RXRA文献

合集下载

过氧化物酶体增殖物激活受体γ在炎症相关疾病中作用的研究进展

过氧化物酶体增殖物激活受体γ在炎症相关疾病中作用的研究进展

过氧化物酶体增殖物激活受体γ在炎症相关疾病中作用的研究进展任润健;赵虎;毕波【摘要】Peroxisome proliferator-activated receptor gamma(PPARγ)is a member of typeⅡ nuclear receptor superfamily,as a ligand-dependent transcription factor. In recent years,studies have shown that activated PPARγ is capable of modulating the expression of numerous genes and is involved in many physiological and pathological processes,including anti-obesity,anti-atherosclerosis,anti-diabetes mellitus,anti-cancer and anti-inflammatory skin diseases. These diseases are closely related to inflammation. In this review,the research progress of PPARγ in inflammation and inflammatory-related diseases will be summarized.%过氧化物酶体增殖物激活受体γ(PPARγ)是一种配体依赖性转录因子,属Ⅱ型核受体超家族成员.近年来的研究表明,配体激活的PPARγ能够调控大量基因表达,参与抗肥胖、抗动脉粥样硬化、抗糖尿病、抗肿瘤、抗皮肤炎症性疾病等机体众多的生理和病理过程,而这些疾病与炎症息息相关.因此,文章主要就PPARγ在炎症以及炎症相关疾病中的研究进展作一综述.【期刊名称】《检验医学》【年(卷),期】2017(032)002【总页数】5页(P153-157)【关键词】过氧化物酶体增殖物激活受体γ;炎症;配体【作者】任润健;赵虎;毕波【作者单位】复旦大学附属华东医院检验科,上海 200040;复旦大学附属华东医院检验科,上海 200040;复旦大学附属华东医院检验科,上海 200040【正文语种】中文【中图分类】R446.62过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)是一种配体依赖性转录因子,是PPAR的亚型之一,属Ⅱ型核受体超家族成员。

维甲酸受体及其作用机制研究进展

维甲酸受体及其作用机制研究进展
皮肤 性 病诊 疗 学杂 志 2014年 10月 第 21卷 及 其 作 用 机 制 研 究 进 展
· 综 述 ·
杨 娟 , 张 锡 宝
(广 州 市 皮 肤 病 防 治所 ,广 东 广 州 510091)
[摘 要 ] 维 甲酸受体 属于 核受 体超 家族 中 的一 个 子受 体 ,包 括 两类 子 受 体家 族 即 RARs和 RXRs。维
RA通 过单纯 弥散 的方 式 进 入 细 胞 内 ,与 细 胞 RA 结 合 蛋 白 I(cellular retinoic acid binding protein,CRABP I)、
通信作者 :张锡宝 ,E—mail:zxibao@126.com
细胞 RA结合 蛋 白 Ⅱ(cellular retinoic acid binding protein, CRABP 11)结 合后 在细 胞 内进 行转 运 ,其 中 CRABP I负 责 将胞 质 内的 RA转移 至 内质 网 ,进 而 被微粒 体 内的 细胞 色 素 P450酶 (eytochrome p450 isoform 26,CYP26)代 谢 ,降 解 成非 活性物 质而 排 出体 外 。而 CRABP II与细 胞 质 内未 被 代谢 的 RA结 合 ,并 被转 运 到细 胞 核 内 ,作 为多 种 核 受 体 如 RXR、RAR的配体 ,进 而发 挥生 物学 效应 。体 内维 甲酸 的浓 度 水 平 受 细 胞 色 素 P450 酶 亚 型 调 控 ,主 要 是
1 维 甲酸
维 甲酸 (retinoic acid,RA)又 称 视 黄 酸 ,是 维 生 素 A 的活 性代谢 产 物或 衍 生 物 。根 据其 分 子 中极 性基 团及 侧 链不 同 ,维 甲酸类 药物 包 括 多 种 同分 异 构 体 ,如全 反 式 维 甲酸 (al1.trans.retinoic acid,ATRA)、13-顺 式 维 甲 酸 (13. cis.retinoic acid,13.cRA)和 9.顺 式 维 甲 酸 (9.cis.retinoic acid,9-cRA)等 。 目前 一般 将 维 甲酸 类 药 物根 据 其 结 构分 为三代 :第 一 代 为 非芳 香 性 或天 然 维 甲酸 ,包 括 全 反 式 维 甲酸 、l3顺 维 甲酸 、维胺酯 等 ;第二 代为单 芳香 性维 甲 酸或合成 维 甲酸 包 括 阿维 A酯 ,阿维 A酸 等 ;第三 代为 多 芳香 维 甲酸或受体 选 择性 维 甲酸 ,包 括 芳香 维 A酸 乙酯 、 甲黄基芳香维 A酸、阿达帕林 、他扎罗汀等。维甲酸具有广 泛的生物 学功能 ,能调节 细胞 增 生 和诱 导 细胞 分 化 、凋 亡 , 抑 制 恶性细 胞 生 成 等 。 现 已被 广 泛 运 用 于 多 种 皮 肤 科疾病的治疗 ,如银屑病 、痤疮、掌趾角化病、各型鱼鳞病 、 毛囊 角化病 、扁 平苔 藓等 ,以角化 性皮 肤病 为主 。

基于网络药理学分析冬虫夏草防治急性肾损伤的分子机制

基于网络药理学分析冬虫夏草防治急性肾损伤的分子机制

基于网络药理学分析冬虫夏草防治急性肾损伤的分子机制①洪涛李晓宇②李尚妹②刘华锋②③(广东医科大学附属医院肾内科,湛江 524000)中图分类号R285.5 文献标志码 A 文章编号1000-484X(2023)11-2299-06[摘要]目的:基于网络药理学分析冬虫夏草(CS)防治急性肾损伤(AKI)的分子作用机制。

方法:应用中药系统药理学数据库(TCMSP)筛选CS的有效成分和作用靶点,从DisGeNET、GeneCards、OMIM、TTD数据库筛选AKI的疾病靶点,运用Cytoscape 3.8.0软件构建“药物-成分-疾病-靶点”可视化调控网络,采用String在线数据库构建CS与AKI共同靶点的蛋白互作网络,DAVID数据库和KEGG数据库对共同靶点进行GO功能富集分析和KEGG通路富集分析,探讨其潜在分子机制。

结果:CS中筛选得到有效成分9种,防治AKI的作用靶点63个。

GO功能富集分析主要包括对药物的反应、信号转导、衰老、细胞增殖调控、细胞凋亡调控等。

CS防治AKI的主要富集通路有PI3K-Akt信号通路、MAPK信号通路、细胞凋亡通路、TNF信号通路、P53信号通路等。

结论:通过网络药理学研究方法预测了CS防治AKI的有效活性成分及作用靶点,并通过PPI网络和KEGG富集分析推测了CS通过多条信号通路调节防治AKI,涉及细胞自噬、凋亡及炎症反应等多环节生物学过程。

[关键词]冬虫夏草;急性肾损伤;网络药理学;分子机制Network pharmacology-based identification of key mechanism of Cordyceps sinensis' protection from acute kidney injuryHONG Tao, LI Xiaoyu, LI Shangmei, LIU Huafeng. Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China[Abstract]Objective:To explore potential key mechanism of Cordyceps sinensis´ (CS) protection from acute kidney injury (AKI) through network pharmacological analysis. Methods:All bioactive ingredients and target of CS were obtained from TCMSP data‐base. Targets related to AKI were obtained from DisGeNET, GeneCards, OMIM, TTD databases. Cytoscape 3.8.0 software was used to visualize "Medicine-Component-Disease-Target" networks. String online database was used to construct PPI network of common target between CS and AKI. GO functional enrichment analysis and KEGG pathway enrichment analysis were performed for common target in DAVID database and KEGG database to explore its potential molecular mechanism. Results:A total of 9 active ingredients and 63 potential targets in treatment of AKI have been identified. GO functional enrichment were mainly related to drug response, signal transduction, senescence, cell proliferation regulation, apoptosis regulation, etc. Pathways of CS to control AKI mainly enriched in PI3K-AKT signaling pathway, MAPK signaling pathway, apoptosis signaling pathway, TNF signaling pathway, P53 signaling path‐way,etc. Conclusion:Effective active ingredients and targets of CS for preventing AKI are predicted by network pharmacology. PPI network and KEGG enrichment analysis also speculates that CS regulates prevention and treatment of AKI through multiple signaling pathways, involving multiple biological processes such as autophagy, apoptosis and inflammatory response.[Key words]Cordyceps sinensis;Acute kidney injury;Network pharmacology;Molecular mechanism急性肾损伤(acute kidney injury,AKI)是多种原因造成的肾功能急性下降,是临床常见危重症。

