《激光原理与激光技术》习题答案完整版
激光原理与激光技术习题答案
输出损耗:
(4)有一个谐振腔,腔长L=1m,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0、99,求在1500MHz得范围内所包含得纵模个数,及每个纵模得线宽(不考虑其它损耗)
解:
(5)某固体激光器得腔长为45cm,介质长30cm,折射率n=1、5,设此腔总得单程损耗率0、01,求此激光器得无源腔本征纵模得模式线宽。
(a)(b)
解:
(a)
(b)
(4)利用往返矩阵证明共焦腔为稳定腔,即任意旁轴光线在其中可往返无限多次,而且两次往返即自行闭合。
证:共焦腔R1=R2=Lg1=g2=0
往返一周得传递矩阵,往返两周得传递矩阵
习题七
(1)平凹腔中凹面镜曲率半径为R,腔长L=0、2R,光波长为,求由此平凹腔激发得基模高斯光束得腰斑半径。
解:
(6)氦氖激光器相干长度1km,出射光斑得半径为r=0.3mm,求光源线宽及1km处得相干面积与相干体积。
解:
习题二
(1)自然加宽得线型函数为求①线宽②若用矩形线型函数代替(两函数高度相等)再求线宽。
解:①线型函数得最大值为令
②矩形线型函数得最大值若为则其线宽为
(2)发光原子以0.2c得速度沿某光波传播方向运动,并与该光波发生共振,若此光波波长=0.5m,求此发光原子得静止中心频率。
解Hale Waihona Puke ①②习题五(1) 证明:两种介质(折射率分别为n1与n2)得平面界面对入射旁轴光线得变换矩阵为
证:由折射定律近轴条件
即
(2)证明:两种介质(折射率分别为n1与n2)得球面界面对入射旁轴光线得变换矩阵为
证:
即
(3)分别按图(a)、(b)中得往返顺序,推导旁轴光线往返一周得光学变换矩阵,并证明这两种情况下得相等。
《激光原理及技术》1-4习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一早4.为使氦氖激光器的相干长度达到 1km,它的单色性/ -0应当是多少?6.63*10 54*3*10^(1)h£e 仙1宀300 二 e 「48= 1.425*10「21n 1解:相干长度L C ,A.是光源频带宽度LC3*108m/s二3*105Hz1kmc— Av(c/ ) 632.8nm 5103*10 5 Hz 二 6.328*10 3*108m/s第——早4.设一对激光能级为E 2,E i ,f 2=f i ,相应的频率为:,波长为■,能级上的粒子数密度分别为n 2,n ,求:(1) 当吟-3000MHz, T =300K 时,n 21 n 1 (2) 当,2m, T =300K 时,n 2/口 =? (3) 当,=1'm, n 2I n 1 =0.1 时,温度T= ?E 2-E 1解:k b Th* ch* cn 1其中n21 38*10_23*300-4.8*10-4_ ]n 29.解:(1)由题意传播1mm,吸收1%,所以吸收系数= 0.01mm 」10.解:(3)h :V巴之斎Tin 巴二 耳 叭 h* c6.63*10‘4*3*1081.38*10,3*10-6*|n(0.1)二 6.26* 103K n i2-7.若激光工作物质的某一跃迁波长为MOnm 的远紫外光,自发 跃迁几率Zai =10^_1,求:该跃迁的受激辐射爱因斯坦系数禺】是多少?为使受激辐射跃迁几率比妁大3倍,腔内的单色能量 密度""应为多少? (1) ⑵解:C1)血_殊/_晞(尹_捌C 3二如冬=8 处 8x314x6.63x10⑵ 硏矶厂也=4血np 厂囂—氐_6灯屮血/血- °皿""0%』z 1000.01I o e 1二 0.3661。
即经过厚度为0.1m 时光能通过 36.6%oe 2^= 1.3 二e 0.2 2G1In1・3 二 0.655 / m7、2* L 3*108二3.75*108Hz2*0.43*10 m/s*2.78*10」s=4.94*10610.6」m第二早2. C02激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数r^ 0.985, r^ 0.8求由衍射损耗及输出损耗引起的.R. ,Q解:(1)输出损耗由腔镜反射不完全引起。
激光原理与激光技术习题问题详解
激光原理与激光技术习题答案习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性/应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) =5000Å的光子单色性/=10-7,求此光子的位置不确定量x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m Rph x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆-(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的围所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δ s c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01,求此激光器的无源腔本征纵模的模式线宽。
