f0由时钟频率f CLK决定。
(1)MF10构成2阶带通和低通如图,输入信号直接从S1A和S1B端引入,6脚接V A+ ,列该电路各引脚电压的方程V(BPA)2 / R2 +V(BPA)1 =0(V(BPA)2—V i —V LPA)w0 / s = V(BPA)1V(BPA)1 w0 / s = V LPA由以上3式可得带通1 V(BPA)1 / V i = —(w0 s)/(s2 +R2/R3 w0 s +w02)带通2 V(BPA)2/ V i =(R2/R3 w0 s)/(s2 +R2/R3 w0 s +w02)低通V LPA / V i = —(w02)/(s2 +R2/R3 w0 s +w02)其中带通1,带通2,低通的通带增益K0分别为—R3 /R2,1 ,—1。
开关电容滤波器的设计
开关电容低通滤波器的设计原理分析为了滤除信号中掺杂的高频噪声,设计一种六阶级联式开关电容低通滤波器,以数据采样技术代替传统有源RC滤波器中的大电阻,有利于电路的大规模集成。
滤波器由双二阶子电路级联而成,电路中的电容值利用动态定标技术计算确定。
用Hspice进行仿真验证,结果表明:开关电容低通滤波器能较好地时信号进行整形,其频率特性符合设计指标。
滤波技术是信号分析和处理中的重要分支,它的作用是从接收到的信号中提取有用的信息,抑制或消除无用的或有害的干扰信号,有助于提高信号完整度和系统稳定性。
滤波器正是采用滤波技术的具有一定传输选择性的信号处理装置。
随着现代集成电路技术和MOS工艺的飞速发展,模拟集成滤波器的实现已经成为现代工业的一个重大课题,也是当今国际上的前沿课题。
传统的连续时间模拟滤波器采用有源RC结构,能够应用到较高的频率,但是电路中多采用大电容和大电阻,在集成电路制造时会占用大量的芯片面积。
在现代集成电路工艺中,很难得到精确的电阻值和电容值,而且电阻值随温度变化很大,精度只能达到30%。
1972年,美国科学家Fried发表了用开关和电容模拟电阻R的论文,由此开关电容技术成为模拟集成滤波器设计中常用的方法。
开关电容滤波器是由运算放大器、电容器和MOS开关组成的有源开关电容网络,以数据采样技术代替大电阻,减小了芯片的面积和功耗,且电路的极点和时间常数由电容的比值确定,可实现高精度的模拟集成滤波器。
本文设计一种开关电容低通滤波器,用于滤除有用信号中掺杂的高频噪声。
1 开关电容技术的原理图1中的开关电容等效电阻电路由两个独立的电压源V1、V2,两个受控开关S1、S2和电容C组成。
开关S1和S2受两相不交叠的时钟φ1和φ2控制,时钟频率均为fs。
在时钟φ1和φ2的控制下,两个开关周而复始地闭合与断开。
φ1闭合时,C充电到V1,φ2闭合时,C放电到V2,传输的总电荷为C(V1-V2),流向V2的平均电流为:I=Qfs=C(V1-V2)*fs (1)根据欧姆定律,可知此开关电容电路的等效电阻(如图1(b)所示)为:Req=1/Cfs (2)利用开关电容等效电阻电路的最大优点是节省了硅片面积。
开关电源设计的各种元器件介绍及作用
开关电源设计的各种元器件介绍及作用设计并不是如想象中那么简单,特别是对刚接触开关电源研发的人来说,它的外围就很复杂,其中使用的元器件种类繁多,性能各异。
要想设计出性能高的开关电源就必须弄懂弄通开关电源中各元器件的类型及主要功能。
本文将总结出这部分知识。
开关电源外围电路中使用的元器件种类繁多,性能各异,大致可分为通用元器件、特种元器件两大类。
开关电源中通用元器件的类型及主要功能如下:一、电阻器1. 取样电阻—构成输出电压的取样电路,将取样电压送至反馈电路。
2. 均压电阻—在开关电源的对称直流输入电路中起到均压作用,亦称平衡电阻。
3. 分压电阻—构成电阻分压器。
4. 泄放电阻—断电时可将电磁干扰(EMI)滤波器中电容器存储的电荷泄放掉。
5. 限流电阻—起限流保护作用,如用作稳压管、光耦合器及输入滤波电容的限流电阻。
6. 电流检测电阻—与过电流保护电路配套使用,用于限制开关电源的输出电流极限。
7. 分流电阻—给电流提供旁路。
8. 负载电阻—开关电源的负载电阻(含等效负载电阻)。
9. 最小负载电阻—为维持开关电源正常工作所需要的最小负载电阻,可避免因负载开路而导致输出电压过高。
10. 假负载—在测试开关电源性能指标时临时接的负载(如电阻丝、水泥电阻)。
11. 滤波电阻—用作LC型滤波器、RC型滤波器、π型滤波器中的滤波电阻。
12. 偏置电阻—给开关电源的控制端提供偏压,或用来稳定晶体管的工作点。
13. 保护电阻—常用于RC型吸收回路或VD、R、C型钳位保护电路中。
14. 频率补偿电阻—例如构成误差放大器的RC型频率补偿网络。
15. 阻尼电阻—防止电路中出现谐振。
二、电容器1. 滤波电容—构成输入滤波器、输出滤波器等。
2. 耦合电容—亦称隔直电容,其作用时隔断直流信号,只让交流信号通过。
3. 退藕电容—例如电源退藕电容,可防止产生自激振荡。
4. 软启动电容—构成软启动电路,在软启动过程中使输出电压和输出电流缓慢地建立起来。
开关电容滤波器的设计与应用