环状RNA在肿瘤中的研究进展

环状RNA在肿瘤中的研究进展

环状R N A在肿瘤中的研究进展李勇郭敏摘要环状RNA是一类广泛参与人类生命活动中的多种病理及生理过程的特殊的内源性非编码RNA。

随着基因测序技 术的飞速发展以及研究方法的不断完善,其在肿瘤的发生、发展、侵袭、转移及放化疗中的优势得以体现,提示其有望成为肿瘤诊断及个体化治疗的新兴分子指标。

而对于未知功能的环状RNA及其在肿瘤中的具体调控机制的研究将是今后研究的方向。

本 综述对环状RNA的研究进程、生物学功能以及在多种肿瘤中的近期研究进行汇总,旨在为肿瘤的诊治提供参考。

关键词环状R N A肿瘤诊断治疗中图分类号 R730.2 文献标识码 A DOI10.11969/j.issn. 1673-548X.2020. 11.005癌症高发生率及高病死率已经成为制约人类生活质量的公共卫生事件。

由于大多数肿瘤的病因复杂,给后续的诊治带来困扰。

然而环状R N A因其丰 富的生物学功能逐渐进人人们的视野,并在肿瘤学领 域掀起了一股研究热潮,最近研究发现环状R N A在 肿瘤组织及体液中存在差异性表达,除了参与并介导 甲状腺癌、肝癌、白血病等多种肿瘤的增殖、浸润、迁 移等恶性病理过程,在辐射及化疗药物作用下发挥增 敏或抗性作用。

一、环状R N A的研究进展及结果根据主要历史事件及重大成果,环状R N A的研 究大致可分为以下几个阶段:第1阶段:1976年San­ger等~在植物类病毒中发现了一类共价闭合环状分 子,首次提出环状R N A的概念,自此拉开了环状R N A研究的序幕;第2阶段:1976 ~ 2012年,环状 R N A不断被发现存在于各种生物体内,由于检测工 具的制约,其被认为是无功能的剪接意外的产物,未 给予足够重视第3阶段:2012 ~ 2013年,环状 R N A的形成机制首次得以揭示,此外其作为microR-NAs海绵这一重要生物学功能被证实,环状R N A的研究自此进人高潮阶段[3];第4阶段:2013年至今,以单分子测序技术和SM RT技术为代表的第3代高 通量测序技术应用于环状R N A检测,由于存在不能 重复检测、费用高等问题,限制了其应用。

维甲类X受体RXRα蛋白在胃癌组织中的表达及其临床意义

维甲类X受体RXRα蛋白在胃癌组织中的表达及其临床意义

dsae J .C r D u ag t C riv s H e ao Di r , 0 4 4 i s [ ] ur rgT res ado ac a mm tl s d 2 0 , e o
( ) 2 5— 0 3 :9 3 0
2 Tae s i Yu a a E , as b r , u o a a T ,t a . h r p ui n t ih — y m M tu a a H M r h r e 1 T e a e tc a ・ go e e i o a in swih l b ic a m i y a t lg u r n p a t t n ig n ssf rp t t e t i s h e a b u oo o sta s l n ai m o o o e — m a rw e l : a p lts u y a d a r n o z d c n r l d t a fb n ro c l s i t d n a d mie o to l r l o e i
胞上 的 V G E F酪氨 酸 激 酶 受 体 , 挥 其 生 物 学 效 应 , 发 是特 异性 的内皮 细胞促 有 丝分 裂剂 , 具有 强 烈 的促 血 管 内皮增 生作 用 。在 缺 血 等病 理 条 件 下 V G E F及 其 受体 表 达 明显 上 调 , 与血 管再 生 机制及 侧 支循 环 的 参 形 成 。 目前 认 为 h E F 在 体 内 分 布 范 围广 泛 , V G 表 达 水平 最 高 , 目前体 内发 挥 作 用 的主 要形 式 , 且 是 而
brabender等人对20例食管癌和106例barretts食管患者的研究显示与barretts食管组织相比癌组织中rxramrna的表达显著下降在有广泛淋巴结转移的患者中表达更低且那些有较低mrna表达者术后生存时间明显短于有较高表达者rxrotmrna表达下降与食管癌发生转移及不良预后有关orxrs受体直接影响肿瘤对维甲酸的敏感性rxrs受体的正常表达能抑制肺癌的形成已知在肺癌中存在对ra敏感和耐受两种状态

-双电桥装置中灵敏电流计的选择方法

-双电桥装置中灵敏电流计的选择方法

-----------------------------------Docin Choose -----------------------------------豆 丁 推 荐↓精 品 文 档The Best Literature----------------------------------The Best Literature2007年9月 阴 山 学 刊 Sept.2007 第21卷 第3期 YINSHAN ACADEMIC JOURNAL Vo1.21 No.3收稿日期: 作者简介:若用惠斯登电桥测量1Ω以下的电阻,由于连接导线的电阻和接线柱的接触电阻的影响(数量级为10-2-10-5Ω),结果会产程很大的误差。

为了减小误差,要用双臂电桥测量。

图1:直流双臂电桥图1是直流双臂电桥的原理电路图。

R n 是标准电阻,作为电桥的比较臂。

R x 是被测电阻。

R n ,R x 均采用将电压接头、电流接头分开的连接方式。

用一根短而粗的导线R 连接R x 、R n 并和电源组成一个回路。

在它们的电压接头上,分别联接桥臂电阻R 1,R 2,R 3和R 4。

R 1,R 2和R 3,R 4就构成电桥的双臂,与惠斯登电桥相比,多了一组桥臂R 3,R 4,所以称为双臂电桥。

当电桥平衡时,若满足条件R 3/R 1=R 4/R 2则被测电阻R x =(R 2/R 1)R n双臂电桥测低电阻的主要误差来源是桥臂电阻的准确度和电桥的灵敏度。

桥臂电阻的准确度等级目前可以做的很高,而电桥的灵敏度主要取决于电流计的灵敏度。

下面我们主要讨论为了减小测量误差,对电流计如何进行选择。

灵敏电流计的选择原则。

为了节省测量时间,要求电流计的自由振动周期τ小(几秒钟),电流计应工作在临界阻尼状态或稍欠阻尼状态。

电流计要有较高的灵敏度以满足测量精度的要求,同时也可以使工作电流减小。

电桥平衡时,电路对电流计的输出电阻和电压V i (即电流计的输入电阻和电压)比较小,所以要选择外临界电阻较小而电压灵敏度较高的电流计。

STAT3-RARa阳性急性早幼粒细胞白血病1例报道并文献复习

STAT3-RARa阳性急性早幼粒细胞白血病1例报道并文献复习

doi:10.3971/j.issn.1000-8578.2023.23.0168STAT3-RARa 阳性急性早幼粒细胞白血病 1例报道并文献复习黄艳,任宏波,刘颖STAT3-RARa-positive Acute Promyelocytic Leukemia: A Case Report and Literature ReviewHUANG Yan, REN Hongbo, LIU YingDepartment of Hematology, Jingzhou First People’s Hospital, Jingzhou 434000, ChinaCompeting interests: The authors declare that they have no competing interests.关键词:急性早幼粒细胞白血病 ;化疗;STAT3-RARa中图分类号:R733.71 开放科学(资源服务)标识码(OSID):收稿日期:2023-02-23;修回日期:2023-04-12作者单位:434000 荆州,荆州市第一人民医院血液科 作者简介:黄艳(1986-),女,硕士,主治医师,主要从事血液肿瘤治疗研究,ORCID:0009-0008-1294-2317·病例报道·0 引言急性早幼粒细胞白血病(AML-M3, APL )是白血病中具有特征性的染色体及融合基因的一种特殊亚型,95%的APL 因t (15; 17)形成PML-RARa 融合基因,对全反式维甲酸(ATRA )、三氧化二砷(ATO )靶向药物反应性好,是最有希望治愈的一种恶性疾病。

APL 伴STAT3-RARa 融合基因病例临床非常罕见,仅在3例[1-2]患者中有过报道,且3例患者对全反式维甲酸(ATRA )及亚砷酸(ATO )的治疗反应均不敏感。

最近,我们诊断了一例这样的患者,现报道如下,并对相关文献进行复习。

基于网络药理学对山楂治疗非酒精性脂肪肝病主要活性成分及潜在靶点分析

基于网络药理学对山楂治疗非酒精性脂肪肝病主要活性成分及潜在靶点分析

1787【实验研究】基于网络药理学对山楂治疗非酒精性脂肪肝病主要活性成分及潜在靶点分析**基金项目:海南省卫健委“省级中医治未病中心能力建设”项目(琼卫中医函〔2019〕9号);国家中医药管理局“全国名老中医药专家传承工作室”建设项目]琼财社(2014)2161号]作者简介:林道斌(1993-),男,海南文昌人,硕士研究生,从 事消化内科的中西医结合临床与研究。

△通讯作者:程亚伟(1982-),女,河南许昌人,副主任医师, 硕士研究生,从事脾胃肝病的中医药临床与研究,Tel : ,E-mail :yaweicheng@ 126. com 。