《激光原理及技术》1-4习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=解: Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λ νλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α(2) 01010*********I .e I e I e I I .z ====-⨯-α 即经过厚度为0.1m 时光能通过%10. 解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
激光原理与技术 课后习题答案试题
1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm 8 一质地均匀的材料对光的吸收系数为101.0-mm ,光通过10cm 长的该材料后,出射光强为入射光强的百分之几?如果一束光通过长度为1M 地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
解答:设进入材料前的光强为0I ,经过z 距离后的光强为()z I ,根据损耗系数()()z I dz z dI 1⨯-=α的定义,可以得到: ()()z I z I α-=ex p 0则出射光强与入射光强的百分比为:()()()%8.36%100%100ex p %10010001.001=⨯=⨯-=⨯=⨯--mm mm z e z I z I k α 根据小信号增益系数的概念:()()z I dz z dI g 1⨯=,在小信号增益的情况下, 上式可通过积分得到()()()()14000000001093.610002ln lnln exp exp --⨯====⇒=⇒=⇒=mm z I z I g I z I z g I z I z g z g I z I1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
(整理)《激光原理与激光技术》习题答案完整版北京工业大学出版社.
激光原理与激光技术习题答案习题一(1)为使氦氖激光器的相干长度达到1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10-7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆-- (3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δs c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01π,求此激光器的无源腔本征纵模的模式线宽。
《激光原理及技术》1-4习题答案概述.
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.6126834≈====------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
《激光原理及技术》1-4习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
激光原理与技术习题解答
1 x θ = − 2 R 1
0 1 1 L 2 1 0 1 − R2
x θ = M
0 1 L2 1 0 1 L1 x1 1 0 1 0 1 0 1 θ1
1.2 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01 mm-1,光通过长 光通过长10cm的材料后,出射光强为入射 的材料后, 的材料后 光强的百分之几?( ?(2)一光束通过长度为1m的 光强的百分之几?( )一光束通过长度为 的 均匀激活的工作物质, 均匀激活的工作物质,如果出射光强是入射光强 的两倍,试求该物质的增益系数? 的两倍,试求该物质的增益系数? 解:(1) :( )
M = 2 g1 g 2 + 2 g1 g 2 ( g1 g 2 − 1) − 1 = 3.472
m1 = m2 = m
δ1→2
M = m 2 = 3.472
1 = δ 2→1 = 1 − = 71.2% M
1 = 91.7% 2 M
δ 往返 = 1 −
2.35 考虑一虚共焦非稳定腔,工作波长 考虑一虚共焦非稳定腔,工作波长λ= 1.06µm,腔长 ,腔长L=0.3m,等效菲涅耳数 eq=0.5, ,等效菲涅耳数N , 往返损耗率δ= 往返损耗率 0.5,试求单端输出时,镜M1和M2 ,试求单端输出时, 的半径和曲率半径。 的半径和曲率半径。 解:
