2019年湖南省株洲市中考数学试卷及答案解析

合集下载

2019湖南株洲中考数学解析

2019湖南株洲中考数学解析

株洲市2019年初中学业水平考试数学解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.(2019湖南省株洲市,1,3分)﹣3的倒数是 A .13-B .13C .﹣3D .3 【答案】A【解析】根据倒数的定义,乘积为1的两个数互为倒数,13)()13-⨯-=(,所以选A 【知识点】倒数的定义2.(2019湖南省株洲市,2,3A .B .4CD . 【答案】B【知识点】二次根式的乘法3.(2019湖南省株洲市,3,3分)下列各式中,与233x y 是同类项的是 A .52x B .323x y C .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 【知识点】同类项的定义 4.(2019湖南省株洲市,4,3分)对于任意的矩形,下列说法一定正确的是 A .对角线垂直且相等 B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 【答案】C【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C. 【知识点】矩形的性质5.(2019湖南省株洲市,5,3分)关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以x(x-3)得, 2(x-3)-5x=0,解得,x=-2,所以答案为B 【知识点】解分式方程 6.(2019湖南省株洲市,6,3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限? A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】根据平面直角坐标系中点的坐标特点可知,第四象限的点的坐标符号为(+,-),所以D 【知识点】平面直角坐标系中点的坐标特点 7.(2019湖南省株洲市,7,3分)若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3 C .4 D .5 【答案】A【解析】这组数据除x 外按从大到小排序为6,3,3,1,若x 不是中位数,则中位数和平均数都是3,所以x=2;若x 是中位数,则平均数和中位数都是x ,则由平均数可得x=134,此时中位数是3,不合题意,所以选A 【知识点】中位数、平均数 8.(2019湖南省株洲市,8,3分)下列各选项中因式分解正确的是 A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的 【知识点】分解因式9.(2019湖南省株洲市,9,3分)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则 A .S 1=S 2+S 3 B .S 2=S 3 C .S 3>S 2>S 1 D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B【知识点】反比例函数k 的几何意义10.(2019湖南省株洲市,10,3分)从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值 A .10 B .6 C .5 D .4 【答案】C【解析】从-1,1,2,4这四个数中任取两个不同的数,共有{ -1,1}{ -1,2}{ -1,4}{ 1,2}{ 1,4}{ 2,4}六种情况,其中{ -1,4}{ 1,2}两数和相同,所以共有五种情况,即S 最大为5,选C 【知识点】概率;有理数的加法二、填空题(本题共8小题,每小题3分,共24分)11.(2019湖南省株洲市,11,3分)若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 【答案】<【解析】二次函数开口向下,则a<0 【知识点】二次函数图像的性质 12.(2019湖南省株洲市,12,3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 . 【答案】12【解析】由题意知共有12个球,白球6个,随机摸球,机会均等,所以得到白球的概率是12【知识点】概率13.(2019湖南省株洲市,13,3分)如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .【答案】4【解析】因为Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,所以AB=2CM,又因为E 、F 分别为MB 、BC 的中点,所以EF 为中位线,所以CM=2EF,从而AB=4EF=4【知识点】直角三角形斜边的中线等于斜边的一半;三角形中位线的性质 14.(2019湖南省株洲市,14,3分)若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 . 【答案】a<1【解析】根据不等式的性质,将2-a>1,变形为-a>-1,不等式两边都除以-1,得a<1 【知识点】不等式的性质 15.(2019湖南省株洲市,15,3分)如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第15题【答案】66° 【解析】正五边形的每个内角为108°,所以∠EAB=108°,∵AP 平分∠EAB ,∴∠PAB=54°,△ABP 中,∠APB=180°-∠ABP-∠PAB=180°-60°-54°=66°【知识点】正多边形内角和,角平分线,三角形内角和16.(2019湖南省株洲市,16,3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.第16题【答案】20°【解析】如图,连接DO,因为CO⊥AB,所以∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,△DCO中,∠DOC=130°,∴∠DOB=40°,∴2∠BAD=∠DOB,∴∠BAD=20°【知识点】三角形内角和,等边对等角,同弧所对的圆周角和圆心角的关系17.(2019湖南省株洲市,17,3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【答案】250【解析】设速度快的人走的时间为x,根据题意可得,100x=100+60x,所以x=2.5,所以速度快的人要走100 2.5250步才能追到速度慢的人.=【知识点】一元一次方程的应用18.(2019湖南省株洲市,18,3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜I,在y 轴处放置一个有缺口的挡板II,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x =﹣1处放置一个挡板III,从点O发出的光线经反光镜I反射后,通过缺口AB照射在挡板III上,则落在挡板III上的光线的长度为.第18题【答案】3 2【解析】如图,落在挡板III上的光线的长度为MN的长度,对应的反光镜I的边界点分别为点P和点Q,根据光线的折射,入射角等于反射角可得∠OPF=∠APF,从而证明△APF≌△OPF,所以AO=2AF=2OF,∴AF=12,同理△AQB≌△AQO,AB=AO=1,所以NE=2,∵AQ⊥y轴,∴PQ=AF=1 2,由题意知,△AEM≌△AQP,所以ME=PQ=12,所以MN=NE-ME=2-12=32【知识点】全等三角形的性质,中位线定理三、解答题(本大题共8小题,共66分)19.(2019湖南省株洲市,19,6分)计算:02cos30π+-︒.【思路分析】负数的绝对值等于它的相反数;任何非零数的零次幂等于1,COS30°=2,代入求值即可.=1 【知识点】实数的运算20.(2019湖南省株洲市,20,6分)先化简,再求值:221(1)a a aa a-+--,其中a=12.【思路分析】先将分式化简成最简分式,再代入求值.【解题过程】a=12=2211(1)(1)1(1)(1)(1a a a a a a aa a a a a a a++--+-=-==---(a-1)a-1),当a=12时,上式= -4.【知识点】分式的计算,实数的运算21.(2019湖南省株洲市,21,8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点).求障碍物的高度.【思路分析】(1)Rt△ABC中,AC=1.6,∠ABC=α,tanα=13,∴BC=3AC==⨯3 1.6 4.8(2)由题意得平行四边形ABED,∴BE=BM=FF1=0.6,∴EM=BM-BE=12BC-BE=2.4-0.6=1.8,∵tan∠NEM=tan∠ABC=13,∴MN=13EM=0.6【解题过程】(1)如图,∵l1∥l2∴∠ABC=α∴tan∠ABC=ACBC=tanα=13,∴BC=3AC==⨯3 1.6 4.8(米)∴BC的长度为4.8米。