林道斌,杨华,程亚伟△(海南省中医院脾胃肝病科海口 570000)摘要:目的:运用网络药理学研究方法对山楂治疗非酒精性脂肪性肝病(non-alcoholic fatty liver disease ,NAFLD )主要活性成分及核心靶点进行分析o 方法:采用中药系统药理学分析平台(traditional chinese medicine systems pharmacology database and analysis platform TCMSP )筛选出山楂的有效活性成分及作用靶点蛋白,再使用Unipro 数据库将筛选出的靶点蛋白转换为基因名,通过Gene Cards 数据库、人类孟德尔遗传综合数据库(online mendelian inheritance in man ,OMIM )和治疗靶点、数据库(therapeutic target database ,TTD )收集NAFLD 疾病基因,然后对药物作用基因及疾病相关基因进行vnne 分析,寻找交集靶点,用交集靶点与对 应活性成分构建活性成分-靶点相互作用网络,并进行GO 功能富集分析和KEGG 通路富集分析°结果:研究得到6个作用于NAFLD 疾病靶点的活性成分和148个作用靶点,GO 功能富集分析确定了 350个条目,KEGG 通路分析共发现97条作用通路。

环状RNA CDR1as在非小细胞肺癌临床应用中的研究进展

环状RNA CDR1as在非小细胞肺癌临床应用中的研究进展

现代实用医学2020年12月第32卷第12期•1577•・讲座与综述•环状RNA CDRlas在非小细胞肺癌临床应用中的研究进展柯金克,胡文涛,刘雅辉doi:10.3969/j.issn,1671-0800.2020.12.071【中图分类号】R730【文献标志码】C【文章编号】1671-0800(2020)12-1577-03临床上非小细胞肺癌(NSCLC)的治疗包括了手术、放化疗及免疫治疗等但复发和转移率仍然较高,预后仍不理想,寻找新的治疗靶点非常有必要。

2001年Lagos-Quintana等日首次发现miR-7,研究证明其在不少癌症中发挥着抑癌的作用,如乳腺癌及肝细胞癌(HCCF等。

在肺癌领域,miR-7也被证实不但有抑癌作用,还有致癌作用报道发现,环状RNA(circRNAs)对微小RNA(microRNAs)起着"海绵”的功能,可以通过自然隔离和竞争性抑制的方式来降低miRNAs的活性問。

其中的ciRS-7又称作小脑变性相关蛋白1反义RNA(CDRlas),它主要存在于人类和小鼠的大脑中而ciRS-7作为miR-7的超级海绵,同样可以竞争性地隔离和抑制miR-7的活性,这对癌症生物学有重要意义。

本研究拟对miR-7与ciRS-7间的关系以及他们在NSCLC临床中的应用进展综述如下。

1miR-7与NSCLC的关系人类的miR-7分别由3个不同的基因座9q21、15q26及19ql3编码,这3种不同的DNA序列pri-miR-7-1>pri-miR-7-2及pri-miR-7-3加工成的产物就是一个成熟的,包含23个核昔酸的miR-7序列曲。

在肺癌的发生发展中,miR-7有着抑制肿瘤的作用。

Rai等°」报告表明,外源性miR-7在具有能高度耐受TKIs的基金项目:宁波市医学科技计划项目(20I7A46)作者单位:315121宁波,宁波大学医学院(柯金连);宁波市第_医院湖文涛、刘雅辉)通信作者:胡文涛,Email:3538630 *********RPC-9和H1975肺癌细胞的裸鼠体内表达,起到了抑制了肿瘤生长的作用,提示miR-7作为一种肿瘤抑制因子miRNA或许能成为肺癌基因治疗重要靶点。

RXRA在法洛四联症发病中的作用机制初步研究中期报告

RXRA在法洛四联症发病中的作用机制初步研究中期报告

RXRA在法洛四联症发病中的作用机制初步研究中
期报告
RXRA是一种拥有DNA结合和转录调控能力的核受体,在胚胎发育、细胞增殖、分化、代谢和免疫等过程中具有重要作用。

近年来的研究表明,RXRA在心脏发育和功能方面也起到关键作用。

法洛四联症(ToF)
是一种常见的先天性心脏病,常见的缺陷是室间隔缺损、肺动脉瓣狭窄、主动脉骑跨和右心室肥大。

本研究旨在探究RXRA在ToF发病中的作用
机制。

通过对ToF患者心肌组织和小鼠模型进行实验,我们发现RXRA的
表达水平在ToF患者和ToF小鼠模型中都明显下降。

进一步的细胞实验
发现,RXRA敲除前体心肌细胞的分化和增殖能力显著降低,而过表达RXRA则能促进心肌细胞增殖和分化。

同时,我们还发现RXRA能通过活化HIF-1α通路促进血管生成,这也为ToF的治疗提供了新思路。

细胞内信号共轭和5-叶酸葡糖酰胺是RXRA的配体,在我们的实验
中发现这两种药物能够抵消RXRA缺失对前体心肌细胞的影响,并且能够显著促进心肌细胞增殖和分化。

这些结果表明,RXRA和其配体有望成为治疗ToF的新靶点和策略。

总之,我们的研究初步揭示了RXRA在ToF发病中的重要作用和其
潜在机制,并为了解先天性心脏病的发病机制和寻找新的治疗靶点提供
了新思路。

RXRA在法洛四联症发病中的作用机制初步研究开题报告

RXRA在法洛四联症发病中的作用机制初步研究开题报告

RXRA在法洛四联症发病中的作用机制初步研究开
题报告
一、选题背景与意义
法洛四联症是一种常见的胎儿先天性心脏病,其发病率约为1/3000,是心脏缺陷中最多见的一种,致死率也较高。

目前,已经发现多种基因
突变与该病的发生发展有关。

其中,RXRA基因是一种核转录因子基因,其突变在法洛四联症中的作用机制尚未明确,因此有必要对该基因在该
病发病机制中的作用进行研究。

二、研究目的
本研究旨在探究RXRA基因在法洛四联症发病中的作用机制,为该
病的早期诊断和治疗提供新的理论基础。

三、研究内容与方法
本研究将采用文献调查、基因突变检测和细胞实验等多种方法,分
析RXRA基因在法洛四联症中的表达变化及其对相关信号通路的调控作用,并进一步探究其突变会影响哪些生物过程,从而揭示RXRA基因在该病发作机理中的作用。

四、研究预期结果
本研究预期能够进一步明确RXRA基因在法洛四联症发病中的具体
作用机制,为病理研究提供新的参考依据,为该病的临床诊断和治疗提
供新的思路,并进一步探讨RXRA基因在其他心血管疾病中的作用。

自发性糖尿病长爪沙鼠Rxra在6种组织中的表达水平分析

自发性糖尿病长爪沙鼠Rxra在6种组织中的表达水平分析

自发性糖尿病长爪沙鼠Rxra在6种组织中的表达水平分析龚菁菁;王存龙;李银银;李小红;杜小燕;陈振文【摘要】Objective To analyze the Rxra expression level in 6 tissues of diabetic gerbils and explore the molecular mechanism of diabetes in Mongolian gerbils. Methods We collected 6 tissues including skeletal muscle, liver, adipose tissue, kidney, heart and brain from 6 diabetic gerbils and 6 control animals, respectively. Rxra mRNA and protein expression level in the 6 tissues were separately detected using real?time PCR and western blotting. Results The real?time PCR showed that compared with control animal, mRNA expression of Rxra in skeletal muscle and adipose tissue was significantly decreased in the diabetic group. However, there were no significant differences in the liver between the two groups. The relative expression level in diabetic group exhibited uptrend compared with the control in kidney, heart and brain. According to the results of western blotting, RXRA protein in skeletal muscle was significantly decreased in the diabetes group. RXRA protein was almost undetectable in adipose tissue. Varying expression was observed in other tissues, but there was no significant difference. Conclusions Lower expression of Rxra is observed in the skeletal muscle and adipose tissue of diabetic gerbils. There is no significant difference in other four tissues between the two groups. The results illustrate that the effect of Rxra mainly occurres in skeletal muscle and adipose tissue in this diabetic model.%目的分析糖尿病长爪沙鼠Rxra基因在6种组织中的表达水平,以期探索长爪沙鼠糖尿病发生的分子机制.方法选取糖尿病长爪沙鼠和正常沙鼠各6只,分别采集动物的骨骼肌、肝脏、脂肪、肾脏、心脏和脑组织,用Real?time PCR和Western blotting检测Rxra基因在各组织中mRNA和蛋白表达水平.结果 Real?time PCR的结果表明,Rxra基因的mRNA水平在糖尿病组动物骨骼肌和脂肪中显著降低,在肝脏中无差异,而在肾脏、心脏和脑组织中则有高表达趋势.Western blotting结果显示,糖尿病组RXRA 的蛋白水平在骨骼肌组织中显著降低,在脂肪组织几乎检测不到,在其他各组织表达情况有所不同,但没有统计学差异.结论 Rxra在糖尿病长爪沙鼠骨骼肌和脂肪组织中低表达,在其他4种组织中表达水平无差异,说明Rxra对长爪沙鼠糖尿病的影响主要发生在骨骼肌和脂肪组织中.【期刊名称】《中国比较医学杂志》【年(卷),期】2017(027)002【总页数】5页(P59-63)【关键词】长爪沙鼠;2型糖尿病;Rxra;实时定量荧光PCR;Westernblot【作者】龚菁菁;王存龙;李银银;李小红;杜小燕;陈振文【作者单位】首都医科大学基础医学院,北京 100069;首都医科大学基础医学院,北京 100069;首都医科大学基础医学院,北京 100069;首都医科大学基础医学院,北京100069;首都医科大学基础医学院,北京 100069;首都医科大学基础医学院,北京100069【正文语种】中文【中图分类】R⁃33根据国际糖尿病联盟(IDF)统计,2015年全球糖尿病患者为4.15亿,预计到 2040年糖尿病人数将达到6.42亿[1]。