1 δ = 1 − 2 = 0.5 M
2 M −1 a N eq = 2 Lλ
M= 2
a为输出端半径 为输出端半径
a=
2 N eq Lλ M −1
= 8.74 × 10−4 m
激光原理与技术习题解答-文档资料
解:
0
L(
R
L)
2
(2
R
L)
1/
4
(2R 2L)2
2 (2RL
4 2
L2
)
1/
4
4.65104 m
1 2
L
R2(R L)
1/ 4
L(R
L)(2R
L)
R2 L2 2
2 (2RL L2 )
1/ 4
4.98 104
m
2.28 设对称双凸非稳定腔的腔长L=1m,腔镜 的曲率半径R=-5m,试求单程和往返功率损耗率。
解:
1
1 M2
0.5
N eq
M 1 2
a2
L
M 2
a为输出端半径
a 2NeqL 8.74104 m
M 1
L R1 R2 22
M R1 R2
R1 2.05m R2 1.45m
复习提纲
氦氖激光器的能级图;谱线竞争;工作的激发原理; 举出几种可调谐激光器;染料激光器的三重态影响以及如 何克服? 调Q和锁模技术的基本原理;两种技术在脉宽范围上的差异? 均匀增宽与非均匀增宽的区别;用兰姆凹陷法如何实现稳频? 激光冷却、激光操纵微粒的基本原理 选模方法 证明稳定腔 、临界腔的边界条件
R3
L1
L2
R1
R2
L
证明:根据光线传播的轨迹,总的坐标变换为:
1
x
2 R1
0
1
1
0
1
L 1
2 R2
0
1
1
0
L2 1
1
0
0 1 1 0
L1 x1
1
1
《激光原理及技术》1-4习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.6126834≈====------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
《激光原理及技术》-习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
《激光原理及技术》1-4习题答案
激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1, 它的单色性0/λλ∆应当是多少? 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. 2激光器的腔长100, 反射镜直径1.5, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ解:(1)输出损耗由腔镜反射不完全引起。
激光原理与激光技术习题含答案.docx
激光原理与激光技术习题答案习题一(1) 为使氦氖激光器的相干长度达到1m,它的单色性/应为多大?解:632810 1010R 6.32810L c1000(2)=5000? 的光子单色性/-7x =10,求此光子的位置不确定量解:hphx p h xh2500010 105m p2p R10 7(3)CO 2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r 1=,r 2=。
求由衍射损耗及输出损耗分别引起的、c、Q、c(设n=1)解:衍射损耗 :L10.610610 188c L1.8sa2( 0.7510 2)2.c0.188 3 108 1 75 10Q2c23.14310 86 1.7510 8 3.1110610.610c12 3.14110 89.1106 Hz9.1MHz2c 1.75输出损耗 :12 ln r1 r 20.5ln( 0.9850.8 ) 0.119c L1 2.78 10 8 sc0.119 3 108Q2c23.143108 2.7810 8 4.9610610.610 6c12 3.14110 85.710 6 Hz 5.7MHz2c 2.78(4) 有一个谐振腔,腔长L=1m,两个反射镜中,一个全反,一个半反,半反镜反射系数r= ,求在 1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽( 不考虑其它损耗 )解:c3108.8Hz MHz1500q10150q[1] [1]11 2L21 1 5q150T0.010.005cL11086.67107s22c0.0053c110.24MHz2 c2 3.14 6.6710 7(5) 某固体激光器的腔长为45cm,介质长30cm,折射率n=,设此腔总的单程损耗率,求此激光器的无源腔本征纵模的模式线宽。
解: L 30 1.5 15 60cmcL 0.6108 6.366 10 8 sc0.01π 3 c112.5MHz2 3.14 6.366 10 82c(6) 氦氖激光器相干长度 1km ,出射光斑的半径为r=0.3mm ,求光源线宽及1km 处的相干面积与相干体积。
