(完整word版)高中数学排列组合教学设计.docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《排列组合》教学设计
【教学目标】
1.知识目标
(1)能够熟练判断所研究问题是否是排列或组合问题;
(2)进一步熟悉排列数、组合数公式的计算技能;
(3)熟练应用排列组合问题常见解题方法;
(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标
认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标
(1)用联系的观点看问题;
(2)认识事物在一定条件下的相互转化;
(3)解决问题能抓住问题的本质。
【教学重点】:排列数与组合数公式的应用
【教学难点】:解题思路的分析
【教学策略】:以学生自主探究为主,教师在必要时给予指导和提示,
学生的学习活动采用自主探索和小组协作讨论相结合的方法。
【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进
行自主探索和研究。
【教学过程】
一、知识要点精析
(一)基本原理
1.分类计数原理
2.分步计数原理
3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:
( 1)对于加法原理有以下三点:
①“斥”——互斥独立事件;
②模式:“做事”——“分类”——“加法”
③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”——“分
步”——“乘法” ③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互
相联系又彼此独立。
(二)排列
1.排列定义
2.排列数定义
3.排列数公式
(三)组合
1.组合定义
2.组合数定义
3.组合数公式
4.组合数的两个性质
(四)排列与组合的应用
1.排列的应用问题
(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。
2.组合的应用问题
(1)无限制条件的简单组合应用问题,可直接用公式求解。
(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。
3.排列、组合的综合问题
排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
在解决排列与组合的应用题时应注意以下几点:
(1)限制条件的排列问题常见命题形式:
“在”与“不在” “相邻”与“不相邻”
在解决问题时要掌握基本的解题思想和方法:
①“相邻” 问题在解题时常用“捆绑法” ,可以把两个或两个以上的元素当做一个元素来看,
这是处理相邻最常用的方法。
②“不相邻”问题在解题时最常用的是“插空法”。
③“在”与“不在”问题,常常涉及特
殊元素或特殊位置,通常是先排列特殊元素或特殊位
置。
④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结
果。
(2)限制条件的组合问题常见命题形式:
“含”与“不含” “至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”。
( 3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按
事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。
4、解题步骤:
(1)认真审题
(2)列式并计算
(3)作答
二、学习过程
题型一:排列应用题
9 名同学站成一排:(分别用A, B, C 等作代号)
( 1)如果 A 必站在中间,有多少种排法?(答案:)
( 2)如果 A 不能站在中间,有多少种排法?(答案:)
( 3)如果 A 必须站在排头, B 必须站在排尾,有多少种排法?(答案:)
( 4)如果 A 不能在排头, B 不能在排尾,有多少种排法?(答案:)
( 5)如果 A, B 必须排在两端,有多少种排法?(答案:)
( 6)如果 A, B 不能排在两端,有多少种排法?(答案:)
( 7)如果 A , B 必须在一起,有多少种排法?(答案:)
( 8)如果 A , B 必须不在一起,有多少种排法?(答案:)
( 9)如果 A, B, C 顺序固定,有多少种排法?(答案:)
题型二:组合应用题
若从这9 名同学中选出 3 名出席一会议
( 10)若 A, B 两名必在其内,有多少种选法?(答案:)
( 11)若 A , B 两名都不在内,有多少种选法?(答案:)
( 12)若 A , B 两名有且只有一名在内,有多少种选法?(答案:)
( 13)若 A , B 两名中至少有一名在内,有多少种选法?(答案:或)
( 14)若 A , B 两名中至多有一名在内,有多少种选法?(答案:或)
题型三:排列与组合综合应用题
若 9 名同学中男生 5 名,女生 4 名
( 15)若选 3 名男生, 2 名女生排成一排,有多少种排法?(答案:)
(16)若选 3 名男生 2 名女生排成一排且有一男生必须在排头,有多少种排法?
(答案:)
(17)若选 3 名男生 2 名女生排成一排且某一男生必须在排头,有多少种排法?
(答案:)
( 18)若男女生相间,有多少种排法?(答案:)
题型四:分组问题
6本不同的书,按照以下要求处理,各有几种分法?
( 19)一堆一本,一堆两本,一堆三本(答案:)
( 20)甲得一本,乙得两本,丙得三本(答案:)
( 21)一人得一本,一人得两本,一人得三本(答案:)
( 22)平均分给甲、乙、丙三人(答案:)
( 23)平均分成三堆(答案:)
( 24)分成四堆,一堆三本,其余各一本(答案:)
( 25)分给三人每人至少一本。
(答案:+ +)
题型五:全能与专项
车间有 11 名工人,其中 5 名男工是钳工, 4 名女工是车工,另外两名老师傅既能当车工又
能当钳工现在要在这11 名工人里选派 4 名钳工, 4 名车工修理一台机床,有多少种选派方法?