第 1 卷 第 1 期 2004 年 3 月邵阳学院学报( 自然科学版)Journal of Shaoyang University ( Natural Sciences)Vol. 1. No. 1 M ar. 2004文章编号: 1672- 7010( 2004) 01- 0026- 03开关电容滤波器的设计与应用宁华申( 隆回县第二中学, 湖南 隆回422200)摘要: 文章阐述了开关电容滤波器的结构与 工作原理, 并给出了 MAX7400~ MX7415 系列集成开关电容滤波器的 设计实例. 关键词: 开关电容; 滤波器; 巴特沃斯; 契比雪夫; 贝塞尔中图分类号: TN713+ 92 文献标识码: A1 引言开关电容滤波器是利用开关电容网络构成的滤波 器, 它的出现促进了有源滤波器的集成化. 随着集成电 路制造技术工艺水平的提高, 集成开关电容滤波器的 尺寸变得越来越小, 设计也越来越简单, 已大量应用于 通讯和其它数字化系统. 美国 MAX 公司最新推出的低 通开关电容滤波器系列产品 MAX7400~ MAX7415, 将滤 波的设计任务简化到仅仅是对时钟频率选择, 采用 8 脚 LMAX 封装, 尺寸仅为 3. 0mm @ 5mm, 并具有低功耗、低 噪声等特点. 适用于 DPA 转换器的后滤波及 DPA 转换 器的抗混叠.图 2 电容连接形式构的开关电容滤波器的二阶单元电路如图 1( b) 所示. 其基本单元是由积分器构成的. 如图 2( a) 、( b) 所示.图 1( a) 中滤波器的中心频率为:图 1 滤波器二阶单元电路f =1 2PR 6 R 5 1R 1 R 2 C 1 C 22 工作原理连续有源滤波器的通用二阶单元电路如图 1( a) 所 示, 它由 3 个运放, 7 个电阻和 2 个电容组成. 仿照该结收稿日期: 2003- 10- 21 Q 值为:作者简介: 宁华申( 1962-) , 男, 湖南 隆回人, 隆回县第二中学一级教师.R 6 R 5 R 2 C 2 第 1 期宁华申: 开关电容 滤波器的设计与应用27R 4 R 4 1+ +R 3 R 0 R 6 R 1 C 1Q = ( )1+R 5设图 1( a) 中: R 1 = R 2= R; C 1= C 2= C; R 5= R 6 = R; 则以上两式可简化为:1f = ( 1)器的类型. 从通带性质来分, 滤波器有四种基本类型: 低通滤波 器( LPF )、高通 滤波器 ( HPF) 、带 通滤 波器 ( BPF) 、带阻滤波器(HPE) . 此外, 在滤波器的设计中, 按 照不同的频域特性要求, 可又分为巴特沃斯型、契比雪 夫型、贝塞尔型和椭圆型. 巴特沃斯型要求传递函数 中, 分母采用巴特沃斯多项式, 这种滤波器输出幅度随 频率增高单调减小, 具有最平坦通带幅频特性, 因此又Q =12( 1+R 3R 4+)( 2)称最大平坦型. 贝塞尔型要求传递函数分母为贝塞尔 多项式, 这种滤波器通带边界下降较缓慢, 但其相频特 图 2( a) 为连续有源滤波器的标准积分电路, 其时 间常数取诀于无源器件 R 、C 输出与输入的关系为:性接近线性, 具有最佳的相位特性, 放又称为线性相位 型. 椭圆型滤波器的幅频特性在通带内都是波动的, 即 $VP$T = - V IN PRC( 3)过渡带最陡. 若传递函数分母采用契比雪夫多项式, 则为:由( 1) 式可得, 二阶连续有源滤波器的中心频率 为契比雪夫型, 其特点是通带增益有起伏( 纹波) , 因此 也叫纹波型, 这种滤波器与贝塞尔型和已特沃斯型滤 f o = 1P2 PRC( 4)波器相比通带边界下降较快, 与椭圆型滤波器相比通 图 2( b) 为反相型开关电容积分器, 它用两个模拟 开关 S 1、S 2 和一个电容 C 1 构成的开关电容网络替代了 标准积分器中的 R. 图 2( c) 中, 当开关 S 1 闭合时, 电容 带边界下降较快, 与椭圆型滤波器相比具有较平的通 带幅频特性.表 1 Maxi m 滤波器选择表C 1 被 V 1 充电; 当开关 S 2 闭合时, 电容 C 1 储存电荷为: 型 号 类 型 阶 数 截止频率 q c = C 1( V 1 - V O ) . 在一个周期内, 由输入端流向输出端 的平均电流为:I = qcPTc = C 1( V 1 - V o ) f CLK当输入时钟频率 f CLK 足够高时, 可以认为这个过程 是连续的, 好象是输入端与输出端存在一个等效电阻, 其值为: R eq = I/C 1f CLK 代入( 3) 式得:$VP$T = - V IN f CLK C 1PC 2如将 R eq 代入( 4) 式, 可得出二阶开关电容滤波器 的中心频率为: f o = f CLK C 1P2PC 2 ( 设图 1( b) 中, R 2= R 4) . 通过改变电容比值 C 1/ C 2 或时钟频率可控制滤波器中 心频率 f CLK 应大于信号的频率的 2 倍以上. 