研究解析癌症重要靶标RXR为新药研发提供思路

研究解析癌症重要靶标RXR为新药研发提供思路

研究解析癌症重要靶标RXR为新药研发提供思路来自中科院上海药物研究所,华东理工大学药学院等处的研究人员首次发现了稳定无活性维甲酸X受体(RXR)四聚体构象的天然小分子,RXR被认为是治疗癌症和代谢性疾病的重要药物作用靶标之一。

这一成果为RXR拮抗剂的设计筛选提供了新的重要研究思路,研究成果公布在《生物化学期刊》J. Biol. Chem.)杂志上。

这项研究由上海药物所沈旭课题组与蒋华良及胡立宏课题组合作完成,其中沈旭研究员2002年回国,被聘为中国科学院上海药物所研究员,主要从事药物设计学、细胞分子生物学和化学生物学等领域研究。

RXR是核受体家族蛋白中的一员,在核受体调控信号通路中发挥重要作用。

RXR能与三分之一的核受体家族蛋白形成异源二聚体,参与了包括细胞生长、分化、代谢和胚胎发育等许多重要生理过程的调节。

因此,RXR被认为是治疗癌症和代谢性疾病的重要药物作用靶标之一。

RXR主要由DNA结合结构域(DBD)和配体结合结构域(LBD)组成。

多功能的LBD负责调控RXR二聚化、四聚化以及配体依赖的受体激活。

RXR同源四聚体的解离被认为是RXR激活的第一步,而四聚体的形成也可以将细胞内过量的RXR以无活性的状态储存起来。

一般认为,RXR配体诱导RXR发生剧烈构象变化后将起始下游基因的转录,因此从结构上阐明RXR与其配体的作用将具有重要的理论意义,然而迄今为止,仍未见RXR与其拮抗剂形成的复合物晶体结构报道。

在这篇文章中,研究人员发现天然产物Danthron是RXRa特异性拮抗剂,并获得了RXRa-LBD/Danthron复合物晶体,成功解析了其结构,这是国际上RXR与其拮抗剂复合物晶体结构的首例报道,研究发现Danthron 采用稳定无活性RXR受体四聚体构象方式拮抗RXRa的转录激活。

研究所取得的成果将为RXR拮抗剂的设计筛选提供了新的重要研究思路。

此外,由于Dan thron是中药大黄的主要成分之一,大黄曾被发现具有抗糖尿病和抗癌的作用,但其作用机理尚不明确,因此该项研究还为中药大黄有效成分的相应药理作用提供了相关作用靶点信息。

植物病原卵菌RxLR效应基因功能研究进展

植物病原卵菌RxLR效应基因功能研究进展

植物病原卵菌RxLR效应基因功能研究进展韩长志(西南林业大学林学院,云南省森林灾害预警与控制重点实验室,云南昆明650224)摘要:植物病原卵菌包括致病疫霉、大豆疫霉、橡树疫霉以及樟疫霉、拟南芥霜霉等,其与寄主之间的相互作用基本符合Zigzag理论。

该理论认为,病原菌为了操控寄主植物防卫反应,分泌和转运一些效应分子进入植物细胞中,从而抑制PTI,同时,植物中识别病原菌效应分子的防卫基因得到激活,引发ETI,随着病原菌与植物的互作类似于“军备竞赛”的不断升级,植物和病原菌在遗传上实现协同进化。

卵菌基因组中包含有数百个高度分化的RxLR效应基因,现从功能多样性、冗余性以及转运机制等方面对已经报道的该类基因功能进行综述,以期为进一步研究效应蛋白的转运机制、毒性功能,以及开展对植物病原卵菌致病机理的深入研究提供重要的理论依据。

关键词:植物病原卵菌;效应基因;PTI;ETI;功能冗余;Zigzag理论中图分类号:S763文献标识码:A文章编号:1001-0009(2014)05-0188-06卵菌与真菌在形态上类似,但在进化关系上较远[1],其生物学特征主要表现为细胞壁大多由纤维素构成、营养生长阶段为二倍体、线粒体脊为管状等[2]。

植物病原卵菌主要包括大豆疫霉(Phytophthorasojae)、致病疫霉(P.infestans)、拟南芥霜霉(Hyaloperonosporaarabidopsis)、终极腐霉(Pythiumultimum)、古巴假霜霉作者简介:韩长志(1981-),男,博士,讲师,研究方向为经济林病害生物防治与真菌分子生物学。

E-mail:hanchangzhi@gmail.com.基金项目:西南林业大学校级科研专项资助项目(111117);云南省重点学科森林保护学科研资助项目(XKZ200905)。

收稿日期:2013-11-14(Pseudoperonosporacubensis)等,目前上述卵菌的全基因组序列均已正式公布[3-7]。

环形RNA研究进展_陈学英

环形RNA研究进展_陈学英

环形RNA研究进展_陈学英第27卷第9期2015年9月V ol. 27, No. 9Sep., 2015生命科学Chinese Bulletin of Life Sciences 文章编号:1004-0374(2015)09-1125-08DOI: 10.13376/j.cbls/2015155收稿日期:2015-01-16;修回日期:2015-05-08基金项目:上海交通大学医学院大学生创新性实验项目(2014059);国家自然科学基金面上项目(81172030)*通信作者:E-mail: tl09168@/doc/357536960.html, 环形RNA 研究进展陈学英,许萍萍,代娟娟,田聆*(上海交通大学附属第一人民医院实验中心,上海 201620)摘要:环形RNA (circular RNA, circRNA )广泛存在于各种生物细胞中,并且具有结构稳定、表达量丰富以及在不同组织及其不同发育阶段具有表达特异性等特征。

目前认为,circRNA 可以在转录后水平调控基因表达,但是circRNA 的产生机制及其代谢途径仍然不是很清楚。

迄今研究认为,circRNA 的主要生物学作用是作为微小RNA (microRNA, miRNA )海绵体调控miRNA 的表达。

此外,circRNA 在肿瘤、动脉粥样硬化、糖尿病、帕金森病等多种疾病的发生发展中发挥了一定的作用。

深入了解circRNA 的作用机制及其功能,有助于深入了解疾病的发生、发展机理,设计更好的预防、诊断和治疗疾病新策略。

关键词:环形RNA ;微小RNA ;微小RNA 海绵体;肿瘤中图分类号:Q52;R730.231.3 文献标志码:AResearch advances on circular RNAsCHEN Xue-Ying, XU Ping-Ping, DAI Juan-Juan, TIAN Ling*(Experimental Research Center, Shanghai General Hospital, Shanghai Jiao T ong University , Shanghai 201620, China)Abstract: Circular RNA (circular RNA, circRNA) was in a large number of different species, and they are stable, rich and often show tissue-/developmental-stage-specific expression. However, the detailed mechanisms of their biogenesis and regulation have remained elusive although some evidence suggest that circRNAs regulate gene expression at the post-transcriptional level. The major function of circRNA is considered as microRNA (miRNA) sponges. Currently, circRNAs have been found to be involved in the occurrence, development and progression of human diseases, such as tumor, atherosclerosis, diabetes, and Parkinson's disease. To investigate the biogenesis and functions of circular RNAs in depth will help us to find new strategies for the better treatment of those diseases.Key words: circular RNA; microRNA; miRNA sponge; cancer环形RNA (circular RNA, circRNA )是一类不具有5'末端帽子和3'末端poly(A)尾巴,并以共价键形成环形结构的RNA 分子,广泛存在于真核转细胞中[1-2]。

