中考数学模拟试题1
【九年级】中考数学第一次模拟考试题(附答案)
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
中考数学模拟试题1
中考数学模拟试题一、选择题(本题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是………………………………………………………【 】A.-1B.0C.1D.23. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】5.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【 】A.事件M 是不可能事件B. 事件M 是必然事件C.事件M 发生的概率为15D. 事件M 发生的概率为257. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧 BC的长是…………………………………………………………………………………【 】A.5π B. 25π C. 35π D. 45π9.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为……………………………【 】 A.1 B.2 C.3 D.4二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:22a b ab b ++=_________.13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.三、(本题共2小题,每小题8分,满分16分15.先化简,再求值:21211x x ---,其中x=-2四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;(1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.【解】第3题图五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点坐标;【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分) 23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0).(1)求证h 1=h 3;【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12;【解】第19题图 第21题图 第23题图(3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】。
2024年山西省百校联考中考数学模拟试卷(一)(含解析)
2024年山西省百校联考中考数学模拟试卷(一)一、选择题(本大题共10个小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)以下是四个城市在某一天同一时刻的气温,其中气温最低的是( )A.大同:﹣14℃B.朔州:﹣11℃C.忻州:﹣9℃D.太原:﹣12℃2.(3分)中国古代数学著作《九章算术》中,将两底面是直角三角形的直棱柱称为“堑堵”.将一个“堑堵”按如图方式摆放,则它的左视图为( )A.B.C.D.3.(3分)下列计算正确的是( )A.x3+x3=x5B.(﹣x)2÷x=﹣xC.(﹣2x2)3=﹣8x6D.(﹣a)4⋅(﹣a)3=a74.(3分)中国海油2月25日发布公告,我国渤海深层油气勘探取得新的重大发现.渤中26﹣6油田的新钻探井测试产能创新高,新增油气探明储量超过4000万立方米.数据4000万立方米用科学记数法表示为( )A.4×103立方米B.0.4×108立方米C.4×107立方米D.4000×104立方米5.(3分)化简的结果是( )A.B.C.D.6.(3分)小敏购买了一套“龙行龘龘”艺术书签(外包装完全相同),分别为“招财祥龙”“瑞狮福龙”“龙凤呈祥”“锦鲤旺龙”四种不同的主题.小敏从中拿两个送给同学,先随机抽取一个(不放回),再从中随机抽取一个,则恰好抽到书签“招财祥龙”和“龙凤呈祥”的概率为( )A.B.C.D.7.(3分)如图,△ABC的三个顶点均在⊙O上,BD是⊙O的直径.若∠BAC=130°,则∠CBD的度数为( )A.30°B.40°C.45°D.50°8.(3分)如图是一面钟表,以指针的旋转中心O为坐标原点,以整9点时针和分针所在的直线分别为x轴和y轴建立如图所示的平面直角坐标系,当时间为10点10分时,分针的外端点落在点A处.若OA=10,则点A的坐标为( )A.B.C.D.9.(3分)某商场购进一款年货大礼包,经调研发现,当该款大礼包每盒的售价为45元时,每天可售出100盒,每盒的售价每降低1元,每天的销量增加10盒,要使该款大礼包每天的销售额达到6000元,每盒的售价应降低多少元?若设该款大礼包每盒降价x元,则可列方程为( )A.B.C.(45+x)(100+10x)=6000D.(45﹣x)(100+10x)=600010.(3分)如图,在△ABC中,AC=BC,∠ACB=30°,AD与CE是△ABC的两条高,点F是AC的中点,连接EF.若AD=2,则EF的长为( )A.B.2C.D.4二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)分解因式:2x3﹣8x= .12.(3分)为了弘扬古诗词文化,某校举办了主题为“赏中华诗词,寻文化基因,品文学之美”的古诗词知识竞赛,进入决赛的10名学生成绩统计如下表,这10名学生决赛成绩的中位数应是 分.决赛成绩/分9896959190人数/名1224113.(3分)如图,在正五边形ABCDE中,以点A为圆心,任意长为半径作弧,分别交AB,AE于点M,N;分别以M,N为圆心,大于的长为半径作弧,两弧交于点P,作射线AP与边CD交于点F,连接AC,则∠CAF= °.14.(3分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB=60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱最高点到桥面的距离OC为 m.15.(3分)如图,在等腰三角形ABC中,AB=AC,取AC的中点E,连接BE,过点C 作BE的垂线,交BE的延长线于点D,若BD=8,DC=2,则DE的长为 .三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:.(2)解不等式组并在数轴上表示其解集.17.(6分)如图,反比例函数与一次函数y2=k2x+b(k2≠0)的图象交于A(2,3),两点.(1)求m的值及一次函数的表达式.(2)直接写出当y1>y2时,x的取值范围.18.(9分)如图,AB是⊙O的直径,过点B作⊙O的切线BC,使BC=AB.点E为BC 上一点,连接AE交⊙O于点F,连接BF,过点C作CD⊥BC,与BF的延长线交于点D.(1)判断AE与BD的数量关系,并说明理由;(2)若⊙O的半径为2,∠DBC=40°,求的长.19.(8分)为了鼓励同学们多读书、读好书,某校开展了主题为“走进图书馆•悦享书世界”的读书活动.“综合实践”小组的同学想要了解本校学生在这次活动中借阅图书的情况,于是从全校1200名学生中随机抽取200名学生,并对200名学生的图书借阅记录进行统计,形成了如下的调查报告(不完整):××中学学生借阅图书情况调查报告调查主题××中学学生借阅图书情况调查方式抽样调查调查对象××中学学生第一项各类图书借阅量统计说明:A表示科普类;B 表示文学类;C 表示艺术类;D 表示其他数据的收集、整理与描述第二项学生个人借阅量统计图书借阅量/本0123…人数/名11207230…调查结论……请根据以上调查报告,解答下列问题:(1)求被调查的200名学生在本次活动中借阅图书的总数量,并将条形统计图补充完整.(2)估计该校所有学生中,图书借阅数量为3本及以上的学生有多少名.(3)在制定方案时,小亮给出的初步方案是随机抽取200名九年级学生,并对他们的图书借阅记录进行统计.但经过小组讨论,方案被否决了.请指出该方案被否决的原因.20.(9分)在进一步发展国民经济,努力实现全体人民共同富裕的大背景下,“提高农民的收入,提升农民的幸福感”成为了某镇政府的核心任务.2023年,该镇主要的两种作物总产量如表:类别小麦大豆总产量/万公斤1440270通过统计与计算,发现小麦的亩产量是大豆亩产量的4倍,小麦的种植面积比大豆的种植面积多5000亩.(1)求小麦的种植面积.(2)为提高农民收入,镇政府决定从种植小麦的土地中,拨出一部分土地改种经济价值更高的蔬菜,要求改种蔬菜的面积不超过剩余种植小麦面积的四分之一.求改种蔬菜的土地的最大面积.21.(8分)阅读与思考请阅读下面的科普材料,并完成相应的任务.圭表是度量日影长度的一种天文仪器.古代劳动人民用正午时分圭表上日影的长短来确定一年四季,并在历书中排出了二十四个节令的日期,由此指导劳动人民的农事活动.如图1,夏至线表示夏至正午时分表的顶端落在圭上的影子的位置,夏至是全年日影最短的一天;冬至线是冬至正午时分表的顶端落在圭上的影子的位置,冬至是全年日影最长的一天.工人师傅尝试设计了一个圭表模型,图2是其截面示意图,图中OP⊥OB,点A为夏至线所在的位置,点B为冬至线所在的位置,AB=20cm,点O,A,B,P在同一竖直平面内,点O,A,B在同一直线上.据调查该地冬至正午时分的太阳高度角为30°,夏至正午时分的太阳高度角为77°.(注:太阳高度角是指对地球上的某个地点太阳光入射方向和地平面的夹角)……任务(1)填空:∠PAO= °,∠PBO= °.(2)求OP和OA的长.(3)已知该地春分正午时分的太阳高度角是53.5°,工人师傅想在图2中AB之间标出春分线的位置C,请直接写出OC的长度.(结果保留一位小数.参考数据:sin77°≈0.97,cos77°≈0.22,tan77°≈4.33,sin53.5°≈0.80,cos53.5°≈0.59,tan53.5°≈1.35,)22.(12分)综合与实践问题情境在“综合与实践”活动课上,老师给出了如图1所示的一张矩形纸片ABCD,其中AB=4,BC=3.实践探究(1)如图2,将矩形纸片ABCD沿对角线AC剪开,得到纸片△ABC与△A′DC′.将△A′DC′纸片沿AC方向平移,连接BD(BD与AC交于点O),AD,BC′,得到图3所示的图形.若BD⊥AC,解答下列问题:①请你猜想四边形ABC′D的形状,并证明.②请求出平移的距离AA′.拓展延伸(2)如图4,先将△A′DC′纸片沿AC方向进行平移,然后将△A′DC′纸片绕点A′顺时针旋转,使得A′C′∥AB,C′D恰好经过点C,求平移的距离AA′.23.(13分)综合与探究如图1,二次函数的图象与x轴交于A,B(点A在点B的左侧)两点,与y轴交于点C.直线y=﹣2x﹣2经过A,C两点,连接BC.(1)求抛物线的函数表达式.(2)在抛物线上是否存在除点C外的点D,使得∠ABD=∠ABC?若存在,请求出此时点D的坐标;若不存在,请说明理由.(3)如图2,将△AOC沿x轴正方向平移得到△A′O′C′(点A,O,C的对应点分别为A′,O′,C′),A′C′,O′C′分别交线段BC于点E,F,当△C′EF与△O′BF的面积相等时,请直接写出△A′O′C′与△BOC重叠部分的面积.2024年山西省百校联考中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分。
中考第一次模拟测试《数学卷》含答案解析
一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.22.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×10164.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.66.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a87.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9B .8C .5D .411.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-112.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax 2–ay 2=__________.14. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________15.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()232-+--+-.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x 2+119.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格: 编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm) 8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b 按照生产标准,产品等次规定如下:尺寸(单位:cm) 产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值,(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.20.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元? 22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =233373848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?23.(2019•福建)如图,四边形ABCD 内接于⊙O ,AB =AC ,AC ⊥BD ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF .(1)求证:∠BAC =2∠CAD ;(2)若AF =10,BC =45,求tan ∠BAD 的值.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2【答案】A【解析】(-3)×5=-15,故选A.2.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【答案】B【解析】科学记数法表示:250000000000000000=2.5×1017,故选B.4.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.【答案】C【解析】几何体的主视图为:,故选C.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.6.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a8【答案】B【解析】A、a6+a6=2a6,故此选项错误;B、a6×a2=a8,故此选项正确;C、a6÷a2=a4,故此选项错误;D、(a6)2=a12,故此选项错误;故选B.7.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°【答案】D【解析】∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°–48°–30°=102°.故选D.8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile【答案】D【解析】过C 作CD ⊥AB 于D 点,∴∠ACD =30°,∠BCD =45°,AC =60. 在Rt △ACD 中,cos ∠ACD =CDAC, ∴CD =AC •cos ∠ACD =603303= 在Rt △DCB 中,∵∠BCD =∠B =45°, ∴CD =BD =3∴AB =AD +BD =30+3答:此时轮船所在的B 处与灯塔P 的距离是(30+3nmile . 故选D .9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--【答案】D【解析】()226534y x x x =-+=--,即抛物线的顶点坐标为()3,4-,把点()3,4-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为()4,2-,所以平移后得到的抛物线解析式为()242y x =--.故选D .10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9 B .8C .5D .4【答案】C【解析】因为关于x 的一元一次方程2x a –2+m =4的解为x =1,可得:a –2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .11.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-1【答案】A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x >4,由②得:x >-1,不等式组的解集为:x >4,故选A . 12.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8【答案】D【分析】P 点是正方形的边上的动点,我们可以先求PE +PF 的最小值,然后根据PE +PF =9判断得出其中一边上P 点的个数,即可解决问题.【解析】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM2245EC+=CM则在线段BC存在点H到点E和点F的距离之和最小为59在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,5PE+PF≤12在点H左侧,当点P与点B重合时,BF22210FN+=BN∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=10∴PE+PF=10∴点P在BH上时,5PE+PF<10∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax2–ay2=__________.