第三章《图形的平移与旋转》单元测试题(含答案)教学教材

合集下载

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

第三章图形的平移与旋转一、旋转题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.用放大镜将图形放大,应该属于()A. 平移变换B. 相似变换C. 对称变换D. 旋转变换3.将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED 的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 165.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A. 6cmB. 4πcmC. 2πcmD. 3cm6.如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()A. 45°B. 30°C. 25°D. 15°7.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点H,则图中△AHC′的面积等于()A. 12﹣6B. 14﹣6C. 18﹣6D. 18+68.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A. ②B. ③C. ④D. ⑤9.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C. 4 D.10.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°二、填空题11.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是________ .12.在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB'C',则∠B'AC=________.13.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=________ cm.14.点P(﹣2,1)向上平移2个单位后的点的坐标为________15.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为________ cm.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.三、解答题17.如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?18.请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.19.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.参考答案一、旋转题C BD A C D C D A B二、填空题11.正方形12.17°13.114.(﹣2,3)15.1316.200三、解答题17.解:在矩形ABCD中,AF∥EC,又∵AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=1200元.答:需要1200元钱18.解:如图所示:解说词:两只小船在水中向前滑行19.解:如图所示:。

北师大版八年级数学下册第三章 图形的平移与旋转 单元测试卷 (含答案)

北师大版八年级数学下册第三章  图形的平移与旋转 单元测试卷 (含答案)

北师版八年级数学下册图形的平移与旋转单元测试卷(含答案)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.在A,B,C,D四幅图案中,能通过左图平移得到的是(B)A B C D2.下列图形中是中心对称图形的是(B)A B C D3.△ABC在平移过程中,下列说法错误的是(B)A.对应线段一定相等B.对应线段一定平行C.周长和面积保持不变D.对应边中点所连接线段的长等于平移的距离4.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上(D)A.向左平移了5个单位长度B.向下平移了5个单位长度C.向上平移了5个单位长度D.向右平移了5个单位长度5.如图,已知图形是中心对称图形,则对称中心是(D)A.点F B.点D C.线段BD的中点D.线段FD的中点6.如图,将△ABC绕点B顺时针旋转,旋转角是∠ABC,则下列说法错误的是(A)A.AC∥BE B.AB=BD C.BC平分∠ABE D.AC=DE 7.如图是某公园里一处长方形风景欣赏区ABCD,长AB=100米,宽BC=50米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为2米,那么小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为(B)A .148米B .196米C .198米D .200米8.下列3个图形中,能通过旋转得到右侧图形的有(B)① ② ③A .①②B .①③C .②③ D.①②③9.如图,把△ABC 沿BC 方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是(C)A .增大B .减小C .不变D .不确定10.如图,在△OAB 中,OA =OB ,∠AOB=15°,在△OCD 中,OC =OD ,∠COD=45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为(B)A .15°B .15°或45°C .45°D .45°或60°二、填空题(每小题4分,共20分)11.“绿水青山就是金山银山”,可以用“平移”来解释的是“山”字. 12.平面直角坐标系中,点O 为坐标原点,现有一点A(2,5),将点A 向下平移5个单位长度,可以得到对应点的坐标A′(2,0);再将线段OA′顺时针旋转90°,则点A″的坐标为(0,-2__).13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC′=5.14.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于点D 成中心对称,则对称中心点D 的坐标是(2,-12).15.如图,在平面直角坐标系xOy中,△OA1B1绕点O逆时针旋转90°,得△OA2B2;△OA2B2绕点O逆时针旋转90°,得△OA3B3;△OA3B3绕点O逆时针旋转90°,得△OA4B4;…;若点A1(1,0),B1(1,1),点B2020的坐标是(1,-1).三、解答题(共50分)16.(12分)如图1,2均为7×6的正方形网格,点A,B,C在格点上.(1)在图1中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图2中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).图1 图2 解:(1)(2)如图所示.(答案不唯一)17.(12分)如图,在等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.解:(1)∵△ABC为等腰直角三角形,∴∠BAD=∠BCD=45°,由旋转,得∠BA D=∠BCE=45°,∴∠DCE=∠ACB+∠BCE=45°+45°=90°.(2)∵AB=BC=4,∠ABC=90°,∴AC=AB2+BC2=4 2.∵CD=3AD, ∴AD=2,CD=3 2.由旋转,得AD=CE= 2.∴DE=CD2+CE2=(32)2+(2)2=2 5.18.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)OB=OA1=16+1=17,A1B=25+9=34.∵OB2+OA21=A1B2,∴△OA1B为等腰直角三角形.19.(14分)如图所示,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探索:在△ABC中,AB+AC与中线AD之间的关系,并说明理由.解:(1)延长AD至A′,使AD=A′D,连接A′B,则△A′DB就是与△ADC关于点D成中心对称的三角形.(2)A′B=AC.(3)AB+AC>2AD.理由:∵△ADC与△A′DB关于D点成中心对称,∴AD=A′D,AC=A′B.在△ABA′中,AB+BA′>AA′,即AB+AC>AD+A′D.∴AB+AC>2AD.。

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(包含答案解析)

一、选择题1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列图形中,既是中心对称又是轴对称图形的是( )A .B .C .D .3.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾4.把点()P x,y 绕原点顺时针旋转270°,点P 的对应点的坐标是( )A .(),y x -B .(),x y --C .(),y x -D .(),x y 5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.下列四种多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的个数为( )A .1B .2C .3D .47.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个8.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 9.下列标志中是中心对称图形的是( )A .B .C .D . 10.如图所示图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.如图所示,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 旋转到AB C ''∆的位置,使得C A AB '⊥,则BAB '∠的度数为( )A .10︒B .20︒C .30D .50︒二、填空题13.已知点P(-3,2)关于原点的对称点是_______.14.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值为______. 15.如图,在平面直角坐标系xOy 中,点A (2,m )绕坐标原点O 逆时针旋转90°后,恰好落在图中阴影区域(包括边界)内,则m 的取值范围是_____.16.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,将周长为8个单位的三角形ABC 沿BC 方向平移2个单位得到三角形DEF ,则四边形ABFD 的周长为_______个单位.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.23.如图,已知等边三角形,ABC O 为ABC ∆内一点,连接,,OA OB OC ,将 BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若5OA =,6OB =,OC =,求 OCM ∠的度数.24.综合与探究:如图,在ABC ,AB AC =,CAB α∠=,(1)操作与证明:如图①,点D 为边BC 上一动点.连接AD ,将线段AD 绕点A 逆时针旋转角度α至AE 的位置,连接DE ,CE .求证:BD CE =;(2)探究与发现:如图②,当90α=︒时,点D 变为BC 延长线上一动点,连接AD ,将线段AD 绕点A 按照逆时针旋转角度α至AE 位置,连接DE ,CE .可以发现:线段BD 和CE 的数量关系是______;(3)判断与思考:判断(2)中的线段BD 和CE 的位置关系,并说明理由.25.如图,在平面直角坐标系中有ABC :(1)已知111A B C △和ABC 关于y 轴对称,在图中画出111A B C △;(2)将111A B C △沿x 轴向右平移4个单位,在图中画出平移后的222A B C △; (3)222A B C △和ABC 关于某条直线l 对称,在图中画出对称轴l .26.