激光原理与激光技术(北工大)习题解答
习题一1、为使氦氖激光器的相干长度达到1m ,它的单色性参数R 应为多大?(光波长为λ=0.6328μm )解: 7610328.61106328.0−−×=×==Δ=c L R λλλ2、中心频率为ν0=4×108MHz 的某光源,相干长度为2m ,求此光源的单色性参数R 及光谱函数的线宽。
解:m c6148001075.0104103−×=××==νλ 7661075.310375.021075.0−−−×=×=×==c L R λννΔ=RMHz R 1501041075.3870=×××==Δ−νν 3、中心波长为λ0=0.6μm 的某光源单色性参数为R=10-4,求此光源的相干长度与相干时间。
解:c L R 0λ= mm m R L c 6106.010106.02460=×=×==−−−λ s c L t c c 1183102103106−−×=××==4、为使光波长等于λ=630nm 的激光器相干时间达到10-5s ,求它的单色性参数R 。
解:10589101.21010310630−−−×=×××===c c ct L R λλ5、中心频率为ν0=4×1014Hz 的某光源单色性参数为R=10-5,求此光源的相干长度。
解: c c L c L R νλ==, m R c L c 75.0104101031468=×××==−ν6、求相干长度为2m 的某光源线宽。
解:MHz Hz L c t c c 150105.12103188=×=×===Δν7、某光源光波长为λ=4000Å,为使距离此光源D=1m 处的相干面积达到2mm 2,求此光源面积应为多大?解:22862102208.0108102)104000(mm m A D A c s =×=××==−−−λ8、某光源面积为A s =5cm 2,波长为λ=6000Å,求距光源D=1m 处的相干面积解:24210421022102.7102.7105)106000(mm m A D A s c −−−−×=×=××==λ9、氦氖激光器出射光斑的半径为r=3mm ,单色性参数R=10-5,求1m 处的相干面积与相干体积。
激光原理与激光技术思考题及习题集与解答
《激光原理与激光技术》习题解答参考钟先琼成都信息工程学院光电技术系2008年6月第一章一、填空题1、处于同一光子态的光子数同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、自发辐射跃迁、受激吸收跃迁、受激辐射跃迁,自发辐射跃迁,受激吸收跃迁和受激辐射跃迁。
3、高的单色性、高的方向性、高的相干性、高的亮度;高的光子简并度。
3、玻色-爱因斯坦,没有。
4、选择模式和实现光的正反馈。
5、Light Amplification by Stimulated Emission of Radiation 泵浦激励热平衡集居数反转状态6、吸收7、难二、判断题1、×2、×3、√4、×5、×6、×7、×8、×9、√ 10、√三、名词解释1、处于同一光子态内的光子数,与之等效的含义还有:同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、若21f f =时,满足:12n n >;21f f ≠时,满足:12112>f n f n ,此时称为满足集居数反转状态,是实现光放大的条件。
3、测不准关系表明:微观粒子的坐标和动量不能同时确定,在三维运动情况下,测不准关系为3h P P P z y x z y x ≈∆∆∆∆∆∆,故在六维相空间中,一个光子态占有的相空间体积为3h P P P z y x z y x ≈∆∆∆∆∆∆,上述相空间体积元称为相格。
第二章一、填空题1、几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗。
几何偏折损耗、衍射损耗,选择,腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗,非选择2、平均单程损耗因子、光子在腔内的平均寿命、无源腔的Q值3、稳定腔、非稳腔、临界腔。
非稳腔,非稳腔。
临界、临界、临界。
对称共焦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光原理与激光技术习题答案习题一(1)为使氦氖激光器的相干长度达到1m ,它的单色性∆λ/λ应为多大?