【答案】a(x+y)(x–y)【解析】ax2–ay2=a(x2–y2)=a(x+y)(x–y).故答案为:a(x+y)(x–y).15. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________【答案】827【解析】小正方体的个数为3×3×3=27个由图直接数出恰有三个面涂有红色的小正方体的个数为8个, 所以取得的小正方体恰有三个面涂有红色的概率为827,故填82715.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.【答案】150°【解析】以BP 为边作等边BPD △,连接AD ,如图,则460BD BP DP DBP BDP ===∠=∠=︒,, ∵ABC △是等边三角形,∴60AB BC ABC =∠=︒,, ∵60ABD ABP CBP ABP ∠+∠=∠+∠=︒,∴ABD CBP ∠=∠,在△ABD 与△CBF 中,AB BC ABD CBP BD BP =⎧⎪∠=∠⎨⎪=⎩,∴ABD CBP △≌△,∴3BPC BDA AD PC ∠=∠==,,在ADP △中,∵543PA PD AD ===,,, ∴222AP DP AD +=, ∴APD △是直角三角形, ∴90ADP ∠=︒,∴150ADB ADP BDP ∠=∠+∠=︒, ∴150BPC ∠=︒.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.【答案】6【解析】如图,连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF ,∵过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点, ∴A 与B 关于原点对称, ∴O 是AB 的中点, ∵BE ⊥AE , ∴OE =OA , ∴∠OAE =∠AEO , ∵AE 为∠BAC 的平分线, ∴∠BAE =∠DAE , ∴∠DAE =∠AEO , ∴AD ∥OE , ∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8, ∴S △ACE =S △AOC =12, 设点A (m ,k m), ∵AC =3DC ,DH ∥AF , ∴3DH =AF , ∴D (3m ,3k m), ∵CH ∥GD ,AG ∥DH , ∴△DHC ∽△AGD , ∴S △HDC 14=S △ADG , ∵S△AOC =S△AOF+S梯形AFHD+S△HDC1122k =+⨯(DH +AF )×FH +S △HDC114223k k m =+⨯⨯2m 112142243236k k km k m +⨯⨯⨯=++=12, ∴2k =12,∴k =6; 故答案为6.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()2-+--+-.【解析】原式=41﹣2+=1.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x +1【答案】1+2【解析】原式=(x −1)÷2221(1)(1)1x x x xx x x x -+=-⋅=--,当x +1时,1=. 19.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:按照生产标准,产品等次规定如下:注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由 (2)已知此次抽检出的优等品尺寸的中位数为9cm. (i )求a 的值,(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 【答案】(1)不合格,见解析;(2)(i )a =9.02,(ii )49.【解析】(1)不合格.因为15×80%=12,不合格的有15-12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98a=92,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种,∴抽到两种产品都是特等品的概率P=4 921.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【答案】花洒顶端C到地面的距离CE为192cm.【解析】如图,过点C作CF⊥AB于F,则∠AFC=90°,在Rt△ACF中,AC=30,∠CAF=43°,∵cos∠CAF=AF AC,∴AF =AC •cos ∠CAF =30×0.73=21.9,∴CE =BF =AB +AF =170+21.9=191.9≈192(cm). 答:花洒顶端C 到地面的距离CE 为192cm .21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱? (2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱. (2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =2848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【答案】(1)A (1,0),B (–7,0),D (–3,–23);(2)见解析;(3)①点P 的横坐标为–11或–373或–53;②这样的点P 共有3个. 【解析】(1)令233373848x x +-=0, 解得x 1=1,x 2=–7.∴A (1,0),B (–7,0). 由y =233373848x x +-=23(3)238x +-得,D (–3,–23);(2)∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴11D D COFD OF=, ∵D (–3,–23), ∴D 1D =23,OD =3,∵AC =CF ,CO ⊥AF ,∴OF =OA =1, ∴D 1F =D 1O –OF =3–1=2,∴321OC=, ∴OC 3∴CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF , ∵△CAD 绕点C 顺时针旋转得到△CFE , ∴∠ECF =∠AFC =60°,∴EC ∥BF , ∵EC =DC=6, ∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形; (3)∵点P 是抛物线上一动点, ∴设P 点(x2x x +-), ①当点P 在B 点的左侧时, ∵△PAM 与△DD 1A 相似, ∴11DD D A PM MA =或11DD D AAM PM=,41x =-=,解得:x 1=1(不合题意舍去),x 2=–11或x 1=1(不合题意舍去)x 2=–373; 当点P 在A 点的右侧时, ∵△PAM 与△DD 1A 相似,∴11DD PM AM D A =或11D APM MA DD =,∴284814x x x +=-或28481x x x -=-, 解得:x 1=1(不合题意舍去),x 2=–3(不合题意舍去)或x 1=1(不合题意舍去),x 2=–53(不合题意舍去); 当点P 在AB 之间时, ∵△PAM 与△DD 1A 相似, ∴PMAM =11DD D A 或PM MA =11D A DD ,∴28481x x x +-=-或28481x x x -=-,解得:x1=1(不合题意舍去),x2=–3(不合题意舍去)或x1=1(不合题意舍去),x2=–53;综上所述,点P的横坐标为–11或–373或–53;②由①得,这样的点P共有3个.23.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.【解析】(1)∵AB=AC,∴AB AC=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°-∠BAC)=90°-∠BAC,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=5设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==。
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)一、单选题1.-5的相反数是( ) A .15-B .15C .5D .-52.下列运算正确的是( ) A .2232a a -=B .23a a a +=C .()3328a a -=-D .623a a a ÷=3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .5.如图,AB 是O e 的直径,C 、D 是O e 上两点,CD AB ⊥,若70DAB ∠=︒,则BOC ∠=( )A .70︒B .130︒C .140︒D .160︒6.分式方程12x x 3=+的解是【 】 A .x=﹣2 B .x=1 C .x=2 D .x=37.如图,在ABC V 中,70CAB ∠=︒,将ABC V 绕点A 旋转到AB C ''△的位置,点B 和点B '是对应顶点,点C 和点C '是对应顶点,若CC AB '∥,则BAB ∠'的度数为( )A .30︒B .35︒C .40︒D .50︒8.一个不透明的袋子中装有5个小球,其中3个红球,2个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( ) A .16B .15C .25D .359.如图,已知AB CD EF ∥∥,:3:5AD AF =,12BE =,那么CE 的长等于( )A .365B .245C .152 D .9210.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,数据2 500 000用科学记数法表示为.12.如图,在小孔成像问题中,小孔 O 到物体AB 的距离是60 cm ,小孔O 到像CD 的距离是30 cm ,若物体AB 的长为16 cm ,则像 CD 的长是 cm.13. 14.把多项式22ma mb -分解因式的结果是. 15.函数294y x =-的顶点坐标是. 16.不等式组2841+2x x x ⎧⎨-⎩<>的解集是.17.如图,随机闭合开关123S S S ,,中的两个,能够让灯泡发亮的概率是.18.正方形ABCD 的边长为8,E 为BC 边上一点,BE =6,M 为AE 上一点,射线BM 交正方形一边于点F ,且BF =AE ,则BM 的长为.19.半径为4 cm ,圆心角为60°的扇形的面积为cm 2.20.如图,在ABC V 中,D 为ABC V 内的一点,且=90BDC ∠︒,且A B D C D E ∠=∠,若点E 为AC 的中点,3,8DE AB ==,则BC 的长.三、解答题21.先化简,再求代数式()211x x x x -⎛⎫-÷- ⎪⎝⎭的值,其中2cos451x ︒=+22.如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .23.近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数; (3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.24.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m 的视力表,但两面墙的距离只有3m .在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙. 图例(1)甲生的方案中如果大视力表中“E ”的高是3.5cm ,那么小视力表中相应“E ”的高是多少? (2)乙生的方案中如果视力表的全长为0.8m ,请计算出镜长至少为多少米.25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元. (1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?26.已知四边形ABCD 内接于O e ,AB 是O e 的直径»»CDBC ,连接OC .(1)如图1,求证AD OC ∥;(2)如图2,连接BD ,过点C 作CH AB ⊥,垂足为H ,CH 交BD 于点E ,求证:CE BE =; (3)如图3,在(2)的条件下,连接AC ,过O 作OF BC ∥,交AC 于点F ,连接DF 并延长交O e 于点G ,若45ADG ∠=︒,FG EH 的长.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线235y ax ax =--与x 轴交于点A ,点B ,与y 轴交于点C ,点A 坐标为()2,0-(1)求抛物线解析式;(2)点P 为抛物线上一点,连接PA 交y 轴于点D ,设P 的横坐标为,t CD 的长为d ,求d 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)当7d =时,过点A 作AG PA ⊥交抛物线于点G ,连接PG ,点E F 、分别是PAG △的边AP GP 、上的动点,且PE GF =,连接AF GE 、,设AF GE m +=,求m 的最小值,并直接写出当m 有最小值时EGP ∠的正切值.。
2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)
2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。
2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷
浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
中考第一次模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 84×10-5B. 8.4×10-6C. 84×10-7D. 8.4×1062.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a23.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个5.估计51的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A.4433π+ B.8433π+ C.4233π+ D. 23π+8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是( )A. 58B. 74C. 92D. 1129.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.1 3 D. -1310.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=1010,且CE:CF=4:3,那么该矩形的周长为()A. 48B. 64C. 92D. 9611.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C 的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,si n63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.112.如果关于x的分式方程2322m xx x+=--的解为非负数,且关于x的不等式组22{342(1)x mx x-≥+>+无解,则所有符合条件的整数m的个数为()A. 6B. 5C.4 D. 3二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2312743-⎛⎫--+ ⎪⎝⎭=________14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是17.甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发两小时,甲车到达B地后立即调头,并保持原速度与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(干米),甲车行驶的时间为x小时,y与x之间的函数图象如图所示,则当甲车重返A地时,乙车距离C地________千米.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++20.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 01570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y的几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出数量就比原来一周卖出的数量增加了 52m%,这样一天的利润达到了20000元,求m 的值.24.如图,平行四边形ABCD 中,CG ⊥AB 于点G ,∠ABF=45°,F 在CD 上,BF 交CD 于点E ,连接AE ,AE ⊥AD .(1)若BG=1,BC=10,求EF 的长度; (2)求证:CE+2BE=AB .25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数” (1)反比例函数2019y x=是闭区间[1,2019]上 “闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的”闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的”闭函数”,求此函数的解析式(用含m ,n 的代数式表示).四、解答题:(本大题1个小题,共8分),26.