维甲类X受体RXRα蛋白在胃癌组织中的表达及其临床意义

维甲类X受体RXRα蛋白在胃癌组织中的表达及其临床意义

维甲类X受体RXRα蛋白在胃癌组织中的表达及其临床意义周艳红;杜礼安;刘士生【期刊名称】《医学研究杂志》【年(卷),期】2008(37)6【摘要】目的检测RXRα基因蛋白在胃癌、浅表性胃炎、正常胃黏膜中的表达,探讨其与胃癌发生发展的关系,并结合临床、病理资料分析其临床意义.方法用免疫组织化学ABC法检测RXRα蛋白在胃癌、浅表性胃炎、正常胃黏膜中的表达情况.结果RXRα蛋白主要定位于上皮细胞的胞核,少数胞质有着色,呈棕黄色或黄色颗粒状,在胃癌、浅表性胃炎、正常胃黏膜中,RXRα蛋白阳性表达率分别为25.0%、81.1%、96.1%;与正常黏膜组和浅表性胃炎比较,胃癌组RXR.表达率下降,差异有显著性(P<0.05);RXRα蛋白表达与肿瘤分化程度无相关性(P>0.05),而与肿瘤淋巴结转移和临床病理分期密切相关(P<0.05).结论胃癌组织中RXRα蛋白表达显著低于正常黏膜和浅表性胃炎组,提示RXRα蛋白表达下降对胃癌预后具有重要意义.【总页数】4页(P41-43,封3)【作者】周艳红;杜礼安;刘士生【作者单位】063000,河北省唐山职业技术学院医学基础部;063000,河北省唐山职业技术学院医学基础部;063000,河北省唐山职业技术学院医学基础部【正文语种】中文【中图分类】R73【相关文献】1.维甲类X受体和基质金属蛋白酶-2在结直肠癌组织中的表达 [J], 周艳红2.胃癌组织中蛋白激酶B和表皮生长因子受体的表达及其临床意义 [J], 周晓刚;陈宁波;胡俊川3.组织芯片检测溶血磷脂酸受体2蛋白在胃癌组织中的表达及其临床意义 [J], 张志丽;张煦4.表皮生长因子受体蛋白在胃癌组织中的表达及其临床意义 [J], 徐丽艳;杨金镇;葛玲;陈艳;周智俊;杨清云;郑凤春;柳淑静;陈奋发5.维甲类X受体RXRα蛋白在结直肠癌组织中的表达及意义 [J], 周艳红;徐瑞成因版权原因,仅展示原文概要,查看原文内容请购买。

Cx43基因敲除胎鼠心脏近端流出道隔心肌化过程中的关键基因

Cx43基因敲除胎鼠心脏近端流出道隔心肌化过程中的关键基因

Cx43基因敲除胎鼠心脏近端流出道隔心肌化过程中的关键基因陈伟呈;张颖;黄国英【摘要】目的研究Cx43基因纯合敲除(Cx43-/-)小鼠胚胎心脏近端流出道组织中基因表达谱的改变,筛选可能导致Cx43-/-小鼠流出道梗阻的关键基因.方法以胎龄(embryonic day,ED)14.5的Cx43-/-和野生型(Cx43+/+)鼠胚心脏近端流出道部分为研究对象,分别提取总RNA,逆转录成cDNA,并在体外转录为cRNA,同时进行生物素标记及片段化,再与Affymetrix-430 2.0基因芯片进行杂交.杂交信号经扫描后,应用相关生物信息软件分析基因表达情况.结果与Cx43+/+组相比,Cx43-/-组中表达上调2倍以上的基因共有143个,表达下调2倍以上的基因有235个.其中表达差异的基因参与转录调控、细胞周期、细胞黏附、细胞活动和细胞骨架的信号通路等主要生理过程.进一步筛查表达差异1.5倍以上的基因发现,与圆锥动脉干畸形相关的TGFβ/BMP信号通路上的多个基因以及Ssr1、Ptk2、Bmp6等基因在Cx43-/-组有明显变化.对这些基因进行荧光定量PCR验证,结果与基因芯片一致(P<0.05).结论利用基因芯片技术初步筛选出与Cx43-/-鼠胚心脏近端流出道发育有关的多个基因,并经荧光定量PCR验证.其中TGFβ/BMP信号通路上的多个基因以及Ssr1、Ptk2、Bmp6等基因可能与Cx43-/-小鼠流出道梗阻的发生有关.【期刊名称】《复旦学报(医学版)》【年(卷),期】2010(037)001【总页数】7页(P52-58)【关键词】心脏发育;Cx43;基因芯片;TGFβ;BMP;Ssr1;Ptk2;信号通路;小鼠【作者】陈伟呈;张颖;黄国英【作者单位】复旦大学附属儿科医院心血管中心,上海,201102;复旦大学附属儿科医院心血管中心,上海,201102;复旦大学附属儿科医院心血管中心,上海,201102【正文语种】中文【中图分类】R394.1先天性心脏病(先心病)在新生婴儿中的发病率约6‰~10‰,其中心脏圆锥动脉干畸形(conotruncal defects,CTD)约占33%~38%,包括法洛四联症、大动脉转位、右室双出口、肺动脉闭锁和动脉单干等。

RXR_α激动剂蓓萨罗丁对糖尿病大鼠心脏结构和功能的影响及机制

RXR_α激动剂蓓萨罗丁对糖尿病大鼠心脏结构和功能的影响及机制

RXR_α激动剂蓓萨罗丁对糖尿病大鼠心脏结构和功能的影响及机制目的评价视黄醇类X受体(RXR)激动剂蓓萨罗丁(Bex)对链脲佐菌素(STZ)诱导糖尿病大鼠心脏结构和功能影响,探寻能早期识别糖尿病心肌病心脏功能异常的超声检测手段,RXRa激动剂对糖尿病心肌病的影响及机制。

方法40只SD大鼠随机分为四组:A组,正常对照组,腹腔注射柠檬酸缓冲液(0.1ml/100g);B组,糖尿病组(DM组),腹腔注射STZ(60mg/Kg);C组,DM+Bex(10mg/kg/d)干预组;D组,DM+Bex(20mg/kg/d)干预组,每组10只。

STZ腹腔注射法建立糖尿病动物模型,葡萄糖氧化酶法测定血糖水平,酶法测定肝功能,苦味酸法测定血清肌酐水平;分别用常规超声心动图、定量组织速度成像和斑点追踪成像技术三种方法评价大鼠心脏结构和功能;称重法测定大鼠全心及左心室质量,计算全心及左心室质量指数(全心或左心室质量/胫骨长度);结构H-E染色观察大鼠心肌结构;Tunnel法测定心肌细胞凋亡;免疫印迹法检测心肌组织凋亡蛋白Bax和Bcl2水平。

结果(1)DM组空腹血糖水平与对照组显著增高(25.65±3.75 vs 5.99±0.48m M,P&lt;0.01),且0-8周血糖水平无明显变化;DM+Bex(20mg/kg/d)组在Bex干预4周后血糖较基线显著降低(P&lt;0.01)。

(2)DM大鼠的全心重量、左心室重量、全心重量/胫骨长度比值及左心室重量/胫骨长度比值均较正常对照组下降(P&lt;0.05);RXRa激动剂蓓萨罗丁可呈剂量依赖性抑制DM对上述指标的影响。

(3)常规超声心动图发现DM组的IVSd 和LVPWd较对照组显著降低,DM+Bex20mg/Kg组的IVSd和LVPWd较DM组显著增加(p(27)0.01);(4)超声定量组织速度成像检测结果显示:DM大鼠的S、S’、S<sub>ave</sub>、e、e’、e<sub>ave</sub>、a、a’、a<sub>ave</sub>峰值均较对照显著降低,Bex干预显著改善DM对大鼠S、S’、S<sub>ave</sub>、e、e’、e<sub>ave</sub>、a、a’、a<sub>ave</sub>峰值的影响,且具有浓度依赖性;(5)DM组的左心室整体纵向应变、分层纵向应变及纵向应变率(Sr L)均较对照组显著下降(p(27)0.05),Bex干预可呈浓度依赖性的显著改善DM对上述各项指标的影响。

不同剂量他汀类药物对冠状动脉粥样硬化斑块效果及安全性分析

不同剂量他汀类药物对冠状动脉粥样硬化斑块效果及安全性分析

不同剂量他汀类药物对冠状动脉粥样硬化斑块效果及安全性分析刘青;牟长友;张燕【期刊名称】《实用临床医药杂志》【年(卷),期】2014(000)015【总页数】2页(P105-106)【关键词】不同剂量;瑞舒伐他汀;粥样硬化斑块;效果;安全性【作者】刘青;牟长友;张燕【作者单位】山东省日照市岚山区人民医院心血管内科山东日照 276807;山东省日照市岚山区人民医院心血管内科山东日照 276807;山东省日照市岚山区人民医院心血管内科山东日照 276807【正文语种】中文【中图分类】R543.3随着人民生活水平的提高、寿命的延长,动脉粥样硬化的发病率呈现逐年上升的趋势。

冠状动脉粥样硬化(简称冠心病)是动脉粥样硬化引起靶器官损害的最常见类型之一,对人类的健康造成严重的危害[1]。

由于脂质代谢异常,血液中的脂质沉积在动脉内膜上,形成一些类似粥样的白色斑块,称为动脉粥样硬化病变。

这些斑块逐渐增多并造成动脉腔狭窄,阻塞血流,导致心脏缺血,产生心绞痛。

他汀类药物除具有降脂的作用以外,还具有抗感染、抗氧化、稳定斑块、改善内皮功能等生理活性,但他汀类药物的治疗剂量一直是国内外研究的焦点[2]。

本文比较了两种剂量的瑞舒伐他汀对冠状动脉粥样硬化患者的临床疗效和安全性,现报告如下。

1 资料与方法1.1 一般资料选择本院2012年7-12月诊断为冠心病患者300例,行冠状动脉造影证实存在冠状动脉狭窄,且狭窄程度均<30%;随机分为低剂量组(L组)和大剂量组(H组),每组150例。

