2七年级数学上课时练.1.1
数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案02
第一章 有理数1.1 正数和负数一、单选题1.若盈利15元记作15+元,则亏损6元记作( )A .6元B .6-元C .15元D .15-元2.我国古代数学著作《九章算术》中首次正式引入负数,如果支出500元记作500-元,那么收入800元记作( )A .800-元B .300-元C .300元D .800元3.在下列选项中,具有相反意义的量是( )A .上升了6米和后退了7米B .卖出10斤米和盈利10元C .收入20元与支出30元D .向东行30米和向北行30米4.化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A .B .C .D .5.下列各数中:()553025.827-----+,,,,,负数有( )A .1个B .2个C .3个D .4个6.机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下:0.050.040.020.070.030.040.010.010.030.06+--+-+--+-,,,,,,,,,.其中不合格的零件有( )A .1个B .2个C .3个D .4个7.规定:()2®表示向右移动2,记作2+,则()3¬表示向左移动3,记作( )A .3+B .3-C .13-D .13+8.下列四个数字,不是负数的是( )A .1B .3-C .6-D .2-9.某种零件标准长度为20cm ,若比20cm 多1cm 记作1cm +,则比20cm 少0.5cm 记作( )A .19.5cmB .19.5cm-C .0.5cmD .0.5cm-10.如图,这是小伟国庆期间的支付情况,100-表示的意思是( )零钱明细:红包10月2日 14:39100-余额:669.27转账10月1日 13:20100+余额:769.27A .发出100元红包B .余额100元C .收入100元D .抢到100元红包二、填空题11.中国是最早使用正负数表示具有相反意义的量的国家,若向东走20米记作20+米,那么向西走30米记作 米.12.若x 是正数,则x0.(填“>”或“<”或“¹”)13.如果某水库水位上升12cm ,记为12cm +,那么该水库水位下降6cm 应记为 cm .14.一袋糖果包装上印有“总质量()5005g ±”的字样.小明拿去称了一下,发现质量为497g ,则该袋糖果(填“合格”或“不合格”).15.中国是最早采用正负数表示相反意义的量的国家.成都实行的“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为3+,则应把14次记为 .16.气球上升10米,记作10+米,那么3-米表示.17.如果收入100元记作+100元,那么支出90元记作 元.18.2022年12月8日上午7时,龙山县城区气温为零上7℃,记作7+℃,大安乡大灵山海拔最高点(青岩堡)的气温为零下4℃,可记作 .19.9-读作 ,零下6C °记作,如果支出80元记作“80-”元,那么“200+”元表示.20.朋朋向东走6m ,记作6m +,那么他走了50m -表示他向()走了()m ;如果朋朋从起点开始先向东走了10m,再向( )走( )m,这时他所在的位置记作20m-.三、解答题21.如果向东走8千米记作8+千米,向西走5千米记作5-千米,那么下列各数分别表示什么?(1)4+千米;(2) 3.5-千米;(3)0千米.22.在1-,0,2.5,43+, 1.732-,100,215-,0.1+,20%-,67-中,哪些是正数,哪些是负数?23.写出与下面各量具有相反意义的量,并用正负数表示.(1)气温是零上8℃,零上为正;(2)向南走200米,向南为负;(3)转动转盘,顺时针转动5圈,顺时针旋转为正;(4)高于海平面8米,高于海平面为正.24.某防洪大堤所标的警戒水位是37m,规定在记录每天的水位时,高于警戒水位的部分记为正数,低于警戒水位的部分记为负数.(1)若夏季某一天的水位为41m,则应记为多少?若冬季某一天的水位为32m,则应记为多少?(2)若夏季某一天的水位记为 3.8m+,则实际水位是多少?若冬季某一天的水位记为1.8m-,则实际水位是多少?(3)若冬季某一天的水位记为 1.5m-,第二天一场雨后水位上升0.2m,此时水位应记为多少?实际水位又是多少?参考答案1.B 2.D 3.C 4.D 5.C 6.B 7.B 8.A 9.D 10.A 11.30-12.>13.6-14.合格15.1-16.气球下降3米17.90-18.4-℃19.负9 6C -°收入200元20.西50m西30m21.(1)解:由题意可得,4+千米表示向东走4千米;(2)解:由题意可得, 3.5-千米表示向西走3.5千米;(3)解:由题意可得,0千米表示原地未动.22.解:根据正数的定义可得正数有:2.5,43+,100,0.1+;根据负数的定义可得负数有:1-, 1.732-,215-,20%-,67-.23.(1)解:依题意,气温是零下8℃,即8-℃;(2)解:依题意,向北走200米,200+米(3)解:依题意,逆时针转动转盘5圈,即5-圈(4)解:依题意,低于海平面8米,即―8米24.解:(1)41374-=+,故水位为41m ,应记为4m +;37325-=,水位为32m ,应记为5m -;(2)37 3.840.8+=,实际水位是40.8m ;37 1.835.2-=,实际水位是35.2m ;(3)37 1.50.235.7-+=,实际水位是35.7m .。
人教版初一上学期全册课时练(附答案67页)
重点中学教学资料整理初一数学上册(人教版)全册课后习题汇总(附答案67页)第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?同步练习答案1.1正数和负数 基础检测: 1.;106,34,5.2 521,76,14.3,732.1,1----- 2.-3, 0. 3.相反 4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜2009年我国全年平均降水量比上年的增长量记作+8㎜2008年我国全年平均降水量比上年的增长量记作-20㎜ 拓展提高: 5.B 6.C 7.-32m ,80 8.18 22℃9. +5m 表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
最新冀教版七年级数学上册全册课时练习(一课一练,附答案)
一、选择题
1.在数轴上与﹣3的距离等于4的点表示的数是( )
A. 1 B. ﹣7 C. ﹣1或7 D. 1或﹣7
2.数轴上原点和原点左边的点表示的数是( )
A. 负数 B. 正数 C. 非负数 D. 非正数
3.如图所示,数轴上A、B两点分别对应有理数a,b,则下列结论中正确的是( )
(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).
答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.
19.解:由数轴可得,点A、B、C所表示的数分别是:﹣2.5、0、4;
﹣4, ,6这三个数用点D、E、F分别在数轴上表示如答图.
(第19题答图)
20.解:将各数用点在数轴上表示如答图.
(1)1,-2,3,-4,5,-6,7,-8,,,...,...
(2)-1, ,- , , , , ,,,...,...
参考答案
1.B2.C3.D4.C5.C6.B
7.﹣5米
8.0.5,100,0, ; ,0,-45
9.公元前2008.
10.零
11.正分数
12.负整数和0
13.负分数
14.10, , .
13.绝对值等于9的数是________.
14.若有理数a,b满足|a+3|+(b﹣2)2=0,则ab=________.
15. 的绝对值是________.
16.实数| |的相反数是________.
17.若|﹣a|=2,则a=________.
18.若 ,则 = ________.
三、解答题
19.化简:
1.1正负数课时练(人教新课标七年级上)
数学:1.1正负数课时练(人教新课标七年级上)第一课时1.1 正数和负数1. 某市2008年春天某一天的气温是零上7℃,用正数表示这个温度是 .2.下列结论中,正确的是( )A.小学里学过的数都是正数B.小学里学过的数前面加上“-”号后面都是负数C.一个数不是正数就是负数D.如果a 是正数,那么-a 一定是负数3.下列说法中错误的是( )A.0是最小的自然数B.0是整数也是偶数C.0既非正数也是非负数D.0℃表示没有温度4.下列说法正确的个数是( )①不是负数的数一定是正数;②带“+”号的数是正数,带“-”号的数是负数;③任意一个正数,前面加上“-”号,就是一个负数;④小于零的数是负数;⑤-a 一定是负数. A1个 B.2个 C.3个 D.4个#5.芝加哥与北京的时差-14小时(正数表示同一时刻比北京时间早的数).如果北京时间9月2日16时,那么.芝加哥时间是( )A.9月3日6时B. 9月2日2时C.9月1日14时D.9月2日6时6. 在-3,1.5,21,-32,0,21-中分数有 个※7. 某天温度上升-2℃的意义是 .&8..在吐鲁番盆地低于海平面155m ,记作-155m ,福州鼓山绝顶峰高于海平面919m ,记作 m .※9.在跳远测验中,合格的标准是4.00m ,小华跳出了4.18m ,记作+0.18m ,小明跳出了3.96m ,应记作 .&10.某食品的包装袋上标有“g 10500±”的字样,其含义是 .※11. 一架飞机在距离地面1500米的高空飞行,它第一次下降了-200米,第二次又上升了-100米 ,第三次再下降了300米,此时飞机距地面多高?#12. 为调查居民扔垃圾袋的情况,小强调查他家所在居民楼一个月内扔垃圾袋的数量,若以每户每个月扔20个垃圾袋为基准,超过此基准用正数表示,不足此基准用负数表示,其中10户居民某个月扔垃圾袋的个数如下:+1,-4,+4,-7,+2,-2,0,-3,+3,+6,求这10户居民这个月共扔掉多少个垃圾袋?#13. 观察下列数的规律,猜想第2008个数是什么?1,0,0,-1,1,0,0,-1,1,0,0,-1,…第二课时1.2.1有理数&1.下列说法错误的是( )A.圆周率π是无限不循环小数,它不是有理数B.正有理数与负有理数组成有理数C.负整数与负分数统称为负有理数D.927不是分数,而是整数※2. 下列判断正确的是( )A.最小的整数是0B.有理数都有倒数C.负数中没有最大的数D.分数包括正分数、零、负分数※3.正整数集合和负整数集合合并在一起,构成的数的集合是( )A.整数集合B.有理数集合C.非零整数集合D.以上说法都不对#4.在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是( )A.182B.189C.192D.1945. 已知下列各数:-5,4.5,21,0,-2,11其中非负数的个数是 .6.已知数0.2,-0...10,-51,π,-3.14,0.101001…,其中有理数有 个#7.写一个比零小的有理数 .&8. 把下列各数填入相应的大括号内: -31,2,5.5,-0.02,143,2008,-13,0,-231正数集合{ };负数集合{ } ; 整数集合{ } ;分数集合{ } ;#9. 已知有A 、B 、C 三个数集,每个数集中包含的数写在各自的大括号内,请把这些数填在图1中圈内的相应位置.A={}4,3,5,2,1---;B={}7,6,3,4,2--;C={}2,4,4,2,0-- &10. 某种方便面,每袋重量是00克,规定最重不超过+5克,最轻不超过-5克,现有10袋方便面,称得它们的重量分别比标准重量重-2克,0克,3克,3.5克,-4克,-7克,-5克,5.5克,6可,-5.5克,这10袋方便面的合格率是多少?第三课时1.2.2 数轴1.如图中所画的数轴,正确的是( )※2.在数轴上与原点距离为2个单位长度的点有 个,它们分别是3.在数轴上,原点和原点左边所表示的数是( )A 正数 B.负数 C.非负数 D.非正数&4.下列说法正确的是( )A.数轴上所有的点都表示有理数B.所有的有理数可以用数轴上的点表示C.数轴上距原点3个单位长度的点所表示的数3D.数轴上表示-a 的点一定在原点左边.&5.有理数a ,b ,c 在数轴上的位置如图所示,用“<”将a ,b ,•c•三个数连接起来________.A B m n x D-1210C 21543B -1A※6. 如图所示,点A B ,在数轴上对应的实数分别为m n ,,则A B ,间的距离是 .(用含m n ,的式子表示)&7. 点A 从原点开始,在数轴上先向右移动3个单位,再向左移动5个单位长度,终点表示是什么数?#8.