如图1,在平面直角坐标系xoy 中,二次函数23333y x =-x 轴的交点为A ,B ,顶点为C ,点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,连接BC 的直线交直线l 于K 点.(1)问:在四边形ABKD内部是否存在点P,使它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(2)若M,N分别为直线AD和直线l上的两个动点,连结DN,NM,MK,如图2,求DN+NM+MK和的最小值.答案与解析一、选择题:本大题12个小题,每小题4分,共48分..1.清代·袁牧的一首诗《苔》中的诗句:”白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A. 8.4×10-5B. 8.4×10-6C. 84×10-7D. 8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是()A. 2a+3b=5abB. a2·a4=a8C. (-2a2b)3=-8a6b3D. a6÷a3+a2=2a2【答案】C【解析】【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项的法则进行计算即可.【详解】A.2a与3b不是同类项,不能合并,故选项A错误;B.根据同底数幂的乘法法则得:a2·a4=a2+4=a6,故B错误;C.根据积的乘方的法则得:(-2a2b)3=-8a6b3,故C正确;D.a6÷a3+a2=a3+a2,a3和a2不是同类项,所以不能合并,故D错误.故选C.【点睛】本题考查了同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项,熟记法则是解题的关键.3.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是( )A. 50°B. 60°C. 65°D. 70°【答案】A【解析】【分析】由平行线性质得∠ACD=∠1=65°.由等腰三角形性质得∠DAC=∠ACD,再根据三角形内角和性质得到结果. 【详解】∵AB∥CD,∴∠ACD=∠1=65°.∵AD=CD,∴∠DAC=∠ACD=65°,∴∠2=180°﹣∠DAC﹣∠ACD=180°﹣65°﹣65°=50°.故选:A【点睛】本题考核知识点:平行线性质,等腰三角形性质.解题关键点:熟记平行线性质,等腰三角形性质.4.下列图案,既是轴对称图形又是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】第一个既是轴对称图形,又是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个既是轴对称图形,又是中心对称图形;第四个既是轴对称图形,又是中心对称图形.综上所述:既是轴对称图形又是中心对称图形的共有3个,故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.估计1的值应在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】【分析】因为2.22=4.84,2.32=5.29,所以4<5,推出3<<4,由此即可解决问题.【详解】∵2.22=4.84,2.32=5.29,∴4<5,∴3<<4.故选B.【点睛】本题考查估算无理数的大小,解题的关键是学会利用逼近法解决问题.6.我国古代数学著作《增删算法统综》记载”绳索量竿”问题:”一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿子长5尺;如果将绳索对半折后去量竿,就比竿子短5尺.设绳索长为x尺,竿长为y尺,则符合题意的方程组是()A.5{152x yx y=-=+B.5{25x yx y=+=-C.5152x yx y=+⎧⎪⎨=-⎪⎩D.5{25x yx y=-=+【答案】C 【解析】【分析】设索长为x 尺,竿子长为y 尺,根据”索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设绳索长为x 尺,竿长为y 尺.根据题意,得 5152x y x y =+⎧⎪⎨=-⎪⎩ 故选C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在AC 上,则阴影部分的面积为( )A. 4433π+B. 8433π+C. 4233π+D. 23π+【答案】A【解析】【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S 阴影=S 扇形ADE -S 弓形AD =S 扇形ABC -S 弓形AD ,进而得出答案.【详解】连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=2,BN=23,S阴影=S扇形ADE-S弓形AD=S扇形ABC-S弓形AD=229046041423 3603602ππ⎛⎫⋅⨯⋅⨯--⨯⨯⎪⎝⎭=443 3π+故选A.【点睛】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.8.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第9个图形的小圆个数是()A. 58B. 74C.92 D. 112【答案】C【解析】【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第8个图形的小圆个数为2+9×10=92,由此得出答案即可.【详解】通过观察图形可知:每个图形中,最上端和最下端各有一个小圆,是不变的.然后我们可以得出序号n 与图中小圆的个数有如下规律:序号 小圆个数1 1×2+22 2×3+23 3×4+24 4×5+2… …n n (n+1)+2∴第9个图形中小圆的个数为9×(9+1)+2=92.故选C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A. -3B. 3C.13 D. - 13【答案】A【解析】【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°=3a ∴点A 的坐标是(3a ,a )同理可得 点B 的坐标是(3a ,-3a )∴k 1=3a×a=3a 2 , k 2=3a×(-3a )=-33a∴213333k a k a-==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处.已知折痕AE=1010,且CE :CF=4:3,那么该矩形的周长为( )A. 48B. 64C. 92D. 96【答案】D【解析】【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴AB BF CF CE=,∴934k BFk k=,∴BF=12k,∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或-2(舍弃),∴矩形的周长=48k=96,故选D.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.11.如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为()米(计算结果精DE 确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)A. 157.1B. 157.4C.257.4 D. 257.1【答案】D【解析】【分析】 如图作DH ⊥AB 于H ,延长DE 交BC 于F .则四边形DHBF 是矩形,在Rt △ADH 中求出DH ,再在Rt △EFB 中求出EF ,在Rt △EFC 中求出CF 即可解决问题【详解】如图作DH ⊥AB 于H ,延长DE 交BC 于F .在Rt △ADH 中,∵AD=260,DH :AH=1:2.4,∴DH=100(m ),∵四边形DHBF 是矩形,∴BF=DH=100,在Rt △EFB 中,tan63°=BF EF , ∴EF=63BF tan, 在Rt △EFC 中,FC=EF•tan72°, ∴CF=1001.96×3.08≈157.1, ∴BC=BF+CF=257.1(m ).故选D .【点睛】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.如果关于x 的分式方程2322m x x x+=--的解为非负数,且关于x 的不等式组22{342(1)x m x x -≥+>+无解,则所有符合条件的整数m 的个数为( )A. 6B. 5C.4 D. 3【答案】A【解析】【分析】 解不等式组和分式方程得出关于x 的范围及x 的值,根据不等式组有且仅有三个整数解和分式方程的解为非负数得出m 的范围,继而可得整数m 的个数.【详解】解关于x 的分式方程2322m x x x +=--, 解得m 3x 2-+=, ∵关于x 的分式方程2322m x x x +=--的解为非负数, ∴m 32-+≥0, ∴m≤3; 解不等式223x m -≥,得:x≥2m+6, 解不等式()421x x +>+,得:x <2, ∴不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩的解集为2m+6≤x <2,∵关于x 的不等式组()223421x m x x -⎧≥⎪⎨⎪+>+⎩无解,∴2m+6≥2,解得m≥-2,∴--2≤m≤3,∴所有符合条件的整数m有:-2、-1、0、1、2、3共6个.故选A.【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m的范围是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:2143-⎛⎫-+ ⎪⎝⎭=________.【答案】2【解析】【分析】根据实数的运算法则和运算顺序计算即可.【详解】原式=-3-4+32=2.故答案为:2.【点睛】此题考查了实数的运算,平方根、绝对值以及负整数指数幂,熟练掌握各自的性质是解本题的关键.14.已知x-2y=4,xy=4,则代数式5xy-3x+6y的值为________.【答案】8【解析】【分析】利用因式分解将原式变形为含有xy、x-2y的因式,然后把x-2y=4,xy=4代入求值即可【详解】5xy-3x+6y=5xy-3(x-2y)=5×4-3×4=8.故答案为:8.【点睛】本题考查了求代数式的值.能够利用因式分解将原式变形为含有xy、x-2y的因式是解本题的关键.15.如图,已知⊙O的半径为4,OA⊥BC,∠CDA=22.5°,则弦BC的长为________.【答案】42【解析】【分析】连接CO,∠CDA=22.5°,由圆周角定理知∠EOC=45°,又因为OA⊥BC,OC=4,由锐角三角函数知CE=4×22=22,所以BC=42.【详解】如图,设OA与BC交于点E,连接OC∵∠CDA=22.5°∴∠COA=2∠CDA=45°又∵ OA⊥BC∴ BC=2BE,弧AB=弧AC∴∠AOB= ∠COA=45°∴2∴2故答案为:2.【点睛】本题主要考查了垂径定理,圆周角定理,连接OC运用垂径定理,特殊角的三角函数是解答此题的关键.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或者向右转,如果这三种情况的可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向右转的概率是 【答案】727【解析】 略17.甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发两小时,甲车到达B 地后立即调头,并保持原速度与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (干米),甲车行驶的时间为x 小时,y 与x 之间的函数图象如图所示,则当甲车重返A 地时,乙车距离C 地________千米.【答案】120 【解析】 【分析】根据题意和函数图象可以求得甲乙两车的速度,然后根据题意和函数图象即可求得甲重返A 地时,乙车距离C 地的距离,本题得以解决.【详解】设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,()(52)300{(52)(75)a b b a-⨯+--==,得60{40a b ==,∴A 、B 两地的距离为:60×7=420千米, 设甲车从B 地到C 地用的时间为t 小时, 60t=40t+40×(7-2), 解得,t=10,∴当甲重返A 地时,乙车距离C 地:60×10-40×(7-2)-40×(420÷60)=120千米, 故答案为:120.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值为________.【答案】2132【解析】【分析】过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,根据HL证明Rt△BAF≌Rt△EMG,可得∠ABF=∠MEG,所以再证明∠EPF=90°,由直角三角形斜边上的中线等于斜边的一半可得OI=12BE,由OD-OI≤DI,当O、D、I共线时,DI有最小值,即可求DI的最小值.【详解】如图,过点E作EM⊥CD于点M,取BE的中点O,连接OI、OD,∵四边形ABCD是正方形,∴AB=AD,∠A=∠D=∠DME=90°,AB∥CD,∴四边形ADME是矩形,∴EM=AD=AB,∵BF=EG,∴Rt△BAF≌Rt△EMG(HL),∴∠ABF=∠MEG,∠AFB=∠EGM,∴∠MGE=∠BEG=∠AFB ∵∠ABF+∠AFB=90°∴∠ABF+∠BEG=90°∴∠EIF=90°,∴BF⊥EG;∵△EIB是直角三角形,∴OI=12 BE,∵AB=6,AE=2,∴BE=6-2=4,OB=OE=2,∵OD-OI≤DI,∴当O、D、I共线时,DI有最小值,∵IO=12BE=2,∴∴,即DI的最小值为,故答案为:【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,三角形的三边关系,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点,在几何证明中常利用三角形的三边关系解决线段的最值问题.三、解答题:(本大题7个小题,每小题10分,共70分)19.计算:(1)(2a+b)(2a-b)-(2a+b)2+4ab(2)22412316 81644 x x xx x x x--÷+++++【答案】(1)-2b2;(2)4. 【解析】(1)根据整式的运算法则即可求出答案. (2)根据分式的运算法则即可求出答案.【详解】(1)原式22224444a b a ab b ab =----+22b =-;(2)原式24(3)416(4)34x x x x x x -+=⨯++-+4164(4)444x x x x x +=+=+++, =4.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证: (1)∠AEC=∠BED ; (2)AC=BD .【答案】见解析 【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可; (2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可. 证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC, ∵CE=DE, ∴∠ECD=∠EDC, ∴∠AEC=∠BED ; (2)∵E 是AB 的中点, ∴AE=BE,在△AEC和△BED中,AE=BE,∠AEC=∠BED,EC=ED,∴△AEC≌△BED(SAS),∴AC=BD.21.中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的”汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)分数段频数(人) 频率50≤x<6010 0.0560≤x<7030 0.1570≤x<8040 0.280≤x<90m 0.3590≤x<10050 n频数分布直方图根据所给的信息,回答下列问题:(1)m=________;n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为”优”等,请你估计该校参加本次比赛的2000名学生中成绩是”优”等的约有多少人?【答案】(1)70;0.25;(2)补图见解析;(3)80≤x<90;(4)500人【解析】【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第五组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数2000乘以”优”等学生的所占的频率即可.【详解】(1)样本容量为10÷0.05=200,则m=200×0.35=70,n=50÷200=0.25;(2)补全直方图如下:(3)这 200 名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的 2000 名学生中成绩是”优”等的约有:2000×0.25=500(人).【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.22.某”兴趣小组”根据学习函数的经验,对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.(1)函数y=x+1x的自变量取值范围是________;(2)下表是x与y几组对应值:x …-3 -2 -1 - 12-1414121 2 3 …y …- 103-52-2 -52-17417452252m …则表中m的值为________;(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出(4)观察函数图象:写出该函数的一条性质(5)进一步探究发现:函数y=x+1x图象与直线y=-2只有一交点,所以方程x+1x=-2只有1个实数根,若方程x+1x=k(x<0)有两个不相等的实数根,则k的取值范围是________.【答案】(1)x≠0;(2)m=103;(3)见解析;(4)见解析;(5)k<-2.