H组男86例,女64 例,平均年龄(64.2 ±8.7)岁;伴有高血压116例,糖尿病63例。

L组男81例,女69例,平均年龄(63.4±7.2)岁;伴有高血压103例,糖尿病61例。

排除既往12个月内曾应用他汀类药物的患者及合并严重心、肝、肾功能损害患者。

2组患者性别、年龄、并发症等比较,差异无统计学意义(P>0.05),具有可比性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Peroxisome Proliferator-activated Receptors and Alzheimer's Disease:Hitting the Blood –Brain BarrierJuan M.Zolezzi &Nibaldo C.InestrosaReceived:11January 2013/Accepted:26February 2013/Published online:14March 2013#Springer Science+Business Media New York 2013Abstract The blood –brain barrier (BBB)is often affected in several neurodegenerative disorders,such as Alzheimer's disease (AD).Integrity and proper functionality of the neurovascular unit are recognized to be critical for mainte-nance of the BBB.Research has traditionally focused on structural integrity more than functionality,and BBB alter-ation has usually been explained more as a consequence than a cause.However,ongoing evidence suggests that at the early stages,the BBB of a diseased brain often shows distinct expression patterns of specific carriers such as members of the ATP-binding cassette (ABC)transport protein family,which alter BBB traffic.In AD,amyloid-β(A β)deposits are a pathological hallmark and,as recently highlighted by Cramer et al.(2012),A βclearance is quite fundamental and is a less studied approach.Current knowledge suggests that BBB traffic plays a more important role than previously believed and that pharmacological modulation of the BBB may offer new therapeutic alternatives for AD.Recent inves-tigations carried out in our laboratory indicate that peroxisome proliferator-activated receptor (PPAR)agonists are able to prevent A β-induced neurotoxicity in hippocampal neurons and cognitive impairment in a double transgenic mouse model of AD.However,even when enough literature about PPAR agonists and neurodegenerative disorders is available,theproblem of how they exert their functions and help to prevent and rescue A β-induced neurotoxicity is poorly understood.In this review,along with highlighting the main features of the BBB and its role in AD,we will discuss information regarding the modulation of BBB components,including the possible role of PPAR agonists as BBB traffic modulators.Keywords Blood –brain barrier .Oxidative stress .Alzheimer's disease .PPARsGeneral ConsiderationsThe concept of a blood –brain barrier (BBB)was proposed by Lewandoswsky in 1900[1]and originates from the observation of the lack of pharmacological activity of sev-eral compounds when administered systemically into the blood but with a critical impact when injected directly into the cerebrospinal fluid (CSF)[1,2].Further experimental evidence of the BBB's existence was provided a few years later by Goldman [3,4]who demonstrated that Trypan Blue dye neither stained the brain nor the spinal cord when administered through the bloodstream;however,it stained these structures readily when administered into the CSF.No functional explanation was agreed and while some scientists proposed the transport across cell membranes,others suggested that the absence of Trypan Blue staining was due to the dye's inability to cross the permeable membrane of brain capillaries [5,6].The controversy was solved later by Reese and Karnovsky [7]and subsequently by Brightman and Reese [8]who,through the use of hydro-philic compounds,particularly horseradish peroxidase,demonstrated that polar solutes were unable to cross the BBB because of occluding tight junctions (TJ)established between adjacent endothelial brain cells.Three barriers are recognized as part of the brain's isolating system that allows for maintenance of brain homeostasis:J.M.Zolezzi :N.C.InestrosaCentro de Envejecimiento y Regeneración (CARE),Santiago,ChileN.C.InestrosaDepartamento de Biología Celular y Molecular,Facultad de Ciencias Biológicas,Pontificia Universidad Católica de Chile,Santiago,ChileN.C.Inestrosa (*)CARE Biomedical Center,Faculty of Biological Sciences,P.Catholic University of Chile,Alameda 340,P.O.Box 114-D,Santiago,Chile e-mail:ninestrosa@bio.puc.clMol Neurobiol (2013)48:438–451DOI 10.1007/s12035-013-8435-5(1)the BBB,(2)the blood–CSF barrier,and(3)the arachnoid epithelium[9,10].The BBB formation begins during embry-onic development as a consequence of the close relationship established between blood vessels and neuroectodermal cells [11].From the subarachnoid space,the pial arteries,the main blood vessels of the brain,project the intracerebral arteries to the brain,which in turn,ramify to ultimately form the brain capillaries[12].The neurovascular unit is considered to be the minimal functional unit of the BBB,and three cellular sub-types can be identified:(1)vascular,composed of endothelial cells,pericytes,and vascular smooth muscular cells;(2)glial,composed of astrocytes,microglia,and oligodendroglia;and (3)neurons[11,12](Fig.1).When mature,the BBB is a highly specialized structure where brain capillaries comprise a single endothelial cell connected with itself and with neighbor cells through occluding TJ and through nonoccluding adherens junctions(AJ)[13,14],each of these comprised of a set of specific proteins.This primary structure is surrounded by pericytes,which are in direct contact with astrocyte end-feet[11,14,15].The BBB functions not only as a barrier limiting the entrance of several substances into the brain[14] but also as a permeable structure that is able to ensureoxygen Fig.1Main components of the BBB.The BBB is a complex structurecomposed of several cell types and characterized by distinct expressionpatterns of different transport and adhesion proteins.The combinationof these components allows the BBB to exhibit low paracellularpermeability and critically determinant cellular transport.The diagramrepresents a brief description of the structure of the BBB.At the braincapillaries,a monocellular layer of endothelial cells constitutes thebasis of the barrier.Each endothelial cell encircles the lumen of thecapillary and seals it,through establishment of TJ and AJ at the ends ofthe cell as well as with the adjacent cells.The endothelial wall isclosely surrounded by pericytes,constituting an additional cellularlayer of the BBB.Finally,astrocyte end-feet processes attach to thebarrier forming an additional cellular envelope.Despite some of themost important BBB transport systems included in the diagram(ABCATP-binding cassette,LRP low-density lipoprotein receptor-relatedprotein,RAGE receptor for advanced glycation end products)shownonly to be expressed by endothelial cells,several of these transportersare also expressed by the other cellular components of the BBBand glucose delivery to brain tissue as well as removal of different metabolic end products,which helps to maintain brain homeostasis[16].Additionally,correct functionality of the BBB is critical for neurons mainly because of the precise balance of ion gradients required to allow for electrical com-munication between them[11].Blood–Brain Barrier Carrier SystemBBB traffic can be separated into a low permeable paracellular component,including the TJ and AJ,and a cellular component,composed mainly of endothelial cells expressing several specific carriers[17].Only small lipid-soluble molecules are allowed to cross the BBB freely[15].Low Paracellular PermeabilityThe seal between endothelial cells depends on TJ and AJ, and forces molecules to undergo transcellular transport[16]. Physically,from the lumen of brain capillaries,TJ are the first intercellular seal followed by AJ,as a combined unit. Tight JunctionsMolecular components of TJ(Table1)can be divided into membrane and cytoplasmic proteins[16,17].Occludin[17, 18],claudins[17–19],the endothelial cell-selective adhesion molecules[20],and the junctional adhesion molecule-A[21, 22]constitutes the first group and are responsible for cell–cell anchorage.In the second group,acting as the scaffold proteins that link membrane proteins to the actin cytoskeleton[16,17], we found the following:zonula occludens(ZO)protein-1, protein-2,and protein-3[23–25],containing a PDZ domain; and non-PDZ proteins,such as cingulin[16]and the junction-associated coiled-coil protein(JACOP)/paracingulin[16,26].Adherens JunctionsAJ are also responsible for cell–cell adhesion and critical func-tions have been described for it,such as contact inhibition during vascular growth and remodeling,cell polarity initiation,and being fundamental for TJ formation[16,17].The main proteins of AJ are VE-cadherin[27],an armadillo protein,and platelet endothelial cell adhesion molecule1(PECAM-1)and they are usually linked to the catenin protein family[17](Table1). Blood–Brain Barrier TransportThe transport across the BBB is highly specialized and de-pends on the expression of several transporters by the endo-thelial cells,which allow bidirectional traffic in order to maintain brain homeostasis(Table2).Different authors have used diverse criteria to classify these transporters[16,17,28].Glucose transporter1(GLUT1),monocarboxylate trans-porter1(MCT1),L1,and y+amino acid transporters,ex-citatory acidic amino acid transporters(EAAT-1,EAAT-2, and EAAT-3),constitute the first group of transporters in charge of nutrients,several energy source molecules,lactate, and amino acids into and out of the brain[17,28].It is important to mention that EAATs determine the removal of glutamate from the brain,playing a critical role in the prevention of glutamate-induced excitotoxicity[29].Anoth-er important group of BBB transporters is composed of the adenosine triphosphate(ATP)-binding cassette(ABC)efflux transporters,particularly ABCB1(P-glycoprotein)[30];the multidrug resistance proteins(MRP or ABCC),such as MRP-1,MRP-4,MRP-5,and MRP-6[16];and the breast cancer resistance protein(BCRP or ABCG2)[31].More-over,endothelial protein C receptor(EPCR),insulin receptor (IR),transferrin receptor(TFR),low-density lipoprotein receptor-related protein1(LRP1),peptide transport system (PTS-1,PTS-2,and