在数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长为2008cm 的线段MN ,则线段MN 覆盖的整点有 个.&9. 超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、•玩具店的位置,以及小明最后的位置.参考答案第一课时1.+ 7℃ 提示:零上用正数“+”,零下用“-”.2.D 提示:A 、B 、C 三个答案都忽略了特出数0,故选D.3.D 提示:A 、B 、C 的说法都是正确,D 中0℃是一个确定的温度,所以D 的说法错误的,故选D.4.B 提示:③④正确,符合负数的定义.学生对①误认为正确,忽略了0既不是正数,也不是负数.⑤也易误判,字母a 可以表示正数,也可以表示负数,还可以表示0,故选B.5. B 提示:根据正数表示同一时刻比北京时间早的数,知芝加哥与北京的时差为-14小时,表示同一时刻芝加哥时间比北京晚14小时,故选B.6.4提示:分数包括正分数和负分数.1.5也是分数.7.温度下降了2℃,提示:“上升”与“下降”意义相反,上升-2℃表示下降2℃.8.+919提示:弄清规定,低于海平面记为负,则高于海平面记为正.9.-0.04m ,提示:弄清标准,多于标准的部分为正,少于标准的部分为负,3.96m 比4.00m 少0.04m 记为-0.04m .10.包装袋的食品质量最多为510g ,最少为490g ,提示:“g 10+”的基准是500g ,g 10+表示比500g 多10g ,而-10g 比5500g 少10g .11.解:第一次下降了-200米后飞机距地面1500+200=1700(米);第二次上升了-100(米)后飞机距地面1700-100=1600(米);第三次下降了300米后飞机距地面1600-300=1300(米).12.解:这10户居民某个月扔垃圾袋的实际个数分别为:21,16,24,13,22,18,20,17,23,26,共计为21+16+24+13+22+18+20+17+23+26=200(个);13.解:第2008个数是-1;第二课时1.B 提示:正有理数和负有理数都不含数0,而0属于有理数,所以正有理数与负有理数不能组成全体有理数.2.C 提示:我们以前学过的数中0是最小的整数,引入负数后,所有的负数都比0小,事实上在有理数中没有最小的整数,也没有最大的整数,这几个选项中只有C 是正确的.3.C 提示:整数集合包括正整数、0、负整数,A 中忽略了“0”,正确选C.4.C 提示:1到100有11个0,101到200有20个,210到300有20个0,…,801到900有20个0,901到1000有21个,共有11+20×8+21=192(个),故选C. ba c5.46.47.答案不惟一:-18. 正数集合{2,5.5,143,2008,} ;负数集合{-31,-0.02,-13,-231,} ; 整数集合{2,2008,-13,0,};分数集合{ 5.5,143,-31,-231,} ;9.解:10.解:由题意得,-7克,5.5克,6克,-5.5克不合格,合格的有6袋,所以合格率为%60%100106=⨯.第三课时1. .D,提示:数轴有三要素即原点、正方向、单位长度,三者必具,否则不正确,故选D.2.两个,2±,提示:在数轴上与原点距离为2个单位长度的点,在原点右边一个,表示为 在原点左边一个,表示为-2.3. D 提示:原点表示的数0,原点左边所表示的数是负数,0和负数合成为非正数,故选C.4. B 提示:A 项错,数轴上的点不都是表示有理数,还可以表示今后学习的无理数;C 项错,数轴上距原点3个单位长度的点有两个,它们分别表示3和-3;D 项错,因为a 可以表示正数,负数和0,所以-a 不一定是负数,故选B ;5. b a c <<提示:数轴上表示的两个数,右边的数总比左边的数大.故为b a c <<.6. m n -7. 解:如图所示:终点表示是.-2.8.2008个或2009个,提示:在数轴上任意画一条长为1cm ,盖住的整点1个或2个;任意画出一条长为2cm 的线段,盖住的整点有2个或3个;任意画出一条长为3cm 的线段,盖住的整点有3个或4个;…任意画出一条长为m cm 的线段,盖住的整点有m 个或1+m 个; 所以当2008=m 时,有2008个或2009个.9. 如图所示,小明位于超市西边10米处.玩具店书店超市。
北师大版七年级数学上册全册课时作业(共109页,附答案)
北师大版七年级数学上册全册课堂练习(共109页,附答案)1.1生活中的立体图形1. 下面几何体中,全是由曲面围成的是()A. 圆柱B. 圆锥C. 球D. 正方体2. 下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为长方形D. 球体的三种视图均为同样大小的图形3. 如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A. 1个B. 2个C. 3个D. 无数个4. 如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A. ③④①②B. ①②③④C. ③②④①D. ④③②①5. 在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6. 如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7. 用五个面围成的几何体可能是_______.8. 若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10. 一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11. 探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=____,x2=____,x1=____,x0=____;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,x l=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1. C2. B3. D4. A5.(2)(6)6.平行相等7.四棱锥或三棱柱8. 169. 多面体圆柱、圆锥六棱柱、三棱锥10. 611.(1) 8 12 6 1(2) 8 24 24 8(3) 8 12(n﹣2) 6(n﹣2)2(n﹣2)3.(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n ﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.1.2展开与折叠一、选择题1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是( )A. B. C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是( )A. B.C. D.8. 右图中是左面正方体的展开图的是( )A. B. C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是( )A. 我B. 的C. 梦D. 中10. 如图 1 是一个小正方体的侧面展开图,小正方体从图 2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是( )A. 北B. 京C. 精D. 神二、填空题11. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.12.图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.13. 若下图是某几何体的表面展开图,则这个几何体是.14. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.15. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.16. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码 .17. 马小虎准备制作一个封闭的正方体盒子,他先用 个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示) .18. 有一个正方体的六个面上分别标有数字 ,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字 的面所对面上的数字记为 , 的面所对面上数字记为 ,那么的值为 .19. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的 .(填写字母)三、解答题20. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:体,如图所示.问:长方体的下底面共有多少朵花?21. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.22. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案1. A2. A3. C4. A5. C 7. D 8. D 9. A 10. A11. “成”12.【答案】13. 圆柱14. 715. (1)(3)16.17.18. 719. 、、20.解:因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).21.解:由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.22.解:答:这个长方体的体积是.1.3 截一个几何体1. 如图,用一个平面去截长方体,则截面形状为( )A. B. C. D.2. 棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A. 36 cm2B. 33 cm2C. 30 cm2D. 27 cm23. 如图中几何体的截面是( )A. B. C. D.4. 如图所示,用平面截圆锥,所得的截面形状是( )A. B. C. D.5. 用一个平面去截圆柱得到的图形不可能是( )A. B. C. D.6. 在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7. 用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8. 如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9. 下面几何体的截面分别是什么?__________ ____________ __________ ________10. 如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11. 把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截___次.12.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?13. 将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?答案1. B2. A3. B4. D5. D6. 利用射线截几何体,图象重建原理7. 78.【答案】 (1). 3 (2). 4 (3). 3 (4). 有可能是半圆,有可能是弓形,但不可能是扇形9. (1). 长方形 (2). 圆 (3). 长方形 (4). 圆10. 解:如图所示.11. 312.解:如图所示.沿着对角线切即可.13. 解:1.4从三个方向看物体的形状一、选择题1. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )A. B. C. D.2. 如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.3. 如图是一个螺母的示意图,它的俯视图是( )A. B. C. D.4. 下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )A. B. C. D.5. 如图是由正方体和圆锥组成的几何体,他的俯视图是( )A. B. C. D.6. 如图,这个几何体的主视图是( )A. B. C. D.7. 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C. 3D. 28. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A. 3个或4个或5个B.4个或5个C. 5个或6个D. 6个或7个二、填空题9. 