【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式,从而求出自变量x的取值范围;(2)根据表中数据的规律可得m的值;(3)根据表中数据,先描点,再连线即可得这部分的函数图象;(4)观察表中数据和函数图象的特征,写出其中一条性质即可.(5)从图象上可以看出,当x<0时,在直线y=-2的下方,函数y=x+ 1x图象与直线y=k有两个交点,即方程x+1x=k(x<0)有两个不相等的实数根,故可得k的取值范围.【详解】(1)根据分式有意义的条件是分母不等于零得,x≠0(2)当x=3时,y=x+1x=103.∴m=10 3(3)如图:(4)(答案不唯一)该函数无最大值,也无最小值;函数图象关于原点对称;当x<-1时,y随x增大而增大;⋯(5)∵x+1x=k(x<0)有两个不相等实数根,∴k<-2.故答案为:k<-2.【点睛】本题考查了反比例函数的性质、反比例函数的图象、正比例函数的性质以及正比例函数图象,解题的关键是:(1)由x在分母上找出x≠0;(2)代入x=3求出m的值;(3)连点成线,画出函数图象;(4)观察函数图象找出函数性质;(5)观察函数图象找出k的取值范围.23.每年的3月15日是”国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为600元,在标价1000元的基础上打8折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了52m%,这样一天的利润达到了20000元,求m的值.【答案】(1)最多降价80元, 才能使利润率不低于20%;(2)60.【解析】【分析】(1)设降价x元,则实际售价为”标价×折扣数-x”,然后根据题意列出不等式,解得x的取值范围,然后求出x的最大值即可;(2)设m%=a(则m=100a),分别表示出降价后一件商品的利润和销售数量,然后利用”一件利润×销售数量=总利润”列出方程,解方程得m的值即可.【详解】(1)设降价x元,依题意,得:(1000×0.8-x)≥600×(1+20%),解得:x≤80.答:最多降价80元,才能使利润率不低于20%.(2)设m%=a,依题意,得:[1000(1+2a)-2400a-600]•50(1+52a)=20000,整理,得:5a2-3a=0,解得:a1=0(舍去),a2=35,∴m%=35,∴m=60.答:m的值为60.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,,求EF的长度;(2)求证:.【答案】()1EF 22=()2证明见解析. 【解析】 【分析】(1)根据勾股定理得到22BG CG +,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB ∥CD ,于是得到结论;(2)延长AE 交BC 于H ,根据平行四边形的性质得到BC ∥AD ,根据平行线的性质得到∠AHB=∠HAD ,推出∠GAE=∠GCB ,根据全等三角形的性质得到AG=CG ,于是得到结论. 详解】()1CG AB ⊥,AGC CGB 90∠∠∴==,BG 1=,BC 10= 22CG BG CG 3∴+=,ABF 45∠=, BG EG 1∴==,CE 2∴=,四边形ABCD 是平行四边形,AB//CD ∴,GCD BGC 90∠∠∴==,EFG GBE 45∠∠==,CF CE 2∴==, EF 2CE 22∴==()2如图,延长AE 交BC 于H ,四边形ABCD 是平行四边形,BC //AD ∴,AHB HAD ∠∠∴=,AE AD ⊥,AHB HAD 90∠∠∴==,BAH ABH BCG CBG 90∠∠∠∠∴+=+=,GAE GCB ∠∠∴=,在BCG 与EAG 中,90AGE CGB GAE GCB GE BG ⎧∠=∠=⎪∠=∠⎨⎪=⎩, BCG ∴≌()EAG AAS ,AG CG ∴=,AB BG AG CE EG BG ∴=+=++,2BG EG ==, CE 2BE AB ∴+=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题关键.25.设a ,b 是任意两个不等实数,我们规定满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数闭区间[m ,n ]上的”闭函数”.如函数y =﹣x +4.当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =﹣x +4是闭区间[1,3]上的”闭函数”。
2023中考数学综合模拟习题一(含答案)
2023中考数学综合模拟习题一一.选择题(共12小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形2.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a23.下列实数中,最小的数是()A.B.0C.1D.4.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大5.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°5题图6题图6.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<37.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,18.已知=3,则代数式的值是()A.B.C.D.9.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个11.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:211题图12题图12.如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二.填空题(共6小题)13.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.一个多边形的每一个外角都是18°,这个多边形的边数为.15.已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.16.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠F AE=19°,则∠C=度.16题图17题图17.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当P A+PB最小时,P点的坐标为.18.已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三.解答题(共7题)19.(1)计算:﹣(1﹣)0+sin45°+()﹣1(2)先化简,再求值:÷(﹣),其中a=+2.20.某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.22.某销售商准备在某市采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).23.如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.25.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案二.填空题第13题:12第14题:20 第15题:443第16题:24 第17题:(125,0)第18题:2三.解答题第19题:(1)原式=3√2 2(2)化简,可得,原式=a+2a−2,当a=+2时,原式=1+2√2第20题:(1)①48 ②0.73 ③(画图略)(2)750(3)12第21题:(1) 一次函数的解析式为y =−23x +2反比例函效的解析式为y =−12x(2)E 点坐标为(0,258)或(0,5)或(0,−5)第22题:(1) 解:设一件B 型丝绸的进价为x 元,则一件A 型丝绸的进价为(x+100)元,根据题意,可得,10000x +100=8000x解得,x =400经检验:x =400是原方程的解,且符合题意。
成都市初三中考数学模拟试题(1)
初三数学辅导中考数学模拟试题(1)一、选择题(每小题3分,共30分)1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.2210x x ++=D.220x x -++=2、给出下列命题:其中,真命题的个数是( )(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形; (3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. A.4 B.3 C.2 D.1 3、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =-A .①②B .②③C .②④D .①③4、在△ABC 中,90C ∠= ,若4BC =,2sin 3A =,则AC 的长是( )A.6B.25C.35D.2135、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 6、如图,EF 是圆O 的直径,5cm OE =,弦8cm M N =,则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm7、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( )A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0)8、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的FOK M G EHN (第6题图)图象大致为( )y y y二、填空题:1、如图,有一块边长为4的正方形塑料摸板A B C D ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 . 2、在Rt △ABC 中,90C ∠=,D 为B C 上一点,30DAC ∠= ,2B D =,23AB =,则A C 的长是.三、解答下列各题:1、城市规划期间,欲拆除一电线杆AB (如图所示),已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度2:1i =,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30.D ,E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域).(3 1.732≈,2 1.414≈)OOA .OB. OC.OyxD .ADCB( 第2题图)2、如图,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A .(1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且O B A B =,求这个一次函数的解析式.一、填空题:1.已知22222()()60a b a b +-+-=, 则=+22b a ______.22、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N ,交CB的延长线于点P ,若MN =1,PN =3,则DM 的长为 。
九年级数学中考模拟1
12a bc九年级数学练习一、选择题1、冬季的一天室内温度是8℃,室外温度是-2℃,则室内外温度的差是( )A .4℃B .6℃C .10℃D .16℃ 2、小马虎在下面的计算中只做对了一道题,他做对的题目是 ( )A .(a —b )2=a 2—b 2;B .(—2a 3)2=4a 6C .a 3+a 2=2a 5D .— (a —1)= —a —1 3、如图,直线c 与直线a 、b 相交,且a ∥b ,若∠1=550,则∠2的度数是( ) A .35B .45C .55D .654、用两块边长为a 的等边三角形纸片拼成的四边形是( )A .等腰梯形B .正方形C .矩形D .菱形5、剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示 (先将纸折叠,然后再剪,展开后即得到图案):下列四副图案,不能用上述方法剪出的是( )6、关于x 的一元二次方程01)1(22=-++-a ax x a 的一个根是0,则a 值为( ) A .1 B. 0 C. -1 D. ±17、数学老师布置10道选择题作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图4),根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为( )A .8,8B .8,9C .9,9 图4D .9,8图48、若反比例函数y x=-1的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C .-12 D .21DHGFCBAAB C D9、如图,顺次连结四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为菱形,应添加的条件是( ). A .AB ∥DC B . AB =DCC .AC ⊥BD D . AC =BD10、如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C. 若CE=2,则图中阴影部分的面积是( ). A .34π—3 B .32π C .32π—3 D .31π二、填空题11、•温总理在全国人大会议上谈到解决关于“三农”问题时说,中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为_________万元. 12、 函数y x =-34中,自变量x 取值范围是_____________. 13、因式分解:=-a a 43.14、如果一个立体图形的主视图为矩形,这个立体图形可能是________(•只需填上一个立体图形).15、用两块大小相同的等腰直角三角形纸片(如右图)做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形是 .(只填序号)16、如图,坐标系中,四边形OABC 与CDEF 都是正方形,OA=2,M 、D 分别是AB 、BC 的中点,•当把正方形CDEF 绕点C 旋转某个角度或沿y 轴上下平移后,如果点F 的对应点为F•′,且O F•′=OM .•则点F•′的坐标是_______________.三、解答题:17.(1) 计算:10452(3.14)π--+- ; (2)解不等式组⎪⎩⎪⎨⎧->+-≤-1312)2(34x x x18.解方程:11322xx x-+=--19.如图所示,请你用三种方法,把左边的小正方形分别平移到右边三个图形中,使各个图E形成为轴对称图形,并分别画出其对称轴所在的位置.20. 如图:在⊿ABC 中,以AB 为直径⊙O 交BC 于点D ,连结AD. (1)请你添加一个条件,使⊿ABD ≌⊿ACD ,并证明; 你加的条件是(2)在(1)的基础上,过点D 作DE ⊥AC ,垂足为E ,此时,判断DE 是否为⊙O 的切线,并证明.21.一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y (千米)与轮船出发时间x (小时)之间的函数关系式,结合图象解答下列问题: (顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度﹣水流速度)(1)甲、乙两港口的距离是 ________千米;快艇在静水中的速度是 ________千米/时; (2)求轮船返回时的解析式,写出自变量取值范围;(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)方法三方法二方法一22.如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC 的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)。
初三数学中考模拟题1