通常选择时 MAX7400 MAX7403 MAX7404 MAX7407 MAX7408 MAX7409 MAX7410 MAX7411 MAX7412 MAX7413 MAX7414 MAX7415椭圆 椭圆 椭圆 椭圆 椭圆 贝塞尔 巴特沃斯 椭圆 椭圆 贝塞尔 巴特沃期 椭圆8 8 8 8 5 5 5 5 5 5 5 51Hz~ 10kHz 1Hz~ 10kHz 1Hz~ 10kHz 1Hz~ 10kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz 1Hz~ 15kHz钟比( f CLK : f o ) 为 50: 1 或 100: 1, 当 f CLK : f o = 50: 1 时, C 2/ C 1 U8, 当 f CLK : f o = 100: 1 时, C 2/ C 1 U16.与连续有源滤波器相比, 开关电容滤波器可以提 供较稳定的中心频率 f o . 一般在集成电路中, 电容比值 的精确度可以控制在 0. 1% 以内, 改变电容比能够较精 确的控制中心频率 f 0 ; 在对滤波器中心频率要求较高的 场合, 可选用外部时钟控制方式, 如利用稳定的晶体振 荡器, 在时钟频率不是很高时, 可以获得稳定的外部时 钟, 从而精确、稳定地控制中心频率 f 0. 另外, 由于开关 电容滤波器实质上是将时间上连续的模拟信号离散 化, 因此输出波形不是很光滑, 图 2( b) 通过外加无源 RC 滤波可改善其输出特性. 另需注意的是: 由于开关的 影响, 系统会存在一定的噪声.3 滤波器的类型,表 1 为Maxim 公司推出的多种新型开关电容滤波 器, 它们分别为 8 阶、5 阶低通滤波器, 工作在 5V 或 3VJ 电源, 电流损耗仅 1. 2mA, 允许角频率为 1Hz~ 15Hz, 输 出失调电压为 ? 4V, 关断模式可将电流降至 0. 2mA, 时 钟比为 100: 1.该类电路具有两种时钟工作模式: 内部( 由外部电 容设置时钟频率) 和外部时钟模式( 用于精确控制角频 率的系统) . 失调调整引脚可以调整输出直流电平.通常高阶开关电容滤波器是由双二阶滤波器级联 实现的, 其结构比较简单, 但各单元因元件失配产生的 误差仅仅影响其本身的极/ 点, Q 值要求较高时, 滤波器 对各部分参数值的变化较敏感. Maxim 的开关电容滤彼 器采用带有加法器和比列器的积分器模拟无源阶梯滤 波器( 图 3) 设计方案, 将局部失配产生的误差分散到所28邵阳学院学报( 自然科学版)第 1 卷MAX7410/MAX7414 低通巴特沃斯型滤波器可提供 最大带内平坦度, 适用于要求通带内偏离直流增益较 小的仪器.低通椭圆型滤波器( 参见表 1) 具有较陡的过度带, MAX7411/MAX7412 在提供 37dB 的阻带抑制时能够保 证其过渡比为 1. 25, MAX7408/MAX7412 具有 53dB 的阻带抑制, 过渡比为 1. 6, 适用于窄带滤波器设计. 适用于 图 3 5 阶阶梯滤波网络DPA 转换器的后滤波及 am 转换器抗混叠, 典型应用如 图 4 所示.4 设计考虑选用Maxim 开关电容滤波器进行设计时, 其输入信 号幅度不要过小, 也不要过大, 以避免较大的失真与噪 声, 相应型号的数据手册提供了输入信号幅度与噪声图 4典型应用+ 失真的对应关系曲线图, 可作为设计参考. 选用外部 的时钟控制方式时, 一般用 40% 至 60% 占空比的时钟, 转角频率与时钟频率的关系为: f C = f CLK P100. 用内部时 钟方式时, 转角频率与外接电容成反比, 可参考有关型 号的数据手册进行设置. 应用电路如图 5 所示, 图中 COM 引脚用于设置共模输入电压, 内部分压电路将其 设置在电源电压的中心位置. OS 为失调调节输入引脚, 用于调整输出直流电平, 不需要调节时可直接将其接 到 COM 引脚, 这里 V OUT = (V IN - V COM ) + V OS , 式中 V COM 典型值为 V DD P2, ( V IN - V COM ) 经低通开关电容滤波器滤 波, V OS 叠加在输出级. 实际应用中应注意 V OS 、V COM 电压的有效范围, 调节过大会影响滤波器的动态范围.图 5 典型连接图MAC7409/MAX7413 贝塞尔型( Bessel) 滤波器输入 与输出间的延迟时间保持恒定, 与信号频率无关, 频率 响应具有较陡的下降沿, 建立时间较快. 多应用于多选 Maxim 该系列产品可采用单电源供电, 也可采用双 电源供电. 当需要用双电源供电时, 可将 COM 接到系统 端, 而 GND 脚接负电源, 其滤波器性能与单电源供电相 同.参考文献:开关与 A/ D 之间, 以消除混叠效应, 抑制输入信号频谱 中的杂散分量和串模干扰.[ 1]姜 威, 罗略军. 开 关电器 滤波 器的 应用[ M ] . 北 京: 国 外电子元器件杂志出版 社, 1999.。
开关电容滤波器详解
图 6 幅频响应曲线
2、在实际开关电路中输入幅值 100mv,频率分别为 500Hz,1kHz,5kHz 的的正弦波信号,
C4 20p
得到三个暂态响应如分别下图 7、图 8、图 9。
图 7
500Hz 时的暂态响应
图 8
1kHz 时的暂态响应
图 9
5kHz 的暂态响应