2019年湖南省株洲中考数学试卷及答案解析

2019年湖南省株洲中考数学试卷及答案解析

湖南省株洲市2019年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.3-的倒数是 ( )A.13-B.13C.3-D.3 2.28⨯=( )A.42B.4C.10D.22 3.下列各式中,与233x y 是同类项的是( )A.52xB.323x yC.2312x y -D.513y - 4.对于任意的矩形,下列说法一定正确的是( )A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为( )A.3-B.2-C.2D.3 6.在平面直角坐标系中,点()2,3A -位于哪个象限?( )A.第一象限B.第二象限C.第三象限D.第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( )A.2B.3C.4D.5 8.下列各选项中因式分解正确的是( )A.()2211x x -=-B.()32222a a a a a -+=-C.()22422y y y y -+=-+D.()2221m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数()0ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD y ⊥轴于点D ,过点B 、C 分别作BE ,CF x ⊥轴于点E 、F ,OC 与BE 相交于点M ,记AOD △、BOM △、四边形CMEF 的面积分别为1S 、2S 、3S ,则( )A.123S S S =+B.23S S =C.321S S S >>D.2123S S S <10.从1-,1,2,4四个数中任取两个不同的数(记作;k a ,k b )构成一个数组{},k k k M a b =(其中1,2k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},j j j M a b =(i j ≠,1i S ≤≤,1j S ≤≤)都有i i j j a b a b +≠+,则S 的最大值( )A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt ABC △中,90ACB ∠=︒,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若1EF =,则AB = .14.若a 为有理数,且2a -的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠= 度.16.如图所示,AB 为O e 的直径,点C 在O e 上,且OC AB ⊥,过点C 的弦CD 与线段OB 相交于点E ,满足65AEC ∠=︒,连接AD ,则BAD ∠= 度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy中,在直线1x=处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点()0,1A,点B在点A上方,且1AB=,在直线1x=-处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:()2211a a aaa-+--,其中12a=.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且1tan3α=,若直线AF与地面1l相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线2l与地面1l平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),1MN l⊥,若小强的爸爸将汽车沿直线1l后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点1F为点F的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:最高气温T(单位:℃)需求量(单位:杯)T<25 20025≤T<30 250T≥30 400(1)求去年六月份最高气温不低于30 ℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足2530T≤<(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:DOG COE△≌△;(2)若DG BD ⊥,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,12AM =,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰OAB △的边OB 与反比例函数my x=(0m >)的图像相交于点C ,其中OB AB =,点A 在x 轴的正半轴上,点B 的坐标为()2,4,过点C 作CH x ⊥轴于点H .(1)已知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB上的一点,满足OC ,过点P 作PQ x ⊥轴于点Q ,连结OP ,记OPQ △的面积为OPQ S △,设AQ t =,2OPQ T OH S =-△.①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是O e 的圆内接四边形,线段AB 是O e 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且ACH CBD ∠=∠,AD CH =,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC BC =,PB =,)21AB CD +=①求证:DHC △为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2y ax bx c =++(0a >).(1)若1a =,2b =-,1c =-.①求该二次函数图像的顶点坐标;②定义:对于二次函数2y px qx r =++(0p ≠),满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”. (2)设312b c =,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点()1,0A x ,()2,0B x ,其中10x <,20x <,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC OD =,又点E 的坐标为()1,0,过点D 作垂直于y 轴的直线与直线CE 相交于点F ,满足AFC ABC ∠=∠.FA 的延长线与BC 的延长线相交于点P,若PC PA =求该二次函数的表达式.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________湖南省株洲市2019年初中学业水平考试数学答案解析一、选择题2.【答案】B4==。