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为)(3,5A -,)(2,1B -,)(1,3C -.(1)ABC 的面积是______.(2)画出ABC 绕着点O 按顺时针方向旋转90°得到的222A B C △.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形.D、是轴对称图形,也是中心对称图形;故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,3.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度270°,作出点P的对应点P′,可得所求点的坐标.【详解】解:设P(x,y)在第一象限,作PA⊥x轴于点A.作P'B⊥x轴于点B.∵点()P x,y 绕原点顺时针旋转270°,∴∠90P OP '=︒∴90P OB POA '∠+∠=︒∵90P POA ∠+∠=︒∴∠P P OB '=∠在△OAP 和△OBP'中,90PAO P BO P BOP OP OP ∠∠'︒⎧⎪∠∠'⎨⎪'⎩====, ∴△OAP ≌△P'BO ,∴OB=PA=y ,P'B=OA=x ,∵点()P x,y 绕原点顺时针旋转270°,则P'的坐标是(-y ,x ).故选:C .【点睛】本题考查了坐标与图形的旋转,全等三角形的判定与性质,正确的作出图形是解题的关键.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A 、此图形既是中心对称图形,也是轴对称图形故此选项正确;B 、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D 、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A .【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】①正三角形是轴对称图形不是中心对称图形;②正方形即是轴对称图形又是中心对称图形;③正五边形是轴对称图形不是中心对称图形;④正六边形即是轴对称图形又是中心对称图形,故选:B.【点睛】本题考查了中心对称图形和轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.7.B解析:B【分析】根据中心对称图形的概念求解.【详解】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.A解析:A【分析】根据中心对称图形与轴对称图形的概念判断即可.【详解】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,也是中心对称图形.故符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、不是轴对称图形,也不是中心对称图形.故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是中心对称图形也是轴对称图形,故此选项正确;D、是轴对称图形,但不是中心对称图形,故此选项错误.故选C.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12.B解析:B【分析】先求出∠C′AC的度数,然后根据旋转的性质即可求得答案.【详解】'⊥,∵C A AB∴∠C′AB=90°,∵∠CAB=70°,∴∠C′AC=∠C′AB-∠CAB=20°,∵∠BAB′与∠C′AC都是旋转角,∴∠BAB′=∠C′AC=20°,故选B.【点睛】本题考查了旋转的性质,求出∠C′AC的度数是解题的关键.二、填空题13.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.14.5【分析】根据关于原点对称的点的横坐标互为相反数纵坐标互为相反数可得答案【详解】解:∵点P(m-15)与点Q(32-n)关于原点对称∴m-1=-32-n=-5解得:m=-2n=7则m+n=-2+7=解析:5【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点P(m-1,5)与点Q(3,2-n)关于原点对称,∴m-1=-3,2-n=-5,解得:m=-2,n=7,则m+n=-2+7=5.故答案为:5.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.15.﹣3≤m≤﹣25【分析】如图将阴影区域绕着点O顺时针旋转90°与直线x=2交于CD两点则点A(2m)在线段CD上结合点CD的纵坐标即可求出m的取值范围【详解】如图将阴影区域绕着点O顺时针旋转90°与解析:﹣3≤m≤﹣2.5.【分析】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,结合点C,D的纵坐标,即可求出m的取值范围.【详解】如图,将阴影区域绕着点O顺时针旋转90°,与直线x=2交于C,D两点,则点A(2,m)在线段CD上,又∵点D的纵坐标为﹣2.5,点C的纵坐标为﹣3,∴m的取值范围是﹣3≤m≤﹣2.5,故答案为﹣3≤m≤﹣2.5.【点睛】考查旋转的性质,根据旋转的性质,画出图形是解题的关键.16.30【分析】根据旋转性质及直角三角形两锐角互余可得△E′CB是等边三角形从而得出∠ACE′的度数再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE´=解析:30【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有30°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.17.16【分析】利用非负数的性质可求出b的值a=c进而可得PQ的长再根据平移的性质和平行四边形的面积公式即可求出a进一步即可求出答案【详解】解:∵|a﹣c|+=0又∵|a﹣c|≥0≥0∴a﹣c=0b﹣8解析:16【分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣0,又∵|a﹣c|≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.12【分析】根据平移前后图形的大小不发生改变可知AC=DF题意中平移的距离为2个单位长度即AD=CF=2由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解【详解】∵采用平解析:12【分析】根据平移前后图形的大小不发生改变,可知AC=DF,题意中平移的距离为2个单位长度即AD=CF=2,由此可得到四边形ABCF的周长可拆解为三角形的周长和平移距离的2倍的和进行求解.【详解】∵采用平移得到的△DEF,∴AC=DF∵平移距离为2个单位长度∴AD=CF=2∵△ABC周长为8个单位长度∴AB+BC+AC=AB+BC+DF=8∴四边形ABFD的周长为AB+BF+FD+AD=(AB+BC+DF)+AD+CF=8+2+2=12.故答案为:12.【点睛】考查平移的性质以及平移的距离的知识点,学生掌握平移不变性是解题的关键,并准确表示出平移的距离才可解出题目.20.-1【分析】由A(32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A(32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)图见解析;(2)图见解析,(3,2).【分析】(1)利用关于原点对称的点的坐标特征写出A '、B '、C '点的坐标,然后描点即可; (2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A ''、B ''、C '',根据图象可得点B ''的坐标.【详解】解:(1)如图,A B C '''为所作;(2)如图,A B C ''''''△为所作,点B ''的坐标为(3,2).故答案为(3,2).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(1)作图见解析,(2)52【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '.【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC =+=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=.【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理. 23.(1)见解析;(2)90°【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证BCM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC 是直角三角形,进而可求出 OCM ∠的度数.【详解】解:(1) 依题意补全图形、如图所示:(2)如图示,连接OMABC ∆为等边三角形、60ABC ︒∴∠=BAO ∆旋转得到BCM ∆,5OA 6OB =, 5MC OA ,6MBOB , 60OBM ABC ︒∠=∠= OBM ∴∆为等边三角形、 6OM OB在OMC ∆中,1OC =,5MC = 6OM =222156 222OC MC OM ∴==90OCM ︒∴∠=,【点睛】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,灵活运用所学知识解决问题是解题的关键.24.(1)见解析;(2)BD CE =;(3)BD CE ⊥,理由见解析【分析】(1)由旋转的性质得AD AE =,DAE CAB ∠=∠,从而证明BAD CAE ≌,即可得到结论;(2)同第(1)小题的方法,证明BAD CAE ≌,即可得到结论;(3)先证明BAD CAE ≌,从而得45B ACE ∠=∠=︒,进而即可得到结论.【详解】(1)证明:由旋转可知,AD AE =,DAE CAB α∠=∠=∴CAB CAD DAE CAD ∠-∠=∠-∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =(2)由旋转可知,AD AE =,DAE CAB α∠=∠=,∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴BD CE =,故答案是:BD CE =;(3)BD CE ⊥理由如下:∵90CAB α∠==︒,AB AC =.∴45B ACB ∠=∠=︒由旋转,可得AD AE =,90DAE CAB ∠=∠=︒∴CAB CAD DAE CAD ∠+∠=∠+∠,则BAD CAE ∠=∠在BAD 和CAE 中∵AB AC =,BAD CAE ∠=∠,AD AE =∴()BAD CAE SAS ≌△△ ∴45B ACE ∠=∠=︒∴90BCE ACB ACE ∠=∠+∠=︒∴BD CE ⊥【点睛】本题主要考查全等三角形的判定和性质,等腰三角形的性质,掌握SAS 证明三角形全等,是解题的关键.25.(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对称轴的位置进而得出答案.【详解】解:(1)如图所示:(2)如图所示;(3)如图所示.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.26.(1)3;(2)见解析【分析】(1)用割补法即可得出△ABC的面积;(2)依据旋转的性质,找出A、B、C的对应点A2、B2、C2,然后用线段顺次连接即可得到△ABC绕着点O按顺时针方向旋转90°得到的△A2B2C2.【详解】解:(1)△ABC的面积是2×4-12×2×2-12×4×1-12×1×2=3,故答案为:3;(2)如图,【点睛】本题考查了作图-旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试题(答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试题(答案解析)