观察图1中的几何体,指出图2的三幅图分别是从哪个方向看到的.甲是从__________看到的,乙是从____________看到的,丙是从____________看到的.10. 如图所示是一个包装盒的三视图,则这个包装盒的体积是________________.11. 如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是(_______)12. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________________个小立方块.三、解答题13. 如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.14. 图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.15. 从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16. 用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?答案1. C2. D3. B4. A5. D6. A7. A8. A9. (1). 上面 (2). 正面 (3). 左面10.11. 7212.【答案】5413. 解:如图所示,14.解: 如图所示:15.解:16.解:(1),.(2)可能是或,, .这个几何体最少由个立方体搭成,最多由个立方体搭成.2.1有理数1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A. 支出20元B. 收入20元C. 支出80元D. 收入80元2. 下列说法错误的是()A. 负整数和负分数统称为负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数,也是分数3. 在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A. 1B. 2C. 3D. 44. 下列选项,具有相反意义的量是()A. 增加20个与减少30个B. 6个老师和7个学生C. 走了100米和跑了100米D. 向东行30米和向北行30米5. 吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6. 在有理数中,是整数而不是正数的是_________,是负数而不是分数的是______ .7. 某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8. 把有理数-3,2 017,0,37,-237填入它所属的集合内(如图).9. 一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10. 将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?答案1.C2.C3.C4.A5.+9196.负整数负整数7.既不是正数也不是负数的数(答案不唯一)8.解:如图所示,9. (1)守门员回到了守门的位置;(2)守门员离开守门的位置最远是12 m.10. (1)在A处的数是正数;(2)负数排在B和D的位置;(3)第2 018个数是正数,排在对应于C的位置.2.2数轴一.选择题1. 下列所画的数轴中正确的是()A. B.C. D.2. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 在数轴上原点以及原点左边的点表示的数是()A. 正数B. 负数C. 零和正数D. 零和负数4. 下列说法正确的是()A. -4是相反数B. -与互为相反数C. -5是5的相反数D. -是2的相反数5. 如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>a>0>cB. a<b<0<cC. b<a<0<cD. a<b<c<06. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02B. -<-2<0<0.02C. -2<-<0.02<0D. 0<-<-2<0.02二.填空题7. 数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。
数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案03
第一章 有理数1.1 正数和负数一、单选题1.在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180-元D .480-元2.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”,例如:仓库把运进10吨粮食记为“10+”,则运出5吨粮食记为( )A .5-B .5+C .10-D .10+3.向前走6步记为6+,则向后退3步记为( )A .3-B .3C .6-D .64.中国是最早使用正负数表示具有相反意义的量的国家.如果大风车顺时针旋转66°,记作66+°,那么大风车逆时针旋转88°,记作( )A .88-°B .88°C .22-°D .22°5.2024年5月6日,海南省最高气温达到零上44.2度,记录为44.2+度,而5月份我国南极长城科考站最低气温为零下27.7度,应该记录为( )A .44.2-度B .44.2度C .27.7-度D .27.7+度6.下列说法正确的是( )A .a -一定是负数B .一个数不是正数就是负数C .0是负数D .在正数前面加“-”号,就成了负数7.下列四个数中,是负数的是( )A .0B .2-C .()1--D .0.58.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90+元,那么亏本70元记作( )A .60-元B .70-元C .60+元D .70+元9.深圳的最高峰是梧桐山,海拔943.7米,被誉为“鹏城第一峰”如果把海平面以上943.7米记为943.7+米,那么“深中通道”海下沉管位于海平面以下40米,应记为( )A .943.7+米B .943.7-米C .40+米D .40-米10.下列各数中,是负数的是( )A .1-B .2C .0D .3.1415二、填空题11.若钟表的分针沿顺时针方向转25度记作“25+度”,那么分针沿逆时针方向转30度记作“ ”.12.手机微信支付已经成为一种新型的支付方式,倍受广大消费者的青睐.如果微信零钱收入30元记为30+元,那么微信零钱支出15元记为 元.13.绿色植物是氧气的生产者和二氧化碳的消耗者,把生产的氧气用正数表示,消耗的二氧化碳用负数表示,一公顷阔叶林一天生产730千克氧气可记作730+千克,那么一天消耗1000千克二氧化碳应记作 .14.按照“神舟号”飞船环境控制与生命保障分系统的设计指标,“神舟”十三号飞船返回舱的温度214±℃℃,则该返回舱的最低温度为 .15.已知下列各数:23-,122-,3.14,0,0.2,216-,6,12,其中正数有 ;负数有 .16.在 1.2-、8+、0.2、23-、0.7-、 2.3+、0中正数有( )个.17.体育课上,李佳跳绳跳了85个,体育老师把他的成绩记作5+个,傅颖跳了77个,应记作 个,王力跳了80个,记作 个.18.一种零件标明的要求是0.020.02Φ10+-=(单位:mm ),表示这种零件的标准尺寸为直径10mm ,那么该零件最大直径不超过 mm .19.如图是加工某零件的尺寸要求,现有的4件产品,直径尺寸(单位:mm )如下:45.04f ,44.09,44.98,45.01f f f ,则其中不合格的产品有 件.20.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为1200+步,小辰走了4800步,记为 步.三、解答题21.下面各数哪些是正数,哪些是负数?5125,,0,0.56,3,25.8,,0.0001,2,60075----+-.22.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么(1)0.08m 和0.2m -各表示什么?(2)水面低于标准水位0.1m 和高于标准水位0.23m 各怎样表示?23.如果把一个物体向后移动5m 记作移动5m -,那么这个物体又移动5m +是什么意思?这时物体离它两次移动前的位置多远?24.(1)如果节约20kW h ×电记作+20kW h ×,那么浪费10kW h ×电记作什么?(2)如果20.50-元表示亏本20.50元,那么100.57+元表示什么?(3)如果20%+表示增加20%,那么6%-表示什么?25.某班8名同学的体重(单位:kg )分别为:52,51.5,49.5,50.5,45,56,47.5,42.5.你能设定一个标准用正负数表示他们的体重吗?26.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A →C (________,________),B →C (________,________),C →________(+1,﹣2);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A →B →C →D ,请计算该甲虫走过的路程.(4)若图中另有两个格点M 、N ,且M →A (3﹣a ,b ﹣4),M →N (5﹣a ,b ﹣2),则N →A 应记为什么?27.聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)一二三四五六日结余聪聪10-5.200-4.805-3-2慧慧800-6-100根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义.(2)把上表补充完整.参考答案1.C2.A3.A4.A5.C6.D7.B8.B9.D10.A11.30-度12.15-13.1000-千克14.17℃15.3.14,0.2,6,1223-,122-,216-16.317.3-0 18.10.02 19.2 20.200-21.解:正数:5,0.56,125,2+;负数:5,3,25.8,0.0001,6007-----.22.解:(1)标准水位记为0m,正数表示水面高于标准水位的高度,则0.08m表示水面高于标准水位0.08m,0.2m-表示水面低于标准水位0.2m;(2)根据正负数的意义可得,水面低于标准水位0.1m用0.1m-表示,高于标准水位0.23m用0.23m 表示.23.解:这个物体又移动5m +表示又向前移动5m ,5(5)0m-++=这时物体距离它两次移动前的位置是0m ,即回到它两次移动前的位置.24.解:(1)节约与浪费是具有相反意义的量,若节约20kW h ×电记作+20kW h ×,那么浪费10kW h ×电记作10kW h -×;(2)盈利与亏本是具有相反意义的量,若20.50-元表示亏本20.50元,那么100.57+元表示盈利100.57元;(3)增加和减少是具有相反意义的量,若20%+表示增加20%,那么6%-表示减少6%.25.解:如设定50kg 为标准体重,那么这8名同学的体重依次为(单位:kg ):52502-=+;51.550 1.5-=+;49.5500.5-=-;50.5500.5-=+;45505-=-;56506-=+;47.550 2.5-=-;42.5507.5-=-.26.解:(1)图中A →C (+3,+4),B →C (+2,0),C →D (+1,-2);故答案为:(+3,+4),(+2,0),D ;(2)解:P 点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10;(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)27.解:(1)10是收入10元,0是收支平衡,-2是支出了2元.(2)聪聪周日的收支情况为:-2-(10-5.20+0-4.80+5-3)=-2-2=-4,慧慧本周的结余情况为:8+0+0-6-1+0+0=1,根据计算完成下表一二三四五六日结余聪聪10-5.200-4.805-3-4-2慧慧800-6-1001。
【人教版】七上:1.1《正数和负数》课时练习(含答案)