解: 10101032861000106328--⨯=⨯=λ=λλ∆=.L R c(2) λ=5000Å的光子单色性∆λ/λ=10-7,求此光子的位置不确定量∆x解: λ=h p λ∆λ=∆2h p h p x =∆∆ m R p h x 5101050007102=⨯=λ=λ∆λ=∆=∆--(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1)解: 衍射损耗: 1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ 686810113107511061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q cMHz .Hz ...c c 19101910751143212168=⨯=⨯⨯⨯=πτ=ν∆- 输出损耗: 1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ 686810964107821061010314322⨯=⨯⨯⨯⨯⨯⨯=πντ=--....Q c MHz .Hz ...c c 75107510782143212168=⨯=⨯⨯⨯=πτ=ν∆- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)解: MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 11]11501500[]1[=+=+ν∆ν∆=∆q q005.0201.02===T δs c L c 781067.6103005.01-⨯=⨯⨯==δτ MHz cc 24.01067.614.321217=⨯⨯⨯==-πτν∆(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01π,求此激光器的无源腔本征纵模的模式线宽。
解: cm L 60155.130=+⨯=' s 106.3661030.01π0.6c L 88c -⨯=⨯⨯='=δτ 2.5MHz 106.3663.1428cc =⨯⨯⨯==-121πτν∆(6)氦氖激光器相干长度1km ,出射光斑的半径为r=0.3mm ,求光源线宽及1km 处的相干面积与相干体积。
解: 0.3MHz 10103L c 38c =⨯==ν∆ 222 1.42m )10π(3100.632810A D A 241226s c =⨯⨯⨯==--λ 331042.1m L A V c c c ⨯==习题二(1)自然加宽的线型函数为20220)(4)21(1),(ννπττνν-+ccH g 求①线宽②若用矩形线型函数代替(两函数高度相等)再求线宽。
解:①线型函数的最大值为c N g τνν4),(00= 令cccτννπττ2)(4)21(12022=-+ cc c τννπττ1)(821202=-+c c τννπτ21)(8202=- 2220161)(c τπνν=- c πτνν410±= cNπτν21=∆∴②矩形线型函数的最大值若为 c m g τ4= 则其线宽为cm N g τν411==∆(2)发光原子以0.2c 的速度沿某光波传播方向运动,并与该光波发生共振,若此光波波长λ=0.5μm ,求此发光原子的静止中心频率。
解: c v s z ⎪⎪⎭⎫ ⎝⎛-=10λλ cc ⎪⎪⎭⎫ ⎝⎛-=-15.02.00λ 15.02.00-=-λ m μλ625.08.05.00== MHz c 86800108.410625.0103⨯=⨯⨯==-λν (3)某发光原子静止时发出0.488μm 的光,当它以0.2c 速度背离观察者运动,则观察者认为它发出的光波长变为多大?解: m cc c v z μλλ5856.0488.02.1488.0)2.01(100=⨯=⨯--=⎪⎭⎫ ⎝⎛-='(4)激光器输出光波长λ=10μm ,功率为1w ,求每秒从激光上能级向下能级跃迁的粒子数。
解:νϕh dtd P = s hc P h P dt d P /11051031063.610101198346⨯=⨯⨯⨯⨯⨯====--λνϕ (6)红宝石调Q 激光器中有可能将几乎全部的Cr +3激发到激光上能级,并产生激光巨脉冲。
设红宝石棒直径为1cm ,长为7.5cm ,Cr +3的浓度为2⨯109cm -3,脉冲宽度10ns ,求输出激光的最大能量和脉冲功率。
解:J h L r V h W 9108341522103.4106943103106.631020.0750.0053.14---⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===νϕπνϕ w t W P 34.01010104.399=⨯⨯==--(7)静止氖原子3S 2→2P 4谱线中心波长0.6328μm ,求当它以0.1c 速度向观察者运动时,中心波长变为多大?解: m cc c v z μλλ5695.06328.09.06328.0)1.01(100=⨯=⨯-=⎪⎭⎫ ⎝⎛-=' (9)红宝石激光器为三能级系统,已知S 32=0.5⨯1071/s, A 31=3⨯1051/s, A 21=0.3⨯1031/s 。
其余跃迁几率不计。