一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.在平面直角坐标系中,点A 为()3,2,连接OA 并把线段OA 绕原点O 逆时针旋转90°,所得到的对应点A '的坐标为( )A .()2,3B .()2,3-C .()3,2-D .()2,3- 4.下列图案中,是中心对称图形的是( )A .B .C .D . 5.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 6.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾7.下列说法中正确的是( )A .如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B .如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C .如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D .如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;8.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①②9.下列标志中是中心对称图形的是( )A .B .C .D . 10.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 11.在平面直角坐标系中,点A (2, -1)向右平移3个单位,再向上平移2个单位得到点B ,则线段AB 的长度是 ( )A .8B 34C 13D .3212.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.已知A 、B 两点关于原点对称,若点A 的坐标为(-1,2),则点B 的坐标为________.15.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.16.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.17.已知点(),1A a a +在直线122y x =+上,则点关于原点的对称点的坐标是_________ 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,在正方形ABCD 中,AB=4,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为_________20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.在平面直角坐标系中,O 为原点,点A (2,0),点B (0,2),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′.记旋转角为α.(1)如图①,当点O ′落在边AB 上时,求点O ′的坐标;(2)如图②,当α=60°时,求AA ′的长及点A ′的坐标.22.如图,在正方形ABCD 中,请仅用无刻度直尺按下列要求作图(保留作图痕迹,不写作法).(1)在图①中,将线段AB 绕点O 逆时针旋转一定角度,使点A 与点B 重合,点B 与点C 重合,作出点O 的位置.(2)在图②中,E 为AB 的中点,将ABD △绕点D 逆时针旋转某个角度,得到CFD △,使DA 与DC 重合,作出CFD △.23.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 在AC 上,将ADB △绕点B 顺时针方向旋转90°后,得到CEB △.(1)求DCE ∠的度数;(2)若8AB =,13AD CD =,求DE 的长. 24.将两块大小相同的含30角的直角三角板(30BAC B A C ''∠=∠=︒)按图①的方式放置,固定三角板A B C '',然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90︒)至图②所示的位置,AB 与A C '交于点E ,AC 与A B ''交于点F ,AB 与A B ''交于点O .(1)求证:BCE B CF '△≌△;(2)当旋转角等于30时,AB 与A B ''垂直吗?请说明理由.25.在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点). (1)△ABC 的面积为 ;(2)在直线l 上找一点P ,使点P 到边AB 、BC 的距离相等;(3)画出△ABC 关于直线l 对称的图形△A 1B 1C 1;再将△A 1B 1C 1向下平移4个单位,画出平移后得到的△A 2B 2C 2.26.已知:点A 、B 在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A_______,B________;(2)点A 平移到点(0,-1),请说出是怎样平移的,并写出点B 平移后的坐标. (3)求△AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 .【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0),∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′22OA OB +2234+,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′,∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据中心对称图形和轴对称图形的概念进行判断即可;【详解】A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、既是中心对称图形,又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误;故选:B .【点睛】本题考查了中心对称图形和轴对称图形的概念,正确掌握知识点是解题的关键; 3.D解析:D【分析】如图:过点A 作AB x ⊥轴于点B ,过点'A 作D y A '⊥轴于点D ,可得'ABO ODA ∆∆≌,所以,3OD =,'2DA =,即可求解点'A 的坐标【详解】如图,过点A 作AB x ⊥轴于点B ,过点'A 作'A D x ⊥轴于点D ,∴∠ABO =∠A 'DO =90°,由题意得AO=A 'O ,∠AO A '=90°,∴∠AOD +∠A 'OD =90°,∵90AOB AOD ∠+∠=︒,∴AOB A OD '∠=∠,∴'AOB A OD ∆∆≌,∴OB=OD =3,AB=A 'D =2,∵点A '在第二象限,∴点A '坐标为(2,3)-.故选:D .【点睛】本题考查了坐标与图形变换—旋转,在平面直角坐标系中,求点的坐标,采用作x 轴或y 轴的垂线段,实现化斜为直,是一种常见方法.4.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+212⨯=+2 ∴C(2,1+由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1+第3次变换后点C 的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.6.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.C解析:C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180︒则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.8.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.11.C解析:C【分析】首先确定B 点坐标,然后利用勾股定理计算出线段AB 的长度.【详解】点A (2,-1)向右平移3个单位,再向上平移2个单位得到点B ,则B (2+3,-1+2),即B (5,1),线段AB =,故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,以及勾股定理的应用,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减. 12.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.(1-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可【详解】∵AB 两点关于原点对称点A 的坐标为(-12)∴点B 的坐标为;故答案为【点睛】本题主要考查了关于原点对称的点的坐标准确计算是解 解析:(1,-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可.【详解】∵A 、B 两点关于原点对称,点A 的坐标为(-1,2),∴点B 的坐标为()1,2-;故答案为()1,2-.【点睛】本题主要考查了关于原点对称的点的坐标,准确计算是解题的关键.15.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C ,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.16.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.17.(-2-3)【分析】首先把点代入中计算出的值再根据关于原点对称的点的坐标特点可以直接得到答案【详解】解:点在直线上点关于原点的对称点的坐标是故答案为:【点睛】此题主要考查了关于原点对称的点的坐标特点解析:(-2,-3)【分析】首先把点(,1)A a a +代入122y x =+中,计算出a 的值,再根据关于原点对称的点的坐标特点可以直接得到答案.【详解】 解:点(,1)A a a +在直线122y x =+上, 1122a a ∴+=+, 2a ∴=,(2,3)A ∴,∴点A 关于原点的对称点的坐标是(2,3)--,故答案为:(2,3)--.【点睛】此题主要考查了关于原点对称的点的坐标特点,以及一次函数图象上点的坐标特征,关键是掌握两个点关于原点对称时,它们的坐标符号相反.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.5【分析】连接BM先判定△FAE≌△MAB(SAS)即可得到EF=BM在Rt△BCM中利用勾股定理即可得到BM的值【详解】如图连接BM∵△AEM与△ADM关于AM所在的直线对称∴AE=AD∠MAD=解析:5【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE ,∴∠FAB+∠BAE=∠BAE+∠MAE ,∴∠FAE=∠MAB ,∴△FAE ≌△MAB (SAS ),∴EF=BM .因为正方形ABCD 的边长为4,则MC=4-1=3,BC=4.在Rt △BCM 中,∵BC 2+MC 2=BM 2,∴42+32=BM 2,解得:BM =5,∴EF=BM=5.故答案为:5.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键.三、解答题21.(1)点O ′的坐标为(2,2﹣2);(2)AA ′=22,点A ′的坐标为(1+3,1+3)【分析】(1)根据点A (2,0),点B (0,2),可得△ABO 是等腰直角三角形,当点O′落在边AB 上时,α=45°,可得点O′的横坐标为12AB =2,纵坐标为2﹣2,即可得答案; (2)根据勾股定理得AB ,由旋转性质可得∠A′BA =60°,A′B =AB ,继而得出AA′和点A′的坐标.【详解】解:(1)如图①,∵点A(2,0),点B(0,2),∴OA =OB =2,△ABO 是等腰直角三角形,∴AB =22,当点O′落在边AB 上时,α=45°,∴点O′的横坐标为22O ′B =2,纵坐标为2﹣2, ∴点O′的坐标为(2,2﹣2);(2)如图②,当α=60°时,∴∠ABA′=60°,AB =A′B ,∴△ABA′为等边三角形,∴AA′=A′B =AB =22,连接OA′,在△OBA′和△OAA′中,OB OA OA OA A A A B '''=⎧='⎪⎨⎪=⎩, ∴△OBA′≌△OAA′(SSS ),∴∠BOA′=∠AOA′,∠BA′O =∠AA′O ,∴直线OA′的函数解析式为y =x ,∴OA′⊥AB ,∴OA′=2+6,∴点A′的坐标为(1+3 ,1+3).【点睛】本题主要考查旋转的性质及全等三角形的性质与判定、等边三角形的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.22.(1)如图所示,点O 即为所求.见解析;(2)如图所示,CFD △即为所求.见解析.【分析】(1)依题意做出两条对应点的中垂线的交点既是旋转中心,旋转中心刚好在正方形中心,由于尺子没刻度,则连接两条对角线交点既是点O 的位置.(2)依题意得旋转角度90o 为,由于尺子没有刻度,第一步连接AC,BD 交点O,再连接EO 并延长EO 交DC 为H ,则H 为DC 中点,第二步连接AH 并延长交BC 延长线与F,由△ADH ≌△FCH 即可得出CF=AD ,从而得到CFD △.【详解】(1)如图所示,点O 即为所求.(2)如图所示,CFD △即为所求.【点睛】本题主要考察了图形的旋转,全等三角形等知识点,准确记住旋转中心找法和全等三角形的判定方法是解题关键.23.(1)90°;(2)45【分析】(1)由BA =BC 、∠ABC =90°,可得出∠A =∠ACB =45°,根据旋转的性质可得出∠BCE =∠A =45°,再由∠DCE =∠ACB +∠BCE 即可求出∠DCE 的度数;(2)根据等腰直角三角形的性质可求出AC 的长度,由CD =3AD 可得出AD 、CD 的长度,进而可得出CE 的长度,再在Rt △DCE 中利用勾股定理即可求出DE 的长.【详解】解:(1)在ABC 中,AB BC =,90ABC ∠=︒45BAC BCA ∴∠=∠=︒.由旋转的性质可知45BCE BAC ∠=∠=︒. 454590DCE BCA BCE BCA BAC ∴∠=∠+∠=∠+∠=︒+︒=︒.(2)8BC AB ==,ABC 90∠=︒,2282AC AB BC ∴=+=13AD CD =, 22AD ∴=62CD =由旋转的性质可知:22CE AD ==在Rt DCE 中,DCE 90∠=︒,2245DE CE CD ∴=+=【点睛】本题考查了旋转的性质、等腰直角三角形以及勾股定理,解题的关键是:(1)根据等腰直角三角形的性质结合旋转的性质,找出∠ACB 和∠BCE 的度数;(2)在Rt △DCE 中,利用勾股定理求出DE 的长度.24.(1)证明见解析;(2)AB 与A B ''垂直,理由见解析.【分析】(1)根据题意可知∠B=∠B′,BC=B′C ,∠BCE=∠B′CF ,利用ASA 即可证出△BCE ≌△B′CF ; (2)由旋转角等于30°得出∠ECF=30°,所以∠FCB′=60°,根据四边形的内角和可知∠BOB′的度数,最后计算出∠BOB′的度数即可.【详解】解:(1)证明:∵''BCA B CA ∠=∠,∴''BCA ACE B CA ACE ∠-∠=∠-∠,即'BCE B CF ∠=∠,又∵''B B BC B C ∠=∠=,,∴'BCE B CF ≌(2)AB 与A B ''垂直.理由如下:若旋转角等于30,即30ECF ∠=︒,∴'60FCB ∠=︒,∴'150BCB ∠=︒又∵'60B B ∠=∠=︒根据四边形的内角和得'360606015090BOB ∠=︒-︒-︒-︒=︒,∴''AB A B ⊥.【点睛】 此题考查了旋转的性质,解题时要根据旋转的性质求出角的度数,要与全等三角形的判定和四边形的内角和定理相结合是解题的关键.25.(1)4;(2)见解析;(3)见解析【分析】(1)利用割补法求解可得;(2)作∠ABC 的平分线,与直线l 的交点即为所求;(3)先作出△ABC 关于直线l 的对称三角形,再向下平移4个单位即可.【详解】(1)△ABC 的面积为4×3-12×1×2-12×2×3-12×2×4=4, 故答案为:4;(2)如图点P 即为所找的点;(3)如图△A 1B 1C 1和△A 2B 2C 2即为所画的三角形.【点睛】本题主要考查了作图-轴对称变换和平移变换,解题的关键是掌握轴对称变换与平移变换的定义和性质,并据此得出变换后的对应点.26.(1)(-1,2),(3,-2);(2)把点A先向下平移3个单位长度,再向右平移1个单位长度,(4,-5);(3)S△AOB=2【分析】(1)直接根据图中点的坐标即可求得答案;(2)由A( -1,2)对应点的对应点 ( 0,-1)得平移平移规律,即可得到答案;(3)将图中ABC分补成一个长方形减去三个三角形和一个小长方形的面积即可得出答案.【详解】解:(1)A(-1,2),B(3,-2);故答案为:(-1,2),(3,-2);(2)∵点A(-1,2)平移到点(0,-1)∴把点A先向下平移3个单位长度,再向右平移1个单位长度,∵B(3,-2)∴平移后的B点坐标为:(4,-5);(3)11144442121231681232 222AOBS=⨯-⨯⨯-⨯⨯-⨯-⨯⨯=----=.【点睛】本题考查平面直角坐标系相关,结合平面直角坐标系的坐标确定方法以及整体减去部分求图形面积的方法和点的平移规律进行分析.。