可以看到 500kHz 时, 输出信号幅值约为 100mv, 没有衰减。 1kHz 时, 输出信号幅值约为 700mv, 衰减了大约-3db。5kHz 时,输出信号的幅值只有 20mv 左右,衰减了很多。另外 5kHz 时可 以明显看到输出波形中有明显台阶, 这是因为在 100kHz 的开关频率下, 输入 5kHz 的正弦波, 则每个周期只包含 20 个台阶,所以看起来很明显,输入正弦波频率越低,则每个周期包含 的台阶数越多,看起来越不明显。注意以上的结果只是在一阶的情况下,如果将多个一阶滤 波器串联则可以得到高阶滤波器。这里将 4 个一阶滤波器串联,输入一个 1kHz 的方波验证 其滤波效果,如下图 10。v(3)~v(6),分别是 1~4 阶滤波器的滤波输出,v(2)是输入的方波。 可以发现,滤波器的阶数越高,输出的波形越接近正弦波。
图 10
正弦波滤波效果验证
四、感想 通过此次作业我学会了写电路网表、使用 hspice,复习了开关电容的相关知识,增进了 对电路的理解。在不断修改电路参数的过程中,我体会到了模拟电路设计中的魅力 ----在不 断取舍中获取最佳的效果。例如开关如果采用传输门的形式它的导通电阻会比单个 nmos 管 小很多,且宽长比越大,导通电阻越小,但是这会带来更大的寄生电容,且后者对电路的影 响更大。因此在反复实验后我选择了最小宽长比的 nmos 作为开关。同样,如果取开关的工 作频率越高,每个正弦波周期里包含的台阶也会越多,但过高的开关频率,对 nmos 管的开 关速度带来了考验,因此最后折衷选取了 100kHz 的开关频率。
2.3开关电容滤波器
第三节开关电容滤波器(Switched Capacitor Filter简称SCF)有源RC滤波电路的缺点:由于要求有较大的电容和精确的RC时间常数,以致于在芯片上制造集成组件难度大,几乎不可能。
随着MOS工艺的迅速发展,由MOS开关电容和运放组成的开关电容滤波器已于1975年实现了单片集成化。
其优点为:这种滤波器不需要模数转换器,就可以对模拟量的离散值直接进行处理。
与数字滤波器比较,省略了量化过程,因而具有处理速度快,整体结构简单等优点。
此外,它制造简单,价廉,因而受到各方面的重视,经过20多年的发展,开关电容滤波器的性能已达到相当高的水平,在某些应用场合大有取代一般有源滤波器的趋势。
⒈基本原理(电容器代替电阻)电路两点间接有高速开关的电容器,其效果相当于两节点间连接一个电阻。
图3-1(a)为一个有源RC低通滤波器(积分器)图3-1(b)中从1点到2点:一个接地电容C1和用做开关的源漏两极可互换的增强型MOSFET T1,T2来代替输入电阻R1。
工作过程分析:T1,T2用两个如图3-1(c)不重叠的两相时钟脉冲φ1,φ2来驱动。
假定时钟频率远高于信号频率。
⑴φ1为高电平,φ2为低电平期间T1导通T2截止。
等效电路如图3-1(d):此时,C1与Vi相连并被充电,即有:q c1=C1*V1⑵φ2为高电平,φ1为低电平期间T1截止,T2导通。
等效电路如图3-1(e):C1转接到运放的输入端,此时,C1放电,所充电荷传输到C2上。
由此可见,在每一个时钟周期Tc内,从信号源中提取的电荷供给了电容器C2。
因此,在节点1,2之间的平均电流为:i av=C1*V1/Tc如果Tc足够短,可近似认为这个过程是连续的,因此1,2之间的等效电阻为:Req=V I/i av=Tc/C1因此,可得到一个等效的积分器时间常数τ:τ=C2*Req=Tc*C2/C1结论:(1)显然影响波器频率响应的时间常数取决于时钟周期Tc和电容的比值C2/C1,而与电容的绝对值无关。
八阶低通椭圆型开关电容滤波器及其应用上课讲义
八阶低通椭圆型开关电容滤波器及其应用滤波器是电子电路中应用最广泛的器件之一,从简易的电阻电容模拟滤波器到复杂的数字集成电路滤波器,在高新电子产品以及智能化仪器仪表中,到处可见其活跃的身姿。
MAX293/294/297是美国MAXIM公司推出的八阶低通椭圆型、开关电容滤波器,采用输入时钟频率控制输出转角频率的方式来实现对模拟信号和数字信号的滤波。
可广泛地应用于小信号数据采集系统滤波、抗混迭滤波、模数变换后置滤波及声音数据信号滤波等场合,其滤波原理和设计简单,在很大程度上,将电子电路设计者从烦琐的模拟滤波器设计中解放出来。
本文主要介绍其原理及其在机载式轨道质量智能监测装置中的过绝缘机信号频率滤波及模电压信号滤波中的应用。
一、基本特性1.主要特点(1)八阶低通椭圆型滤波器;(2)时钟可调转角频率范围:0.1Hz到25kHz(MAX293/294),0.1Hz到50kHz(MAX297)(3)时钟对转角频率比:100:1(MAX293/294),50:1(MAX297);(4)不需要另接外部电路;(5) 内部或外部时钟;(6) 可在+5V单电源或€?V双电源条件下工作;(7)用于抗混迭或时钟噪声滤波的独立运放;(8)8脚DIP或16脚宽SO封装。
2.管脚说明8脚DIP和16脚封装管脚功能如表1所示。
3.典型工作电路典型工作电路如图1所示(针对8脚DIP封装)。
二、使用说明按照0.1Hz到25kHz(MAX293/294)或0.1Hz到50kHz(MAX297)的转角频率构成。
MAX293/297的1.5过渡比提供了锐变倾斜缘和-80dB阻带衰减,MAX294的1.2过渡比则提供了最陡峭的倾斜缘和-58DB阻带衰减。