题型六:染色问题
( 26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,
且相邻的区域不同色,问有()种不同的涂色方法?
(答案: 260)
( 27)某城市在中心广场建造一个花圃,花圃分为 6 个部分
(如图)。
现在栽种 4 种不同颜色的花,每部分栽种一种且相
邻部分不能栽种同样颜色的花,不同的栽种方法有种。
分析:先排1、 2、 3 排法种排法;再排4,若 4 与 2 同色,
5 有种排法,
6 有 1 种排法;若 4 与 2 不同色, 4 只有 1 种排法;
若5 与 2 同色, 6 有种排法;若 5 与 3 同色, 6 有 1 种排法所以
共有( + +1 ) =120 种
题型七:编号问题
( 28)四个不同的小球放入编号为1, 2, 3, 4 的四个盒子中,则恰有一个空盒的放法共有
多少种?(答案: 144 )
( 29)将数字 1,2, 3,4 填在标号为1,2,3,4 的四个方格里,每格填上一个数字且每个
方格的标号与所填的数字均不相同的填法有多少种?(答案:9)
题型八:几何问题
( 30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取 3 个点,使它们和点A 在同一个平面上,有多少种不同的取法?
(Ⅱ)四面体的顶点和各棱中点共10 个点,在其中取 4 个不共面的点,有多少种不同的取法?
A 外都有
解:( 1)(直接法)如图,含顶点 A 的四面体的 3 个面上,除点
5 个点,从中取出 3 点必与点 A 共面共有种取法,含顶点 A 的
三条棱上各有三个点,它们与所对的棱的中点共面,共有 3 种取法。
根据分类计数原理,与顶点 A 共面三点的取法有+3=33 (种)
( 2)(间接法)如图,从10 个顶点中取 4 个点的取法有种,除去 4 点共面
的取法种数可以得到结果。
从四面体同一个面上的6个点取出 4 点必定共面。
有=60 种,四面体的每一条棱上 3 点与相对棱中点共面,共有 6 种共面情况,从 6 条棱的中点中取 4 个点时有 3种共面情形(对棱中点连线两两相交且互相平分)故 4 点不共面的取法为
- ( 60+6+3) =141
题型九:关于数的整除个数的性质:
①被 2 整除的:个位数为偶数;
②被 3 整除的:各个位数上的数字之和被 3 整除;
③被 6 整除的: 3 的倍数且为偶数;
④被 4 整除的:末两位数能被 4 整除;
⑤被 8 整除的:末三位数能被8 整除;
⑥ 25 的倍数:末两位数为25 的倍数;
⑦ 5 的倍数:个位数是 0, 5;
⑧ 9 的倍数:各个位数上的数字之和为9 的倍数。
( 31):用 0,1 , 2, 3, 4, 5 组成无重复数字的五位数,其中 5 的倍数有多少个?
(答案: 216)
题型十:隔板法:(适用于“同元”问题)
( 32):把 12 本相同的笔记本全部分给7 位同学,每人至少一本,有多少种分法?
分析:把 12 本笔记本排成一行,在它们之间有11 个空当(不含两端)插上 6 块板将本子分成 7份,对应着 7 名同学,不同的插法就是不同的分法,故有种。
三、在线测试题
1.以一个正方形的顶点为顶点的四面体共有(D)个
(A) 70 ( B) 64 ( C) 60 ( D) 58
2. 3 名医生和 6 名护士被分配到 3 所所为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有(D)
( A) 90 种(B)180种(C)270
种(D)540种
1 个名额,则不同的名额分配方法
3.将组成篮球队的12 个名额分配给7 所学校,每校至少
共有(A)
( A)( B )( C)(D )
4. 5 本不同的书,全部分给四个学生,每个学生至少
1 本,不同分法的种数为( B )
( A) 480(B)240(C)120
(D)96
1, 2, 3, 4, 5 的座位上,至多有两5.编号为1, 2, 3, 4, 5 的五个人分别去坐在编号为
个号码一致的坐法种数为(C)
(A) 90 ( B ) 105 ( C) 109 ( D ) 100
6.如右,一个地区分 5 个行政区域,地着色,
要求相区域不得使用同一色,在 4 种色可供,
不同的着色方法共有(B)种(用数字作答)
(A) 48 (B )72 ( C) 120 ( D ) 36
7.若把英“error ”中字母的拼写序写了,可能出的的种数是(A)。
(A) 19 ( B ) 20 ( C) 119 ( D )60
8.某季足球比的分是:一,得 3 分;平一,得 1 分;一,得0 分,一球打完 15 ,分33 分,若不考序,、、平的情况有( D )( A) 6 种( B) 5 种( C) 4 种( D) 3 种
四、后
1.10 个不加区的小球放入号1,2,3 的三个盒子中,要求每个盒内的球数不小于盒
子的数,有种不同的放法?