北师大版八年级下《第三章图形的平移与旋转》测试题(含答案)

北师大版八年级下《第三章图形的平移与旋转》测试题(含答案)

第三章 图形的平移与旋转一、选择题(本大题共7小题,每小题4分,共28分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )图12.已知△ABC 沿水平方向平移得到△A ′B ′C ′,若AA ′=3,则BB ′等于( ) A.32B .3C .5D .10 3.已知点A (a ,2018)与点A ′(-2019,b )是关于原点O 的对称点,则a +b 的值为( ) A .1B .5C .6D .44.如图2,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数是( )图2A .40°B .50°C .80°D .100°5.正方形ABCD 在平面直角坐标系中的位置如图3所示,将正方形ABCD 绕点A 顺时针旋转180°后,点C 的坐标是( )图3A .(2,0)B .(3,0)C .(2,-1)D .(2,1)6.如图4,将边长为4的等边三角形OAB 先向下平移3个单位长度,再将平移后的图形沿y 轴翻折,经过两次变换后,点A 的对应点A ′的坐标为( )图4A .(2,3-23)B .(2,1)C .(-2,23-3)D .(-1,23)7.如图5,P 是正方形ABCD 内一点,将△ABP 绕着B 沿顺时针方向旋转到与△CBP ′重合,若PB =3,则PP ′的长为( )图5A.2 2 B.3 2C.3 D.无法确定二、填空题(本大题共5小题,每小题4分,共20分)8.有一种拼图游戏是当每一行的小方格铺满后,这一行消失并使玩家得分.若在游戏过程中,已拼好的图案如图6,又出现了一小方格体向下运动,为了使所有图案消失,最简单的操作是将这个小方格体先________时针旋转________°,再向________平移,再向________平移,才能拼成一个完整的图案,从而使图案消失.图69.如图7,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.10.已知点A(1,-2),B(-1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.图711.如图8所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.图812.如图9,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为__________.图9三、解答题(本大题共4小题,共52分)13.(12分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的函数表达式.图1014.(12分)如图11,将一个直角三角板ACB(∠C=90°)绕60°角的顶点B顺时针旋转,使得点C旋转到AB的延长线上的点E处,请解答下列问题:(1)三角板旋转了多少度?(2)连接CE,请判断△BCE的形状;(3)求∠ACE的度数.图1115.(14分)在网格中画对称图形.(1)如图12是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图13①②③中(只需各画一个,内部涂上阴影);图12图1①是轴对称图形,但不是中心对称图形;②是中心对称图形,但不是轴对称图形;③既是轴对称图形,又是中心对称图形.(2)请你在图13④的网格内设计一个商标,满足下列要求:①是顶点在格点的凸多边形(不是平行四边形);②是中心对称图形,但不是轴对称图形;③商标内部涂上阴影.16.(14分)如图14,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?图141.[答案]C2.[解析]B根据平移的定义及性质解题.平移是在平面内,把一个图形沿某个方向移动一定的距离的运动.平移不改变图形的形状和大小,只改变图形的位置.本题中AA′与BB′都是对应点所连的线段,所以BB′=3.3.[答案]A4.[答案]B5.[答案]B6.[解析]C∵等边三角形OAB的边长为4,∴A(2,23).∵先向下平移3个单位长度,∴点A的对应点坐标为(2,23-3).∵再将平移后的图形沿y轴翻折,∴这时点A的对应点A′的坐标为(-2,23-3).故选C.7.[答案]B8.[答案]顺90右下9.[答案]4610.[答案] -1[解析]∵线段AB平移至EF,即点A平移到点E,点B平移到点F,而A(1,-2),B(-1,2),E(2,a),F(b,3),∴点A向右平移1个单位长度到点E,点B向上平移1个单位长度到点F,∴线段AB先向右平移1个单位长度,再向上平移1个单位长度得到EF,∴-2+1=a,-1+1=b,∴a=-1,b=0,∴a+b=-1+0=-1.11.[答案]8[解析]S阴影=S△A′B′C′-S△BC′D=252-92=8.12.[答案] (8076,0)[解析]∵点A(-3,0),B(0,4),∴AB=32+42=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为4+5+3=12.∵2019÷3=673,∴△2019的直角顶点是第673个循环组的第三个三角形的直角顶点.∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).13.解:(1)△A1B1C1如图所示.(2)△D1E1F1如图所示.(3)△A1B1C1和△D1E1F1y=x或y=-x-2.14.解:(1)∵∠ABC=60°ACB绕顶点B 顺时针旋转得到△DEB,∴∠CBE等于旋转角,∴三角板旋转了120°.(2)连接CE,∵直角三角板ACB绕顶点B顺时针旋转得到△DEB,∴BC=BE,∴△BCE为等腰三角形.(3)∵∠CBE =120°,△BCE 为等腰三角形,∴∠BCE =12×(180°-120°)=30°,∴∠ACE =∠ACB +∠BCE =90°+30°=120°.15.解:(1)如图①,是轴对称图形,但不是中心对称图形(答案不唯一); 如图②,是中心对称图形,但不是轴对称图形; 如图③,既是轴对称图形,又是中心对称图形. (2)16.解:(1)ADC , ∴CO =CD ,∠OCD =60°, ∴△COD 是等边三角形. (2)当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°. ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 即△AOD 是直角三角形.(3)①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α,∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO)=180°-(190°-α+α-60°)=50°, ∴α-60°=50°, ∴α=110°;③要使OD =AD ,需∠OAD =∠AOD. ∵∠AOD =360°-110°-60°-α=190°-α,∠OAD =180°-(α-60°)2=120°-α2,∴190°-α=120°-α2,解得α=140°.综上所述,当α的度数为125°,110°或140°时,△AOD 是等腰三角形.。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (15)

一、选择题1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化.在这个过程中,因变量是( )A.明明B.电话费C.时间D.爷爷2.下列图象中,y是x的函数的是( )A.B.C.D.3.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度4.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升6.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/h B.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h7.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少8.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A−B−C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的( )A.B.C.D.9.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明,两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列图象能大致反映y与x之间关系的是( )A.B.C.D.10.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时后与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )A.2个B.3个C.4个D.5个二、填空题11.小明从家出发到公园,在公园锻炼一段时间后按原路返回;小明从家出发的同时,小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的图象,则下列结论中正确的是.(写序号即可)①小明从家出发去公园时的速度为150米/分,小明爸爸从公园返回家中的速度为30米/分;分钟后与爸爸第一次相遇;②小明出发253③小明与爸爸第二次相遇时,离家的距离是900米;④小明按原路返回时的速度为60米/分.12.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.13.王师傅从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用时间与路程的关系如图所示;下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致.请根据图象所提供的信息,解答下列问题:(1)王师傅从家门口到单位需要分钟;(2)王师傅从单位到家门口需要分钟.14.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.15.将关系式3x+4y=12改写成y=f(x)的形式:.16.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松,途中,她在便利店挑选一瓶矿泉水.耽误了一段时间后继续骑行,愉快地到了公园,图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽在便利店时间为15分钟B.公园离小丽家的距离为2000米C.小丽从家到达公园共用时间20分钟D.小丽从家到便利店的平均速度为100米/分钟17.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下:当里程数在3km以下(含3km)时,收费8元,超过3km,每增加1km加收1.80元,则当x≥3时,车费y(元)与出租车行驶里程数x(km)之间的关系式为.三、解答题18.某水果批发市场的香蕉的价格如表所示,若小明购买x千克(x大于40)香蕉付了y元,请写出y关于x的函数解析式.购买香蕉的量不超过20千克20千克以上但不超过40千克40千克以上每千克价格6元5元4元19.一根弹簧原长12cm,它的挂重不超过16kg,并且每挂重1kg就伸长12cm.(1) 写出挂重后弹簧长度y(cm)关于挂重x(kg)的函数关系式;(2) 求出自变量x的取值范围.20.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距503km.设甲、乙两车与B地之间的距离为y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1) A,B两地之间的距离为km;(2) 当x为何值时,甲、乙两车相距5km?21.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1) 填空:a=km,AB两地的距离为km;(2) 求线段PM,MN所表示的y与x之间的函数表达式;(3) 求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?22.某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度ℎ(米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是.(2) 无人机在75米高的上空停留的时间是分钟.(3) 在上升或下降过程中,无人机的速度为米/分.(4) 图中a表示的数是,b表示的数是.(5) 图中点A表示.23.如图,A,B,C为⊙O上的定点,连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90∘,交⊙O于点D,连接BD,若AB=6cm,AC=2cm,记A,M两点间的距离为x cm,B,D两点间的距离为y cm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1) 通过取点,画图,测量,得到了x与y的几组值,如下表:x/cm00.250.47123456y/cm 1.430.660 1.31 2.59 2.76 1.660(2) 在平面直角坐标系中xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.24.探究函数y=∣2x−2∣+x+12的图象和性质,洋洋同学根据学习函数的经验,对函数y=∣2x−2∣+x+12的图象和性质进行探究,下面是洋洋的探究过程,请补充完成:(1) 化简函数解析式:当x≥1时,y=.当x<1时,y=.(2) 根据(1)的结果,请在所给坐标系中画出函数y=∣2x−2∣+x+12的图象:(直尺画图,不用列表)(3) 观察函数图象,请写出该函数的一条性质:.25.如图1,在等腰直角△ABC中,∠A=90∘,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0∘<α<360∘),如图2.(1) 请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2) 请你在图3中,画出当α=45∘时的图形,连接CE和BE,求出此时△CBE的面积;(3) 若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.答案一、选择题1. 【答案】B【知识点】常量、变量2. 【答案】B【解析】A,C,D选项中对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义;只有B选项对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义.【知识点】函数的概念3. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,=4米/秒,故B正确;则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,∴可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,∴两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,∴甲的速度都大于乙的速度,故D正确.由于该题选择错误的,故选C.【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【知识点】用函数图象表示实际问题中的函数关系5. 【答案】D【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】由图象知:=60(km/h),故此选项正确;A.甲车的平均速度为30010−5B.乙车的平均速度为3009−6=100(km/h),故此选项正确;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故此选项正确;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】A【解析】等边三角形ABC中,AB=4,则△ABC的高ℎ=2√3,当点P在AB上运动时,S=12×AP×ℎ=12×x×2√3=√3x,图象为一次函数,x=4时,S=4√3;当点P在BC上运动时,同理可得:S=12×(8−x)×2√3,同样为一次函数.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】D【解析】由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选D.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】B【解析】分析图象可知:(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;(5)根据图形可得出两车是匀速行驶,相遇前摩托车的速度比汽车的速度快,错误.故正确的有3个.【知识点】用函数图象表示实际问题中的函数关系二、填空题11. 【答案】①②④【解析】v小明1=150010=150米/分,v 爸=150050=30米/分,故①正确.(150+30)⋅t=1500,t1=253,故②正确.第二次相遇t=30,离家距离30×(50−30)=600(米),故③错误.v小明2=60040−30=60米/分,故④正确.【知识点】用函数图象表示实际问题中的函数关系12. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】7;13.4【知识点】用函数图象表示实际问题中的函数关系14. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系x15. 【答案】y=3−34【知识点】解析式法16. 【答案】A【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=1.8x+2.6(x≥3)【解析】由题意得,所付车费为:y=1.8(x−3)+8=1.8x+2.6(x≥3).故:y=1.8x+2.6(x≥3).【知识点】解析式法三、解答题18. 【答案】y=4x.【知识点】解析式法19. 【答案】x,(1) y=12+12(2) 0≤x≤16.【知识点】实际问题中的自变量的取值范围、解析式法20. 【答案】(1) 20(2) 乙车的速度为:20÷16=120(km/h),甲车的速度为:503÷16=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)−120x=5,解得x=0.75;相遇后:120x−(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.【解析】(1) A,B两地之间的距离为20km.【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 240;390(2) 由图象可得,A与C之间的距离为150km,汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150−60x,MN所表示的函数关系式为:y2=60x−150.(3) 由y1=60得150−60x=60,解得:x=1.5,由y2=60得60x−150=60,解得:x=3.5,由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米.【解析】(1) 由题意和图象可得,a=1502.5×4=240km,A,B两地相距:150+240=390km.【知识点】行程问题、用函数图象表示实际问题中的函数关系22. 【答案】(1) t;ℎ(2) 5(3) 25(4) 2;15(5) 在第6分钟时,无人机的飞行高度为50米【解析】(1) 横轴是时间,纵轴是高度,所以自变量是时间(或t),因变量是高度(或ℎ).(2) 无人机在75米高的上空停留的时间是12−7=5分钟.(3) 在上升或下降过程中,无人机的速度75−507−6=25米/分.(4) 图中 a 表示的数是 5025=2, b 表示的数是 12+7525=15.【知识点】自变量与函数值、用函数图象表示实际问题中的函数关系23. 【答案】(1) 2.41(2) 如图所示. (3) 1.38 或 4.62 【知识点】列表法、图像法24. 【答案】(1) y =32x −12;y =−12x +32 (2)(3) 由图象可知,当 x >1 时,y 随 x 的增大而增大 【解析】 (1) 化简函数 y =∣2x−2∣+x+12,当 x ≥1 时,y =2x−2+x+12=32x −12.当 x <1 时,y =−(2x−2)+x+12=−2x+2+x+12=−12x +32.【知识点】根据函数图像确定函数性质、解析式法、图像法25. 【答案】(1) CE =BD ;理由:连接 CE 和 BD ,如图 2 所示,由题意可知,△ABC 和 △ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90∘, ∴∠EAC =∠DAB , 又 ∵AE =AD ,AC =AB , ∴△AEC ≌△ADB (SAS ), ∴CE =BD .(2) 当 α=45∘ 时,连接 CE 和 BE ,如图所示,延长 AD 交 BC 于 F , ∵α=45∘,△ABC 和 △ADE 都是等腰直角三角形, ∴∠BAF =∠CAF =∠EAC =45∘, ∴AF =BF =CF ,∠EAB =135∘, ∴∠EAB +∠ABC =135∘+45∘=180∘,∴AE∥BC,∵BC=√32+32=3√2,∴AF=12BC=3√22,∴S△CBE=12BC⋅AF=12×3√2×3√22=92.(3) 1【解析】(3) 如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CDʹ的中点,∴GM=12ADʹ=12AD=12,当点M在AC上时,由M是CDʹ的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.【知识点】三角形的中位线、直角三角形斜边的中线、等腰直角三角形、旋转及其性质、边角边。