此三种滤波器都有固定的响应,所以设计任务仅限于选择控制着滤波器转角频率的时钟频率。
此滤波器可采用一外接电容产生的内部振荡器的时钟信号,或者直接采用外接时钟信号。
为了构成用于后置滤波或抗混迭的连续时间低通滤波器,MAXIM公司设置了一个独立的运放(非反向输入端接地),其陡的倾斜缘和高的阶次,使得该系列滤波器特别适合于需要最大通带的抗混迭以及需要滤去频率范围内紧邻信号的通讯场合。
开关电容电路
ic ( t )
c 2 C (C1 Cc2 ) f c 1 C2
7.1.2 基本开关电容单元
3. 开关电容模拟电阻的特点 开关电容可以模拟电阻,这种模拟电阻与无源电阻的差别有两个方面: ①开关电容两端口之间流通的是电荷,而无源电阻流通的是电流;②开 关电容转移的电荷量与两端口之间不同时刻的电压有关,而无源电阻流 通的电流与两端同一时刻的电压有关。另外,开关电容模拟电阻还具有 以下的特点: (1)开关电容的等效电阻与时钟频率有关,通过改变时钟频率即可改变 其等效电阻值,这对程控电阻、程控滤波器等都很有用。 (2)节省芯片面积。若电容为lpF,时钟1MHz,则等效电阻为1MΩ 。如 果用双层多晶硅电容,制作lpF电容只需要2272μm2芯片面积。如果用扩散 电阻,设其方块电阻为200 Ω /口,制作1MΩ的电阻需要5000方块。如果 采用2 μ m工艺,电阻的长度为10000 μ m,芯片面积为20000 μ m2。 (3)时间常数是设计滤波器时必不可少的参数。等于电阻和电容的乘积, 即,τ=RC。因为集成电阻和电容的精度很差,绝对误差可达±20%,而 且都随温度而变。如果用开关电容取代无源电阻R,如图7.7 (b)所示,则 C C2 时间常数变为 Req C 2 2 Tc C1 C1 f c
7.2 开关电容电路的分析方法
7.2.1 s域与z域之间的变换
电路结构上讲,开关电容滤波器是用开关电容的模拟电阻代替无源电阻
而实现的模拟滤波器,它的设计方法与连续时间滤波器相似:第一步是 将目标滤波器的s域传输函数正确地转换成z域传输函数,第二步再用开关
电容电路去综合或实现这个z域传输函数。显然,如何把有理的s域传输函
uc ( z ) 7.2.1 Tc s域与z域之间的变换 i ( z ) C ( z 1)
重点讲解滤波器原理开关电容滤波器原理
讲解滤波器原理开关电容滤波器原理对于滤波器原理,很多朋友充满好奇。
但对于不同类型滤波器而言,其滤波器原理往往有所不同。
所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。
本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。
对于滤波器原理,很多朋友充满好奇。
但对于不同类型滤波器而言,其滤波器原理往往有所不同。
所以对于滤波器原理的学习,需尽可能多的了解各式各样的滤波器。
本王中,将主要为大家讲解开关电容滤波器原理,并带来与开关电容滤波器相关的内容。
1. 简介开关电容滤波器是由MOS开关、MOS电容和MOS运算放大器构成的一种大规模集成电路滤波器。
开关电容滤波器可直接处理模拟信号,而不必像数字滤波器那样需要A/D、D/A变换,简化了电路设计,提高了系统的可靠性。
此外,由于MOS器件在速度、集成度、相对精度控制和微功耗等方面都有独特的优势,为开关电容滤波器电路的迅猛发展提供了很好的条件。
2. 基本原理SCF电路的实质是采样数据系统,它直接处理模拟连续信号。
与数字滤波器相比,省去了A/D、D/A装置,这也是SCF能很快进入应用的原因之一。
因此,SCF虽然在离散域工作,但仍属模拟滤波器之列。
各类SCF的设想主要起因于流过电阻器与开关电容的电荷相同。
这一点是很自然的,有源RC滤波技术已有效地取代了电感器,开关电容技术首先的设想当然是试图用开关电容(SC)来取代电阻器。
开关电容滤波器的基本原理是,电路的两节点间接有带高速开关的电容器,其效果相当于该两节点间连接一个电阻。
由MOS开关、电容器和运算放大器构成的一种离散时间模拟滤波器。
开关电容滤波器广泛应用于通信系统的脉冲编码调制。
在实际应用中它们通常做成单片集成电路或与其他电路做在同一个芯片上。
通过外部端子的适当连接可获得不同的响应特性。
某些单独的开关电容滤波器可作为通用滤波器应用。
例如自适应滤波、跟踪滤波、振动分析以及语言和音乐合成等。
开关电容滤波器的分析与运用
开关电容滤波器的分析与运用刘新;杨虹;陈海燕【摘要】开关电容作为一种实现有源滤波器的技术在电路设计中的运用与日俱增,首先阐述了开关电容的基本概念,接着对开关电容滤波器进行分析,然后对一个具体的一个二阶低频开关电容滤波器进行了详细讨论,最后采用台机电(TSMC)公司的tsmc024(0.24μm CMOS工艺)进行设计,经过了一系列的优化和仿真工作,得出了比较好的结果.【期刊名称】《现代电子技术》【年(卷),期】2007(030)006【总页数】3页(P6-8)【关键词】开关电容;滤波器;集成电路;tsmc024【作者】刘新;杨虹;陈海燕【作者单位】重庆邮电大学,重庆,400065;重庆邮电大学,重庆,400065;西南科技大学信息工程学院,四川绵阳,621010【正文语种】中文【中图分类】TN7131 引言开关电容在1972年问世以来,他在电路设计中的运用与日俱增,这主要是与高质量高精度的MOS电容和MOS开关的实用性分不开的。