2019湖南株洲中考数学解析

2019湖南株洲中考数学解析

株洲市2019年初中学业水平考试数学解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.(2019湖南省株洲市,1,3分)﹣3的倒数是 A .13-B .13C .﹣3D .3 【答案】A【解析】根据倒数的定义,乘积为1的两个数互为倒数,13)()13-⨯-=(,所以选A 【知识点】倒数的定义2.(2019湖南省株洲市,2,328A .42B .4C 10D .22 【答案】B28=28=16=4⨯ 【知识点】二次根式的乘法3.(2019湖南省株洲市,3,3分)下列各式中,与233x y 是同类项的是A .52x B .323x y C .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 【知识点】同类项的定义 4.(2019湖南省株洲市,4,3分)对于任意的矩形,下列说法一定正确的是 A .对角线垂直且相等 B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 【答案】C【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C. 【知识点】矩形的性质5.(2019湖南省株洲市,5,3分)关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 【答案】B【解析】解分式方程,去分母,化分式方程为整式方程,方程两边同时乘以x(x-3)得, 2(x-3)-5x=0,解得,x=-2,所以答案为B 【知识点】解分式方程 6.(2019湖南省株洲市,6,3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限? A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】根据平面直角坐标系中点的坐标特点可知,第四象限的点的坐标符号为(+,-),所以D 【知识点】平面直角坐标系中点的坐标特点 7.(2019湖南省株洲市,7,3分)若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3 C .4 D .5 【答案】A【解析】这组数据除x 外按从大到小排序为6,3,3,1,若x 不是中位数,则中位数和平均数都是3,所以x=2;若x 是中位数,则平均数和中位数都是x ,则由平均数可得x=134,此时中位数是3,不合题意,所以选A 【知识点】中位数、平均数 8.(2019湖南省株洲市,8,3分)下列各选项中因式分解正确的是 A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的 【知识点】分解因式9.(2019湖南省株洲市,9,3分)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则 A .S 1=S 2+S 3 B .S 2=S 3 C .S 3>S 2>S 1 D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B【知识点】反比例函数k 的几何意义10.(2019湖南省株洲市,10,3分)从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值 A .10 B .6 C .5 D .4【解析】从-1,1,2,4这四个数中任取两个不同的数,共有{ -1,1}{ -1,2}{ -1,4}{ 1,2}{ 1,4}{ 2,4}六种情况,其中{ -1,4}{ 1,2}两数和相同,所以共有五种情况,即S 最大为5,选C 【知识点】概率;有理数的加法二、填空题(本题共8小题,每小题3分,共24分)11.(2019湖南省株洲市,11,3分)若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 【答案】<【解析】二次函数开口向下,则a<0 【知识点】二次函数图像的性质 12.(2019湖南省株洲市,12,3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 . 【答案】12【解析】由题意知共有12个球,白球6个,随机摸球,机会均等,所以得到白球的概率是12【知识点】概率13.(2019湖南省株洲市,13,3分)如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .【答案】4【解析】因为Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,所以AB=2CM,又因为E 、F 分别为MB 、BC 的中点,所以EF 为中位线,所以CM=2EF,从而AB=4EF=4【知识点】直角三角形斜边的中线等于斜边的一半;三角形中位线的性质 14.(2019湖南省株洲市,14,3分)若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 . 【答案】a<1【解析】根据不等式的性质,将2-a>1,变形为-a>-1,不等式两边都除以-1,得a<1 【知识点】不等式的性质 15.(2019湖南省株洲市,15,3分)如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第15题 【答案】66°【解析】正五边形的每个内角为108°,所以∠EAB=108°,∵AP平分∠EAB,∴∠PAB=54°,△ABP中,∠APB=180°-∠ABP-∠PAB=180°-60°-54°=66°【知识点】正多边形内角和,角平分线,三角形内角和16.(2019湖南省株洲市,16,3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.第16题【答案】20°【解析】如图,连接DO,因为CO⊥AB,所以∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC,∴∠ODC=∠C=25°,△DCO中,∠DOC=130°,∴∠DOB=40°,∴2∠BAD=∠DOB,∴∠BAD=20°【知识点】三角形内角和,等边对等角,同弧所对的圆周角和圆心角的关系17.(2019湖南省株洲市,17,3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【答案】250【解析】设速度快的人走的时间为x,根据题意可得,100x=100+60x,所以x=2.5,所以速度快的人要走100 2.5250步才能追到速度慢的人.=【知识点】一元一次方程的应用18.(2019湖南省株洲市,18,3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜I,在y 轴处放置一个有缺口的挡板II,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x =﹣1处放置一个挡板III,从点O发出的光线经反光镜I反射后,通过缺口AB照射在挡板III上,则落在挡板III上的光线的长度为.第18题 【答案】32【解析】 如图,落在挡板III 上的光线的长度为MN 的长度,对应的反光镜I 的边界点分别为点P 和点Q ,根据光线的折射,入射角等于反射角可得∠OPF=∠APF,从而证明△APF ≌△OPF ,所以AO=2AF=2OF ,∴AF=12,同理△AQB ≌△AQO,AB=AO=1,所以NE=2,∵AQ ⊥y 轴,∴PQ=AF=12,由题意知,△AEM ≌△AQP ,所以ME=PQ=12,所以MN=NE-ME=2-12=32【知识点】全等三角形的性质,中位线定理三、解答题(本大题共8小题,共66分)19.(2019湖南省株洲市,19,6分)计算:032cos30π-+-︒.【思路分析】负数的绝对值等于它的相反数;任何非零数的零次幂等于1,COS30°=32,代入求值即可.3+1-22⨯3=1【知识点】实数的运算20.(2019湖南省株洲市,20,6分)先化简,再求值:221(1)a a aa a-+--,其中a=12.【思路分析】先将分式化简成最简分式,再代入求值.【解题过程】a=12=2211(1)(1)1(1)(1)(1a a a a a a aa a a a a a a++--+-=-==---(a-1)a-1),当a=12时,上式= -4.【知识点】分式的计算,实数的运算21.(2019湖南省株洲市,21,8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点).求障碍物的高度.【思路分析】(1)Rt△ABC中,AC=1.6,∠ABC=α,tanα=13,∴BC=3AC==⨯3 1.6 4.8(2)由题意得平行四边形ABED,∴BE=BM=FF1=0.6,∴EM=BM-BE=12BC-BE=2.4-0.6=1.8,∵tan∠NEM=tan∠ABC=13,∴MN=13EM=0.6【解题过程】(1)如图,∵l 1∥l 2∴∠ABC=α∴tan ∠ABC=AC BC =tan α=13,∴BC=3AC==⨯3 1.6 4.8(米)∴BC 的长度为4.8米。