PTS-3),and PTS4-vasopressin V1a re-ceptor(V1AR)are specialized transporters for peptides[17, 28,32,33].As mentioned,the electrical properties of brain networks are provided by a precise ion balance achieved and maintained through a whole range of ion transporters.The sodium pump(Na+/K+-ATPase),sodium–potassium–2 chloride(Na+/K+/2Cl−),sodium–hydrogen exchanger (Na+/H+),sodium–calcium(Na+/Ca++),and chloride–bicar-bonate exchanger(Cl−/HCO3−)are the representative members of ion transporters present in the BBB[34–36].Additionally,the BBB possesses enriched lipid microdomains (lipid rafts),composed of caveolae,which exert furtherTable1Main molecular components of tight and adherens junctionsTight junctionClaudinsOccludinsJunctional adhesion molecule A(JAM-A)Endothelial cell-selective adhesion molecule(ESMA)Zonula occludensCalcium-dependent serine protein kinase(CASK)CingulinMulti-PDZ protein1(MUPP1)Membrane-associated guanylate kinase(MAGI)Adherens junctionVascular-endothelial cadherin(VE-cadherin)Platelet endothelial cell adhesion molecule(PECAM-1)Catenin(α,β,χ)regulation of BBB traffic[37].Furthermore,several receptors have been described to be associated with caveolar mem-branes,such as insulin and the receptor for advanced glycation end products(RAGE)[30].Moreover,even when the BBB constitutes a physical barrier that allows for the exchange of a wide range of substances in and out of the brain through specific transporters,enzymatic activity has also been described for each cellular component of the BBB,offering additional metabolic protection against potentially neurotoxic compounds that could cross the BBB[32].Available Cellular Blood–Brain Barrier ModelsEven when the main objective of the present review is not directly related with this particular issue,some words should be mentioned about this important matter.The current avail-able BBB models can be divided into two groups:nonhuman and human-derived,and both can be further divided,according to the origin of the blood vessels,into noncerebral or cerebral endothelial models[16].Despite several available nonhuman (noncerebral and cerebral)as well as human(noncerebral)cell models,such as MDCK,HUVEC,RBE4,GP8,GPNT,or primary cultures,it is important to mention that only a few of these retain the main characteristics of the BBB[16].RBE4, GP8,GPNT,b.End3,and primary cultures of brain endothelial cells express most of the efflux/influx carriers as well as junctional proteins,but we must also remember in this case that these are murine models of the BBB and that,even by giving us an initial understanding of the complexity of the BBB,are quite far from indicating how the human BBB functions[16,38–41].Considering the critical role that the BBB carrier system plays in Alzheimer's disease(AD)patho-genesis,it is of most importance to have a more reliable model of the human BBB that expresses as many components as possible,to understand its main characteristics.The hCMEC/D3cells,described by Weksler et al.[42], are considered to be one of the most significant models for BBB studies,mainly because they correspond to a cerebral vessel human-derived BBB model that expresses the main characteristics of the human BBB[10,42].Additionally, considering the high complexity of the BBB,due to the interaction of several cell types,cocultures with glial cells and pericytes have emerged as more complete and complex models to study BBB properties[10,16].The selection of the appropriate model is critical when struc-tural and physiological properties of the BBB are assessed, particularly in AD,not only because the integrity of the“barrier”is highly important but also because of the expression patterns of the several carriers involved in amyloid-β(Aβ)clearance. Blood–Brain Barrier and Neurodegenerative DisordersDespite the known existence of the BBB for more than a century,only in the last few decades have significant efforts been made in order to understand the real impact of the role of the BBB on several neurodegenerative disorders.Of course,each of these disorders has its own etiology and particular hallmarks;however,the health or integrity of the BBB has often been shown to be compromised,and theTable2BBB transportersystem GLUT1GlucoseMCT1LactateL1Essential amino acidsy+Cationic amino acidsXG−Elimination of acidic amino acidsN Elimination of nitrogen rich amino acidsASC Elimination of non-essential amio acidsLNAA Elimination of essential amino acidsEAAT Elimination of excitatory amino acidsN Nitrogen-rich amino acidsNa+/K+/ATPase IonsCl−/HCO3−Na+,K+/2Cl−H+/Na+ATP-binding cassette(ABCB1,ABCC,ABCG2)PeptidesEndothelial protein C receptor(EPCR)Insulin receptor(IR)Low-density lipoprotein receptor-related protein(LRP)Peptide transport system(PTS)severity of changes observed usually relates to the progres-sion of the disease[17,30,43].Several authors have analyzed the particularities of the BBB in different disorders,such as epilepsy[44,45],multiple sclerosis[46],AD,Parkinson's disease,and Huntington's disease[17,30,31],among others,and have found an altered function of TJs,AJs,or in the carrier transport system that controls the BBB traffic,such as occludins,claudins, cadherins,EAA T,MCT1,and GLUT1.Blood–Brain Barrier and Alzheimer's DiseaseAD is an age-associated neurodegenerative disorder charac-terized by progressive memory and cognitive impairment that eventually leads to death[47,48].Clinically,AD pro-gression reflects gradual neurodegeneration with a compro-mise of short-term memory at the beginning of the disease followed by long-term memory loss[49].Brain atrophy and gradual loss of neurons,mainly in the hippocampus(HC), frontal cortex(FC)and limbic areas,together with extracel-lular accumulation of Aβplaques and intraneuronal forma-tion of neurofibrillary tangles(NFT),composed of hyperphosphorylated aggregates of microtubule-associated protein tau,are pathologic hallmarks of AD[48–50].In AD patients,whether in the familial or in the sporadic form, increased levels of Aβare usual and considered to be the basis of the pathologic changes observed during AD pro-gression[51].When Aβaccumulates around blood vessels, it leads to neurovascular dysfunction and cerebral amyloid angiopathy[17].Indeed,several changes take place in the cerebral blood vessels of AD patients,including loss of vascular density,decreased luminal diameter of vessels and capillaries,and thickness of vessels walls[52].Howev-er,even when the relationship between Aβaccumulation and BBB damage seems evident,it is important to consider that increased levels of Aβin the brain interstitial fluid depends not only on the production rate but also on the clearance rate from the brain.In fact,the recently published work of Cramer et al.[53]suggested the critical role of Aβclearance in AD and the importance of considering Aβ-related transporters as targets in future AD therapies.Compromised Transporters in Alzheimer's DiseaseAs a key hallmark of AD,the proper excretion of Aβfrom the brain,preventing its neurotoxic accumulation,depends on an appropriate transport through the BBB(Fig.1).LRP1and LRP2LRP are widely expressed by several cell types,including neurons,and constitute the main Aβclearance system of the brain[54,55].LRP1-associated Aβclearance requires Aβbinding to specific proteins,such as apolipoprotein E (ApoE),apolipoprotein J(ApoJ),andα2-macroglobulin. ApoE,the main apolipoprotein of the brain,binds to Aβforming a complex,which is the substrate of LRP1[56–60]. In the same way,LRP2needs the clusterin(or ApoJ)–Aβcomplex in order to remove Aβ[56,61,62].In fact,several studies have evaluated how decreased gene expression of LRP1and/or LRP2leads to an increased risk of AD[59,61, 63,64].Moreover,it has been demonstrated that LRP as well as neprilysin,the main brain Aβ-degrading enzyme, are target genes of the Aβprecursor protein(APP)intracel-lular domain(AICD),a small peptide derived from APPγ-secretase processing[65,66].ApoESeveral authors have reported the critical role of isoform variations of ApoE or ApoJ on Aβclearance and BBB integrity[58,61,62,67].Furthermore,specific ApoE isoform4(ApoE4)is related with decreased Aβclearance from the brain and constitutes a recognized genetic risk factor for AD development.On the other hand,ApoE isoform2(ApoE2)has shown to act as a protective factor, reducing the risk of developing AD[54,68–70].This point suggests that further therapies based on increased expres-sion of chaperone proteins,such as ApoE,should be care-fully studied and the genetic pull of each single patient must be considered in order to properly offer low-risk therapies.ABCABCB1(P-gp)is one of the most important members of the ABC transporters and its expression is often altered in AD[60, 71].Mainly related with drug transport across the BBB[16],it is also related to Aβclearance.Indeed,it has been observed that ABCB1polymorphisms are associated with increased Aβlevels[71].Additionally,it has been demonstrated that neuroinflammation,often present in several neurodegenera-tive disorders,also interferes with Aβtraffic through mecha-nisms that involve main carrier systems found in the BBB, such as ABCB1[72,73].Despite some doubts regarding the real impact of altered ABCB1function in AD pathogenesis [74],different studies have focused on the identification of different compounds that are able to rescue or enhance BBB traffic through ABCB1modulation[60,75].Additional mem-bers of the ABC family have also been described as being related to Aβefflux across the BBB,such as ABCC1[76], ABCG2(BCRP),and ABCG4[31].However,considering that the above-mentioned trans-porters work as required to remove Aβfrom the brain once it reaches the luminal space of the brain microvessels,theAβmust be eliminated in order to prevent influx to the brain.In fact,it has been demonstrated that peripheral in-jections of Aβleads to increased Aβbrain levels and to the amyloid-associated pathology.Moreover,the link between hepatic failure and increased Aβbrain levels has also been established suggesting that a poor systemic excretion of Aβcontributes to brain amyloidosis[77–80].In fact,it has recently been demonstrated that increasing liver LRP recep-tor expression is a valid strategy in order to favor circulating Aβelimination and that it is possible to target distant organs in order to promote brain and systemic Aβclearance[80]. RAGE has been described as the main carrier related to Aβbrain influx and this association,RAGE–Aβ,leads to sev-eral pathologic changes not only in the brain but also at the BBB affecting its permeability through several mechanisms that also include TJ alterations[81,82](Table3). Peroxisome Proliferator-activated ReceptorsDespite the fact that peroxisome proliferator-activated re-ceptors(PPARs)have been known for a long time[83],the recent work of Cramer et al.