北师大版八年级数学下册第三章 图形的平移与旋转 单元测试试题(含答案)

北师大版八年级数学下册第三章 图形的平移与旋转 单元测试试题(含答案)

第三章《图形的平移与旋转》单元测试卷一.选择题(每小题3分36分)1.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为()A.2B.3C.5D.73.如图,把△ABC绕点C顺时针旋转某个角度q后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角q等于()A.30°B.50°C.40°D.100°4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于A.55°B.70°C.125°D.145°5.下列标志既是轴对称图形又是中心对称图形的是()6.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°8.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)9.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D 的坐标是()A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)10.下列图形:线段、角、圆、平行四边形、矩形、正方形中,既是轴对称图形又是中心对称图形的有()A.6个B.5个C.4个D.3个11.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( ). A.30,2 B.60,2 C.60,23D.60,312.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④四边形AOBO ′的面积为AOC AOBS S+=其中正确的结论是( )A. ①②③B.①②③④C.①②③⑤D.①②③④⑤二.填空题(题型注释)13.点P (-2,1)向上平移2个单位后的点的坐标为__________ .14.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,点O 分斜边AB 为BO :OA =1,将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,则∠AQC = .15. 如图,在正方形ABCD 中,边AD 绕点A 顺时针旋转角度m (︒<<︒3600m ),得到线段AP ,连接PB ,PC .当△BPC 是等腰三角形时,m 的值为 .16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为_________.三.解答题(共52分)17.如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3),(1)、画出△ABC 向右平移三个单位的对应图形△111C B A ,并写出1A 的坐标; (2)、画出△ABC 关于原点O 对称的△222C B A ,并写出2A 的坐标;18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 绕点B 顺时针旋转90°得到△A ′BC ′,请画出△A ′BC ′;(2)求BA边旋转到B A′位置时所扫过图形的面积.19.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(4分)(2)当AE=1时,求EF的长.(4分)21.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD 的长.22.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用.旋转的性质证明.......你的结论。

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.今年4月,被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃2.在平面直角坐标系中,点(4,)P m n -,(,2)Q m n -均在第一象限,将线段PQ 平移,使得平移后的点P 、Q 分别落在x 轴与y 轴上,则点P 平移后的对应点的坐标是( )A .(4,0)-B .(4,0)C .(0,2)D .(0,2)-3.如图,在Rt ABC △中,90ABC ∠=︒,2AB BC =ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 31B .232C .32D .234.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒5.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小6.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥7.如图,点A 的坐标为()0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(),3m ,则m 的值为( )A 43B 221C 53D 421 8.以图(1)(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是( )A .绕着OB 的中点旋转180°即可 B .先绕着点O 旋转180°,再向右平移1个单位C .先以直线AB 为对称轴进行翻折,再向右平移1个单位D .只要向右平移1个单位9.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-10.小明把一副三角板按如图所示叠放在一起,固定三角板ABC ,将另一块三角板DEF 绕公共顶点B 顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF 旋转的度数可能是( )A .15°或45°B .15°或45°或90°C .45°或90°或135°D .15°或45°或90°或135°11.如图,ABC 与A B C '''关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A '是对称点B .BO B O '=C .AOB A OB ''∠=∠D .ACB C A B '''∠=∠ 12.如图,已知△ABC 中,∠CAB =20°,∠ABC =30°,将△ABC 绕A 点逆时针旋转50°得到△AB ′C ′,以下结论:∠BC =B ′C ′,∠AC ∠C ′B ′,∠C ′B ′∠BB ′,∠∠ABB ′=∠ACC ′,正确的有( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠二、填空题(本大题共8小题,每小题3分,共24分)13.已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.14.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.15.如图,边长为2的等边ABO 在平面直角坐标系的位置如图所示,点O 为坐标原点,点A 在x 轴上,以点O 为旋转中心,将ABO 按顺时针方向旋转120°,得到OA B ''△,则点A '的坐标为_____.16.如图,在ABC 中,∠C =90°,点D 、E 分别在AC 、BC 上,∠CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)17.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪. 则草坪的面积为__________.18.如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.19.线段MN 是由线段EF 经过平移得到的,若点(1,3)-E 的对应点(4,7)M -,则点(3,2)F --的对应点N 的坐标是____________.20.如图,DEF ∆是由ABC ∆通过平移得到,且点,,,B E C F 在同一条直线上,如果14BF =,6EC =.那么这次平移的距离是_________.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,已知图中A 点和B 点的坐标分别为()2,4-和()2,2-.(1)请在图1中画出坐标轴建立适当的直角坐标系;(2)写出点C 的坐标为______;(3)在y 轴上有点D .满足20DBC S =△,则点D 的坐标为______;(4)已知第一象限内有两点()4,M m n -,(),3N m n -.平移线段MN 使点M 、N 分别落在两条坐标轴上.则点M 平移后的对应点的坐标是______.22.如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.23.如图,()1,0A ,点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为()3,2-.(1)点B 的坐标为_______,点E 的坐标为______;(2)点P 从点O 出发,沿OB BC CD →→移动,若点P 的速度为每秒1个单位长度,运动时间为()0t t >秒. ∠用含t 的式子表示点P 的坐标;∠当t 为多少时,点P 的横坐标与纵坐标互为相反数;∠当三角形AEP 的面积为2时,直接..写出此时t 的值.24.在平面直角坐标系中,A(-2,4),B(-3,-1),C(0,2).将∠ABC平移至∠A1B1C1,点A对应点A1(3,3),点B对应点B1,点C对应点C1.(1)画出平移后的∠A1B1C1,并写出B1的坐标;(2)求∠ABC的面积;(3)若存在点D(m,n)使得∠BB1D和∠BB1C面积相等,其中m,n均为绝对值不超过5的整数,则点D的坐标为_________.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点F进行β变+的最小值为,直接写出点D的坐标.换之后得到点G,若DG EF参考答案1.C2.A3.A4.B5.B6.C7.C8.D9.B10.D11.D12.B13.514.3915.(1316.452x ⎛⎫+ ⎪⎝⎭ 17.242平方米18.()1,3-19.(−6,2)20.421.(1)1(2)(3,2)(3)(0,﹣6)或(0,10)(4)(0,3)或(﹣4,0)22.(1)(3,37°)23.(1)(0,2),(2-,0)(2)∠当点P 在OB 上时,点P 的坐标为(0,t );点P 在BC 上时,点P 的坐标(2t -,2);当点P 在CD 上时,点P 的坐标为(3-,7t -);∠当t =4时,点P 的横坐标与纵坐标互为相反数;∠t 的值为43或17324.(1)B1的坐标(2,﹣2)(2)6(3)(﹣5,3)或(0,2)或(5,1)或(﹣1,﹣5)25.(1)(5,-2)(2)58m=-(3)(0,32)。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。

()数学八年级下《-图形的平移与旋转》单元检测题(含答案解析)

()数学八年级下《-图形的平移与旋转》单元检测题(含答案解析)

八下数学《第3章图形的平移与旋转》单元测试卷一.选择题(共10小题)1.将图中所示的图案平移后得到的图案是()A.B.C.D.2.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动·C.投篮时的篮球运动D.随风飘动的树叶在空中的运动3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm-5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()[A.35°B.45°C.55°D.65°8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′]C.BC=B′C′D.∠ABC=∠A′C′B′10.下列图形是中心对称图形的是()A.B.C.D.二.填空题(共5小题)11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.》13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.三.解答题(共6小题)16.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC =84m,AE=100m,则这条小路的面积是多少【17.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF =∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC =∠ADB若存在,求出其度数;若不存在,请说明理由.18.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO 向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;,(2)求△DEF的面积.19.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.20.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.—21.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合参考答案与试题解析一.选择题(共10小题)…1.将图中所示的图案平移后得到的图案是()A.B.C.D.【解析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案平移得到.故选:C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.`2.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动【解析】根据平移的定义,对选项进行一一解析,排除错误答案.解:A、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故错误;B、急刹车时汽车在地面上的滑动是平移,故正确;[C、投篮时的篮球不沿直线运动,故错误;D、随风飘动的树叶在空中不沿直线运动,故错误.故选:B.【点评】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【解析】根据平移的性质,结合图形对小题进行一一解析,选出正确答案.》解:∵只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B.【点评】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm【解析】先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD =26(cm),于是得到四边形ABFD的周长为26cm.解:∵△ABC沿BC方向平移3cm得到△DEF,)∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故选:D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()*A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度【解析】直接利用平移中点的变化规律求解即可.解:观察图形可得:图1与图2对应点所连的线段平行且相等,且长度是3;故发生的变化是向左平移3个单位长度.故选:A.【点评】本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移中,对应点的对应坐标的差相等.6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()*A.B.C.D.【解析】此题是一组复合图形,根据平移、旋转的性质解答.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.【点评】本题考查平移、旋转的性质:①平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.)7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°【解析】根据旋转的性质即可求出答案.解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°、∴∠α=85°﹣30°=55°故选:C.【点评】本题考查旋转的性质,解题的关键是正确理解旋转的性质,本题属于基础题型.8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°【解析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.《【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【解析】根据中心对称的性质即可判断.解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.~故选:D.【点评】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.10.下列图形是中心对称图形的是()A.B.C.D.【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解析即可.解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;¥C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.二.填空题(共5小题)11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为(ab﹣a﹣2b+2)米2.【解析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.{解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=110°.【解析】延长直线后根据平行线的性质和三角形的外角性质解答即可.解:延长直线,如图:,[∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣70°=110°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=110°,故答案为:110.【点评】此题考查平移问题,关键是根据平行线的性质和三角形的外角性质解答.;13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【解析】根据平移的性质即可得到结论.解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)、【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【解析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=55°.—【解析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.【点评】此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.。