MOS开关电容电路(SC电路)是由MOS模拟开关和MOS电容组成,电路在时钟信号控制下,完成电荷的储存和转换。
他和运算放大器、比较器等基本电路组合起来,可以构成多种基本的SC电路。
比如SC等效电阻电路、SC积分电路、SC滤波电路等。
开关电容电路的发明使基于MOS工艺的全集成的大规模模拟电路成为现实,而且开关电容电路最具吸引力的地方在于数字化可编程,这主要通过使用MOS电容阵列或者改变他们的时钟频率实现。
开关电容作为一种实现有源滤波器的技术,颇受欢迎,他能比早期的有源RC滤波器精度更高,密度更大。
特别是在低频运用中,开关电容日益盛行,早已扩展到更为通用的信号处理中使用,而且更进一步用来完成完整的采样数据系统,但是到了20世纪80年代中期,以前使用开关电容的系统开始寻求采用数字信号处理解决问题。
虽然数字信号处理方法通常能耗大、硅片面积可利用率低,但他能提供良好的时价比,较容易进行计算机辅助设计,测试方法简单,并且随着VLSI(超大规模集成电路)特征尺寸减小,复杂度增加,以至于一个完整系统可以集成在一个硅片上,也就是SOC(片上系统),这就改变了开关电容的作用。
带通带阻滤波器开关电容滤波器(1)
频率特性为:
低B通W 高通
阻 带
fH f0 fL
式中
uo
LPF
ui
HPF
用带通和相加器组成的带阻滤波器其框图如图4—27所示。 例如,采用图4—25(a)的带通滤波器和相加器组合便构成
4.3.1 一阶高通滤波电路(HPF)
电路可由一阶LPF互换R C得到 传递函数为:
u+
uo
uI
令s=j有 式中
高通截止频率
-3
+20dB/十倍频
4.3.2 二阶压控电压源高通滤波电路
频率特性:
u+
uo
式中:
要求:Aup﹤3
其幅频特性曲线如图:
运放作为无限增益放大器的多重反馈有源滤波器
Y4
Y5
滤波器或移相器,其传递 图4—30一阶全通滤波器(移相器)电路
函数为Auf(源自s)1 1
sR1C sR1C
Auf ( j ) 1
( j ) 2 arctan RC
(4—40) (4—41a)
(4—41b)
A(ω) 1
0 ω
(ω)
0
1/R1C
ω
- 90 °
图4—31一阶移相器的幅频特性及相频特性
K
1 R2C 2
s2 3 K s RC
1 R2C 2
Ko2
s2
o
Q
s
o2
(4—29)
开关电容滤波器基本原理
开关电容滤波器基本原理开关电容滤波器(Switched Capacitor Filter) 1. 简介 开关电容滤波器是由MOS开关、MOS电容和MOS运算放大器构成的一种大规模集成电路滤波器。
开关电容滤波器可直接处理模拟信号,而不必像数字滤波器那样需要A/D、D/A变换,简化了电路设计,提高了系统的可靠性。
此外,由于MOS器件在速度、集成度、相对精度控制和微功耗等方面都有独特的优势,为开关电容滤波器电路的迅猛发展提供了很好的条件。
2. 基本原理 SCF电路的实质是采样数据系统,它直接处理模拟连续信号。
与数字滤波器相比,省去了A/D、D/A装置,这也是SCF能很快进入应用的原因之一。
因此,SCF虽然在离散域工作,但仍属模拟滤波器之列。
各类SCF的设想主要起因于流过电阻器与开关电容的电荷相同。
这一点是很自然的,有源RC滤波技术已有效地取代了电感器,开关电容技术首先的设想当然是试图用开关电容(SC)来取代电阻器。
开关电容滤波器的基本原理是,电路的两节点间接有带高速开关的电容器,其效果相当于该两节点间连接一个电阻。
由MOS开关、电容器和运算放大器构成的一种离散时间模拟滤波器。
开关电容滤波器广泛应用于通信系统的脉冲编码调制。
在实际应用中它们通常做成单片集成电路或与其他电路做在同一个芯片上。
通过外部端子的适当连接可获得不同的响应特性。
某些单独的开关电容滤波器可作为通用滤波器应用。
例如自适应滤波、跟踪滤波、振动分析以及语言和音乐合成等。
但运算放大器带宽、电路的寄生参数、开关与运算放大器的非理想特性以及MOS器件的噪声等,都会直接影响这类滤波器的性能。
开关电容滤波器的工作频率尚不高,其应用范围目前大多限于音频频段。
开关电容滤波器 基本原理 最简单的开关电容滤波器见图1。
开关K置于左边时,信号电压源u1向电容器C1充电;K倒向右边时,电容器C1向电压源u2放电。
当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那幺C1在u1、u2之间传递的电荷可形成平均电流I=fcC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fcC1。
电容在电路中的作用及电容滤波原理
电容在电路中的作用及电容滤波原理The manuscript was revised on the evening of 2021电容在电路中的作用及电容滤波原理电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。