2019年湖南省株洲市中考数学试题(word版,含答案)

2019年湖南省株洲市中考数学试题(word版,含答案)

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A .B .4CD .3.下列各式中,与233x y 是同类项的是A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 6.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限 7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32 10.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4 二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.实用文档精心整理 11。

2019年湖南省株洲市中考数学试题及解析

2019年湖南省株洲市中考数学试题及解析

2019年湖南省株洲市中考数学试卷一.选择题(每小题3分,共24分)﹣5.(3分)(2019•株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上.D6.(3分)(2019•株洲)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()7.(3分)(2019•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是().D8.(3分)(2019•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四的一个根,那么二.填空题(每小题3分,共24分)9.(3分)(2019•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费元.10.(3分)(2019•株洲)在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是.11.(3分)(2019•株洲)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是.12.(3分)(2019•株洲)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.13.(3分)(2019•株洲)因式分解:x2(x﹣2)﹣16(x﹣2)=.14.(3分)(2019•株洲)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B 两点),则a的取值范围是.15.(3分)(2019•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.16.(3分)(2019•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三.解答题(共7小题,共52分)17.(4分)(2019•株洲)计算:|﹣3|+(2019﹣π)0﹣2sin30°.18.(4分)(2019•株洲)先化简,再求值:(﹣)•,其中x=4.19.(6分)(2019•株洲)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?20.(6分)(2019•株洲)某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是等;(2)请将条形统计图补充完整;(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参21.(6分)(2019•株洲)P表示n边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P=(填数字);五边形时,P=(填数字)(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a和b的值.(注:本题中的多边形均指凸多边形)22.(8分)(2019•株洲)如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.23.(8分)(2019•株洲)已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD的面积为?(直接写出答案)(3)当△CQD的面积为,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP的长.2019年湖南省株洲市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共24分)﹣5.(3分)(2019•株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上.D图象上的情况,再利用概率公式即可求得答案.图象上的有(图象上的概率是:=6.(3分)(2019•株洲)如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()OBC==227.(3分)(2019•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是().D根据相似三角形的性质可得=,=从而可得++=1=,=+===1+=1EF=.+=18.(3分)(2019•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四的一个根,那么>>c+b+a=0是方程二.填空题(每小题3分,共24分)9.(3分)(2019•株洲)如果手机通话每分钟收费m元,那么通话n分钟收费mn元.10.(3分)(2019•株洲)在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是(3,2).11.(3分)(2019•株洲)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是65°.12.(3分)(2019•株洲)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90分.13.(3分)(2019•株洲)因式分解:x2(x﹣2)﹣16(x﹣2)=(x﹣2)(x+4)(x﹣4).14.(3分)(2019•株洲)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B 两点),则a的取值范围是7≤a≤9.x=≤15.(3分)(2019•株洲)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于6.×16.(3分)(2019•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.4=1+﹣S=15+﹣三.解答题(共7小题,共52分)17.(4分)(2019•株洲)计算:|﹣3|+(2019﹣π)0﹣2sin30°.×=3+118.(4分)(2019•株洲)先化简,再求值:(﹣)•,其中x=4.•19.(6分)(2019•株洲)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?,20.(6分)(2019•株洲)某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是A等;(2)请将条形统计图补充完整;(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参÷=20021.(6分)(2019•株洲)P表示n边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P=1(填数字);五边形时,P=5(填数字)(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a和b的值.(注:本题中的多边形均指凸多边形))得:整理得:解得:22.(8分)(2019•株洲)如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.AB==13,解得:23.(8分)(2019•株洲)已知AB是圆O的切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD的面积为?(直接写出答案)(3)当△CQD的面积为,且Q位于以CD为直径的上半圆,CQ>QD时(如图2),求AP的长.的距离为OB=CD=CAP==,AP=的面积为.CD×h=.h=的面积为CD×QN=,∴QN==,,则有=xx==2+.==2+,)=tan30=AM=AC=AM+MC=MP=AP=2MP=。