数学模拟检测项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.下列运算正确的是( )A . 325()a a =B .325a a a +=C .32()a a a a -÷=D . 331a a ÷=2.如果代数式21-x 有意义,则x 的取值范围是( ).A. 2≠xB. 2≥xC. 2>xD. 2->x3.已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )A .外离B .内切C .相交D .外切4.现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是( )图1图2A. B C D5. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15︒B .34︒C .29︒D .28︒6.如图,反比例函数11k y x=和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( )A. 10x -<<B. 11x -<<C. 1x <-或01x <<D. 10x -<<或1x >7.如图,A 、B 两点被池塘隔开,在AB 外任选一点C ,连结AC 、BC 分别取其三等分点M 、N (CM <AM ,CN <BN ),量得 MN =38m .则AB 的长是( ).A.152mB.114mC.76mD.104m 8.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD 的面积为( )A .33cm2B .6 cm 2C .36cm2D .12 cm 29.如图,如果甲、乙两图关于点O 成中心对称,则乙图中不符合题意的一块是( )10.在学校对学生进行的晨检体温测试中,学生甲连续10天的体温与36℃的上下波动数据为0.2、0.3、0.1、0.1、0、0.2、0.1、0.1、0、0.1,则在这10天中该学生的体温波动数据中不正确...的是( ). A.中位数是0.1 B.众数是0.1 C.平均数是0.12 D.方差是0.0211.根据下列表格的对应值:判断方程02=++cbx ax(a≠,a ,b ,c 为常数)一个解x 的范围是( ).A.3.24<x <3.25 B.3.23<x <3.24 C.3<x <3.23 D.3.25<x <3.26 12、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,第7题图A CB D (第8题图)那么下面的图象与上述诗的含义大致吻合的是( )第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共5小题,共15分,只要求填写最后结果,每小题填对得3分.)13.分解因式:a 2-b 2-2a+2b= .14. 有一张厚度是0.1mm 的纸,如果将它对折一次后,厚度为2×0.1mm ,对折两次后,厚度为22×0.1mm ,对折20次后,厚度为 米(精确到0.1)15. 请写出一个解为x =2的一元一次方程:__________________.16. 如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E,若M 、N 分别是AD 、BC 边的中点,则A ′N= ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N= (用含有n 的式子表示)17. 用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多__ ___枚棋子.三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分6分)我市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等级.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.19.(本题满分10分)如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F . (1)求证:BF AD CF =+;(2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长.A.B.C.D.各类学生人数比例统计图各类学生成绩人数比例统计表)(11y x 第20题图20、(本题满分10分)去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准。
2024年湖北省武汉二中广雅中学年中考数学模拟试题(一)
九年级(下)数学中考模拟(一)一、选择题(共10小题,每小题3分,共30分)1.-2024的绝对值是( )A.2024B.-2024C.-12024D.120242.下列几何图形中,是轴对称图形但不是中心对称图形是( )3.“三次投掷一枚硬币,三次都正朝上”这一事件是( )A.必然事件B.随机事件C.不可能事件D.确定性事件4.如图所示几何体的左视图是( )5.下列运算正确的是( )A.(−3aa)3=−9aa3B.(aa3)2=aa5C.(aaaa)5=aa5aa5D.aa6÷aa3=aa26.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心0的光线相交于点P,点F为焦点.若∠1=152°,∠3=50°,则∠2的度数为( )A.18°B.22°C.28°D.32°7.将分别标有“大”“美”“武”“汉”汉字的四张卡片装在一个不透明的盒子中,这些卡片除汉字外无其他差别,随机抽出两张,抽出的卡片上的汉字能组成“武汉”的概率是( )A.18B.16C.14D.128.某学习小组在网上获取了声音空气中的传播速度和空气温度之间的关系的一些数据如表,下列说法中错误的是( )温度(℃)-20 -10 0 10 20 30声速(m/s) 318 324 330 336 342 348A.温度每降低10℃,声减少6m/sB.若想让声速为355m/s,则温度应为40℃C.当温度升高到33摄氏度时,声速为349.8m/sD.在这个变化过程中,自变量是温度,声速是温度的函数9.如图,在边长为12的等边△ABC中,点E在边AC上自A向C运动,点F在边CB上自C向B运动,且运动速度相同,连接BE,AF交于点P,连接CP,在运动过程,点P的运动路径长为( )A.92ππB.4√3−34ππC.8√3−32ππD.8√33ππ9题图 10题图10.利用几何画板探究函数y=a(x−b)|x−c|图象,输入一组a,b,c的值之后,得到了如图所示的函数图象,根据学习函数的经验:可以判断,小雨输入的参数值满足( )A.a>0,b>0,c=0B.a<0,b>0,c=0C.a>0,b=0,c=0D.a<0,b=0,c>0二、填空题(共6小题)11.五一假期,武汉东湖风景区人气指数登上全国第八位,据统计约有161万名游客畅游东湖,其中数据161万用科学记数法表示为名.12.在每一个象限内,反比例函数y=k x(k≠0)随x的增大而增大,则k的值可以是 (填写一个即可)13.计算:2mm mm2−4−1mm−214.图1是一种折叠式晾衣架。
2023年湖南省长沙市中考数学模拟试卷(一)及答案解析
2023年湖南省长沙市中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.(3分)﹣2023的倒数是()A.2023B.﹣2023C.D.2.(3分)下列立体图形中,三视图都一样的是()A.B.C.D.3.(3分)为起草党的二十大报告,党中央开展了深入的调查研究,有关部门组织了党的二十大相关工作网络征求意见活动,收到留言约8542000条.数据8542000用科学记数法表示为()A.854.2×104B.8.542×106C.85.24×106D.0.8542×107 4.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=4a2D.5a2÷a2=5a 5.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是75 7.(3分)我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.8.(3分)如图,把一个直角三角尺的直角顶点放在直尺的一边上.若∠1=56°,则∠2的度数为()A.14°B.28°C.30°D.34°9.(3分)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=30°,AB=12,则BD的长为()A.6B.C.10D.10.(3分)如图,在△ABC中,∠BAC=90°,以点A为圆心、AC长为半径作弧交BC于点D,再分别以点C,D为圆心、大于的长为半径作弧,两弧交于点F,作射线AF 交BC于点E.若AC=6,AB=8,连接AD,则△ABD的面积为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)若代数式有意义,则x的取值范围是.12.(3分)当x=时,分式的值等于.13.(3分)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为m.14.(3分)如果关于x的方程x2﹣6x+k=0有两个相等的实数根,那么实数k的值为.15.(3分)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉50只雀鸟,给它们做上标记后放回山林;一段时间后,再从山林中随机捕捉100只,其中有标记的雀鸟有2只.请你帮助工作人员估计这片山林中雀鸟的数量为只.16.(3分)有四张卡片,每张卡片上分别写了一个代数式:①a2+2ab+b2;②﹣x2+6x﹣10;③;④2a3b﹣5ab+3.甲、乙、丙、丁四位同学每人拿到一张卡片并作如下描述:甲:我拿到的是个四次三项式;乙:不管字母取何值,我拿到的这个式子的值总是负数;丙:我拿到的式子的值为整数时,字母有6个不同的值;丁:我拿到的式子可以写成一个整式的平方.请问甲、乙、丙、丁对应的卡片序号分别是.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)先化简,再求值:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy,其中x=2,y=﹣1.19.(6分)如图,AB,CD为两栋建筑物,两建筑物底部之间的水平距离BD的长度为18m,从建筑物AB的顶部A点测得建筑物CD的顶部C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求建筑物AB的高度;(2)求建筑物CD的高度(结果保留根号).20.(8分)我市某校准备成立四个活动小组:A.声乐,B.体育.c.舞蹈,D.书画.为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如图所示两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的m值是.(2)请补全条形统计图.(3)喜爱“书画”的学生中有2名男生和2名女生表现特别优秀,现从这4人中随机选取2人参加比赛,请用列表或叫树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.(8分)如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.(1)求证:四边形ABCD是平行四边形;(2)若AC=BD=10,AD=6,求四边形ABCD的面积.22.(9分)如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE并延长,分别交AC,AB于点F,G.(1)求证:△ABC≌△DCE;(2)若BD=12,AB=8,求BC的长度.23.(9分)近年来,湖南省积极推进农村危房改造工作,帮助农村地区脱贫攻坚.某地区2022年共完成危房改造1.2万户,地方财政拨款6000万元用于补贴危房改造,加上国家专项拨款后,危房改造户每户可获得补贴12000元,已知地方财政和国家专项拨款按一定标准补贴到每户.(1)判断:正确的打“√”,错误的打“×”.①国家专项拨款标准为每户5000元.;②2022年该地区用于危房改造的国家专项拨款共8400万元.;(2)预计2023年该地区用于危房改造的地方财政拨款可增加20%,国家专项拨款增加10%,如果每户补贴金额不变,2023年该地区最多能完成危房改造多少万户?24.(10分)定义:有一个内角等于另外两个内角之和的四边形称为“和谐四边形”.(1)已知∠A=100°,∠B=60°,∠C=α,请直接写出一个α的值,使四边形ABCD为“和谐四边形”.(2)如图1,在△ABC中,D,E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE为“和谐四边形”.(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于点F,与边BC 交于点G,连接FG,EG是⊙O的直径.①求证:BF=FC;②若AE=1,,∠BGF﹣∠B=45°,求“和谐四边形”DBCE的面积.25.(10分)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(3,﹣2).(1)请直接写出A,B两点的坐标及直线l的函数解析式;(2)若点P是抛物线上的点,点P的横坐标为m,过点P作直线PM⊥x轴,垂足为M,PM与直线l交于点N,当P,M,N其中一点是另外两点所连线段的中点时,求点P的坐标;(3)若点Q是对称轴上的点,且△ADQ为直角三角形,求点Q的坐标.2023年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.【分析】根据倒数的定义解答即可.【解答】解:﹣2023的倒数是﹣.故选:D.【点评】此题考查的是倒数的定义,乘积是1的两数互为倒数.2.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】解:A、圆柱的主视图和左视图是矩形,俯视图是圆,故本选项不合题意;B、圆锥的主视图和左视图是三角形,俯视图是带有圆心的圆,故本选项不合题意;C、球的三视图都是圆,故本选项符合题意;D、三棱柱的主视图和俯视图是矩形,左视图是三角形,故本选项不合题意.故选:C.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.3.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解答】解:8542000用科学记数法表示为8.542×106.故选:B.【点评】本题考查科学记数法—表示较大的数,关键是掌握用科学记数法表示数的方法.4.【分析】根据同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法,逐项判断即可.【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵(2a)2=4a2,∴选项C符合题意;∵5a2÷a2=5,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的乘法的运算方法,幂的乘方与积的乘方的运算方法,以及整式的除法的运算方法:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.5.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.【分析】根据众数,方差、平均数,中位数的概念逐项分析即可.【解答】解:A、80出现的次数最多,所以众数是80,正确,不符合题意;B、方差是:×[3×(80﹣80)2+(90﹣80)2+2×(80﹣75)2]=25,正确,不符合题意;C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.故选:D.【点评】本题为统计题,考查方差、众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【分析】若每人7两,还剩4两,则银子共有(7x+4)两;若每人9两,还差8两,则银子共有(9x﹣8)两.根据银子数量不变,即可得出关于x的一元一次方程,此题得解.【解答】解:根据题意,得7x+4=9x﹣8.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.【分析】利用平行线的性质可得∠3的度数,再利用平角定义可得答案.【解答】解:如图,∵AB∥CD,∴∠1=∠3=56°,∴∠2=180°﹣90°﹣56°=34°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.9.【分析】连接AD,如图,先根据切线的性质得到∠OAC=90°,再利用互余计算出∠AOC =60°,接着根据圆周角定理得到∠B=30°,∠ADB=90°,然后根据含30度角的直角三角形三边的关系计算BD的长度.【解答】解:连接AD,如图,∵OC交⊙O于点D,∴OA⊥AC,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣∠C=60°,∵∠B=AOC=30°,∵AB为直径,∴∠ADB=90°,在Rt△ABD中,∵∠B=30°,∴AD=AB=×12=6,∴BD=AD=6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.10.【分析】根据题意可知AF垂直平分CD,然后根据勾股定理可以得到BC的长,再根据等面积法可以求得AE的长,再根据勾股定理即可得到CE的长,从而可以得到CD的长,进而得到BD的长,然后即可求得△ABD的面积.【解答】解:由题意可得,AF垂直平分CD交CD于点E,∴AD=AC,∵∠BAC=90°,AC=6,AB=8,∴BC===10,∵,∴,解得AE=,∵∠AEC=90°,AC=6,∴CE===,∴CD=2CE=,∴BD=BC﹣CD=10﹣=,∴△ABD的面积为==,故选:C.【点评】本题考查勾股定理、等面积法,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】根据二次根式中的被开方数是非负数,可得:3﹣x≥0,据此求出x的取值范围即可.【解答】解:∵代数式有意义,∴3﹣x≥0,∴x≤3.故答案为:x≤3.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.12.【分析】根据题意得出分式方程,再方程两边都乘2(5+x)得出2(7﹣x)=5+x,求出方程的解,再进行检验即可.【解答】解:根据题意得=,方程两边都乘2(5+x),得2(7﹣x)=5+x,解得:x=3,检验:当x=3时,2(5+x)≠0,所以x=3是所列方程的解.故答案为:3.【点评】本题考查了分式方程,能把分式方程转化成整式方程是解此题的关键.13.【分析】根据图可知OC⊥AB,由垂径定理可知∠ADO=90°,AD=AB=8,在Rt△AOD中,利用勾股定理可求OD,进而可求CD.【解答】解:∵OC⊥AB,∴∠ADO=90°,AD=AB=8,在Rt△AOD中,OD2=OA2﹣AD2,∴OD==6,∴CD=10﹣6=4(m).故答案是4.【点评】本题考查了垂径定理、勾股定理,解题的关键是先求出OD.14.【分析】由方程根的个数,根据根的判别式可得到关于k的方程,则可求得k的值.【解答】解:∵关于x的方程x2﹣6x+k=0有两个相等的实数根,∴Δ=0,即(﹣6)2﹣4×1×k=0,解得k=9.故答案为:9.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.15.【分析】由题意可知:随机捕捉100只,其中带标记的有2只,可以知道,在样本中,有标记的占到.而在总体中,有标记的共有50只,根据比例即可解答.【解答】解:根据题意得:50÷=2500(只),答:估计这片山林中雀鸟的数量为2500只.故答案为:2500.【点评】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.16.【分析】根据完全平方公式,配方法,分式的值,多项式的含义即可确定答案.