北师大版数学八年级下册 第三章 图形的平移与旋转 单元测试卷(含答案)

北师大版数学八年级下册 第三章 图形的平移与旋转 单元测试卷(含答案)

第三章图形的平移与旋转单元测试卷一、选择题(每题3分,共30分)1.下列图形中,不能通过其中一个四边形平移得到的是()2.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在图形平移和旋转的过程中,对应角相等,对应线段相等且平行3.下列现象是旋转的是()A.电梯从一楼升到顶楼B.卫星绕地球运动C.骑自行车的人D.苹果从树上落下4.中国“二十四节气”已被正式列入联合国教科文组织《人类非物质文化遗产代表作品录》,下列四幅作品分别代表“大雪”“清明”“谷雨”“白露”,其中既是中心对称图形又是轴对称图形的是()5.若P与A(1,3)关于原点对称,则点P落在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,该图形的相邻两边均互相垂直,则这个图形的周长为()A.37 B.26 C.42 D.217.如图,在△ABC中,∠BAC=65°,∠C=20°,将△ABC绕点A逆时针旋转n°(0<n<180)得到△ADE.若DE∥AB,则n的值为()A.130 B.85 C.75 D.65(第7题)(第8题)(第9题)8.如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是() A.把△ABC绕点C逆时针旋转90°,再向下平移2格B.把△ABC向下平移4格,再绕点C逆时针旋转180°C.把△ABC绕点C顺时针旋转90°,再向下平移5格D.把△ABC向下平移5格,再绕点C顺时针旋转180°9.如图,在平面直角坐标系中,点A,B的坐标分别为(2,0),(0,1),将线段AB平移至A′B′,那么a+b的值为()A.1 B.2 C.3 D.410.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连接BB′,则BB′的长为()A.2 3 B.5 C.2 5 D.6(第10题)(第11题)(第13题)二、填空题(每题3分,共15分)11.如图,△ABC和△DEF关于点O中心对称,若OB=4,则OE的长为________.12.在平面直角坐标系中,将点A(-2,1)向右平移3个单位长度得到点A′,则点A′的坐标为________.13.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=10°,则∠AOD的度数是________°.14.如图,在△ABC中,∠ACB=90°,AB=10,BC=8,将△ABC绕顶点C逆时针旋转一定的角度α(0°<α<90°)得到△A′B′C,设A′B′与BC相交于点P,则在旋转的过程中线段BP长度的最大值为________.(第14题)(第15题)15.如图,在Rt△ABC中,AC=3,BC=4,且AC在直线l上,将△ABC绕点A 顺时针旋转到位置①得到点P1,将位置①的三角形绕点P1顺时针旋转到位置②得到点P2,…,按此规律继续旋转,直到得到点P2 025为止(P1,P2,P3,…都在直线l上).则AP2 025=________.三、解答题(一)(每题8分,共24分)16.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C的对应点C1的坐标为(4,0),画出△A1B1C1;(2)若△A2B2C2是△ABC关于原点O中心对称的图形,写出△A2B2C2各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,画出△A3B3C3.317. 图①是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图②、图③、图④中(只需各画一个,内部涂上阴影).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿AB方向向右平移得到△DEF,∠E=55°.(1)求∠A的度数;(2)若AE=8 cm,DB=2 cm,请求出AD的长度.四、解答题(二)(每题9分,共27分)19.如图,在四边形ABCD中,∠ECF=∠CDA,DC⊥AD于点A,△BEC旋转后能与△DFC重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若∠EBC=30°,∠BCE=80°,求∠F的度数.20.如图,在△ABC中,AB=5,BC=8,将△ABC沿射线BC的方向平移,得到△A′B′C′,AA′=3,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,求旋转角的度数.21.将两个直角三角尺(其中∠B=45°,∠D=30°)的直角顶点C叠放在一起.保持三角尺BCE不动,然后将三角尺ACD绕点C转动,形成∠BCD.(1)如图①,当∠DCE=60°时,AD∥CB吗?为什么?(2)如图②,试说明∠ACB与∠DCE的数量关系.5五、解答题(三)(每题12分,共24分)22.如图,在△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP 绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23.已知,△ABC是等边三角形,将一块含有30°角的直角三角尺DEF如图①放置,让EF在BC所在的直线上.当点E与点B重合时,点A恰好落在三角尺的斜边DF上.(1)利用图①证明:EF=2BC;(2)在三角尺沿BC所在直线向左平移的过程中(BC始终在线段EF上),如图②,线段EB=AH是否始终成立(设AB,AC与三角尺斜边的交点为G,H)?如果成立,请证明;如果不成立,请说明理由.答案一、1.B 2.B 3.B 4.A 5.C 6.C7.B8.C9.B10.C点拨:∵∠C=90°,AC=3,BC=4,∴根据勾股定理,得AB=AC2+BC2=32+42=5,由旋转的性质可知AC=AC′=3,BC=B′C′=4,∴BC′=AB -AC′=5-3=2,∴BB′=B′C′2+BC′2=42+22=25,故选C.二、11.412.(1,1)13.5514.3.215.8 100点拨:在Rt△ABC中,AB=AC2+BC2=5.将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=5;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=5+4=9;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=5+4+3=12,….2 025÷3=675,∴AP2 025=675×12=8 100.故答案为8 100.三、16.解:(1)如图,△A1B1C1为所作.(2)A2(3,-5),B2(2,-1),C2(1,-3).(3)如图,△A3B3C3为所作.17.解:(1)如图①.(答案不唯一)(2)如图②.(3)如图③.18.解:(1)由题意得∠ABC=∠E=55°,∵∠ACB=90°,∴∠A=90°-55°=35°.(2)由平移得AD=BE,∵AE=8 cm,DB=2 cm,7∴AD=BE=12×(8-2)=3(cm).四、19.解:(1)旋转中心为点C.(2)∵DC⊥AD,∴∠CDA=90°,∴∠ECF=∠CDA=90°,∴旋转了90°.(3)∵∠EBC=30°,∠BCE=80°,∴∠CEB=180°-30°-80°=70°.∵△BEC旋转后能与△DFC重合,∴∠F=∠CEB=70°.20.解:由平移可得AB=A′B′=5,AA′=BB′=3,∴B′C=BC-BB′=5,由旋转可得A′B′=A′C=5,∴A′B′=A′C=B′C,∴△A′B′C为等边三角形,∴∠B′A′C=60°,即旋转角的度数为60°.21.解:(1)AD∥CB,理由是:∵∠ECB=90°=∠BCD+∠DCE,∠DCE=60°,∴∠BCD=90°-60°=30°,∵∠D=30°,∴∠D=∠BCD,∴AD∥CB.(2)∵∠ECB=∠ACD=90°,∴∠ACE+∠ECD+∠DCB+∠DCE=180°,∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°.五、22.解:(1)旋转后的△ACP′如图所示.(2)如图,由旋转可得∠P AP′=∠BAC=50°,AP=AP′,∠AP′C=∠APB,∴∠APP′=∠AP′P=12(180°-∠P AP′)=65°.∵∠BAC=50°,AB=AC,∴∠B=65°.又∵∠BAP=20°,∴∠APB=180°-∠BAP-∠B=180°-20°-65°=95°=∠AP′C,∴∠PP′C=∠AP′C-∠AP′P=95°-65°=30°.23.(1)证明:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.(2)解:成立.证明:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.∵EF=2BC,∴BE+CF=BC.∵AH+CH=AC,∴AH=BE.9。

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题 (含答案)

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题  (含答案)

北师大版八年级数学下册第3章《图形的平移与旋转》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格3.观察下列四个图形,中心对称图形是()A.B.C.D.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.在正三角形、平行四边形、矩形、菱形和圆这五个图形中,既是轴对称图形又是中心对称图形有()A.4个B.3个C.2个D.1个6.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)7.时间经过25分钟,钟表的分针旋转了()A.150°B.120°C.25°D.12.5°8.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°9.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′10.如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转130°得到△AB′C′,连接BB′,若AC′∥BB',则∠CAB′的度数为()A.75°B.85°C.95°D.105°二.填空题(共5小题,满分15分,每小题3分)11.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过旋转与右手手印完全重合在一起.12.在下列图案中可以用平移得到的是(填代号).13.如图,将△ABC沿BC方向平移2cm得到△DEF.如果四边形ABFD的周长是20cm,则△ABC周长是cm.14.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是.15.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a﹣b的值为.三.解答题(共8小题,满分55分)16.如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.17.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.18.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C1;(2)画△ABC关于点O的中心对称图形△A2B2C2.19.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.21.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a﹣b)与点Q(2a﹣9,2b﹣9)也是通过上述变换得到的对应点,求a,b的值.22.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.23.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、将一张纸沿它的中线折叠,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、飞蝶的快速转动,不符合平移定义,故本选项错误;D、翻开书中的每一页纸张,不符合平移的定义,故本选项错误.故选:B.2.解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.3.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.4.解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选:A.5.解:正三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,是中心对称图形;菱形是轴对称图形,也是中心对称图形;圆是轴对称图形,也是中心对称图形;既是轴对称图形又是中心对称图形有3个,故选:B.6.解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.7.解:如图所示:因为分针每分钟转6°,所以25分钟旋转了6°×25=150度.故选:A.8.解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣68°=112°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=112°,故选:D.9.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.10.解:∵将△ABC绕点A按逆时针方向旋转l30°得到△AB′C′,∴∠BAB′=∠CAC′=130°,AB=AB′,∴∠AB′B=(180°﹣130°)=25°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=25°,∴∠CAB′=∠CAC′﹣∠C′AB′=130°﹣25°=105°.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:不能,因为无论怎么旋转,两个图形都不能重合,故答案为:不能.12.解:①、②、⑥通过旋转得到;③、④、⑤通过平移得到.故答案为:③④⑤13.解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=△ABC的周长+2+2=20故△ABC的周长=16cm.故答案为:16.14.解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M在第三象限,∴,解得:0.5<m<1.故答案为:0.5<m<1.15.解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(3,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,b=1+1=2,∴a﹣b=1﹣2=﹣1.故答案为:﹣1.三.解答题(共8小题)16.解:17.解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.18.解:(1)如图,到△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.19.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.20.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.21.解:(1)点A的坐标为(2,3),点D的坐标为(﹣2,﹣3),点B的坐标为(1,2),点E的坐标为(﹣1,﹣2),点C的坐标为(3,1),点F的坐标为(﹣3,﹣1),对应点的横、纵坐标分别互为相反数;(2)由(1)得,,解得,,答:a=2,b=1.22.(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.23.解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C。