2019湖南省株洲市中考数学试题(word版,含答案)

2019湖南省株洲市中考数学试题(word版,含答案)

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是A .B .C .﹣3D .313-132A .B .4CD .3.下列各式中,与是同类项的是233x y A . B . C . D .52x 323x y 2312x y -513y -4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形5.关于x 的分式方程的解为2503x x -=- A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .58.下列各选项中因式分解正确的是A .B .221(1)x x -=-3222(2)a a a a a -+=- C . D .2242(2)y y y y -+=-+222(1)m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数上不同的三(0)k y k x=>点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:,)构成一个数组M k ={k a k b ,}(其中k =1,2,…,S ,且将{,}与{,}视为同一个数组),若k a k b k a k b k b k a 满足:对于任意的M i ={,}和M j ={,}(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a i b j a j b+≠+,则S 的最大值i a i b j a j b A .10 B .6 C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数的图像开口向下,则a 0(填“=”或“>”或2y ax bx =+“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题三、解答题(本大题共8小题,共66分)19.(本题满分6.02cos30-︒20.(本题满分6分)先化简,再求值:,其中a =.221(1)a a a a a-+--1221.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为,且tan =,若直线AF αα13与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG .(1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =,求正方形OEFG 的边长.1224.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,(0)m y m x=>点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =+1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数.2(0)y ax bx c a =++>(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数,满足方程的x 的值叫做该二次函数的“不2(0)y px qx r p =++≠y x =动点”.求证:二次函数有两个不同的“不动点”.2y ax bx c =++(2)设b =,如图所示,在平面直角坐标系xOy 中,二次函数312c 2y ax bx c =++的图像与x 轴分别相交于不同的两点A(,0),B(,0),其中<0,<1x 2x 1x 2x 0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC =∠ABC .FA 的延长线与BC 的延长线相交于点P ,若,PC PA =求该二次函数的表达式.王老师编辑整理。

2019年湖南省株洲市中考数学试卷(含解析)完美打印版

2019年湖南省株洲市中考数学试卷(含解析)完美打印版

2019年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.32.(3分)×=()A.4B.4C.D.23.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y54.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.36.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.58.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)29.(3分)如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC 与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S3210.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=度.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.20.(6分)先化简,再求值:﹣,其中a=.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ 的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.2019年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.(3分)×=()A.4B.4C.D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×==4.故选:B.3.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y5【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、﹣x2y3与3x2y3是同类项,故本选项正确;D、﹣y5与3x2y3是同类项,故本选项错误;故选:C.4.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【分析】直接利用矩形的性质分析得出答案.【解答】解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.6.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.5【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【解答】解:当x≤1时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.8.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a(a﹣1)2,故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.9.(3分)如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC 与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a<0(填“=”或“>”或“<”).【分析】由二次函数y=ax2+bx图象的开口向下,可得a<0.【解答】解:∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【解答】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是=;故答案为:.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=4.【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=66度.【分析】首先根据正五边形的性质得到∠EAB=108度,然后根据角平分线的定义得到∠P AB=54度,再利用三角形内角和定理得到∠APB的度数.【解答】解:∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠P AB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【分析】由直角三角形的性质得出∠OCE=25°,由等腰三角形的性质得出∠ODC=∠OCE=25°,求出∠DOC=130°,得出∠BOD=∠DOC﹣∠COE=40°,再由圆周角定理即可得出答案.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.【分析】当光线沿O、G、B、C传输时,由tan∠OGH=tan∠CGE,即:,即:,解得:a=1,求出y C=1+2=3,同理可得:y D=1.5,即可求解.【解答】解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,方法一:∵△GOB为等腰三角形,∴G(1,1),∵B为CG中点,∴C(﹣1,3),同理D(﹣1,1.5),∴CD=3﹣1.5=1.5方法二:∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=+1﹣2×=+1﹣=1.20.(6分)先化简,再求值:﹣,其中a=.【分析】根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣=====,当a=时,原式==﹣4.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.【分析】(1)由题意得到∠ABC=∠α,解直角三角形即可得到结论;(2)过D作DH⊥BC于H,于是得到四边形ADHC是矩形,根据矩形的性质得到AD=CH=BE=0.6,根据线段的中点的定义得到BM=CM=2.4米,求得EM=BM﹣BE=1.8,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴=,∴=,∴MN=0.6,答:障碍物的高度为0.6米.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【分析】(1)由条形图可得答案;(2)用T<25的天数除以总天数即可得;(3)根据利润=销售额﹣成本计算可得.【解答】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=700(元),答:估计这一天销售这种鲜奶所获得的利润为700元.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC=90°,∠GOE =90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG 的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD ∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为224.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ 的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【分析】(1)将点O、B的坐标代入一次函数表达式:y=kx,即可求解;(2)①sin∠APQ===sinα=,则P A=a=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t;②当t=时,T取得最小值,而点C(t,2t),即可求解.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QP A=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则P A=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【分析】(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DHC为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.【分析】(1)①把a、b、c的值代入二次函数解析式并配方得顶点式,即求得顶点坐标.②根据定义,把y=x代入二次函数y=x2﹣2x﹣1,得x2﹣2x﹣1=x,根据根的判别式可知满足此方程的x有两个不相等的值,即原二次函数有两个不同的“不动点”.(2)由条件∠AFC=∠ABC与=联想到证△PFC∽△PBA的对应边的比,即有.由DF⊥y轴且OC=OD可得DF∥x轴,由平行线分线段定理可证E也为CF中点,其中CE=,CF=2CE可用含c的式子表示.AB可用含x2﹣x1表示,通过韦达定理变形和b=c3代入可得用a、c表示AB的式子.又由∠AFC=∠ABC和∠AEF=∠CEB可证△AEF∽△CEB,对应边成比例可得式子AE•BE=CE•EF,把含c、x2、x1的式子代入再把韦达定理得到的x1+x2=﹣,x1x2=代入化简,可得c=﹣2a.即能用a表示CF、AB,代回到解方程即求得a 的值,进而求b、c的值,得到二次函数表达式.【解答】解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+c3x+c=0的两个不相等实数根∴x1+x2=﹣,x1x2=∵当x=0时,y=ax2+c3x+c=c∴C(0,c)∵E(1,0)∴CE=,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴∴EF=CE=,CF=2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=﹣﹣1﹣c3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0∵c2+2>0∴c+2a=0,即c=﹣2a∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴∴解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣2。