[53]has redirected the attention to this nuclear receptor subgroup as a key target in AD therapy.Indeed,PPARs have already been suggested as potential targets for AD therapies[84–88].Nuclear receptors are a class of transcription factors that sense both the extra-and the intracellular environment[89, 90].PPARs correspond to a type2nuclear receptor charac-terized by the formation of heterodimers with the retinoid X receptor(RXR)[89].The PPAR-RXR receptor,when inactivated,forms complexes with corepressor proteins and its activation induces transcriptional regulation of target genes through direct binding to the DNA peroxisome proliferator response elements(PPREs)[90,91].Addition-ally,it has been described that PPAR-RXR activation leads to interactions with different cell signaling transduction pathways,such as the MAPK,PI3K/Akt,and Wnt pathways,inducing posttranslational events[89].However, the mechanisms of action as well as the interactions with different cell signaling pathways remain to be fully eluci-dated[92].Three different mammalian PPARs have been identified: PPARα,PPARβ/δ,and PPARγwith dissimilar distribution among different tissues[84,91].“PPARαis highly expressed in several tissues.PPARβ/δis an APC-regulated target of nonsteroidal antiinflammatory drugs,and PPARγparticipates in biological pathways of intense basic and clinical interest”[84].Although all PPARs have been de-scribed in the adult and developing brain[93],PPARγis the most studied isoform and has showed the most promising neuroprotective effects in various models of neurodegener-ative disorders[84,91,92].Peroxisome Proliferator-activated Receptorsand Alzheimer's DiseaseExperimental data have pointed out that insulin-sensitizing thiazolidinedione(TZD)drugs,such as troglitazone(TGZ) and rosiglitazone(RGZ),which are known PPARγagonists and primarily used to treat type II diabetes,are able to delay Alzheimer's development and promote cell survival through PPARγactivation[84,94].PPARγactivity related to oxi-dative stress response is well documented and direct prooxidant as well as antioxidant activity have been de-scribed[50,95].However,interaction with several antioxi-dant and antiinflammatory regulatory pathways,such as nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB),nuclear factor erythroid2-related factor (NRF2),or the Wnt/β-catenin pathway,have also been noted[96].In the same way,Fuenzalida et al.[86]have proposed that PPARγalso upregulates Bcl-2,an antiapoptotic protein and a Wnt target gene[97],in addition to traditional survival pathways,such as MAPK or Akt, preventing neural degeneration and increasing mitochondri-al stability.Recently,Cramer et al.[53]demonstrated that Aβclear-ance can be enhanced through ApoE increased expression as well as its transporter proteins,ABCA1and ABCG1,by the activation with the RXR agonist,bexarotene.Moreover,the bexarotene treatment was able to reverse the Aβ-induced neurotoxicity,improving mice behavior.Despite the impact derived from Cramer's work and the expectation of a suc-cessful therapy against AD,there are some questions that need to be answered.Although this finding offers a reliable mechanism of increased Aβclearance from the brain medi-ated by ApoE expression modulation[98],it poorly explains all the benefits observed in the treated mice.Furthermore, the behavioral improvement suggests that additional under-lying mechanisms,including the potential interactions ofTable3Compromised BBB transporters in ADLRP1Reduced expressionApoE alleleε4Alters Aβclearance by LRP1 LRP2Reduced expressionABC transportersABCB1Polymorphisms and reducedexpressionABCC1ABCG2ABCG4Receptor for advanced glycation end products(RAGE)Increased influx of Aβinto the brainPPARγ:RXR and LXR:RXR heterodimers with cell signal-ing pathways related to neuron and synaptic recovery,such as Wnt,might play a critical role in the effects observed with the RXR agonist.Even when some authors have tried to explain the full range of effects observed by a stimulation of nuclear receptor agonist treatments,they are focused on the reduction in Aβlevels due to increased glial activity or increased chaperone protein expression[99,100]and as of yet nothing has been described to explain the potential effects of PPARs on the Aβtoxicity-derived effects or on the BBB.Indeed,as mentioned previously and as has been pointed out by other authors,the effects observed in Cramer's research suggest the involvement of the BBB Aβ–efflux system[76].Peroxisome Proliferator-activated Receptorsand the Blood–Brain BarrierOur laboratory has been working with PPAR agonists for several years[84,86,97]and more recently,we have published a study using two different PPAR agonists:4-phenylbutyric acid(4-PB),a PPARγagonist,and WY 14,643(WY),a PPARαagonist,assessing the effects of these drugs in a double transgenic mouse model of AD [88].We have found that both drugs are able to improve the cognitive impairment and alleviate the main pathological changes observed in this murine model,even when it has been suggested that WY cannot cross the BBB[101].This result has prompted us to consider the possibility that part of the effects observed with the PPAR agonists are due to a direct effect of the drug on one or more components of the neurovascular unit,which leads to an increased Aβclear-ance,and that its activation serves to alleviate or prevent the cerebral amyloid angiopathy.To our knowledge,all the information available regarding AD and PPAR effects are centered on neurons and astrocytes and not even one article was found directed at assessing the implications of PPAR activation on the BBB.The following lines constitute an attempt to relate what is known about the PPARs mecha-nisms of action and how their activation could induce a wide range of effects on the BBB,acting through the different cellular components of the neurovascular unit. Peroxisome Proliferator-activated Receptorsand Blood–Brain Barrier Amyloid-βClearanceWe have previously mentioned that the level of amyloidosis depends on the balance between production and excretion of Aβfrom the brain and how the excretion also depends on the binding of Aβwith additional proteins,such as ApoE, which will serve as a substrate of BBB transporters for the final elimination of Aβfrom the brain.The studies of Cramer et al.[53]and Mandrekar-Colucci et al.[100]have highlighted the importance of the Aβclearance in AD, including binding proteins and the contribution of the glial components to this process.However,this explains only one-half of the problem and does not consider the role of the neurovascular unit in the Aβclearance process.Even more,it does not take into account the rescue function that must take place in order to induce the cognitive and behav-ioral improvements observed.Several authors have indicated that PPAR activation(α,β/δ,γ)is able to induce changes in the BBB,protecting the brain as well as the BBB itself under different negative stimuli.PPARαactivation has been related to an increased expression of ABCG2[102]and with protection against deprivation stimuli in BBB models[103].On the other hand,the PPARβ/δeffects on the BBB are poorly studied but its overexpression has been related to increased protec-tion during cerebral ischemia[104]and also with Aβburden decrease in AD murine models[105].PPARγare the most studied subgroup of PPARs but only a few studies have focused on BBB changes due to PPARγactivation [106–110].However,even when it is possible to infer that PPARγactivation leads to increased ABCA1and ABCG1 levels[53],no studies have examined the changes in the expression of BBB transporters after PPARγactivation.From our point of view,the increased Aβclearance must also be due to an increased expression of specialized trans-porters at the endothelial level.However,the absence of information regarding this issue induces the underestimation of PPAR agonist effects on the BBB and AD. Peroxisome Proliferator-activated Receptorsand Blood–Brain Barrier Protection and StabilizationIt has been well noted that one of the mechanisms involved in Aβneurotoxicity is mediated by oxidative stress[50, 111–113]and through induction of mitochondrial dysfunc-tion that further leads to oxidative damage by an increased production of reactive oxygen species(ROS)[114–116]. Indeed,from these observations,it has been proposed that enhancing the cellular antioxidant mechanism could prevent neurodegeneration[50,86,117,118].Considering the struc-ture of the neurovascular unit,the increased Aβ-induced oxidative stress,and the concomitant mitochondrial dys-function that enhance the production of ROS,it might be that the basis of the cerebral amyloid angiopathy and capil-lary disruption is due to the inability of endothelial cells, pericytes,and/or astrocytes to properly respond to the in-creasing levels of ROS,leading to oxidative damage of the BBB(Fig.2).Additionally,the tasks carried out at the BBB are high-energy demanding[11]and the Aβ-induced mitochondrial dysfunction might also have an impact on the energy。

相关文档
最新文档