【解答】解:①a2+2ab+b2=(a+b)2,是一个整式的平方;②﹣x2+6x﹣10=﹣(x2﹣6x+9)﹣1=﹣(x﹣3)2﹣1,∵(x﹣3)2≥0,∴﹣(x﹣3)2﹣1<0,∴不管字母取何值,﹣x2+6x﹣10的值总是负数;③为整数时,x+1=±1或x+1=±2或x+1=±4,∴x=0或﹣2或1或﹣3或3或﹣5,x有6个不同的取值;④2a3b﹣5ab+3是四次三项式,故答案为:④②③①.【点评】本题考查了完全平方式,配方法,分式的值,多项式等,熟练掌握这些知识是解题的关键.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】首先计算乘方、负整数指数幂和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=1+3﹣2×+2=1+3﹣1+2=5.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:(x+y)(x﹣y)+(4x3y﹣2xy3)÷2xy=x2﹣y2+2x2﹣y2=3x2﹣2y2,当x=2,y=﹣1时,原式=3×22﹣2×(﹣1)2=12﹣2=10.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.19.【分析】(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,从而可知AB=18(m).(2)由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,所以tan∠ACF=,从而可求出AF的长度,再根据BF=AB﹣AF的长度.【解答】解:(1)过点C作CF⊥AB于点F,由题意可知:∠EAD=∠ADB=45°,∴BD=AB=18m.答:建筑物AB的高度是18m.(2)∵四边形BFCD是矩形,∴BD=CF=18m,CD=BF,由题可知:∠EAC=∠ACF=30°,在Rt△ACF中,tan∠ACF=,∴AF=18×=6m,∴BF=AB﹣AF=(18﹣6)m,∴CD=(18﹣6)m.答:建筑物CD的高度(18﹣6)m,【点评】本题考查解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.20.【分析】(1)用D小组的人数除以对应的百分数,可求出调查的总人数,用C组的人数除以总人数,再乘100%就是C小组对应的百分数,由此解答;(2)用调查的总人数减去其余三个小组的人数,得出B小组人数,从而补全条形统计图;(3)用列表法列出所有可能的情况,再用所选的2人恰好是1名男生和1名女生的情况数除以总情况数即可求出概率.【解答】解:(1)共抽查的学生人数为:10÷20%=50,×100%=32%,所以m=32.故答案为:50,32;(2)喜爱活动小组B的学生人数为:50﹣6﹣16﹣10=18.补全条形统计图为:(3)记2名女生为A1,A2,2名男生为B1,B2,根据题意列表如下:A1A2B1B2 A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表格可知,共有12种结果,且每种结果出现的可能性相同,其中所选的2人恰好是1名男生和1名女生的结果共有8种,所以P(1名男生和1名女生)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)证△AOD≌△COB(AAS),由全等三角形的性质得OD=OB,即可解决问题;(2)证明四边形ABCD是矩形,即可解决问题.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,∵O是AC的中点,∴OA=OC,在△AOD和△COB中,∵,∴△AOD≌△COB(AAS),∴OD=OB,又∵OA=OC,∴四边形ABCD是平行四边形;(2)解:由(1)得:四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形.∴∠DAB=90°.在直角△DAB中,BD=10,AD=6,由勾股定理知:AB===8.=AD•AB=48.则S四边形ABCD即四边形ABCD的面积是48.【点评】本题考查平行四边形的判定和性质、全等三角形的判定与性质、矩形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据SAS证明△ABC与△DCE全等即可;(2)根据全等三角形的性质解答即可.【解答】(1)证明:∵CE∥AB,∴∠B=∠ECD,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∴AB=CD=8,∴BC=BD﹣CD=12﹣8=4.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABC与△DCE全等解答.23.【分析】(1)①危房改造户每户可获得补贴﹣地方财政每户可获得补贴=国家专项拨款每户标准,依此计算即可求解;②2022年该地区用于危房改造的国家专项拨款=2022年该地区用于危房改造的地方财政和国家专项拨款﹣地方财政拨款,依此计算即可求解;(2)先求出2023年该地区用于危房改造的地方财政和国家专项拨款,再除以危房改造户每户可获得补贴即可求解.【解答】解:(1)①12000﹣6000÷1.2=12000﹣5000=7000(元).故国家专项拨款标准为每户7000元.题干的说法是错误的.故答案为:×;②12000×1.2﹣6000=14400﹣6000=8400(万元).故2022年该地区用于危房改造的国家专项拨款共8400万元.题干的说法是正确的.故答案为:√;(2)[6000×(1+20%)+8400×(1+20%)]÷12000=(7200+10080)÷12000=17280÷12000=1.4(万户).故2023年该地区最多能完成危房改造1.4万户.【点评】本题考查了有理数的混合运算,关键是理解题意,正确得到地方财政和国家专项拨款的标准.24.【分析】(1)先根据四边形的内角和为360°表示∠D的度数,根据“和谐四边形”的定义分8种情况列方程可得结论;(2)根据条件证明∠BDE=∠B+∠C,由“和谐四边形”的定义可得结论;(3)①根据圆周角定理及直角三角形的性质推出,∠ACF+∠BCF=90°,∠A+∠B=90°,根据圆内接四边形的性质和等腰三角形的性质推出∠ADE=∠FGE,∠ADE=∠A,进而得出∠A=∠ACF,根据等式的性质求解即可;②如图3,作辅助线,构建相似三角形,证明△AHE∽△ACB,根据勾股定理和相似三角形的性质求解即可.【解答】(1)解:∵∠A=100°,∠B=60°,∠C=α,∴∠D=360°﹣100°﹣60°﹣α=200°﹣α,若∠A=∠B+∠D,则100°=50°+(200°﹣α),解得:α=150°,若∠A=∠C+∠B,则100°=α+60°,解得:α=40°,若∠A=∠C+∠D,则100°=α+(200°﹣α),无解,若∠B=∠D+∠C,则60°=200°﹣α+α,无解,若∠C=∠B+∠A,则α=160°,若∠C=∠B+∠D,则α=60°+(200°﹣α),α=130°,综上,α的值是150°或40°或160°或130°(写一个即可),故答案为:150°或40°或160°或130°(写一个即可);(2)证明:设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠BDE=∠B+∠C,∴四边形DBCE为“和谐四边形”;(3)①证明:∵EG是⊙O的直径,∴∠GCE=90°,∴∠ACF+∠BCF=90°,∠A+∠B=90°,∵AE=DE,∴∠ADE=∠A,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∴∠B=∠BCF,∴BF=CF;②解:连接DE、DG、FG,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,EG=5,∴DG==7=BG,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=EG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴=,=,∵==,∴AH=,=,∴EH==,=AH•EH=××=,∴S△AHE==36,∴S△ACB∵DE=AE,EH⊥AD,=2S△AHE=,∴S△ADE﹣S△ADE=36﹣=.∴“和谐四边形”DBCE的面积=S△ACB【点评】本题是圆的综合题,考查圆周角定理,圆内接四边形的性质,相似三角形的性质和判定,新定义:“和谐四边形”的理解和运用,勾股定理等知识,解题的关键是学会理解新定义,正确作辅助线解决问题,属于中考压轴题.25.【分析】(1)在y=x2﹣x﹣2中,令y=0可得A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,用待定系数法得直线l的函数解析式为y=﹣x﹣;(2)由点P的横坐标为m,知P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,分别解方程可得答案;(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),有AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,②若DQ为斜边,则+t2+20=+(t+2)2,③若AD为斜边,则+t2++(t+2)2=20,分别解方程可得答案.【解答】解:(1)在y=x2﹣x﹣2中,令y=0得:x2﹣x﹣2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0);设直线l的函数解析式为y=kx+b,将A(﹣1,0),D(3,﹣2)代入得:,解得,∴直线l的函数解析式为y=﹣x﹣;(2)∵点P的横坐标为m,∴P(m,m2﹣m﹣2),N(m,﹣m﹣),M(m,0),①若P为MN中点,则2(m2﹣m﹣2)=﹣m﹣+0,解得m=或m=﹣1(三点重合,舍去),∴P(,﹣);②若N为PM的中点,则2(﹣m﹣)=m2﹣m﹣2+0,解得m=2或m=﹣1(舍去),∴P(2,﹣3);③若M为PN中点,则m2﹣m﹣2﹣m﹣=0,解得m=5或m=﹣1(舍去),∴P(5,3);综上所述,P的坐标为(,﹣)或(2,﹣3)或(5,3);(3)由y=x2﹣x﹣2得抛物线对称轴为直线x=,设Q(,t),又A(﹣1,0),D(3,﹣2),∴AQ2=+t2,DQ2=+(t+2)2,AD2=20,①若AQ为斜边,则+t2=+(t+2)2+20,解得t=﹣5,∴Q (,﹣5);②若DQ 为斜边,则+t2+20=+(t+2)2,解得t=5,∴Q (,5);③若AD为斜边,则+t2++(t+2)2=20,解得t =或t =,∴Q (,)或(,);综上所述,Q 的坐标为(,﹣5)或(,5)或(,)或(,).【点评】本题考查二次函数综合应用,涉及待定系数法,中点坐标公式,直角三角形性质等知识,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度。
山东省数学中考模拟卷(1)
山东省数学中考模拟卷(1)一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列实数中是无理数的为()A.0B.﹣3.6C.D.2.(3分)某球形病毒直径的约为0.000063米,将0.000063用科学记数法表示为()A.6.3×10﹣5B.6.3×10﹣4C.63×10﹣6D.63×10﹣53.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 5.(3分)在如图所示的尺规作图中,与AD相等的线段是()A.线段AC B.线段BD C.线段DC D.线段DE6.(3分)若二次函数y=x2+bx+c的图象的对称轴是经过点(2,0)且平行于y轴的直线,且过点(5,5),则关于x的方程x2+bx+c=5的解为()A.x1=0或x2=4B.x1=1或x2=5C.x1=﹣1或x2=5D.x1=1或x2=﹣57.(3分)如图,△ABC与△DEF位似,点O为位似中心,且B为OE的中点,则△ABC 与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:58.(3分)如图,四边形ABCD是矩形,AB=4,BC=6,点O是线段BD上一动点,EF、GH过点O,EF∥AB,交AD于点E,交BC于点F,GH∥BC,交AB于点G,交DC 于点H,四边形AEOG的面积记为S,GB=a,则S关于a的函数关系图象是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.(3分)m2﹣=(m+)(﹣n2).10.(3分)若关于x的方程=的解为x=1,则a的值是.11.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC 相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.12.(3分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为.13.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y 轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为.14.(3分)如图,已知点P是正方形ABCD对角线BD上一点,且AP=3,PF⊥CD于点F,PE⊥BC于点E,连结EF,则EF的长为.三.解答题(共10小题,满分78分)15.(4分)计算:(﹣)﹣1+tan60°﹣|2﹣|+(π﹣3)0﹣.16.(6分)已知x是不等式组的整数解,选取一个合适的x值,进行化简求值:(﹣)÷17.(6分)如图,已知菱形ABCD中,AB=6,∠B=60°,E是BC边上一动点,F是CD 边上一动点,且BE=CF,连接AE、AF.(1)∠EAF的度数是;(2)求证:AE=AF;(3)延长AF交BC的延长线于点G,当∠BAE=30°时,求点F到BG的距离18.(6分)某校为了更好的记录学生们在秋季运动会中精彩的瞬间,学校特意邀请了一名摄影师携带无人机来进行航拍.如图,摄影师在水平地面上点A测得无人机位置点C的仰角为53°;当摄影师迎着坡度为1:2.4的斜坡从点A走到点B时,无人机的位置恰好从点C水平飞到点D,此时,摄影师在点B测得点D的仰角为45°,其中AB=2.6米,CD=3米,无人机与水平地面之间的距离始终保持不变,且A、B、C、D四点在同一平面内,求无人机距水平地面的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈)19.(10分)“冰墩墩”和“雪容融”作为第24届北京冬奥会和冬残奥会的吉祥物深受大家喜爱.某文旅店订购“冰墩墩”和“雪容融”两种毛绒玩具,花费分别是24000元和10000元,已知“冰墩墩”毛绒玩具的订购单价是“雪容融”毛绒玩具的订购单价的1.2倍,并且订购的“冰墩墩”毛绒玩具的数量比“雪容融”毛绒玩具的数量多100件.(1)求文旅店订购的两种毛绒玩具的单价分别是多少元;(2)该文旅店计划再订购这两种毛绒玩具共200件,其中购进“雪容融”毛绒玩具的数量不超过“冰墩墩”毛线玩具的数量的,该文旅店购进“雪容融”毛绒玩具多少件时?购买两种玩具的总费用最低,最低费用是多少元?20.(8分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)求△AOB的面积.21.(8分)学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题.(1)求扇形统计图中m=,并补全条形统计图;(2)已知该校有1600名学生,请估计“文学社团”共有多少人?(3)在“动漫社团”活动中,甲、乙、丙、丁四名同学表现优秀,现决定从这四名同学中任选两名参加“中学生原创动漫大赛”,请用列表或画树状图的方法求出恰好选中乙、丙两位同学的概率.22.(10分)如图,四边形ABCD内接于⊙O,BC=CD,点E在AB的延长线上,∠ECB =∠DAC.(1)求证:EC是⊙O的切线;(2)若AD=2,∠E=30°,求⊙O的半径.23.(10分)一节数学课上,张老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?(1)小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P是正方形ABCD外一点,P A=,PB=1,PC=,求∠APB 的度数.24.(10分)如图,在平面直角坐标系中,半径为2的⊙O与x轴分别交于点A,B,与y 轴分别交于点C,D,抛物线经过点A,B,C.点P为抛物线上一动点.(1)求抛物线的解析式;(2)若弦CE过AO的中点M,连接DE.求线段DE的长度;(3)连接PO,P A,PC,在抛物线上是否存在点P,使△POA≌△POC?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
2024年江苏省常州市中考模拟数学试题(一)