2.坐在一排9 个椅子上,相两人之至少有 2 个空椅子,不同的坐法的种数是
3.如 A ,B , C,D 海上的四个小,要建三座,将四个接起来,不同的建
方案共有种。
4.面直角坐系中,X 正半上有 5 个点, Y 正半有 3 个点,将Y 上 3 个点成15 条段,15 条段在第一象限内的交点最多有5.某局只有票0.6 元,0.8 元,1.1 元的三种面票,有
使粘的票数最小,且恰7.5 元,至少要票。
X 上 5 个点或个。
7.5 元的件一件,
6.( 1)从1, 2,⋯,30 前30 个自然数中,每次取出不同的三个数,使三个
数的和是 3 的倍数的取法有多少种?
( 2)用 0, 1, 2, 3, 4, 5 六个数字,可以成多少个能被 3 整除的四位数。
(3)在 1,2,3,⋯, 100 100 个自然数中,每次取出三个数,使它构成一个等差数列,的等差数列
共有多少个?
(4) 1! +2!+3 !+ ⋯ +100 !的个位数字是
7. 5 个身高均不等的学生站成一排合影,若高个子站中,从中到两一个比一个矮,
的排法种数共有()
( A) 6 种(B)8种( C) 10种( D) 12 种
8.某品中有 4 只次品, 6 只正品(每只品均可区),每次取一只,直到 4 只次品全部出止,第五次最后一只次品的可能情况共有多少种?
《排列和组合的综合应用》教师小结
数学教在教学境下也会遭遇如以下的困:
——我怎向学生提供更多的相关的学料?
——我如何有效地行堂并及反?
——我怎每个学生都参与并且使的果都呈出来?
种在教学源、教学、教学上所体出来的局限,不在教学境下以改
,即使在多媒体助教学下也是捉襟肘。
它不影响了数学教学效率的提高,更是阻碍了数学教改的程。
幸而,计算机技术的发展已经到了网络时代,基于 Web的网络教学给我们的数学教学带来了
革命的曙光。
鉴此认真分析教材特点,学生特点开了《排列和组合的综合应用》这堂网络课,现
对此进行课后总结:
《排列和组合的综合应用》这堂网络课,教学重点是几种常见命题的形式的解题思路及有关
应用。
首先,通过排列和组合有关知识的学习,对排列和组合有一个整体上的认识,给学生打下了很好的基础。
其次,在教学中,本着以学生为本的原则,让学生自己动手参与实践,使之获取
知识。
在传统教学过程中,学生主要依靠老师,自主探索的能力不强,因此在本节课学习中,教
师在课堂上适时抛出问题,使学生有的放矢,有针对性,知道自己下一步应该做什么,同时组织学生以小组进行讨论学习,防止出现学生纯粹浏览网页这种现象。
在强大的网络环境下,让学生探讨排列和组合的区别与联系,自主发现结论,以人机交互的方式,使个性化学习成为可能,体现了学科教学与教育技术的整合。
第三、针对数学学科的特点,在学生自主探索发现结论后,还需在理论上给予支持。
因此,对各种常见的类型,教师在课堂上分别给予小结,目的是让学生在今后的自主学习中,若遇到同样的问题,有能力自己解决。
从而让学生逐步熟悉、形成较为完整
的一套自主学习的方法。
在上课的过程中,充分体现出计算机的交互和便捷的特点,学生可以根据需要,在老师的引导下,选择自己学习的进度和内容,去自主的学习和探索。
通过实际操作,帮助理解和掌握本节
课重点内容。
在上课过程中,学生积极思考,相互协作讨论,踊跃回答问题,气氛活跃,教学效
果好。
在学生课后的反馈中,总体的反映都觉得各自获益匪浅,从中学到了不少的东西,切实掌
握了排列和组合的有关知识。
当然,本节课还有许多需要改进的地方,如课堂上安排节奏比较快,例题,练习留给学生探
索,动手的时间还可以再多一些;另外由于学生电脑的水平以及数学学科的特点,所以许多学生不能很熟练地操作电脑,许多数学符号,公式无法在讨论区中体现。
总之,网络探究的最大好处是学生能够在网络中找到课堂教学中体验过和未体验过的感性知
识,提高学生求知欲,增强学习的自主性,使学生的个性在学习中得以充分张扬。
而探究过程中
的相互交流不仅可扩大知识的摄入量,更可培养学生形成一种在交流中学习成长的意识。
因此在网络教学这领域中,今后还有很大的学习空间,做为一名教师,要适应时代的需要,改善自己平时的传统教学思维,大胆创新,努力学习,不断地探索,不断反思。
树立现代教育观念,不断学
习现代化技术,完善自己,提高素质,才能担负起祖国赋于我们肩上的重任。