第一章有理数1.1正数和负数能力提升1.团团和圆圆共同写了下列四组数:①-3,2.3,;②,0,2;③,0.3,7;④,2.其中,3个数都不是负数的是()A.①②B.②④C.③④D.②③④2.如果+20%表示增加20%,那么-6%表示()A.增加14%B.增加6%C.减少6%D.减少26%3.下列判断正确的是()①+a一定不为0;②-a一定不为0;③a>0;④a<0A.①②B.③④C.①②③④D.都不正确4.观察下列一组数:-1,2,-3,4,-5,6,…,则第100个数是()A.100B.-100C.101D.-101★5.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,则小嘉班的人数共有()A.36B.37C.38D.396.已知一个乒乓球的标准质量为2.70 g,把质量为2.72 g的乒乓球记为+0.02 g,则质量为2.69 g的乒乓球应记为.7.墨西哥素有“仙人掌王国”之称.每食100 g仙人掌可以产生 2千焦的热量,2千焦的含义是产生的热量在千焦至千焦之间.8.前进5 m记为+5 m,再前进-5 m,则总共走了 m,这时距离出发地 m.9.张老师以班级平均分为基准成绩,超过基准成绩记为正,不足记为负.他把甲、乙、丙、丁四位同学的成绩简记为+8,-6,+12,-3(单位:分).又知道甲同学的成绩为85分,问其他三名同学的成绩是多少?10.某条河某星期周一至周日的水位变化量(单位:m)分别为+0.1,+0.4,-0.25,-0.1,+0.05,+0.25,-0.1,其中正数表示当天水位比前一天上升了,且上周日的水位是50 m.(1)水位哪天最高,哪天最低,分别为多少?(2)与上周日相比,本周日的水位是上升了还是下降了?上升(下降)了多少?创新应用★11.观察下面一列数,探究其规律:-1,,-,-,….请问:(1)第7个数、第8个数、第9个数分别是什么?(2)第100个数是多少?它是正数还是负数?(3)分数是不是这列数中的数?如果是,是第几个数?(4)如果把这一列数无限地排列下去,将与哪个数越来越接近?参考答案能力提升1.D2.C3.D a可正、可负、可为0.4.A5.A6.-0.01 g7.25308.100前进-5m相当于后退5m,所以总共走了10m,又回到出发地,即距离出发地0m.9.分析:本题可根据甲的成绩为85分,计算班级的平均分,再结合乙、丙、丁的记分,分别求出他们的成绩.解:因为甲的成绩为85分,且甲的记分为+8,所以班级平均分是85-8=77(分).所以乙的成绩是77-6=71(分);丙的成绩是77+12=89(分);丁的成绩是77-3=74(分).10.解:(1)周二水位最高,周一水位最低,分别为50.5m和50.1m.(2)0.1+0.4-0.25-0.1+0.05+0.25-0.1=0.35(m), 因此,与上周日相比,本周日的水位上升了,上升了0.35m . 创新应用 11.解:(1)第7个数是-,第8个数是,第9个数是-. (2)第100个数是是正数. (3)分数是这列数中的数,且是第2016个数;不是这列数中的数,当分母为奇数时,这个数应是负数. (4)如果把这列数无限地排列下去,将与0越来越接近. 2011-2012学年第一学期期末测试卷 七年级 数学 一、细心选一选:(每小题3分,共30分)1.2-的绝对值是( ) A .2- B .2 C .21 D .21- 2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .3105.8⨯亿元B .41085.0⨯亿元C .4105.8⨯亿元D .21085⨯亿元 3.下列方程中,属于一元一次方程的是 ( )A.021=+x B. 62=+y x C. 13=x D.312=-x4.如果)1(2+x 的值与x -2的值互为相反数,那么x 等于( )学校姓名班级学号…………密………封………线………内…………不…………准…………答…………题…………A.-4B.0C.1D.-25.若单项式4122212x y x y a 与--是同类项,则a 的值是( ) A. 0 B. 1 C. -1 D. 126.若y x =,则下列式子不一定成立的是( )A .a y a x +=+B .a y a x -=-C .ay ax =D .ay a x = 7.下列语句错误的是 ( )A .任何数的绝对值都是非负数B .有公共端点的两条射线组成的图形叫做角C .任何数都有倒数D .经过两点有且只有一条直线8.如图,已知AD 平分BAE ∠,若︒=∠62BAD ,则CAE ∠的度数是( )A .56︒B .︒55C .︒58D .62︒9.我校现有学生x 人,预计明年将增加15%,则我校明年的学生人数为( )A .%151+x B.%151-x C.(1-15%)x D.(1+15%)x 10.如果代数式5242+-y y 的值是7,那么代数式122+-y y 的值等于 ( )A . 2B . 3C .﹣2D .4二、耐心填一填:(每小题3分,共30分)11.若点C 是线段AB 的中点,且AB =10cm,则AC = cm .12.'2764︒的余角是 ,"21'35108︒的补角是 .C第8题图13.单项式3232z y x -的系数是 ,次数是 . 14.三个连续奇数的和为69,则这三个数分别为 , , .15.甲、乙、丙三地的海拔高度分别是20 m 、-15m 、-5m ,那么最高的地方比最低的地方高__________m.16.关于x 的方程253=+-k x 的解是1=x ,则=k .17.小刚每晚19:00都要看央视的“新闻联播”节目,这时钟面上时针与分针夹角的度数为____________18.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =︒36,则∠AOB =__ ______.19.已知0)12(1232=++-n m ,则n m -2___________. 20.如图,下面是用火柴棍摆的正方形,请你仔细观察并猜想第n 个图形中共有 根(用含有n 的代数式表示)火柴棍。
人教版七年级数学(上册)全册课时练习及答案
人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。
人教版七年级数学上册《有理数》每课时练习-非常全
人教版七年级数学上册《有理数》每课时练习-非常全1.1 正数与负数1.如果向南走5米,记作+5米,那么向北走8米应记作-8米。
2.如果温度上升3℃记作+3℃,那么下降5℃记作-5℃。
3.海拔高度是+1356m,表示高于海平面,海拔高度是-254m,表示低于海平面。
4.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸30.05毫米,最小不低于标准尺寸29.95毫米。
5.6,2005,-3,+1,-6.8中,正整数和负分数共有4个。
6.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作+7分和-3分。
8.如果把+210元表示收入210元,那么-60元表示支出60元。
9.粮食产量增产11%,记作+11%,则减产6%应记作-6%。
11.如果向西走12米记作+12米,则向东走-120米表示的意义是向东走120米。
12.味精袋上标有“500±5克”字样中,+5表示允许误差为正5克,-5表示允许误差为负5克。
14.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为-30m。
这时甲、乙两人相距80米。
15.XXX在超市买了一袋洗衣粉,发现包装袋上标有这样一段字条:净重:800±5g。
表示洗衣粉的净重允许误差为正负5克。
16.在市场经济中,利润计算公式是:利润=销售收入-销售成本,XXX利用此公式计算爸爸经营的商店在某一天的利润为-25元。
-25元的利润表示商店在该天亏损了25元。
18.在下列横线上填上适当的词,使前后构成意义相反的量:1)收入1300元,支出800元;2)上升80米,下降64米;3)向北前进30米,向南后退50米。
1.2 有理数练一、判断1、自然数是整数。
✔2、有理数包括正数和负数。
✔3、有理数只有正数和负数。
✘4、零是自然数。
人教版七年级上册数学课时练习(全册)附答案
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。
人教版初一七年级上册数学 正数和负数 课时练含答案
1.1正数和负数一、选择题1.向东行进﹣50m 表示的意义是()A.向东行进50mB.向南行进50mC.向北行进50mD.向西行进50m2.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.在一个正数前添上一个负号,它就成了负数D.0既是正数也是负数3.下列结论中正确的是()A.0既是正数,又是负数B.O 是最小的正数C.0是最大的负数D.0既不是正数,也不是负数4.如果盈利5%记作+5%,那么-3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%5.下列用正数和负数表示相反意义的量,正确的是()A.一天凌晨的气温是-5℃,中午比凌晨上升4℃,所以中午的气温是+4℃B.如果+3.2m 表示比海平面高3.2m,那么-9m 表示比海平面低5.8mC.如果生产成本增长5%记作+5%,那么-5%表示生产成本降低5%D.收入增加8元记作+8元,那么-5元表示支出减少5元6.在1,0,2,-3这四个数中,负数是()A.1B.0C.2D.-37.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.8.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是()A.3℃B.8℃C.11℃D.17℃9.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后()A.盈利 B.亏损 C.不盈不亏 D.盈亏不明10.某种药品的说明书上,贴有如图所示的标签,一次服用这种药品的剂量范围是()A.15mg~30mgB.20mg~30mgC.15mg~40mg D.20mg~40mg11.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为()A.671B.672C.673D.67412.按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为()A.1B.2C.3D.4二、填空题13.在-1,0,0.2,17,3中,正数一共有____________个.14.第二季度某商城的交易总额比第一季度增长7.5%,记做+7.5%,第三季度比第二季度下降1.2%,可记做____________.15.在下列横线上填上恰当的词,使前后构成意义相反的量.(1)收入2000元,____________1800元;(2)____________180m,下降80m;(3)向北1000m,____________500m.16.海面上的高度为正,海面下的高度为负,那么海面上982米记作米,﹣1190米的意义是.17.把下列各数填入相应的大括号里:-3.14,4.3,+72,0,13,-6,-7.3,-12,0.4,-56,227,26.(1)正数集:{____________…}(2)负数集:{____________…}(3)正整数集:{____________…}(4)负整数集:{____________…}(5)非负数集:{____________…}18.观察下面一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成下列形式:…按照上述规律排下去,那么第10行从左边数第9个数是____________;数-201是第____________行从左边数第____________个数.三、解答题19.某水库的标准水位记做0m,如果用正数表示水面高于标准水位的高度,那么:(1)0.08m 和-1.25m 分别代表什么?(2)水面高于标准水位2.26m 和水面低于标准水位1.44m 分别如何表示?20.体育课上,老师对七年级男生进行了引体向上的测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示.其中8名男生的成绩如下:3,-1,0,-3,-2,-1,2,0.问:这8名男生有百分之几达到标准?21.仔细观察下列数的规律后回答问题:-1,+2,-3,+4,-5,+6,…(1)数2026前面的符号是”+”还是”-”?(2)第2026个数可表示成什么?22.有10筐苹果,以每筐30kg为标准,超过的质量记作正数,不足的质量记作负数,记录如下(单位:kg):2,-4,2.5,3.2,-0.5,1.5,3,-1,0,-2.5.(1)有几筐苹果的质量超过标准质量?有几筐苹果的质量不足标准质量?(2)哪一筐苹果的质量超过标准质量最多?超过多少?23.观察下面一列数:-1,2,-3,4,-5,6,-7,8,-9,….(1)请写出这一列数中的第100个数和第2026个数.(2)在前2026个数中,正数和负数分别有多少个?(3)2025和-2025是否都在这一列数中?若在,请指出它们分别是第几个数;若不在,请说明理由.参考答案1.D.2.C.3.D.4.A5.C6.D.7.D.8.D9.A;10.C11.B12.B13.314.-1.2%15.(1)支出(2)上升(3)向南16.+982;海面下1190米.17.(1)4.3,+72,13,0.4,227,26(2)-3.14,-6,-7.3,-12,-56(3)+72,26(4)-6,-12(5)4.3,+72,0,13,0.4,227,2618.9015 5.19.解:(1)水面高于标准水位0.08m,水面低于标准水位1.25m.(2)+2.26m,-1.44m.20.解:因为8名男生中有4人达到标准,所以达到标准的百分率为48×100%=50%.21.解:(1)“+”(2)+201622.解:(1)有5筐苹果的质量超过标准质量,有4筐苹果的质量不足标准质量.(2)第4筐苹果的质量超过标准质量最多,超过3.2kg.23.解:(1)第100个数是100,第2016个数是2016;(2)在前2026个数中,正数和负数都有1013个;(3)2025不在这一列数中,-2025在这一列数中,是第2025个数,理由略.。