试问当抽运几率W 13等于多少时,红宝石晶体将对λ=0.6943μm 的光是透明的?02123232=-=A n S n dt dn 322123S A n n =∴03233131313=--=S n A n W n dtdn)(323113132331313S A n n n S n A n W +=+=∴透明即n 1=n 2 175733231322132312313318)105.0103(105.0103.0)()(-=⨯+⨯⨯⨯=+=+=∴s S A S A S A n n W习题三(1)若光束通过1m 长的激光介质以后,光强增大了一倍,求此介质的增益系数。
解: 2ln ln 10==I I zG(2) 计算YAG 激光器中的峰值发射截面S 32,已知∆νF =2⨯1011Hz,τ3=2.3⨯10-4s,n=1.8。
解:222114221223222032109.1102103.28.114.341006.14m n S F ---⨯=⨯⨯⨯⨯⨯⨯⨯=∆=ντπλ (3) 计算红宝石激光器当ν=ν0时的峰值发射截面,已知λ0=0.6943μm, ∆νF =3.3 ⨯1011Hz, τ2=4.2ms, n=1.76。
解:2241132212222220211084.2103.3102.476.114.34106943.04m n S F ---⨯=⨯⨯⨯⨯⨯⨯⨯=∆=ντπλ习题四(1) 红宝石激光器腔长L=11.25cm ,红宝石棒长l =10cm ,折射率n=1.75,荧光线宽∆νF =2⨯105MHz ,当激发参数α=1.16时,求:满足阈值条件的纵模个数 解: MHz H T 45108116.11021⨯=-⨯⨯=-∆=∆ανν cm l n L L 75.1810)175.1(25.11)1(=⨯-+=-+='MHz L c q 8001075.182103228=⨯⨯⨯='=∆-ν 101]180080000[]1[=+=+∆∆=∆q T q νν(2) 氦氖激光器腔长1m ,放电管直径2mm ,两镜反射率分别为100%、98%,单程衍射损耗率δ=0.04,若I s =0.1W/mm 2,G m =3⨯10-4/d, 求①νq =ν0时的单模输出功率 ②νq =ν0+21∆νD 时的单模输出功率 解:①05.004.0202.004.02=+=+=T δ mm lG t /1105100005.05-⨯===δmm dG m /1105.12103103444---⨯=⨯=⨯= 3105105.154=⨯⨯==--t m G G α mw STI P s 13.25)13(1.002.0114.35.0)1(222210=-⨯⨯⨯⨯⨯=-=αν②mw e eSTI P i q s 8.7)13(1.002.0114.3]1[2ln 222)(2ln 822200=-⨯⨯⨯⨯=-=-∆--ννννα(3) 氦氖激光器放电管长l =0.5m ,直径d=1.5mm ,两镜反射率分别为100%、98%,其它单程损耗率为0.015,荧光线宽∆νF =1500MHz 。
求满足阈值条件的本征模式数。
(G m =3⨯10-4/d ) 解:025.0015.0202.0015.02=+=+=T δ mm lG t /1105500025.05-⨯===δmm d G m /11025.1103103444---⨯=⨯=⨯= 410510254=⨯⨯==--t m G G α MHz DT 21212ln 4ln 15002ln ln =⨯=∆=∆ανν MHz L c q3005.0210328=⨯⨯==∆ν 8]13002121[]1[=+=+∆∆=∆q T q νν (5) CO 2激光器腔长L =1m ,,放电管直径d=10mm ,两反射镜的反射率分别为0.92、0.8,放电管气压3000Pa 。
可视为均匀加宽,并假设工作在最佳放电条件下。
求 ①激发参数α ②振荡带宽∆νT ③满足阈值条件的纵模个数 ④稳定工作时腔内光强。
(频率为介质中心频率ν0)经验公式:∆νL =0.049p(MHz)、G m =1.4⨯10-2/d (1/mm )、I s =72/d 2(w/mm 2)。
解:①153.0)8.092.0ln(5.0ln 2121=⨯⨯-=-=r r δ mm lG t /11053.11000153.04-⨯===δ mm dG m /1104.110104.1104.1322---⨯=⨯=⨯= 15.91053.1104.143=⨯⨯==--t m G G α ② MHz p L 1473000049.0049.0=⨯==∆ν MHz L T 420115.91471=-⨯=-∆=∆ανν③MHz Hz .L c q 150105112103288=⨯=⨯⨯==ν∆ 3]1150420[]1[=+=+∆∆=∆q T q νν④222/72.0107272mm w d I s ===2/87.515.872.0)1(0mm w I I s =⨯=-=αν (6)氦氖激光器放电管直径d=0.5mm ,长l =10cm ,两反射镜反射率分别为100%、98%,不计其它损耗,稳态功率输出0.5mw ,求腔内光子数。