2024年江苏省常州市中考模拟数学试题(一)一、单选题1.数a 的相反数是12024,则数a 为( ) A .12024- B .2024- C .12024 D .20242.下列数学符号中,是中心对称图形但不是轴对称图形的是( )A .QB .∠C .≠D .≌3.下列计算,正确的是( )A .437x x x +=B .236x x x ⋅=C .65x x x ÷=D .236(2)6x x = 4.图1是一个地铁站入口的双翼闸机,如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为12cm ,双翼的边缘64cm AC BD ==,且与闸机侧立面夹角30PCA BDQ ∠=∠=︒,当双翼收起时,可以通过闸机的物体的最大宽度为( )A .76cmB .()12cmC .()12cmD .64cm5.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A .12B .34C .112D .5126.下面四组a ,b 的值,能说明命题“若22a b >,则a b >”是假命题的是 ( ) A .2a =,1b = B .2a =-,1b = C .2a =,1b =- D .3a =,2b =- 7.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°8.如图1,矩形ABCD 绕点A 逆时针旋转180︒,在此过程中A 、B 、C 、D 对应点依次为A 、E 、F 、G ,连接DE ,设旋转角为x ,2y DE =,y 与x 的函数图象如图2,当30x =︒时,y 的值为( )A B .C .3 D .4二、填空题9.我国钓鱼诸岛面积约6344000平方米,数据6344000用科学记数法表示为. 10.因式分解:34a a -=.11.一元二次方程22x x =的根是.12.已知扇形的圆心角为80︒,半径为3cm ,则这个扇形的面积是2cm .13.如图,AB CD ∥,EF DB ⊥,垂足为点E ,150∠=︒,则2∠的度数是 .14.约在两千五百年前,如图(1),墨子和他的学生做了世界上第1个小孔成倒像的实验,并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图(2)所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是6cm ,则蜡烛火焰的高度是cm .15.如图,矩形ABCD 中,3AB =,5BC =,点P 在边BC 上,且1CP =,点E ,F 分别是AP 、AD 的中点,则AE EF +=.16.在九年级《数学实验手册》中,我们探究了最小覆盖圆与图形之间的关系.现有如图所示的等边三角形ABC V ,边长为3,若分别以顶点A B C 、、为圆心作三个等圆,这三个等圆能完全覆盖ABC V ,则所作等圆的最小半径是.17.已知点(),P m n 在双曲线1y x =上,则223m mn n -+的最小值为.18.如图,在四边形ABCD 中,对角线AC 平分BAD ∠,2BCA DCA ∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5BC =,CD =2AD AE =,则AC 的长为.三、解答题19.计算: (1)()2013tan 45π20242-⎛⎫--︒-- ⎪⎝⎭(2)()()()2111x x x +--+20.解不等式组:562(3)311143x x x x -≤+⎧⎪+-⎨>-⎪⎩ 21.某小组去年3月至10月对当地西红柿与黄瓜市场价格进行调研,经过整理、描述和分析得到了部分信息.a .西红柿与黄瓜市场价格的折线图:b .西红柿与黄瓜价格的平均数和中位数:根据以上信息,回答下列问题:(1) m =,n =;(2)在西红柿与黄瓜中,的价格相对更稳定(填西红柿或黄瓜);(3)如果这两种蔬菜的价格随产量的增大而降低,结合题中信息推测今年这两种蔬菜在 月的产量相对更高.22.置于桌面,甲乙两个同学从中随机各抽取一张卡片(注:第一个同学抽取到的卡片不放回).(1)(2)求甲乙两个同学抽到的卡片数字都是无理数的概率.(用画树状图或列表的方法求解) 23.已知购买1千克甲种水果和3千克乙种水果共需52元,购买2千克甲种水果和1千克乙种水果共需44元.(1)求每千克甲种水果和每千克乙种水果的售价;(2)如果购买甲、乙两种水果共20千克,且甲种水果的重量不少于乙种水果的重量.则购买多少千克甲种水果,总费用最少,最少总费用是多少?24.已知直线y mx n =+与x 轴交于点()2,0M ,与反比例函数k y x=图象交于点A ,C ,若()2,A a -,AB x ⊥轴, 3tan 4AMO ∠=.(1)求反比例函数和直线的函数表达式;(2)过点O 作直线AO 的垂线,交直线AC 于点P ,求P 点坐标.25.如图,在ABC V 中,点D 在边AC 上,BD 平分ABC ∠,经过点B 、C 的O e 交BD 于点E ,连接OE 交BC 于点F ,OF BC ⊥.(1)求证:AB 是O e 的切线;(2)若AB BC =,BD =,1tan 2CBD ∠=,求O e 的半径. 26.在学习了“中心对称图形…平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有 (把所有正确的序号都填上);①双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形ABCD 中,点E 、F 分别在边AB 、AD 上,连接CE ,BF ,EF ,CF ,若AE DF =,证明:四边形BCFE 为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点()0,6A ,()8,0C ,点B 在线段OC 上且AB BC =,是否存在点D 在第一象限,使得四边形ABCD 为“双直四边形”,若存在;求出所有点D 的坐标,若不存在,请说明理由.27.定义:若两个三角形中,有两组边对应相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为“融通三角形”,相等的边所对的相等的角称为“融通角”.(1)①如图1,在ABC V 中,CA CB =,D 是AB 上任意一点,则ACD V 与BCD △“融通三角形”;(填“是”或“不是”)②如图2,ABC V 与DEF V 是“融通三角形”,其中A D AC DF BC EF ,,??=,则B E ∠+∠=.(2)若互为“融通三角形”的两个三角形都是等腰三角形,求“融通角”的度数.(3)如图3,在四边形ABCD 中,对角线430105180AC CAB B D B =∠=︒∠=︒∠+∠=︒,,,,且ACD V 与ABC V 是“融通三角形”,AD CD >,求AD 的长.28.抛物线21164y ax x =+-与x 轴交于(),0A t ,()8,0B 两点,与y 轴交于点C ,直线y =kx -6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t ,k 的值;(2)如图1,连接AC ,AP ,PC ,若△APC 是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ ⊥BC ,垂足为Q ,求12C Q P Q +的最大值.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2023年中考数学模拟试卷(1)(含详解)
2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。
中考第一次模拟测试《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( )A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A415B.13C.25D.3511. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC,则DEDF的值为( )A. 32B.23C.25D.3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m 2B. 63 m 2C. 64 m 2D. 66 m 2二 、填空题:13. 分解因式:x 3y ﹣2x 2y+xy=______.14. 函数y=12-x x 的自变量x 的取值范围是_____. 15. 化简221(1)11x x -÷+-的结果是 . 16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .18. 已知⊙O 的半径为5,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连接AC ,若∠CAB =30°,则BD 的长为____.三 、计算题:19. 解方程组: 3(1)4(4)05(1)3(5)x y y x ---=⎧⎨-=+⎩20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为( )A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x ﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323x x x +>⎧⎪⎨-+≥⎪⎩①②由①得:x >﹣0.5,由②得:x ≤0,则不等式组的解集是﹣0.5<x ≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD等腰三角形①若BD=BC=3在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222=-=-=CG CD DG325∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据”购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
【冲刺中考】中考数学模拟试卷(1)(含标准参考答案)
【冲刺中考】中考数学模拟试卷(1)(含标准参考答案)注意事项:1. 解答的内容一律写在答题卡上,只交答题卡.2. 作图或画辅助线用2B 铅笔或0.5毫米的黑色签字笔画好.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1. 21-的相反数是( )A .21 B. 21-C. 2-D. 22.某班有25名男生和18名女生,用抽签方式确定一名学生代表,则( ) A. 女生选作代表机会大 B. 男生选作代表机会大C. 男生和女生选作代表的机会一样大D.男女生选作代表的机会大小不确定3.若二次根式2-x 有意义,则x 的取值范围是( ) A .x≠0B .x≤2C .x≠2D .x≥2 4.两个相似三角形的面积比为1:4,那么它们的对应边的比为( ) A .1︰16B. 16︰1C. 1:2D. 2:15.下列事件是不可能事件.....的是( ) A. 从装有3个红球、5个黄球、10个绿球的袋中任意摸出一个球是黑色; B. 掷一枚骰子,停止后朝上的点数是6; C. 射击时,靶中十环;D. 小英任意买了一张电影票,座位号是奇数.6.如图1,⊙O 是等边△ABC 的外接圆,则∠AOB 等于( )A .30°B. 60°C. 80°D. 120°7.已知反比例函数xy 1=,下列结论错误..的是( ) A .图象经过点(1,1) B .当x <0时,y 随着x 的增大而增大 C .当x >1时,0<y <1D .图象在第一、三象限二、填空题(本大题有10小题,每小题4分,共40分) 8.|-3|= .9.分解因式:=-x x 2____________.10.上海世博会主题馆安装有目前世界上最大的太阳能板,其面积达31 000平方米,用科学记数法表示为 平方米. 11.如图2,△ABC 和△ADE 都是等腰直角三角形,点D 是AC 上的点,如果△ABC 绕点A 逆时针旋转后与△ADE 重合,那么旋转角是 度.12.一组数据1,4,2,5,3,6,7的中位数是 . 13.写出图3中圆锥的主视图名称 .14.已知关于x 的方程x 2-x +c =0的一个根是1-,则c = .15.在Rt △ABC 中,∠C =90°,当∠B= 度时,命题“如果tanB≥1,那么2≤sinA≤3.”不成立. BAC O 图1图2A B CED 图316.在直角坐标系中,直线32-=x y 的图象向上平移2个单位后与x 轴交于点P (m, n ),则m+ n= ; 17.如图4,菱形ABCD 的边长为4,∠B=120°,M 为DC 的中点,点N 在AC 上.(1)若DC=NC ,则∠NDC=_____度;(2)若N 是AC 上动点,则DN+MN 的最小值为_____.三、解答题(本大题共9小题,共89分) 18.(本题满分18分) (1)计算:329⎪⎭⎫⎝⎛+--π(2)如图5,画出△ABC 关于BC 对称的图形;(3)如图6,在△ABC 中,∠C=90°,sinA=32,AB=6,求BC 的长.19.(7分)先化简,再求值:x x x x x x 244112++÷ ⎝⎛⎪⎭⎫++,其中23-=x .20.(8分)下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m )286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)? (2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? AB C 图5ABC 图6图4BCM N D A21.(8分)如图6,在△ABC 中,D 、E 分别是边AB 、AC 的中点,F 为CA 延长线上一点,∠F=∠C. (1)若BC=8,求FD 的长;(2)若AB=AC ,求证:△ADE ∽△DFE22.(9分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则可卖出(170-5x )件,商店预期要盈利280元,那么每件商品的售价应定为多少元?23.(9分)如图8,四边形ABCD 是边长为4的正方形,⊙C 交BC 于点E ,交DC 于点F. (1)若点E 是线段CB 的中点,求扇形ECF 的面积;(结果保留π) (2)若EF=4,试问直线BD 与⊙C 是否相切?并说明理由.24. (9分) 新定义:如果一个点的横、纵坐标均为整数,那么我们称这个点是“格点”.双曲线xk y =1(x >0)与直线b ax y +=2交于A (1,5)和B (5,t ).(1)判断点B 是否为“格点”,并求直线AB 的解析式;(2)P (m,n )是图9中双曲线与直线围成的阴影部分内部(不包括边界)的“格点”,试求点P 的坐标.图9图6CA BD E FAB E 图8F CD25.(10分)如图10,在□ABCD 中,点E 在AD 上,将△ABE 沿BE 折叠后得到△GBE ,且点G 在□ABCD 内部,将BG 延长交DC 于点F ,EF 平分∠DEG . (1)求证:GF=DF ;(2)若BC=DC=4DF ,四边形BEFC 的周长为5614+,求BC 的长.26.(11分)已知抛物线c bx x y ++-=21(b≠0)与x 轴正半轴交于A (c ,0),与y 轴交于B 点,直线AB 的解析式为n mx y +=2.(1)求b n m +-的值;(2)若抛物线顶点P 关于y 轴的对称点恰好在直线AB 上,M 是线段BA 上的点,过点M 作MN ∥y 轴交抛物线于点N .试问:当点M 从点B 运动到点A 时,线段MN 的长度如何变化? ABCDE FG图10参考答案一、选择题:A B D C A D B二、填空题:8、3 ; 9、)1(-x x ; 10、4101.3⨯; 11、45°; 12、 4 ;13、等腰三角形;(填“三角形”给2分)14、–2; 15、填任意一个不小于45°的角即可; 16、0.5; 17、75°;32. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分) ⑴计算:329⎪⎭⎫⎝⎛+--π=123+-……………4分 =2…………………6分(第一步对一个2分,对2个3分,全对得4分) ⑵如图5,画出△ABC 关于BC 对称的图形;能在图中看出对称轴是BC ……………2分 能画出对称图形是三角形 ……………4分以上两点都有 …………………6分 ⑶如图6,在△ABC 中,∠C=90°,sin A=32,AB =6,求BC 的长.解: ∵ 在Rt △ABC 中,∠ACB =90°,………1分 ∴ sin A=ABBC . …………………………3分∵ AB =6,sin A=32,∴326=BC . ……………………………5分∴BC =4. ……………………………6分19.(7分)先化简,再求值:x x x x x x 244112++÷ ⎝⎛⎪⎭⎫++,其中23-=x .解:()x x x x x x x x x x2222441122+÷+=++÷⎝⎛⎪⎭⎫++………………2分 =2)2(22+⋅+x x x x ………………3分=22+x ……………………4分把23-=x 代入,得:原式=2232+-………………5分=332………………6分20.(8分)下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:ABC 图6AB C 图5A ′(1)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)? (2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? 解:(1)估计这名球员投篮一次,投中的概率约是0.5;………4分(2)622×0.5=311(次);估计这名同学投篮622次,投中的次数约是311次. ………8分21.(8分)如图7,在△ABC 中,D 、E 分别是边AB 、AC 的中点,F 为CA 延长线上一点,∠F=∠C . (1)若BC=8,求FD 的长;(2)若AB=AC ,求证:△ADE ∽△DFE 解:(1)∵D 、E 分别是边AB 、AC 的中点, ∴BC DE 21=,DE ∥BC . ………1分∴∠AED =∠C . …………………………2分 ∵∠F=∠C ,∴∠AED =∠F …………………………3分 ∴FD=BC DE 21==4…………………………4分(2) ∵AB=AC ,DE ∥BC .∴∠B =∠C =∠AED =∠ADE . …………………………5分 ∵∠AED =∠F∴∠ADE =∠F …………………………6分 又∵∠AED =∠AED ………………………7分 ∴△ADE ∽△DFE ………………………8分22.(9分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%. (1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则可卖出(170-5x )件,商店预期要盈利280元,那么每件商品的售价应定为多少元? 解:(1)16(1+30%)=20.8 ……………2分答:此商品每件售价最高可定为20.8元. (2)(x -16)(170-5x )=280 ……………5分 整理,得:0600502=+-x x ……………6分 解得:201=x ,302=x ……………7分因为售价最高不得高于20.8元,所以302=x 不合题意应舍去.……8分 答:每件商品的售价应定为20元. ……………9分23.