数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案01
第一章 有理数1.1 正数和负数一、单选题1.若零下2摄氏度记为2-℃,则零上2摄氏度记为( )A .2+℃B .0℃C .2-℃D .1-℃2.热气球上升5米记为5+,则下降3米应该记为( )A .3B .2C .2-D .3-3.某建筑工地仓库管理员如果将进货水泥2吨记为2+吨,那么出货水泥2吨可记为( )A .2-吨B .0吨C .2+吨D .4吨4.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .5.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入50元记作50+元,那么支出50元记作( )A .50-元B .50+元C .0元D .100+元6.下列各数中:553025.827---+,,,,,,负数有( )A .1个B .2个C .3个D .4个7.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上8℃,记为8+℃,那么室外温度为零下2℃,记为( )A .2-℃B .2+℃C .8-℃D .8+℃8.下列各数中,是正数的有( )5,﹣59,0,0.56A .1个B .2个C .3个D .4个9.在-2,+3,5,0,―23,-0.7,11中,负数有( )A .1个B .2个C .3个D .4个10.下列为负数的是( )A .0B .2024C .2024-D .2024-二、填空题11.如果收入80元,记作80+元,那么支出37元应记作 元.12.由于没有大气层的保护,在太阳光线直射下的空间站表面温度可达150℃以上,在背阳面温度最低可达零下100℃以下,可以说太空环境“冰火两重天”.为了保持空间站设备正常运行并为航天员提供适宜工作生活的温度环境,热控系统发挥了十分关键的作用.空间站的热控系统中的“中央空调”——流体回路遍布在舱段的各个角落,通过特殊液体在管路内的往复循环,将舱内设备以及航天员生活产生的热量收集起来,通过回路再带到相应的设备和结构中,给过热的地方散热,给过冷的地方加热,便实现了散热和补热功能.如果把150℃记作150+℃,那么零下100℃记作 ℃.13.某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL 17518019018514.某蓄水池的标准水位记为0m ,若0.08m +表示水面高于标准水位0.08m ,则水面低于标准水位1.2m ,可记为 m .15.某厂家生产一种袋装食品的标准重量是500克,质检员把每袋超出的部分记作正数,不足的部分记作负数,质检员随机测得袋食品质量为501克,则记作 .16.生活中常有用正负数表示范围的情形,例如某种食品的说明书上标明保存温度是()252±℃,请你写出一个适合该食品保存的温度: ℃.17.若指针沿顺时针方向旋转26°,记作26-°,则指针沿逆时针方向旋转106°,记18.某市某一时刻的气温是零上2℃,记作2+℃,另一时刻的气温是零下1℃,则记作 ,若某时气温是零摄氏度,则记作 .19.中国历史上刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.如果收入5000元记作5000+元,那么支出2000元记作 元.20.金星表面的白天平均温度为零上480℃,夜间平均温度为零下120℃.如果零上480℃记作480+℃,那么零下120℃应该记作 ℃.三、解答题21.某饮料公司生产的一种瓶装饮料,外包装上印有“60030mL ()±”的字样,那么“60030mL ()±”是什么含义?质检局对该产品抽查了5瓶,容量分别为603mL ,611mL ,588mL ,568mL ,628mL ,抽查的产品容量是否合格?22.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,他从A 处出发去看望B 、C 、D 处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A 到B 记为14{}A B ®,,从B 到A 记为:}14{B A ®--,,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C ®{______,______},C B ® {______,______}:(2)若这只甲虫的行走路线为A B C D ®®®,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M 、N ,且}15{M A a b ®--,,}52{M N a b ®--,,则A N ®应记为什么?直接写出你的答案.23.下列各数中,哪些是正数?哪些是负数?235,8,9,3,0,3,7,101311-+-+--.24.如果前进5km 记作+5km ,后退6km 记作-6km ,那么下列各数分别表示什么?(1)+8km(2)-4.5km25.某班抽查了10名同学的期末成绩,以90分为基准,超出的记为正数,不足的记为负数,记录结果如下:+7,﹣3,+10,﹣7,﹣9,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于90分的所占的是多少?(3)10名同学的平均成绩是多少?26.(1)某人转动转盘,如果用5+圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02g ,那么- 0.03g 表示什么?(3)某大米包装袋上标注着“净含量:10kg 150g ±”,这里的“10kg 150g ±”表示什么?参考答案1.A2.D3.A4.A5.A6.C7.A8.B9.C10.D11.37-12.100-13.香草味14. 1.2-15.1+16.25(答案不唯一).17.106+°18.1-℃0℃19.2000-20.120-21.解:30mL +表示比600mL 多30mL ,30mL -表示比600mL 少30mL ;所以产品合格的容量为570mL 630mL ~这个范围内,所以抽查样品容量603mL ,611mL ,588mL ,568mL ,628mL ,只有568mL 不合格,其它的都合格.22.(1)解:图中{}3,4A C ®,{}2,0C B ®-故答案为:3,4;2-,0.(2)解:由已知可得:A B ®表示为{}1,4,B C ®记为{}2,0,C D ®记为{}1,2-,则该甲虫走过的路程为:1421210++++=.(3)解:由{}1,5M A a b ®--,{}5,2M N a b ®--,可知:()514a a ---=,()253b b ---=,∴点A 向右走4个格点,向上走3个格点到点N ,∴A N ®应记为()4,3.23.解:正数有:28,3,33++;负数有:35,9,7,10111----.24.(1)+8km 表示前进+8km ;(2)-4.5km 表示后退4.5km ;(3)0km 表示没有动25.解:(1)根据题意得:最高分为90+10=100分,最低分为90-9=81分;(2)低于90分的为87,83,81,87,82,共5个,一共有10个,510¸´100%=50% ,占的百分比为50%;(3)10名同学的平均成绩为110(+7﹣3+10﹣7﹣9﹣3﹣8+1+0+10+90×10)=89.8(分).26.解:(1)如果用5+圈表示沿逆时针方向转了5圈,则沿顺时针方向转了12圈记作12-圈;(2)超出标准质量0.02 g 记作+0.02g ,则0.03g -表示乒乓球的质量低于标准质量0.03g ;(3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即最多超出标准质量150 g ,最少少于标准质量150 g .。
新冀教版数学七年级上册同步练习:1.1 第2课时 有理数
第2课时 有理数知识点 1 正数和负数1.在下列各数:-3,1.5,23,-133,7,0,-20%中,是负数的有( )A .1个B .2个C .3个D .4个2.教材练习第2题变式 在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .23.有下列各数:3,-5,-12,0,2,0.97,-0.21,-60%,9,223,85,1,其中正数有________个,负数有________个.4.下列各数中哪些是正数,哪些是负数?-15,-0.02,67,-272,4,-223,1.3,0,3.14,π.知识点 2 有理数及其分类5.在下列各数:-56,+1,6.7,-14,0,722,-5中,属于整数的有( )A .2个B .3个C .4个D .5个6.有下列各数:-8,2.89,0,-12,-0.25,123,-314,其中负分数有( )A .1个B .2个C .3个D .4个 7.下列说法错误的是( ) A .负整数和负分数统称为负有理数 B .正整数、负整数和0统称为整数 C .正有理数和负有理数统称为有理数 D .0是整数,但不是分数8.写出两个既是负数,又是整数的数为________. 9.把下列各数填入相应的大括号里:-13,0.618,-3.14,260,-2019,67,0,0.38. 正分数:{ …}; 整数:{ …}; 非负数:{ …}; 有理数:{ …}.10.在有理数中,不存在这样的数,它( ) A .既是自然数又是整数 B .既是分数又是负数 C .既是非正数又是非负数 D .既是正数又是负数11.在-15,513,-0.23,0.51,0,-0.65,7.6,2,35,314%这十个数中,非负数有 ( )A .4个B .5个C .6个D .7个 12.在-2,+3.5,0,-23,-0.7,11,-5%,15中,非负整数有________个.13.观察下列各组数的排列规律,按要求填空:(1)1,-2,3,-4,5,-6,________,________,________;(2)-12,23,-34,45,-56,…,那么第9个数是________,第2019个数是________.14.将下列各数填在相应的圆圈里:+6,-8,75,-0.4,0,23%,37,-2006,-1.8,-π2.图1-1-1教师详解详析【备课资源】【详解详析】1.C [解析] 负数有-3,-133,-20%.2.B3.7 4 [解析] 根据有理数的有关概念进行判断,其中3,2,0.97,9,223,85,1是正数,共7个;-5,-12,-0.21,-60%是负数,共4个.4.解:正数:67,4,1.3,3.14,π;负数:-15,-0.02,-272,-223.5.C [解析] +1,-14,0,-5都是整数. 6.C [解析] 负分数有-12,-0.25,-314,共3个.7.C [解析] 正确理解有理数的意义和分类方法是解题的关键,有理数按正负性分类分为正有理数、0和负有理数.选项C 中缺少了0,所以选项C 的说法是错误的.8.答案不唯一,如-1,-69.解:正分数:⎩⎨⎧⎭⎬⎫0.618,67,0.38,…;整数:{260,-2019,0,…};非负数:⎩⎨⎧⎭⎬⎫0.618,260,67,0,0.38,…;有理数:{-13,0.618,-3.14,260,-2019,67,0,0.38,…}.10.D [解析] 如1既是自然数又是整数,-6.6既是分数又是负数,0既是非负数又是非正数,但不存在既是正数又是负数的数.故选D.11.D [解析] 非负数为513,0.51,0,7.6,2,35,314%,共7个.12.2 [解析] 非负整数有0,11,共2个. 13.(1)7 -8 9 (2)-910 -20192020[解析] (1)从数的符号看,第奇数个数的符号为正,第偶数个数的符号为负.数字是从1开始的连续正整数,故后面三个数分别是7,-8,9.(2)从数的符号看,第奇数个数的符号为负,第偶数个数的符号为正.分子是从1开始的连续正整数,每个分数的分母比分子大1.根据规律即可得出答案.14.解:。