2019年湖南省株洲中考数学试卷及答案

2019年湖南省株洲中考数学试卷及答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前湖南省株洲市2019年初中毕业学业考试数 学本试卷满分120分,考试时间120分钟.一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.3-的倒数是( )A .13-B .13C .3-D .3 2.28⨯=( ) A .42B .4C .10D .22 3.下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是( )A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 6.在平面直角坐标系中,点()2,3A -位于哪个象限?( ) A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( )A .2B .3C .4D .5 8.下列各选项中因式分解正确的是( )A .()2211x x -=-B .()32222a a a a a -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数()0ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD y ⊥轴于点D ,过点B 、C 分别作BE ,CF x ⊥轴于点E 、F ,OC 与BE 相交于点M ,记AOD △、BOM △、四边形CMEF 的面积分别为1S 、2S 、3S ,则( )A .123S S S =+B .23S S =C .321S S S >>D .2123S S S <10.从1-,1,2,4四个数中任取两个不同的数(记作;k a ,k b )构成一个数组{},k k k M a b =(其中1,2k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},j j j M a b =(i j ≠,1i S ≤≤,1j S ≤≤)都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt ABC △中,90ACB ∠=︒,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若1EF =,则AB = .14.若a 为有理数,且2a -的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠= 度.16.如图所示,AB 为O 的直径,点C 在O 上,且OC AB ⊥,过点C 的弦CD 与线段OB 相交于点E ,满足65AEC ∠=︒,连接AD ,则BAD ∠= 度.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页)数学试卷 第4页(共20页)17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线1x =处放置反光镜Ⅰ,在y 轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB ,其中点()0,1A ,点B 在点A 上方,且1AB =,在直线1x =-处放置一个挡板Ⅲ,从点O 发出的光线经反光镜Ⅰ反射后,通过缺口AB 照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 .三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:()2211a aa a a -+--,其中12a =.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且1tan 3α=,若直线AF 与地面1l 相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线2l 与地面1l 平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),1MN l ⊥,若小强的爸爸将汽车沿直线1l 后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点1F 为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下: 最高气温T (单位:℃)需求量(单位:杯)T <25 200 25≤T <30 250 T ≥30400(1)求去年六月份最高气温不低于30 ℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足2530T ≤<(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:DOG COE △≌△;(2)若DG BD ⊥,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,数学试卷 第5页(共20页) 数学试卷 第6页(共20页)12AM =,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰OAB △的边OB 与反比例函数my x=(0m >)的图像相交于点C ,其中OB AB =,点A 在x 轴的正半轴上,点B 的坐标为()2,4,过点C 作CH x ⊥轴于点H .(1)已知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC =,过点P 作PQ x ⊥轴于点Q ,连结OP ,记OPQ △的面积为OPQ S △,设AQ t =,2OPQ T OH S =-△.①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是O 的圆内接四边形,线段AB 是O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且ACH CBD ∠=∠,AD CH =,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC BC =,PB =,)21AB CD +=①求证:DHC △为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2y ax bx c =++(0a >).(1)若1a =,2b =-,1c =-.①求该二次函数图像的顶点坐标;②定义:对于二次函数2y px qx r =++(0p ≠),满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”. (2)设312b c =,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点()1,0A x ,()2,0B x ,其中10x <,20x <,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC OD =,又点E 的坐标为()1,0,过点D 作垂直于y 轴的直线与直线CE 相交于点F ,满足AFC ABC ∠=∠.F A 的延长线与BC 的延长线相交于点P,若PC PA =求该二次函数的表达式.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)湖南省株洲市2019年初中学业水平考试数学答案解析一、选择题 【解析】133⎛-⨯-⎝的倒数是3-。