(9分) 如图8,四边形ABCD 是边长为4的正方形,⊙C 交BC 于点E ,交DC 于点F . (1)若点E 是线段CB 的中点,求扇形ECF 的面积;(结果保留π) (2)若EF=4,试问直线BD 与⊙C 是否相切?并说明理由. 解:(1)∵四边形ABCD 是边长为4的正方形∴∠C=90° …………1分 ∵点E 是线段CB 的中点,BC =4∴EC=2; …………2分 ∴3602902⋅⋅=πECF S 扇形∴π=ECF S 扇形 …………3分 图7CA BD E FABE 图8F CD O∵四边形ABCD 是边长为4的正方形 ∴∠C=90°,CO=2221=AC …………5分CA ⊥BD 于O 点 …………6分 在R t △FCE 中,FC=CE ,EF=4 ∴FC 2+CE 2=EF 2=16∴FC 22= …………7分 ∴FC= CO ……………8分 又∵CO ⊥BD∴直线BD 与⊙C 相切 ……………9分24. (9分) 新定义:如果一个点的横、纵坐标均为整数,那么我们称这个点是“格点”.双曲线xk y =1(x >0)与直线b ax y +=2交于A (1,5)和B (5,t ). (1)判断点B 是否为“格点”,并求直线AB 的解析式;(2)P (m ,n )是图9中双曲线与直线围成的阴影部分内部(不包括边界)的“格点”,试求点P 的坐标. 解:(1)点B 是“格点”把A (1,5)代入xk y =1得:k =5∴xy 51=过B (5,t )得: t =1……1分∵5是整数,1也是整数 ∴点B 是“格点” ……………2分把A (1,5)和B (5,1)分别代入b ax y +=2得:⎩⎨⎧=+=+155b a b a ……………3分解得:⎩⎨⎧=-=61b a∴直线AB 的解析式为:62+-=x y ……………5分 (2)∵P (m ,n )是阴影部分内部(不包括边界)的“格点”, ∴1<m <5,1y <2y ,且m 、n 都是整数 ……………6分 ∴m 的值可能为2、3或4, 当m =2时,251=y ,42=y ,那么n=3,得P (2,3)……………7分当m =3时,351=y ,32=y ,那么n=2,得P (3,2)……………8分当m =4时,451=y ,22=y ,那么此时n 不存在,舍去…………9分∴P (2,3)或P (3,2).25.(10分)如图10,在□ABCD 中,点E 在AD 上,将△ABE 沿BE 折叠后得到△GBE ,且点G 在□ABCD 内部,将BG 延长交DC 于点F ,EF 平分∠DEG . (1)求证:GF =DF ;图9∴∠A=∠BGE∵四边形ABCD 是平行四边形 ∴∠A+∠D=180° ………1分 又∵∠BGE+∠EGF=180° ∴∠D=∠EGF ………2分 ∵EF 平分∠DEG ∴∠DEF=∠GEF 又∵EF=EF∴△EGF ≌△EDF ………3分 ∴GF =DF ………4分 (2)在□ABCD 中,BC=DC ,设DF=x ∴四边形ABCD 是菱形, ………5分 ∴AB= BC= DC=AD=4DF=4x ∵△ABE ≌△BGE ;△EGF ≌△EDF∴BG= AB=4x ,GF=DF=x ,BF=5x ,AE=EG=ED=2x 又∵FC= DC —DF=3x∴BC 2 + CF 2 = BF 2 ………6分 ∴△BCF 为直角三角形,∠C=90°………7分∴菱形ABCD 是正方形, ………8分 在R t △ABE 中,x AEAB BE 5222=+=,在R t △DEF 中,x DF DEEF 522=+=,∴四边形BEFC 的周长=BE+EF+ FC+ CB=x x 753+=5614+………9分 ∴ x =2, BC=4 x=8 ………10分26.(11分)已知抛物线c bx x y ++-=21(b ≠0)与x 轴正半轴交于A (c ,0),与y 轴交于B 点,直线AB 的解析式为n mx y +=2.(1)求b n m +-的值;(2)若抛物线顶点P 关于y 轴的对称点恰好在直线AB 上,M 是线段BA 上的点,过点M 作MN ∥y 轴交抛物线于点N .试问:当点M 从点B 运动到点A 时,MN 的长度如何变化? 解:(1)把A (c ,0)代入抛物线得: 02=++-c bc c ∵A (c ,0)在x 轴正半轴∴c >0 ∴1-=c b ………1分∵抛物线与y 轴交于B 点 ∴B (0,c )把A (c ,0)、B (0,c )分别代入n mx y +=2得: ⎩⎨⎧==+cn n mc 0解得:⎩⎨⎧=-=cn m 1 ………2分∴211-=-+--=+-c c b n m , ………3分(2)∴()c x c x y +-+-=121,c x y +-=2∴顶点P (1-c ,122++c c ) ………4分BA O N MC Py x图11∴顶点P 关于y 轴对称的点P′(21c -,4122++c c )………5分把P′代入c x y +-=2得:412212++=+-c c c c ………6分解得:31=c ,12=c (舍去) ∴当c =3时,b =c –1=2;当c =1时,b =0; ∵b ≠0∴c =3,b =2;………7分∴3221++-=x x y ,32+-=x y ∵M 是线段AB 上的点, ∴12y y ≤ ,0≤x ≤3. ∵MN ∥y 轴∴MN=x x y y 3221+-=- ………8分 ∴MN=(49)232+--x ………9分∵a=–1<0, 开口向下,对称轴为23=x∴当230≤≤x 时,MN 长度随着x 增大而增大;………10分当323≤≤x 时,MN 长度随着x 增大而减小.………11分BA ON MC Py x图11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试题1一、选择题(本题满分 18 分,共有 6 道小题,每小题 3 分) 1、直径为6和10的两个圆相内切,则其圆心距 d 为( )A .2B .4C .8D .16 2、甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )A .B .C .D . 3、小明将一个小玻璃球不慎从楼上掉落下来,下面的各图象中可以大致刻画出小玻璃球下落过程中(即落地前)的速度与时间的变化情况的是( )4、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为( )厘米.A .B .C .D .25、根据如图所示的程序,若输入的 x 值为 - ,则输出的结果为( )A .B .C .D .6、若一个图形绕着一个定点旋转一个角α(0°<α≤180°)能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:正三角形绕着它的中心旋转120°(如图1),能够与原来的正三角形重合,因而正三角形是旋转对称图形.图2是一个五叶风车的示意图,它也是旋转对称图形(α=72°). OAB显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,是旋转对称图形的有( )二、填空题(本题满分 18 分,共有 6 道小题,每小题 3分) 7、化简:= _________________.8、在某一电路中,当电压保持不变时,电流I (安培)是电阻R (欧姆)的反比例函数,当电阻 R=5 欧姆时,电流 I = 2 安培.(1)列出 电流I 与电阻 R 之间的函数关系式:_________________. (2)当电流I = 0.5 安培时,电阻 R 的值是_________欧姆.9、如图,在太阳光下小明直立于旗杆影子的顶端处,此时小明影长为1.40 米,旗杆的影长为 7 米,若小明的身高为 1.60米,则旗杆高为_________________米.10、如图是某城市三月份1到10日的最低气温随时间变化的统计图:根据条形统计图可知这10天中最低气温的众数是_______℃,最低气温的中位数是_______℃.第9题 第10题11、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.12、观察下列各式:3 = 22-12 5 = 32-22 7 = 42-32图1 图29 = 52-42 11 = 62-52 13 = 72-62想一想,任意奇数(1除外)等于哪两个数的平方差?设n 为大于 1 的奇数,用关于 n 的等式表示这个规律为:n = _________________.三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.13、为迎接2008年奥运会,青岛市政府欲在一新建广场上修建一个圆形大花坛,并在大花坛内M 点处建一个亭子,如果要经过亭子修一条穿越大花坛的小路.(1)如何设计小路才能使亭子 M位于小路的中点处(在图中画出表示小路的线段即可);(2)若大花坛的直径为30米,花坛中心 O到亭子M的距离为10米,则小路大约有多长?(精确到0.1 米)四、解答题(本题满分78分,共有9道小题)14、(本小题满分6分)2003年底,我国研制出一种抗“非典”新药,成年人按规定剂量服用后,每毫升血液中含药量 y(微克)(1微克 = 10 -3毫克)与时间 x(小时)的关系满足:y = - x2 + 4x .问:服药几小时,才能使每毫升血液中含药量达到 6微克?15、(本小题满分6分)小明和小亮一起测量底部可以到达的一棵大树 AB的高度,按如下步骤进行:① 在测点D处安置测倾器,测得大树顶部的仰角∠ACE = α;② 量出测点D到大树底部B的水平距离BD = l ;③ 量出测倾器的高度DC = a;他们测得了三组数据后,制成了测点到大树的距离l,测倾器的高 a 的数据的条形统计图(如图1)和仰角α数据的折线统计图(如图 2).请你根据两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表格中;(2)根据得到的样本平均数计算出树高AB(精确到0.1 m).16、(本小题满分6分)小刚和小明用如图的两个转盘进行“配紫色”游戏,规则如下:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使该游戏对双方公平?17、(本小题满分8分)阅读下面内容:“如图1,以三角形ABC三个顶点为圆心,以1为半径的三个圆(两两不相交)与三角形相交,则图中阴影部分的面积之和是多少?”我们可以用如下方法解决这个问题:设以 A、B、C 为圆心的三个扇形的圆心角的度数分别是 n1、n2、n3,面积分别是S1、S2、S3,由扇形面积公式可知:S阴影部分 = S1 + S2 + S3,∵在△ABC中,∠A +∠B +∠C = 180° 即:n1 + n2 + n3 = 180∴S阴影部分 = S1 + S2 + S3根据以上推理过程,回答下列问题:(1)以五边形 ABCDE的顶点为圆心,以1为半径的五个圆(两两不相交,如图2)与五边形相交,则图中阴影部分的面积之和是多少?请说明理由.(2)试猜想,以n 边形的 n 个顶点为圆心,以 1 为半径的 n 个圆(两两不相交)与 n 边形相交,则其公共部分的面积(即阴影部分的面积之和) S = ________________.18、(本小题满分8分)某印刷厂计划购买5台印刷机,现有胶印机、一体机两种不同设备,其中每台的价格、日印刷量如下表:经预算,该厂购买设备的资金不高于22万元.(1)该厂有几种购买方案?(2)若该厂每天的工作量为印刷17万张,为节约资金,应选择哪种购买方案?19、(本小题满分10分)如图,以△ABC的三边为边,在BC的同一侧分别作三个等边三角形:△ABD、△BCE和△ACF.(1)四边形ADEF是什么四边形?写出你的猜想并说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?(写出猜想即可,不要求证明)(3)当△ABC满足什么条件时,四边形ADEF为菱形?(写出猜想即可,不要求证明)20、(本小题满分10分)某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如下图.注:两图中的A、B、C、D、E、F、G、H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分).请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益 = 售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.21、(本小题满分12分)已知:如图1,在△ABC中,AB = AC =5 ,AD为底边BC上的高,且AD = 3.将△ACD沿箭头所示的方向平移,得到△A'CD'(如图2),A'D' 交AB于E,A'C分别交AB、AD 于G、F,以 D'D 为直径作⊙O,设BD'的长为 x ,⊙O的面积为 y .(1)求 y与x 的函数关系式及自变量x的取值范围(不考虑端点);(2)当BD'的长为多少时,⊙O的面积与△ABD的面积相等?(π取3,结果精确到 0.1)(3)连结EF,求EF与⊙O 相切时 x 的值.22、(本小题满分12分)(1)已知:如图1,△ABC为正三角形,点M为 BC边上任意一点,点N为 CA边上任意一点,且BM = CN,BN与AM相交于Q点,试求∠BQ M的度数.(2)如果将(1)中的正三角形改为正方形ABCD(如图2),点M为BC边上任意一点,点N为CD边上任意一点,且BM = CN,BN与AM相交于Q点,那么∠BQM 等于多少度呢?说明理由.(3)如果将(1)中的“正三角形”改为正五边形……正 n 边形,其余条件都不变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:正多边形的各个内角都相等)……CMB AD Q EN NCMAQE DF C N DMB AX Q参考答案一、选择题(本题满分 18 分,共有 6 道小题,每小题 3 分)13、(1)正确作出过点M且垂直于OM的弦;……2' 正确写出作图结论;……3' (2)如图,连结OB,在Rt △OMB中:BM=……4'∵ OM⊥AB∴ AB = 2BM = 2×≈22.4 (米)答:小路大约长22.4 米。
……6'四、解答题(本题满分78分,共有9道小题)14、(本小题满分6分)解:根据题意得,当 y = 6时- x2 + 4x =6 ……1'- x2 + 4x - 6 = 0x2-8x + 12 = 0x2-8x + 16 = 4(x-4)2 = 4x1 = 2,x2 = 6∴当2小时和6小时时,含药量为6微克.……6' 15、(本小题满分6分)解:(1)填表(2)在Rt△AEC 中,∠AEC =90°,∠α=31°, EC = BD = 20.06, BE = CD = 1.25,tan31°= ……4'∴AE = EC·tan31° ≈12.05故 AB = AE + CD = 1.25 + 12.05 ≈13.3 (m )∴ 树 AB 高约为13.3 米. ……6' 16、(本小题满分6分)解:游戏对双方不公平. ……1'(注:“√”表示配成紫色,“×”表示配不成紫色) ……2' ∴ P(配成紫色) P (配不成紫色) ……3' ∴ 小刚得分:; 小明得分:∴不公平. ……4' 修改规则为:若配成紫色,小刚得2分,否则小明得1分,此游戏对双方才公平.……6'……3'17、(本小题满分8分)解:(1)设以A 、B 、C 、D 、E 为圆心的五个扇形的圆心角的度数分别是 n 1、n2、n3、n4、n5,面积分别是 S 1、S 2、S 3、S 4、S 5 ,由扇形面积公式可知S阴影部分= S 1 + S 2 + S 3……3'五边形ABCDE 的内角和为 (5-2)×180°= 540° ∴S阴影部分= S 1 + S 2 + S 3+S 4 + S 5……6'(2) S……8'18、(本小题满分8分)解:(1)设购买胶印机 x 台,一体机(5-x )台,根据题意得: 5x + 4 (5-x)≤22x≤2 ……2' 满足 x≤2 的非负整数解为0,1,2 当 x = 0 时,5-x = 5 当 x = 1 时,5- x = 4 当 x = 2时,5- x = 3∴有三种方案分别为:①购买5台一体机; ②购买1台胶印机、4台一体机;③购买2台胶印机、3台一体机.……4'(2)根据题意得:解得:1≤x≤2满足 1≤x≤2 的整数解为1,2 ……6' 当x = 1时,5x + 4(5-x) = 21 当x = 2时,5x + 4(5-x) = 22∴应购买1台胶印机,4台一体机. ……8' 19、(本小题满分10分)(1)四边形ADEF 为平行四边形 ……1'EFB DA12∵△ABD为等边三角形∴AD = AB∵△BCE、△ACF为等边三角形∴∠BCE = ∠ACF = 60°∴∠1 = ∠2 ∵ BC = CE,AC = CF∴ △ABC≌△BCF ……4' ∴ AB = EF∴AD = EF 同理:DE = AF∴四边形ADEF为平行四边形……6'(2)当∠BAC = 150°时,四边形ADEF为矩形……8' (3)当AB = AC时,四边形ADEF为菱形.……10' 20、(本小题满分10分)解:(1)当 x = 3时,y 甲 = 5,y 乙= 4 ……2' ∴ y甲-y乙= 5-4 = 1 ∴每千克收益是1元……4'.(2)设每千克收益为P ,则 P = y甲-y乙=P = ……7'当 x = -P最大= =∴在5月份时,每千克的收益最大.……10'21、(本小题满分12分)解:(1)∵AB = 5 ,AD = 3,∠ADB = 90°∴BD = CD = 4 BD' = x ,则 DD' = 4-x∴ y =y = ( 0<x<4 )……4'(2)当……6'4-x = ≈x1x2……8'(3)若EF与⊙O相切,则ED' = D'D∵∠ED' B = ∠ADB = 90° ∠B = ∠B∴△BED'∽△BAD∴∴ ED' =……10'∴∴当x = 时,EF 与⊙O相切……12' 22、(本小题满分12分)解:(1)∠BQM = 60°∵△ABC为等边△,∴∠ABC =∠ACB= 60°,AB = BC∵BM = CN ,∴△ABM≌△BCN ……2'∴∠BAM = ∠CBN∵∠BQM = ∠BAM +∠ABQ∴∠BQM = ∠ABQ + ∠CBN = ∠ABC = 60°……4' (2)∵在正方形 ABCD中AB = BC ,∠ABC = ∠C = 90° ,BM = CN∴△ABM≌△BCN ……6'∴∠BAM = ∠CBN∵∠BQM = ∠BAM + ∠ABQ∴∠BQM = ∠CBN + ∠ABQ∴∠BQM = ∠ABC = 90°……8'(3)……12'。