八年级下《第三章图形的平移与旋转》单元检测试题(含答案)

八年级下《第三章图形的平移与旋转》单元检测试题(含答案)

八年级数学下册第三章图形的平移与旋转单元检测试题姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.下列图形中,是中心对称图形的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列说法正确的是( )A. 全等的两个图形成中心对称B. 成中心对称的两个图形必须重合C. 成中心对称的两个图形全等D. 旋转后能够重合的两个图形成中心对称4.下面的各组图案中,不能由其中一个经平移后得到另一个的是()A. B. C. D.5.△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是()A. ∠AC2O=90°B. ∠AC2O=80°C. ∠AC2O=60°D. ∠AC2O=45°6.下列现象是数学中的平移的是()A. 树叶从树上落下B. 电梯从底楼升到顶楼C. 碟片在光驱中运行D. 卫星绕地球运动7.如图,△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A. DE=3B. AE=4C. ∠ACB是旋转角D. ∠CAE是旋转角8.如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A. B. C. D.9.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形,图中阴影部分的面积为()A. B. . C. D.10.如图,E,F分别是正方形ABCD的边BC,CD上的点,CD上的点,BE=CF,连接AE,BF,将△ABE绕正方形的对角线的交点O按顺时针方向旋转到△BCF,则旋转角是()A. 30°B. 45°C. 60°D. 90°二、填空题(共8题;共24分)11.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为________.12.已知直线向上平移一个单位长度后得到的直线是________.13.如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为________.14.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为________.15.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.16.在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有 ________个.17.△ABC中,∠ACB=120°,将它绕着点C逆时针旋转30°后得到△DCE,则∠ACE的度数为________.18. 分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是________三、解答题(共4题;共24分)19.已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.20.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.21.如图所示,将△ABC绕其顶点A顺时针旋转30°后得△ADE.(1)问△ABC与△ADE的关系如何?(2)求∠BAD的度数.22.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(4分)(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.(4分)四、作图题(共2题;共18分)23.如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼符合要求的图形:(如图1)图1 图2既不是轴对称图形,又不是中心对称图形是轴对称图形,不是中心对称图形图3 图4是中心对称图形,不是轴对称图形既是轴对称图形,又是中心对称图形24.如图,(1)图1是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.(2)如图2,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.五、综合题(共2题;共24分)25.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.26.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则这两条线段之间的关系是________;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′面积为________.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】B7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】D二、填空题11.﹣6 12.13.3 14.(2,4)15.80°或120°16.2 17.150°18.90°三、解答题19.四边形A′B′C′D′就是所求的图形20.证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.21.(1)解:∵△ABC绕其顶点A顺时针旋转30°后得△ADE,∴△ABC≌△ADE(2)解:旋转角相等,即∠BAD=∠EAC=30°.22.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.四、作图题23.解:(1)既不是轴对称图形,又不是中心对称图形:(2)是轴对称图形,不是中心对称图形(3)是中心对称图形,不是轴对称图形(4)既是轴对称图形,又是中心对称图形24.(1)解:如图1所示:此阴影部分是中心对称图形;(2)解:如图2所示:△AB1C1,即为所求五、综合题25.(1)解:它的旋转中心为点A(2)解:它的旋转方向为逆时针方向,旋转角是45度(3)解:点A,B,C的对应点分别为点A,E,F26.(1)解:如图所示:△A′B′C′,即为所求(2)平行且相等(3)解:如图所示:BD,即为所求(4)解:如图所示:CE,即为所求(5)10。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测卷(包含答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》检测卷(包含答案解析)

一、选择题1.在平面直角坐标系中,将点A (-1,2)向下平移3个单位长度,再向右平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(-3,-1)B .(1,-1)C .(-1,1)D .(-4,4) 2.如图,根据ABC 的已知条件,按如下步骤作图:(1)以A 圆心,AB 长为半径画弧;(2)以C 为圆心,CB 长为半径画弧,两弧相交于点P ;(3)连接BP ,与AC 交于点O ,连接AP 、CP .以下结论:①BP 垂直平分AC ;②AC 平分BAP ∠;③四边形ABCP 是轴对称图形也是中心对称图形;④ABC APC ≌△△,请你分析一下,其中正确的是( )A .①④B .②③C .①③D .②④ 3.如图,将ABC ∆绕顶点C 旋转得到DEC ∆,点A 对应点D ,点B 对应点E ,点B 刚好落在DE 边上,24,48A BCD ∠=︒∠=︒,则ABC ∠等于( )A .68︒B .70︒C .72︒D .74︒4.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C.D.5.下列图案中,是中心对称图形的是( )A.B.C.D.6.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则点O到AD1的距离为()A.3 B.355C.655D.557.下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.8.如图,点D是等腰直角三角形ABC内一点,AB=AC,若将△ABD绕点A逆时针旋转到△ACE的位置,则∠AED的度数为()A .25°B .30°C .40°D .45°9.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm 10.如图,已知ABC 和A B C '''关于点O 成中心对称,则下列结论错误的是( ).A .ABC ABC '''∠=∠B .AOB A OB ''∠=∠C .AB A B ''=D .OA OB '=11.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .6012.如图所示的网格中各有不同的图案,不能通过平移得到的是( )A .B .C .D .二、填空题13.在平面直角坐标系中,将点(3,2)P -向右平移4个单位得到点P ',则点P '关于x 轴的对称点的坐标为________.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C旋转得到△EDC,使点D在AB边上,斜边DE交AC边于点F,则图中△CDF的周长为_____.AB CD的端点15.在如图所示的平面直角坐标系中,每个小正方形的边长均为1,线段,都在格点上,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__________.16.如图,P是等边△ABC内一点,PA=4,PB=23,PC=2,则ABC的边长为________.17.如图,在正方形ABCD中,点M是边CD的中点,那么正方形ABCD绕点M至少旋转_________度与它本身重合.18.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD //BC ,则∠BAE =______°.19.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.20.如图,将周长为8个单位的三角形ABC 沿BC 方向平移2个单位得到三角形DEF ,则四边形ABFD 的周长为_______个单位.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;23.如图,已知△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4). (1)画出△ABC 关于y 轴的对称图形△111A B C ;(2)画出△ABC 沿y 轴向下平移3个单位得到△222A B C ;(3)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出点P 的坐标.24.如图,ABC 在平面直角坐标系中,顶点的坐标分别为()1,4A -,()4,5B -,(5,2)C -.(1)画出与ABC 关于原点中心对称的111A B C △;(2)将ABC 绕点1O 顺时针旋转90︒得到111A B C △,2AA 是点A 所经过的路径,则旋转中心1O 的坐标为________________.25.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2;(3)求△A 2B 2C 2的面积.26.如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,AC 、BD 交于M(1)如图1,当α=90°时,∠AMD 的度数为 °;(2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当△OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,不用证明;若不确定,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用点平移的坐标规律,把A 点的横坐标加2,纵坐标减3即可得到点A′的坐标.解:将点A(-1,2)向下平移3个单位长度,再向右平移2个单位长度2得到点A′,则点A 的坐标是(-1+2,2-3),即A′(1,-1)故选:B .【点睛】此题主要考查坐标与图形变化平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.2.D解析:D【分析】由题意得:AB=AP ,CB=CP ,从而可判断①;根据等腰三角形的性质,可判断②;根据轴对称和中心对称图形的定义,可判断③;根据SSS ,可判断④.【详解】由题意得:AB=AP ,CB=CP ,∴点A 、C 在BP 的垂直平分线上,即:AC 垂直平分BP ,故①错误;∵AB=AP ,AC ⊥BP ,∴AC 平分BAP ∠,故②正确;∵AC 垂直平分BP ,∴点B 、P 关于直线AC 对称,即:四边形ABCP 是轴对称图形,但不是中心对称图形,故③错误;∵AB=AP ,CB=CP ,AC=AC ,∴ABC APC ≌△△,故④正确;故选D .【点睛】本题主要考查垂直平分线的判定定理。

北师大版数学八年级下册:第三章 图形的平移与旋转 单元测试(附答案)

北师大版数学八年级下册:第三章 图形的平移与旋转  单元测试(附答案)