2019湖南省株洲市中考数学试题(含答案)

2019湖南省株洲市中考数学试题(含答案)

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是A .13-B .13C .﹣3D .32A ..4 C .3.下列各式中,与233x y 是同类项的是A .52xB .323x yC .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .58.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)k y k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题第13题第15题16.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜I,在y 轴处放置一个有缺口的挡板II,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板III,从点O发出的光线经反光镜I反射后,通过缺口AB照射在挡板III上,则落在挡板III上的光线的长度为.第16题第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tanα=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)m y m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC =∠ABC .FA 的延长线与BC的延长线相交于点P ,若PC PA =,求该二次函数的表达式.1112。

2019湖南省株洲市中考数学试题(含答案)

2019湖南省株洲市中考数学试题(含答案)

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A ..4 C .3.下列各式中,与233x y 是同类项的是 A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限? A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3 C .4 D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是.13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB =.14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为.15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB =度.第9题第13题第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为.第16题第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表) (最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.。

2019年湖南省株洲中考数学试卷-答案

2019年湖南省株洲中考数学试卷-答案

湖南省株洲市2019年初中学业水平考试数学答案解析 【解析】133⎛-⨯- ⎝的倒数是13-。

2.【答案】B4=。

故选:B 。

【提示】直接利用二次根式的乘法运算法则计算得出答案。

【考点】二次根式的乘法运算。

3.【答案】C【解析】A .52x 与233x y 不是同类项,故本选项错误;B .323x y 与233x y 不是同类项,故本选项错误;C .2312x y -与233x y 是同类项,故本选项正确; D .513y -与233x y 是同类项,故本选项错误;故选:C 。

【提示】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可。

【考点】同类项的知识。

4.【答案】C【解析】A .矩形的对角线相等,但不垂直,故此选项错误;B .矩形的邻边都互相垂直,对边互相平行,故此选项错误;C .矩形的四个角都相等,正确;D .矩形是轴对称图形,也是中心对称图形,故此选项错误。

故选:C 。

【提示】直接利用矩形的性质分析得出答案。

【考点】矩形的性质。

5.【答案】B【解析】去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选:B 。

【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解。

【考点】解分式方程。

6.【答案】D【解析】点A 坐标为()2,3-,则它位于第四象限,故选:D 。

【提示】根据各象限内点的坐标特征解答即可。

【考点】各象限内点的坐标的符号特征。

7.【答案】A【解析】当1x ≤时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当13x <<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =; 当36x ≤<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当6x ≥时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去)。

2019年湖南省株洲市中考数学试题含答案

2019年湖南省株洲市中考数学试题含答案

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是A .13-B .13C .﹣3D .32A .B .4CD .3.下列各式中,与233x y 是同类项的是A .52xB .323x yC .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .58.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)k y k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题 16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒. 20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG .(1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)m y m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”. (2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.11。

2019湖南省株洲市中考数学试题(word版,含答案)

2019湖南省株洲市中考数学试题(word版,含答案)

株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A ..4 C .3.下列各式中,与233x y 是同类项的是 A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限? A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3 C .4 D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是.13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB =.14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为.15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB =度.第9题第13题第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为.第16题第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表) (最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.。

2019年中考数学试题含答案及名家点评:湖南省株洲市

2019年中考数学试题含答案及名家点评:湖南省株洲市

8.(3分)(2020•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原
点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右
走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,
矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意; C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是 矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意; D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边 形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意. 故选B. 名家 本题考查了正方形的判定方法: 点 ①先判定四边形是矩形,再判定这个矩形有一组邻边相等; 评: ②先判定四边形是菱形,再判定这个矩形有一个角为直角. ③还可以先判定四边形是平行四边形,再用1或2进行判定.
本说法错误,
故选:D.
名家 本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.