七年级上册数学人教版课时练.1 整式-(试卷配答案)(1)
寄语:亲爱的小朋友,在学习过程中,的挑战就是逐级攀升的难度。
即使每一级都很陡峭,只要我们一步一个脚印地向上攀登,一层又一层地跨越,最终才能实现学习的目标。
祝愿你在学习中不断进步!相信你一定会成功。
相信你是最棒的!《2.1 整式》课时练一、选择题1.单项式﹣3x3y的次数为( )A.﹣3B.1C.3D.42.下列说法中正确的是( )A.5不是单项式B.是单项式C.x2y的系数是0D.是整式3.多项式:2x2+5x2y﹣y2﹣3的次数和常数项分别是( )A.2和﹣3B.3和﹣3C.4和3D.3和34.单项式:的系数和次数分别是( )A.2和5B.和6C.和5D.和65.下列结论中正确的是( )A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式6.下面对单项式﹣m2描述正确的是( )A.﹣m的平方B.m的平方的相反数C.m与2的积的相反数D.m的相反数的平方7.下列说法错误的是( )A.0是单项式B.单项式﹣n的系数是﹣1C.单项式﹣的次数是9D.+2是三次二项式8.关于多项式x2+y2﹣1的项数及次数,下列说法正确的是( )A.项数是2,次数是2B.项数是2,次数是4C.项数是3,次数是2D.项数是3,次数是49.在代数式﹣中,单项式有( )A.6个B.5个C.4个D.3个10.式子﹣7,x,m2+,x2y+5,,﹣5ab3c2,中,整式的个数是( )A.7个B.6个C.5个D.4个二、填空题11.多项式中的一次项系数是 .12.多项式﹣2x2y+x3y2﹣1+xy3按字母x的降幂排列是 .13.关于x的多项式(a﹣4)x3﹣x b﹣x﹣b是二次三项式,则a= ,b= .14.在①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中, 是整式.(填写序号)15.当k= 时,代数式x2+|3k|xy﹣4y2﹣xy﹣8中不含xy项.三、解答题16.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.17.已知﹣5x3y|a|﹣(a﹣4)x﹣6是关于x、y的七次三项式,求a2﹣2a+1的值.18.写出下列各单项式的系数和次数:30a﹣x3y ab2c3πr2系数 次数 19.(1)把下列各整式填入相应的圈里:ab+c,2m,ax2+c,﹣ab2c,a,0,﹣,y+2.(2)把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.参考答案一、选择题1.D 2.D 3.B 4.B 5.C 6.B 7.C 8.C 9.D 10.C 二.填空题(共5小题)11.﹣12.x3y2﹣2x2y+xy3﹣1.13.4;2.14.①②④.15.±.三.解答题(共4小题)16.解:(1)﹣5x2a+1y2的系数是﹣5,次数是2a+3;﹣x3y3的系数是:,次数是6;x4y的系数是:,次数是5;(2)由多项式的次数是7,可知﹣5x2a+1y2的次数是7,即2a+3=7,解得:a=2.17.解:∵﹣5x3y|a|﹣(a﹣4)x﹣6是关于x、y的七次三项式,∴3+|a|=7,a﹣4≠0,解得:a=﹣4,故a2﹣2a+1=(a﹣1)2=25.18.解:30a的系数是30,次数是a的指数1;﹣x3的系数是﹣1,次数是x的指数3;y的系数是1,次数是y的指数1;ab2c3的系数是1,次数是1+2+3=6;﹣的系数是﹣,次数是a的指数3+1=4;πr2的系数是π,次数是r的指数2;故答案是:30a﹣x3y ab2c3πr2系数30﹣1 1 1﹣π次数1 3 1 6 4 2 19.解:(1)在整式中不含有加减的为单向式,含有加减的为多项式.则单项式:2m,﹣ab2c,a,0,﹣;多项式:ab+c,ax2+c,y+2;。
七年级上册数学人教版课时练《1.1 正数和负数》03 试卷含答案
《1.1正数和负数》课时练一、单选题1.下列语句正确的是()A.“+15米”表示向东走15米B.一个数的相反数一定小于或等于这个数C.﹣a可以表示正数D.如果|a|=﹣a,那么a是负数2.在1,-2,0,−53这四个数中,负整数是()A.-2B.0C.−53D.13.一种面粉的质量标识为“25±0.25千克”,则任取一袋这种面粉,质量可能是()A.26千克B.24千克C.24.9千克D.25.6千克4.规定一个物体向上移动1m,记作+1m,则这个物体向下移动了2m,可记作()A.-2m B.2m C.3m D.-1m5.下列说法:①-a<0;②|-a|=|a|;③相反数大于它本身的数一定是负数;④绝对值等于它本身的数一定是正数.其中正确的序号为()A.①②B.②③C.①③D.③④6.一批螺帽产品的内径要求可以有±0.03mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如下表.12345+0.031+0.017+0.023-0.021-0.015则合乎要求的产品数量为()A.2个B.3个C.4个D.5个7.在-(-1),-|3.14|,0,-(-3)2中,正数有()个.A.1B.2C.3D.48.小明是个喜欢观察的孩子,他发现家里冰箱的说明书上有这样一段描述“冰箱设置最适宜的温度是冷藏室零上4度,冷冻室零下24度”,小明立刻知道冰箱的冷藏室和冷冻室的温差是()度.A.20B.18C.24D.289.某种面粉包装袋上的质量标识为“20±0.5kg”,则下列四袋面粉中不合格的是()A.19.5kg B.20.8kg C.20.3kg D.20.5kg10.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方二、填空题11.一种零件,标明的要求是Φ50−0.03+0.04( 表示直径).如果一零件的直径是49.98,则该零件是否合格________.(填“是”或“否”)12.如果上升5m记作+5m,那么下降7m,记作________m.13.小明家使用的电冰箱冷藏室的温度是2℃,冷冻室比冷藏室的温度低20℃,则冷冻室的温度是________℃.14.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第二位学生的实际得分为________分.15.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书________本.三、解答题(共5题;共50分)16.某商店现有8袋大米,以每袋50千克为准,超过的千克数记作正数,记录如下:+4,﹣3,+5,﹣2,+1,﹣3,+4,﹣6.问:8袋大米共重多少?17.(5分)小明在超市买一食品,外包装上印有“总净含量(300±5) ”的字样.请问“±5 ”表示什么意义?小明拿去称了一下,发现只有297 .问食品生产厂家有没有欺诈行为?18.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下:与标准质量的差值(单位:g)-4201-35袋数353423这批样品的平均质量比标准质量多还是少,多(或少)几克?若每袋标准质量为450g,则抽样的总质量是多少?19.小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10。
新浙教版数学七年级上册同步练习:1.1 第1课时 从自然数到分数
1.1从自然数到有理数第1课时从自然数到分数知识点1自然数的意义1.小亮在看报纸时,收集到下列信息,你认为其中没有用到自然数标号或排序的是() A.某地的国民生产总值列全国第五位B.某城市有16条公共汽车线路C.小刚乘T32次火车去旅游D.小风在校运动会上获得跳远比赛第一名2.小明体重45千克,其中数“45”属于________.(①计数和测量;②标号或排序.在横线上填序号即可)3.下面关于河姆渡遗址的描述用了很多自然数,说说它们哪些表示计数和测量,哪些表示标号或排序.河姆渡遗址,位于宁波城西北25千米处的余姚河姆渡镇.1973年发现,遗址总面积为4万平方米,堆积厚度为4米,由相互叠压的4个文化层组成.经两期考古发掘,共出土文物7000余件,早期文化遗存距今已有6900多年的历史.知识点2分数的意义4.下列各题:①6天看完一本300页的书,求平均每天看书的页数;②小明的身高是146 cm,请问小明的身高为多少米;③2个人均分14支铅笔,求每个人分得的铅笔数占铅笔总数的比例.其中需要用分数表示的有()A.0个B.1个C.2个D.3个5.高铁G7302次列车从杭州到嘉兴历时36分钟,如果改用小时作单位,应表示为________小时.6.林林手中有22元钱,买文具用了2.5元,买水果用了3元,在回家路上遇到爷爷,爷爷给了他15元钱,现在他手中共有多少钱?7.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200 B.119 C.120 D.3198.某商店销售某种商品,因到了旺季,价格上调10%,旺季过后又下调10%,则价格下调后的商品比调价前是贵了,还是便宜了?9.“假日旅行社”推出“西湖风景区一日游”的两种价格方案(如图1-1-1).(1)10名成人,5名儿童,怎样购票合算?(2)5名成人,10名儿童,怎样购票合算?图1-1-1教师详解详析1.B[解析] B中的数据是自然数的计数结果.2.①3.解:计数和测量:25千米,4万平方米,4米,4个,7000余件,6900多年.标号或排序:1973年.4.C[解析] ②③需要用分数表示.5.35[解析] 时、分、秒之间是60进制,1小时=60分钟,所以36分钟应该是3660小时,即35小时.6.[解析] 原有22元钱,买了文具、水果,后来爷爷给了他15元,其中减少部分为买文具和水果的钱,增加部分为爷爷给他的钱,减少部分应相减,增加部分应相加.解:22-2.5-3+15=31.5(元).答:现在他手中共有31.5元.7.C[解析] 根据题意,双数表示开往北京,101~198次为直快列车,由此可以确定答案为101~198中的一个偶数,所以杭州开往北京的某一直快列车的车次号可能是120.故选C.8.[解析] 上调10%变为原来的110%,又下调了10%,即在110%的基础上下调了10%.解:(1+10%)×(1-10%)=110%×90%=99%,所以价格下调后的商品比调价前便宜了.9.解:(1)方案一:150×10+60×5=1500+300=1800(元);方案二:100×(10+5)=100×15=1500(元);方案三:可以让10名成人购买团体票,5名儿童购买儿童票,100×10+60×5=1000+300=1300(元).因为1300<1500<1800,所以10名成人购买团体票,5名儿童购买儿童票最合算.(2)方案一:150×5+60×10=750+600=1350(元);方案二:100×(10+5)=100×15=1500(元);方案三:可以让5名成人购买团体票,10名儿童购买儿童票,100×5+60×10=500+600=1100(元).因为1100<1350<1500,所以5名成人购买团体票,10名儿童购买儿童票最合算.。
七年级数学上册各课时练习题