第三章图形的平移与旋转单元测试(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下列四个图案中,不能由1号图形平移得到2号图形的是()2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个3.下列说法中,不正确的是()A.图形平移是由移动的方向和距离所决定的B.图形旋转是由旋转中心和旋转角度所决定的C.任意两条相等的线段都成中心对称D.任意两点都成中心对称4.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上()A.向左平移了5个单位长度B.向下平移了5个单位长度C.向上平移了5个单位长度D.向右平移了5个单位长度5.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.格点MB.格点NC.格点PD.格点Q6.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有()①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC∥EF,BC=EF.A.1个B.2个C.3个D.4个7.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直第7题图第8题图8.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有()A.①②B.①③C.②③D.①②③9.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到△DEF,则四边形ABFD的周长为()A.6 B.8 C.10 D.12第9题图第10题图10.如图,P为等边三角形ABC内的一点.且P到三个顶点A,B,C的距离分别为3,4,5,则△PAB的面积为()A.10 B.8 C.6 D.3二、填空题(每小题4分,共20分)11.在平面直角坐标系中,将点A(1,5)向右平移2个单位长度,可以得到对应点的坐标A′ ;将点A(1,5)向下平移6个单位长度,可以得到对应点的坐标A″ .12.钟表上的时针走1小时旋转了度.13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.第13题图第14题图14.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点D成中心对称,则对称中心点D的坐标是.15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-b,-a),如f(1,3)=(-3,-1);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,b),如h(1,3)=(-1,3).规定了运算顺序是“由内到外”,例如按照以上规定有:f(g(2,-3))=f(-3,2)=(-2,3),那么f (g(h(5,-3)))=.三、解答题(共40分)16.(8分)如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A 移动到点C处.(1)画出平移后的线段CD,并写出点C的坐标;(2)如果将线段CD看成是由线段AB经过一次平移得到的,请指出这一平移的平移方向和平移距离.17.(10分)某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装饰地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用所学过的知识再设计一幅与上述不同的图案.18.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.19.(12分)如图,在四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.线段CD绕点C顺时针旋转60°得到线段CE,连接AE.(1)求证:AE=BD;(2)若∠ADC=30°,AD=3,BD=42,求CD的长.参考答案:一、选择题(每小题4分,共40分)1.下列四个图案中,不能由1号图形平移得到2号图形的是(A)2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(B)A.1个B.2个C.3个D.4个3.下列说法中,不正确的是(C)A.图形平移是由移动的方向和距离所决定的B.图形旋转是由旋转中心和旋转角度所决定的C.任意两条相等的线段都成中心对称D.任意两点都成中心对称4.在平面直角坐标系中,若将三角形上各点的横坐标都加上5,纵坐标保持不变,则所得图形在原图形的基础上(D)A.向左平移了5个单位长度B.向下平移了5个单位长度C.向上平移了5个单位长度D.向右平移了5个单位长度5.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.格点MB.格点NC.格点PD.格点Q6.如图,△ABC经过平移后得到△DEF,则下列说法中正确的有(D)①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC∥EF,BC=EF.A.1个B.2个C.3个D.4个7.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是(D)A.垂直B.相等C.平分D.平分且垂直第7题图第8题图8.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左各平移1个单位长度,再以AC的中点为中心作中心对称图形,其中正确的变换有(A)A.①②B.①③C.②③D.①②③9.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到△DEF,则四边形ABFD的周长为(C)A.6 B.8 C.10 D.12第9题图第10题图10.如图,P为等边三角形ABC内的一点.且P到三个顶点A,B,C的距离分别为3,4,5,则△PAB的面积为(D)A.10 B.8 C.6 D.3二、填空题(每小题4分,共20分)11.在平面直角坐标系中,将点A(1,5)向右平移2个单位长度,可以得到对应点的坐标A′(3,5);将点A(1,5)向下平移6个单位长度,可以得到对应点的坐标A″(1,-1).12.钟表上的时针走1小时旋转了30度.13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.第13题图第14题图14.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点D成中心对称,则对称中心点D的坐标是(2,-12).15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-b,-a),如f(1,3)=(-3,-1);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,b),如h(1,3)=(-1,3).规定了运算顺序是“由内到外”,例如按照以上规定有:f(g(2,-3))=f(-3,2)=(-2,3),那么f (g(h(5,-3)))=(5,3).三、解答题(共40分)16.(8分)如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A 移动到点C处.(1)画出平移后的线段CD,并写出点C的坐标;(2)如果将线段CD看成是由线段AB经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)平移后的线段CD如图所示,C(1,3).(2)连接AC,由图可知,AC=22+32=13.∴平移方向是由点A到点C的方向,平移距离是13个单位长度.17.(10分)某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装饰地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用所学过的知识再设计一幅与上述不同的图案.解:(1)答案不唯一,如:我喜欢图案④.图案④的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示(答案不唯一).18.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C ;(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2; (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.解:(1)(2)如图所示.(3)旋转中心的坐标为(0,-2).19.(12分)如图,在四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.线段CD 绕点C 顺时针旋转60°得到线段CE ,连接AE.(1)求证:AE =BD ;(2)若∠ADC =30°,AD =3,BD =42,求CD 的长.解:(1)证明:∵△ABC 是等边三角形, ∴AC =BC ,∠ACB =60°.由旋转的性质可得:CE =CD ,∠DCE =60°, ∴∠DCE +∠ACD =∠ACB +∠ACD , 即∠ACE =∠BCD. 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD (SAS ). ∴AE =BD. (2)连接DE.∵CD =CE ,∠DCE =60°, ∴△DCE 是等边三角形. ∴∠CDE =60°,CD =DE. ∵∠ADC =30°,∴∠ADC+∠CDE=90°,即∠ADE=90°.∵AD=3,BD=42,∴AE=BD=4 2.在Rt△ADE中,由勾股定理,可得DE=AE2-AD2=(42)2-32=23.∴CD=DE=23.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 图形的平移与旋转单元测试题
一、选择题(每题3分,共33分)
1.下列汽车标志中,是中心对称图形的是( )
A. B. C D
2.将左图中的叶片图案旋转180°后,得到的图形是( )
A B C D
第2题图 第3题图 第4题图
3.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上。

下列给出的四个图案中,符合图示胶滚涂出的图案的是( )
4.如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是( )
A .相似(相似比不为1) B.平移
C. 对称
D.旋转
5.已知平面直角坐标系中两点A (-1,0)、B (1,2),连接AB ,平移线段AB 得到线段A 1B 1.若点A 的对应点A 1的坐标为(2,-1),则点B 的对应点B 1的坐标为( )
A .(4,3)
B .(4,1)
C .(-2,3)
D .(-2,1)
6.如图,在44⨯的正方形网格中,MNP ∆绕某点旋转︒90,得到111P
N M ∆,则其旋转中心可以是( )
A .点E
B .点F
C .点G
D .点H
第6题图 第7题图 7.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知
∠AP ′B =135°,P ′A :P ′C =1:3,则P ′A :PB =【 】。

A .1:2
B .1:2
C .3:2
D .1:3
8.若P (x ,3)与P ′(-2,y )关于原点对称,则y x -=( )
A 、.-1 B.、1 C.、5 D 、-5
9.如图,点A
B C D O 、、、、都在方格纸的格点上,若COD ∆是由AOB ∆绕点O 逆时针方向旋转而得,则旋转的角度为( )
(A )30o (B )45o (C )90o (D )135o C B '
C
第9题图 第10题图
10.把△ABC 沿AB 边平移到△A 'B 'C '的位置,它们的重叠部分(即图中阴影部分)
的面积是△ABC 的面积的一半,若AB =2,则此三角形移动的距离A A '是( )
A .2-1
B 2
C .1
D .2
1 11.把一副三角板如图甲放置,其中∠ACB =∠DEC =900,∠A -450,∠D =300,斜边AB =6,
DC =7,把三角板DCE 绕着点C 顺时针旋转150得到△D 1CE 1(如图乙),此时AB
与CD 1交于点O ,则线段AD 1的长度为
A.32
B.5
C. 4
D. 31
第11题图第14题图
二、填空题(每题3分,共18分)
12.如图所示的一串梅花图案是由第一个“ ”经过多次旋转形成的,请你仔细观察,
在前2013个梅花图案中,共有
____
_个“ ”图案。

13.将点A(2,-1)向左平移3个单位长度,再向上平移4个单位得到点A′,则点A′的坐标是_________.
14.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于E,交OB于F,若PEF
∆的周长=8厘米,则CD为_______厘米.
15.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,
③DF=FC
,④AD=
CE ,⑤A1F=CE.其中正确的是___________________(写出正确结论的序号)。

第15题图第16题图第17题图
16.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后得到正方形A1B2C3D,点B1的坐标为___________
17.如图,将△ABC沿CB边向右平移得到△DFE,DE交AB于点G.已知∠A︰∠C︰∠ABC=1︰2︰3,AB=9cm,BF=5cm,AG=5cm,则图中阴影部分的面积为___________cm2.
三、解答题(5个小题,共46分)
18.(13分)如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,
△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程
中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .
(1)如图①,当点Q 在线段AC 上,且AP =AQ 时,求证:△BPE ≌△CQE ;
(2)如图②,当点Q 在线段CA 的延长线上时,△BPE 与△CEQ 还全等吗?
19.(6分)如图,已知ABC △,点A B C 、、都在格点上.(1)求AC 的长;
(2)若将ABC △向右平移2个单位得到A B C '''△,求B 点的对应点B '的坐标;
(3)在坐标系中标出点A 关于坐标原点对称的点P ,并写出点P 的坐标.
20.(8分)△ABC在如图所示的平面直角坐标系中, 将其平移后得△A′B′C′, 若B的对应点B’的坐标是(4,1).①在图中画出△A′B′C′;②此次平移可看作将△ABC向_____平移了_____个单位长度, 再向_____平移了_____个单位长度得△A′B′C′;
③△A’B’C’的面积为____________.
21.(8分)如图,已知D为等边△ABC内一点,将△DBC绕点C旋转成△EAC.试判断△CDE的形状,并证明你的结论.
22.(14分)如图,正方形ABCD绕点A逆时针旋转n o后得到正方形AEFG,EF与CD交于点O.
(1)以图中已标有字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为43
cm2,求旋
转的角度n.
参考答案
一、选择题
1.C 2.D 3.A 4.A 5.B 6.C 7.B 8.C 9.C 10.A 11.B
二、填空题
12.504 13.(1,3)- 14.8 15.①②④ 16.(4,0) 17.265 三、解答题
18.(1)由△ABC 是等腰直角三角形,易得∠B =∠C =45°,AB =AC ,又由AP =AQ ,E 是BC 的中点,利用SAS ,可证得△BPE ≌△CQE ;
(2) 不全等
19.(1)AC =10;
(2)如图所示:
点B '的坐标为(-1,1);
(3)如图所示:
点P 的坐标为(1,-2).
20.(1)如图.
(2)向左平移2个单位长度,向下平移1个单位长度.(平移的顺序可颠倒)
(3)把△ABC补成矩形再把周边的三角形面积减去,即可求得△A′B′C′的面积=△ABC的面积为=24-4-4-6=10.
21.证明:△CDE为等边三角形,
∵△EAC是由△DBC绕点C旋转而成,
∴∠ACE=∠BCD,CD=CE,
∴∠DCE=∠BCA,
∵△ABC为等边三角形,
∴∠ACD=∠DCE=60°,
∵CE=CD,
∴∠CED=∠CDE=60°,
∴△CDE为等边三角形.
22.(1)连OA、DE,由ABCD是正方形知AD=AE,
所以Rt△ADO≌Rt△AEO,OD=OE,
所以OA垂直平分DE
(2)由(1)知Rt△ADO≌Rt△AEO,
重叠部分面积S=2S△ADO=2 OD=,
所以OD=,=,∠OAD=30°.
所以旋转角n=∠BAE=90°-2∠OAD=90°-60°=30°。

相关文档
最新文档