评:
4.(3分)(2020•株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点
中,也在这个函数图象上的是( )
A.(﹣6,1)
B.(1,6)
C.(2,﹣3)
D.(3,﹣2)
主要 反比例函数图象上点的坐标特征. 考 点: 思路 先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选 分 项进行逐一判断. 析: 详细 解:∵反比例函数y=的图象经过点(2,3), 解 ∴k=2×3=6, 答: A、∵(﹣6)×1=﹣6 6,∴此点不在反比例函数图象上;
D、主视图、俯视图都是圆,故D不符合题意; 故选:C. 名家 本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的 点 图形是俯视图. 评:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.32.(3分)×=()A.4B.4C.D.23.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y54.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.36.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.58.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)29.(3分)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32 10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K ={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S 的最大值()A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=度.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB =1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.20.(6分)先化简,再求值:﹣,其中a=.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.2019年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(3分)×=()A.4B.4C.D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×==4.故选:B.【点评】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.3.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y5【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、﹣x2y3与3x2y3是同类项,故本选项正确;D、﹣y5与3x2y3是同类项,故本选项错误;故选:C.【点评】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.4.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【分析】直接利用矩形的性质分析得出答案.【解答】解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了矩形的性质,正确把握矩形的性质是解题关键.5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.5【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【解答】解:当x≤1时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.【点评】本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.同时运用分类讨论的思想解决问题.8.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a2(a﹣1),故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.9.(3分)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.【点评】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K ={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S 的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.【点评】本题考查了规律型:数字的变化类,找出a i+b i共有几个不同的值是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a<0(填“=”或“>”或“<”).【分析】由二次函数y=ax2+bx图象的开口向下,可得a<0.【解答】解:∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.【点评】考查了二次函数图象与系数的关系.二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【解答】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=4.【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=66度.【分析】首先根据正五边形的性质得到∠EAB=108度,然后根据角平分线的定义得到∠P AB=54度,再利用三角形内角和定理得到∠APB的度数.【解答】解:∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠P AB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.【点评】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【分析】由直角三角形的性质得出∠OCE=25°,由等腰三角形的性质得出∠ODC=∠OCE=25°,求出∠DOC=130°,得出∠BOD=∠DOC﹣∠COE=40°,再由圆周角定理即可得出答案.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.【点评】本题考查了圆周角定理、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握圆周角定理是解题的关键.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB =1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.【分析】当光线沿O、G、B、C传输时,由tan∠OGH=tan∠CGE,即:,即:,解得:a=1,求出y C=1+2=3,同理可得:y D=1.5,即可求解.【解答】解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,则∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.【点评】本题考查的是坐标与图形的变化,涉及到一次函数、解直角三角形等知识,本题关键是弄懂题意,正确画图.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=+1﹣2×=+1﹣=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)先化简,再求值:﹣,其中a=.【分析】根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣=====,当a=时,原式==﹣4.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.【分析】(1)由题意得到∠ABC=∠α,解直角三角形即可得到结论;(2)过D作DH⊥BC于H,于是得到四边形ADHC是矩形,根据矩形的性质得到AD =CH=BE=0.6,根据线段的中点的定义得到BM=CM=2.4米,求得EM=BM﹣BE=1.8,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴=,∴=,∴MN=0.6,答:障碍物的高度为0.6米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题问题,牢固掌握仰角俯角的定义是解题的关键.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【分析】(1)由条形图可得答案;(2)用T<25的天数除以总天数即可得;(3)根据利润=销售额﹣成本计算可得.【解答】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC =90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【分析】(1)将点O、B的坐标代入一次函数表达式:y=kx,即可求解;(2)①sin∠APQ===sinα=,则P A=a=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t;②当t=时,T取得最小值,而点C(t,2t),即可求解.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QP A=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则P A=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.【点评】本题为反比例函数综合运用题,涉及到等腰三角形性质、解直角三角形、一次函数等知识,其中(2)①,确定点C的坐标,是本题解题的关键.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【分析】(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DHC为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH 的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=【点评】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.【分析】(1)①把a、b、c的值代入二次函数解析式并配方得顶点式,即求得顶点坐标.②根据定义,把y=x代入二次函数y=x2﹣2x﹣1,得x2﹣2x﹣1=x,根据根的判别式可知满足此方程的x有两个不相等的值,即原二次函数有两个不同的“不动点”.(2)由条件∠AFC=∠ABC与=联想到证△PFC∽△PBA的对应边的比,即有.由DF⊥y轴且OC=OD可得DF∥x轴,由平行线分线段定理可证E也为CF中点,其中CE=,CF=2CE可用含c的式子表示.AB可用含x2﹣x1表示,通过韦达定理变形和b=c3代入可得用a、c表示AB的式子.又由∠AFC =∠ABC和∠AEF=∠CEB可证△AEF∽△CEB,对应边成比例可得式子AE•BE=CE•EF,把含c、x2、x1的式子代入再把韦达定理得到的x1+x2=﹣,x1x2=代入化简,可得c=﹣2a.即能用a表示CF、AB,代回到解方程即求得a的值,进而求b、c的值,得到二次函数表达式.【解答】解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+c3x+c=0的两个不相等实数根∴x1+x2=﹣,x1x2=∵当x=0时,y=ax2+c3x+c=c∴C(0,c)∵E(1,0)∴CE=,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴∴EF=CE=,CF=2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=﹣﹣1﹣c3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0∵c2+2>0∴c+2a=0,即c=﹣2a∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴∴解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣2【点评】本题考查了求二次函数顶点式,一元二次方程的解法及根与系数的关系,相似三角形的判定和性质,因式分解.第(2)题条件较多且杂时,抓住比较特殊且有联系的条件入手,再通过方程思想不断寻找等量关系列方程,逐个字母消去,求得最终结果.。

相关文档
最新文档