第一章有理数1.1 正数和负数班级: 姓名:1、举出几对具有相反意义的量,并分别用正、负数表示.2、在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么表示:;3 、 2001年美国的商品进出口总额比上年减少%可记为,中国增长%可记为.4、某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为B.-3C. 填空-1,2,-3,4,-5, , , …第81个数是 ,第2005个数是.6.填空题1如果节约用水30吨记为+30吨,那么浪费20吨记为吨.2如果4年后记作+4,那么8年前记作.3如果运出货物7吨记作-7吨,那么+100吨表示.4一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了.7.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.1用正数或负数记录下午1时和下午5时的水位;2下午5时的水位比中午12时水位高多少8.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.甲:乙:丙:9.有没有这样的有理数,它既不是正数,也不是负数10.下列各数中哪些是正数哪些是负数-15,,67,-171,4,-213,,0,,正数:;负数:11.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为点,•你知道他们最早的同学 到,最迟的是 到,最早的比最迟的早到 个小时.12.冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库 .1.2.1 有理数1有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数 2有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数1. 把下列各数填入相应的集合内:12,,0,2004,-8,,10%,,,-89正数集合负数集合 整数集合 分数集合2.下列正确的是①0是最小的正整数 ②0是最小的有理数③0不是负数 ④0既是非正数,也是非负数 个 个 个 个3.如果用字母表示一个数,那a 可能是什么样的数,一定为正数吗与你的伙伴交流一下你的看法. ; 4.观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是 . 5.把下列各数填入相应的大括号内: -7,,12,-312,3,0,50%, 1整数集合{ }2分数集合{ }3负分数集合{ }4非负数集合{ } 5有理数集合{ }6.下列说法正确的是A.整数就是自然数 B.0不是自然数C.正数和负数统称为有理数 D.0是整数而不是正数7.某商店出售的三种规格的面粉袋上写着25±千克,25±•千克,25±千克的字样,从中任意两袋,它们质量相差最大的是 千克.8.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下: -2 -1 2 -1 3 0 -1 -2 1 0 1这10名男生有百分之几达标即达标率 2这10名男生共做了多少个引体向上9.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗 10.某市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高 A A .4℃ B .-4℃ C .8℃ D .-8℃1.2.2 数轴1.所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. 2. 下列所画数轴对不对如果不对,指出错在哪里.①4②-1021③-2④⑤-101⑥-1-20-321⑦-1-2021答:① ② ③ ④ ⑤ ⑥ ⑦ 3.试一试:用你画的数轴上的点表示4,,-3,-73,04. 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有 个 个 个 个5. 1与原点的距离为个单位的点有 个,它们分别表示有理数 •和 .2一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 . 6. 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.7. 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm 的线段AB,则线段AB 盖住的整点是 A .1998或1999 B .1999或2000 C .2000或2001 D .2001或20028.在数轴上,离原点距离等于3的数是________.9.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:5M 4M 3M 2M 1-1-451点M 4和M 2所表示的有理数是什么 2点M 3和M 5两点间的距离为多少3怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;4若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少1.规定了 、 、 叫数轴,所有的有理数都可从用 上的点来表示. 2.P 从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P 点所表示的数是 . 3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是 A .7 B .-3 C .7或-3 D .不能确定 4.在数轴上,原点及原点左边的点所表示的数是A .正数B .负数C .不是负数D .不是正数5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别 . 6. 是最小的正整数, 是最小的非负数, 是最大的非正数. 7.与原点距离为个单位长度的点有 个,它们分别是 和 . 8.画一条数轴,并把下列数表示在数轴上:+2,-3,,0,,4,3139.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.10.下列四个数中,在-2到0之间的数是A.-1 B.1 C.-3 D.31.2.3 相反数1. 填空1是的相反数, 的相反数是-+3,a的相反数是,a-b的相反数是,0的相反数是.2正数的相反数是,负数的相反数是, 的相反数是它本身.2. 下列判断不正确的有①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.个个个个3. 化简下列各符号:1---2 2+{--+5} 3-{-{-…--6}…}共n个负号提示化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.4. 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C各对应什么数5.如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是___________.a06.判断题1-3是相反数2-7和7是相反数3-a的相反数是a,它们互为相反数4符号不同的两个数互为相反数7.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,,,38.若一个数的相反数不是正数,则这个数一定是A.正数 B.正数或0 C.负数 D.负数或09.一个数比它的相反数小,这个数是A.正数 B.负数 C.非负数 D.非正数10.数轴上表示互为相反数的两个点之间的距离为423,则这两个数是.11.比-6的相反数大7的数是.12.若a与a-2互为相反数,则a的相反数是.13.1--8的相反数是,2+-6是的相反数.3 的相反数是a-1.4若-x=9,则x= .14.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n•的相反数在数轴上表示,并将这6个数用“<”连接起来.M0答案< < < < <15.-34的相反数是A.34B.-34C.43D.-431.2.4 绝对值第一课时1.例题填空:1绝对值等于4的数有个,它们是.2绝对值等于-3的数有个.3绝对值等于本身的数有个,它们是.4①若│a│=2,则a= .②若│-a│=3,则a= .5绝对值不大于2的整数是.2.绝对值为4的数是A.±4 B.4 C.-4 D.23.填空题1-│-3│= ,+││= ,-│+26│= ,-+24= .2-4的绝对值是,绝对值等于4的数是.│ |= .3若│x│=2,则x= ,若│-x│=2,则x= .若│-x│=3,则x=. 4绝对值小于3的所有整数有.4.选择题1则│a│≥0,那么A.a>0 B.a<0 C.a≠0 D.a为任意数2若│a│=│b│,则a、b的关系是A.a=b B.a=-b C.a+b=0或a-b=0 D.a=0且b=03下列说法不正确的是A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值也必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近4若│x│+x=0,则x一定是A.负数 B.0 C.非正数 D.非负数5.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.6.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表: +15 -10 +30 -20 -40指出哪个排球的质量好一些即重量最接近规定重量你怎样用学过的绝对值知识来说明这个问题1.2.4 绝对值第二课时例1 比较下列各组数的大小1-56和-2-57和-34解:1∵|-56|=56││=,而56<∴-5 6 >2∵|-57|=57=2028,|-34|=34=2128,而2028<2128∴-57>-34例2 按从大到小的顺序,用“〈”号把下列数连接起来.-412,--23,││,,-││解:∵--23=23,││=,-││=而|-412|=412,││=,││=且412 >>,<23∴ -412<-││<<││<--231.填空题,用“〉”、“=”、“〈”填空:①-7 -5 ②③-││- ④-│-10 3│⑤- 89-87⑥--14⑦- ⑧-2223-2022032.解答题1比较-78和-67的大小,并写出比较过程.1.3.1 有理数的加法第一课时1. 计算1-4+-6= 2+15+-17= 3-39+-21=4-6+│-10│+-4= 5-37+22= 6-3+3=2. 某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜球.3. 绝对值小于2005的所有整数和为.4. 一个数是11,另一个数比11的相反数大2,那么这两个数的和为A.24 B.-24 C.2 D.-25. 下面结论正确的有①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个 B.1个 C.2个 D.3个6. 在1,-1,-2这三个数中,任意两数之和的最大值是.0 C7.填空题1绝对值不小于3且小于5的所有整数的和为.2已知两数512和-612,这两个数的相反数的和是,两数和的相反数是,两数绝对值的和是,两数和的绝对值是.8.计算题1-15+27= 2++= 3+=4-2++1= 5-8+│-5│= 6--7+-2= 9.列式计算1求313的相反数与-223的绝对值的和.2某市一天上午的气温是10℃,上午上升2℃,半夜又下降15℃,则半夜的气温是多少.10.填空题:某天早晨的气温是-7℃,中午上升了11℃,•则中午的气温是.1.3.1 有理数的加法第二课时例1 说出下列每一步运算的依据++5+-7++18++2=++18++5++2+-7 加法交换律=++18++5++2+-7加法结合律=0++7+-7 有理数的加法法则=0 有理数的加法法则1. 利用有理数的加法运算律计算,使运算简便.1+9+-7++10+-3+-92+++++++3+1+-2++3+-4+…++2003+-20042. 某出租司机某天下午营运全是在东西走向的人民大道进行的,•如果规定向东为正,向西为负,他这天下午行车里程如下单位:千米 +15,+14,-3,-11,+10,-12,+4,-15,+16,-181他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米 2若汽车耗油量为公升/千米,这天下午汽车共耗油多少公升3.运用加法的运算律计算+631+-18++432++18+最适当的是 A .+631+432+18+-18++ B .+631++432+-18+18+C .+631+-18++432++18+D .+631++432+-18+18++4.已知│x │=4,│y │=5,则│x+y │的值为A .1B .9C .9或1D .±9或±1 5.有理数中,所有整数的和等于 . 6.-2+4+-6+8+…+-98+100= . 7.一个加数是绝对值等于81的负有理数,另一个加数是-21的相反数,•这两个数的和等于 . 8.计算题-1631+2961 ++++-2013++532+-231143++383++285 +653+-532+452++271+-1+-1719.小李到银行共办理了四笔业务,第一笔存入120元,第二笔支取了85元,第三笔取出70元,第四笔存入130元.如果将这四笔业务合并为一笔,•请你替他策划一下这一笔业务该怎样做.10.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线单位:千米为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.1问收工时距A地多远2若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升1.3.2 有理数的减法1. 计算题1-32-+121--41 2--831+-1132--1013--+-+ 45-6-7-92. 