广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。
熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。
1、滤波电容:接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电变平滑。
一般采用大容量的电解电容器或钽电容,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。
2、去耦电容:幷接在放大电路的电源正、负极之间,防止由于电源内阻形成的正反馈而引起的寄生震荡。
3、耦合电容:接在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
4、旁路电容:接在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容与谐振电容:主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,幷能显着地提高低频端的振荡频率。
是当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管间电容造成的自激振荡。
9、稳频电容:在振荡电路中起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
开关电容滤波器实验
实验四 开关电容滤波器实验一、实验目的 1、熟悉及掌握集成开关电容滤波器的构成原理及应用 2、掌握滤波器的滤波特性 二、实验原理及电路1、集成滤波器MF10芯片简介集成滤波器MF10芯片内部框图及其引脚图如图10-1所示开关电容集成滤波器MF10是一种通用型开关电容滤波器集成电路,依外部接法不同,可实现低通、高通、带通、带阻和全通等滤波特性。
开关电容集成滤波器无需外接决定滤波频率的电阻和电容,其滤波频率仅由输入时钟clk f 决定,通常时钟频率clk f 应高于信号频率的50倍或100倍。
其内部集成了两组MF5,两个MF5既可分别构成两个独立的二阶开关电容滤波器,又可级联成四阶开关电容滤波器。
其内部框图及引脚图如图10-1所示,第4(17)脚为内部运放反相输入端A INV (B INV );第5(16)脚为求和输入端SIA (SIB );第1(20)脚为低通输出端LPA (LPB );第2(19)脚为带通输出端B PA (B PB );第3(18)脚为带阻/全通/高通输出端)HPB /AP /N (HPA /AP /N ,第10(11)脚为时钟输入端)CLKB (CLKA ;图10-1MF10内部框图及引脚图第12脚用于设定时钟频率clk f 与滤波器的频率0f 的比值;当第12脚接高电平时,500=f f clk ,则500clk f f =;接地时,1000=f f clk ,则1000clk ff =;只要在时钟输入端)CLKB (CLKA 控制输入的时钟频率,就可以改变滤波频率,这样可以实现滤波频率的数字控制。
滤波器的Q 值通过外接电阻设定。
2、电路说明实验电路原理图如图10-2所示。
短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的1-2时,则构成二阶低通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的4-5时,则构成二阶高通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的2-3时,则构成二阶带通滤波器; 短接1J 的2-3,2J 的1-2,3J 的1-2,4J 的4-5时,则构成二阶带阻滤波器; 短接1J三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器 四、实验内容及步骤 1、测控电路(二)实验挂箱接入5V ±直流电源;2、时钟信号的观察把“U10 开关电容滤波器”单元的“时钟信号”端接入示波器,观察时钟信号的波形; 3、调节信号发生器,使之输出正弦信号,接入输入端,输出端接示波器,按照前面“电路说明”部分,通过切换短路帽分别接成低通、高通、带通、带阻、全通滤波器,用虚拟示波器同时观察输入信号与输出信号,改变输入信号的频率,记录输出信号的幅度及相位随输入信号频率变化的情况。
开关电容8阶滤波器MAX29X应用设计
8阶开关电容滤波器MAX29X 系列的应用设计摘要:MAX29X 是美国MAXIM 公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。
本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。
关键词:开关电容、滤波器、设计1 引言开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。