根据题意列出式子计算1一个加数是,和是-,求另一个加数.2-31的绝对值的相反数与32的相反数的差.3.填空题10℃比-10℃高多少度列算式为 ,转化为加法是 ,•运算结果为 .2减法法则为减去一个数,等于 这个数的 ,即把减法转为 .3比-18小5的数是 ,比-18小-5的数是 .4A 、B 两地海拔高度为100米、-20米,B 地比A 地低 米.4.下列说法正确的是A .正数与正数的差是正数B .负数与负数的差是正数C .正数减去负数差为正数D .0减去正数差为正数5.下列说法正确的个数是①减去一个数等于加上这个数;②零减去一个数,仍得这个数③两个相反数相减得零;④有理数减法中,被减数不一定比减数或差大⑤减去一个负数,差一定大于被减数;⑥减去一个正数,差不一定小于被减数A .2个B .3个C .4个D .5个6.计算题1-7--4-+5; 2-9--10--23-441-+531--441; 4-51.4.1 有理数的乘法第一课时1. 判断题1两数相乘,若积为正数,则这两个因数都是正数.2两数相乘,若积为负数,则这两个数异号.3两个数的积为0,则两个数都是0.4互为相反的数之积一定是负数.5正数的倒数是正数,负数的倒数是负数.2. 填空题1-114×-45= ,2+3×-2= ,30×-4= ,4123×-115= ,5-15×-13= ,6-│-3│×-2= ,3. 用正、负数表示气温的变化量:上升为正、下降为负.•某登山队攀登一座山峰,每登高1km,气温的变化量为-6℃.攀登5km后,气温有什么变化4.填空题-2×-3= ,-23·-112= ,2001×-2002×2003×-2004×0= .5.选择题1若ab>0,则必有A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 C.同号 2若ab=0,则必有A.a=b=0 B.a=0C.a、b中至少有一个为0 D.a、b中最多有一个为03有奇数个负因数相乘,其积为A.正 B.负 C.非正数 D.非负数6.计算题1-312×-4 2-2×-3×-52 3×3×-1234××-26××03-7。
人教版初一七年级上册数学 正数和负数 课时练01含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1.1正数和负数一、单选题1.(2021·北京市月坛中学七年级期中)中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么−80元表示().A.支出35元B.收入56元C.支出80元D.收入120元2.(2021·湖北孝感·七年级阶段练习)如果“盈利10%”记作+10%,那么﹣4%表示()A.亏损4%B.亏损6%C.盈利4%D.少赚4% 3.(2021·山西榆次·七年级期中)小明同学的微信钱包部分账单明细如图所示,+10.5表示收入10.5元,下列说法正确的是()A.﹣6.3表示收入6.3元B.6.3表示支出﹣6.3元C.-6.3表示支出6.3元D.收支总和为16.8元4.(2021·广东潮安·七年级期中)如果跑步时领先对手3米记为+3,那么落后对手4米记为()A.﹣4B.+4C.+3D.﹣3 5.(2021·广西·融水苗族自治县教育科学研究室七年级期中)如果收入15元记作+15元,那么支出20元记作()元.A.-20B.20C.-35D.35 6.(2021·安徽淮北·七年级期中)如果+15%表示增长15%那么﹣80%表示()A.增长20%B.下降20%C.增长80%D.下降80%7.(2021·湖南·郴州市第十八中学七年级阶段练习)在112-,1.2,2-,0, 3.5-中,负数的个数有()A.2个B.3个C.4个D.5个8.(2021·江苏仪征·七年级期中)根据世界食品物流组织(WFLO)制定的要求,某种冷冻食品的标准储存温度是﹣18±2℃,下列四个储藏室的温度中不适合储藏这种冷冻食品的是()A.﹣21℃B.﹣19℃C.﹣18℃D.﹣17℃9.(2021·贵州六盘水·七年级阶段练习)在下列选项中,具有相反意义的量的是()A.气温升高3℃与气温为﹣3℃B.盈利与亏损C.胜三局与负四局D.向东行20米和向南行20米10.(2021·全国·七年级专题练习)以下的五个时钟显示了同一时刻国外四个城市时间和北京时间,若表中给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是()城市时差/h 纽约﹣13悉尼+2伦敦﹣8罗马﹣7A .纽约、悉尼、伦敦、罗马、北京B .罗马、北京、悉尼、伦敦、纽约C .伦敦、纽约、北京、罗马、悉尼D .北京、罗马、伦敦、悉尼、纽约11.(2021·贵州六盘水·七年级期中)一次社会调查中,某小组了解到某种品牌的薯片包装上注明净含量为605g ±,则下列同类产品中净含量不符合标准的是()A .56gB .60gC .64gD .68g12.(2021·河北孟村·七年级期末)一个水库某天8:00的水位为-0.1m (以警戒线为基准,记高于警戒线的水位为正).在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m ):0.5,0.8-,0,0.2-;0.3-,●(最后一个时刻的水位升降情况被墨水污染),经过6次水位升降后,水库的水位恰好位于警戒线,则被墨水污染的数值是()A .0.7B .0.8C .0.9D .1.0二、填空题13.(2021·北京·七年级期中)如果节约水30吨,记为+30吨,那么浪费水20吨记为________吨.14.(2021·江苏铜山·七年级期中)如果向北行走8km 记作8km +,那么向南行走6km ,可以记作____km .15.(2021·安徽蚌埠·七年级期中)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:现在如果有两个数所表示的意义相反,那么就把它们分别叫做正数与负数,若气温为上升5℃,记作+5℃,则气温下降8℃可记作____.16.(2021·四川省成都市石室联合中学七年级期中)如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作___.17.(2021·广西·河池市宜州区教育局教学研究室七年级期中)某种零件,标明要求是φ200.02±mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件______(填“合格”或“不合格”).18.(2021·湖北新洲·七年级期中)如果水位升高7m ,水位变化记作+7m ,那么水位下降5m ,水位变化记作____m .19.(2021·重庆綦江·七年级期末)如果某超市盈利8%记作+8%,那么亏损6%应记作______.20.(2021·江苏宿迁·七年级阶段练习)某公司生产的一种小零食的包装袋上印有(70±2)g 的字样,质检局随机抽查了5袋该产品,质量分别为67g 、69g 、70g 、71g 、74g ,合格的共有_____袋.21.(2021·广东·新北江实验学校七年级期中)在数学知识抢答赛中,如果用10+分表示得10分,那么扣20分表示为__________.三、解答题22.(2021·全国·七年级课时练习)矿井下A ,B ,C 三处的高度分别是37.4m,129.8m,71.3m ---,A 处比B 处高多少米?C 处比B 处高多少米?A 处比C 处呢?23.(2021·山东历下·七年级期中)某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+1,+2,﹣4,﹣3,+12(规定向东为正,向西为负,单位:千米).(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2元收费.在这个过程中该驾驶员共收到车费多少元?24.(2021·全国·七年级单元测试)假期中小明和父母一起到甲、乙两个城市旅游,小明发现两个城市中使用的人民币的新旧程度不同:在甲城市中,面值10元、50元和100元的三种人民币的新旧程度基本相同;在乙城市中,面值10元的人民币比较旧,而面值50元和100元的人民币比较新.你能通过这些信息判断两个城市的发展水平哪个更高吗?25.(2021·江西章贡·七年级期中)赣州某山区认真落实精准“扶贫”,“建档立卡户”赵师傅在帮扶队员的指导下做起了“微商”,把自家的脐橙放到网上销售.他原计划每天卖100千克脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一二三四五六日与计划量的差值6+3-5-14+9-22+6-(1)根据记录的数据可知前三天共卖出______千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若脐橙每千克按10元出售,每千克脐橙的运费平均3元,那么赵师傅本周出售脐橙的纯收入一共多少元?26.(2021·云南·弥勒市朋普中学七年级期中)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(2021·广东·佛山市南海区狮山镇狮城中学七年级阶段练习)出租车司机小李某天从家出发,上午营运都是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车路程(单位:千米)如下:.﹣2,+5,﹣1,+10,﹣15,﹣3.(1)将最后一位乘客送到目的地时,小李距家多远?此时在家的东边还是西边?(2)若出租车起步价为8元,起步路程为3千米(即乘车路程不超过3千米都为8元),若乘车路程超过3千米,则超过部分每千米加收1.2元.问司机小李今天上午共收入多少元?(3)若汽车耗油量为0.1升/千米,小李从家出发到最后回到家里,这天小李共耗油多少升?参考答案1.C2.A3.C4.A5.A6.D7.B 8.A9.C10.A11.D12.C13.-2014.-615.-8℃-°16.1517.不合格18.﹣519.−6%.20.321.-20分高22.92.4m,58.5m,33.9m23.(1)接送完第5批客人后,该驾驶员在公司的东方,距离公司8千米;(2)在这个过程中该驾驶员共收到车费70元.24.甲城市的发展水平更高25.(1)298;(2)31;(3)503326.(1)西12km;(2)4L;(3)108元27.(1)小李距出发地6千米,此时在出发地的西边;(2)73.2元;(3)4.2升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章整式的加减
2.1整式
第1课时单项式
能力提升
1.下列结论正确的是().
A.a是单项式,它的次数是0,系数为1
B.π不是单项式
C.1
x
是一次单项式
D.-a2b3c是6次单项式,它的系数是-1
解析:a是单项式,次数、系数均为1,所以A错;因为π是单独一个数,所以π是单项式,B错;1分母中含有字母,无法写成数字与字母的积,所以1不是单项式,C错;对于D项,它的系数为-1,次数为2+3+1=6,所以正确.
答案:D
2.下列说法正确的是().
A.单项式xy2的次数是2
B.单项式32a2b的次数是5
C.单项式-3a2b3的次数是5
D.单项式πR2的次数是3
答案:C
3.已知x 2m y3z
是八次单项式,则m的值是().
A.4
B.3
C.2
D.1
解析:由单项式的次数的定义,得2m+3+1=8,将A、B、C、D四选项代入验证知C为正确答案.
答案:C
4.在式子①5ab,②3xy2,③1,④-a2+a,⑤-1,⑥a-b中,是单项式的是.(填序号)
答案:①②⑤
5.(2010·贵州毕节中考)写出含有字母x,y的五次单项式.(只要求写出一个)
答案:-x4y(答案不唯一)
6.已知(n-2)x2y|n|+1是关于x,y的五次单项式,则n的值是.
解析:根据题意可知,n-2≠0且2+|n|+1=5,解得n=-2.
答案:-2
7.山东综艺频道的“篮球九宫格”的栏目剧组人员,到文体商店为栏目组买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠,列单项式表示:
(1)购买9个篮球应付款元;
(2)购买m(m>10)个篮球应付款元.
答案:(1)9a(2)0.8ma
8.若-mx n y是关于x,y的一个单项式,且系数是3,次数是4,则m+n=.
答案:0
9.观察以下数组,用含n的代数式表示第n个数.
-2,-4,-6,-8,-10,…,.
解析:-2,-4,-6,-8,-10,首先,这些数都是负数,另外都是偶数,
所以第n个数为-2n.
答案:-2n
创新应用10.有一系列单项式:-a,2a2,-3a3,4a4,…,-19a19,20a20,….
(1)你能说出它们的规律是什么吗?
(2)写出第100个、第2 011个单项式.
(3)写出第2n个,第2n+1个单项式.
解:(1)第n个单项式是(-1)n na n.
(2)100a100,-2 011a2 011.
(3)2na2n,-(2n+1)a2n+1.。