MAXIM 公司在模拟器件生产领域颇具影响,它生产的MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin DIP 封装)等优点,在ADC 的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。
MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。
MAX292/296为贝塞尔(Bessel )滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。
由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。
关于巴特活和贝塞尔滤波器的特性可能图1来说明。
图1的踪迹A 为加到滤波器输入端的3kHz 的脉冲,这里我们把滤波器的截止频率设为10kHZ 。
踪迹B 通过MAX292/296后的波形。
从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。
方波通过MAX291/295尖峰(overshoot)和铃流(ringing)。
MAX293/294/297为8阶圆型(Elliptic )滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1 159p
1 S1 phi1
2
C3 10p
S4 phi2 3 4 + -
opamp 5
S2 phi2
S3 phi1
图 4 实际电路_滤波部分
在滤波电路之前加了采样部分,如图 5
S1 1
+ 2
S5 phi2
IOP1 3
图 5 实际电路_采样部分
将多个滤波部分串接可构成阶数更高的滤波器。 三、仿真结果 1、 将实际电路中的开关电容用电阻替换后进行交流分析, 可以得到幅频响应曲线如下图 6, 其 3db 带宽为 1kHz。
1 S1 phi1 2 C 10p S4 phi2 3 4
S2 phi2
图 1 等效的电阻
3.
理想运放由以下电路建模,R1、C1 决定了主极点位置,Ri 决定输入电阻,Ro 决定了 输出电阻,电阻 R1 和 CCVS 倍数决定了开环放大倍数。
图 2 理想运放建模
4.
可以在积分器上串联一个电阻,这样便构成的了有耗积分器,如下图 3,写出它的传函
开关电容滤波器设计 XX uXXXXXXXXX 一、原理 1. 开关通过一个 nmos 管实现,宽和长均取最小,这样可减小寄生电容的影响。 2. 通过一个电容和四个开关在一定的时钟控制下,可等效成为一个电阻。如下图 1,电阻 的阻值大小为1 Cf,f 为时钟频率,S1、S3 开关相位与 S2、S4 相反。当开关频率 fT = 100kHz,C = 10pF。可以得到等效电阻R eq = 1MΩ。
图 6 幅频响应曲线
2、在实际开关电路中输入幅值 100mv,频率分别为 500Hz,1kHz,5kHz 的的正弦波信号,
C4 20p
得到三个暂态响应如分别下图 7、图 8、图 9。
图 7
500Hz 时的暂态响应
图 8
1kHz 时的暂态响应
图 9
5kHz 的暂态响应
可以看到 500kHz 时, 输出信号幅值约为 100mv, 没有衰减。 1kHz 时, 输出信号幅值约为 700mv, 衰减了大约-3db。5kHz 时,输出信号的幅值只有 20mv 左右,衰减了很多。另外 5kHz 时可 以明显看到输出波形中有明显台阶, 这是因为在 100kHz 的开关频率下, 输入 5kHz 的正弦波, 则每个周期只包含 20 个台阶,所以看起来很明显,输入正弦波频率越低,则每个周期包含 的台阶数越多,看起来越不明显。注意以上的结果只是在一阶的情况下,如果将多个一阶滤 波器串联则可以得到高阶滤波器。这里将 4 个一阶滤波器串联,输入一个 1kHz 的方波验证 其滤波效果,如下图 10。v(3)~v(6),分别是 1~4 阶滤波器的滤波输出,v(2)是输入的方波。 可以发现,滤波器的阶数越高,输出的波形越接近正弦波。
Rf R 1 1+C 1 R f s
,截止频率f3db = 2π R
ห้องสมุดไป่ตู้
1
f C1
,取R f = R1 = 1MΩ,C1 = 159pF。则可以得到,截
止频率为 1kHz 的低通滤波器。
C1 159p
S3 phi1
Rf 1M 2 + IOP2 3
1
R1 1M
图 3 低通滤波器
二、最终的电路
实际的滤波电路如下图 4
图 10
正弦波滤波效果验证
四、感想 通过此次作业我学会了写电路网表、使用 hspice,复习了开关电容的相关知识,增进了 对电路的理解。在不断修改电路参数的过程中,我体会到了模拟电路设计中的魅力 ----在不 断取舍中获取最佳的效果。例如开关如果采用传输门的形式它的导通电阻会比单个 nmos 管 小很多,且宽长比越大,导通电阻越小,但是这会带来更大的寄生电容,且后者对电路的影 响更大。因此在反复实验后我选择了最小宽长比的 nmos 作为开关。同样,如果取开关的工 作频率越高,每个正弦波周期里包含的台阶也会越多,但过高的开关频率,对 nmos 管的开 关速度带来了考验,因此最后折衷选取了 100kHz 的开关频率。