2章 基本放大电路图

合集下载

2.基本放大电路(2)

2.基本放大电路(2)

+
~

Re
RL U O

(a)电路图
图 2.5.1 共集电极放大电路
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
三、电流放大倍数
Ii b Ib
e Ie Io
Ii Ai
Ib Io Ii

Io

Ie Ib
Ie 所以
(1
RS
U S
Ic Rc
e+
Re Ie vo
-
AV

Vo Vi

( 1) IbRe Ib[rbe (1 )Re ]

( 1) Re rbe (1 )Re
Ri

Vi Ii
rbe
(1 )Re
Ro

Re
//
rbe
1
莆田学院三电教研室--模拟电路多媒体课件

(1
1 )rbe2
e
显然,、rbe 均比一个管子 1、rbe1 提高了很多倍。
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
3.构成复合管时注意事项
(1). 前后两个三极管连接关系上,应保证前级输 出电流与后级输入电流实际方向一致。
(2). 外加电压的极性应保证前后两个管子均为发 射结正偏,集电结反偏,使管子工作在放大区。
U o Ib (rbe Rs)
式中
Rs Rs // Rb RS
而 所以
Io Ie (1 )Ib
Ro

U o Io

rbe Rs
1
e Ie Io
rbe

第2章基本放大电路

第2章基本放大电路

UCE -
RB——固定偏置电阻(fixed-bias resistance) 。
可见:改变RB、 RC、 UCC均可改变静态工作 点,调RB最方便。
22
讨论
第二节 放大电路的分析
[例2-2-1] UCC=12V,RC=2kΩ, RB=200kΩ,β=50,试求:放大电路静 态值。
解:
IB
UCC UBE RB
C对直流开路,对交流 短路;
直流电源对交流通路 短路(忽略内阻)。
+UCC
RB
RC
C1+ IBQ
ICQ + C2
+
ui
RS uS

+
RL uo

第二节 放大电路的分析
直流通路
+UCC
RB
RC
19
讨论
第二节 放大电路的分析
(二) 估算法 用直流通路确定静态值
输入回路电压方程: UCC = IBRB + UBE
Ube
uBE UBE(AV)
集电极电源
UCC
基极电源
UBB
发射极电源
UEE
17
一、静态分析
第二节 放大电路的分析
放大电路输入端无输入信号,即ui=0, 电路中只有直流电压和直流电流
直流通路(direct current circuit)— —不加交流信号时直流电流流经的通路 (直流等效电路)
18
遵循原则:
为了研究问题方便,把交、直流分开研究。
+UCC
交流通路(alternating
current circuit)——
交流信号流经的通路(交
流等效电路)

第2章 基本放大电路(1)2.1放大的概念和放大电路的主要性能指标2.2基本放大电路的工作原理

第2章 基本放大电路(1)2.1放大的概念和放大电路的主要性能指标2.2基本放大电路的工作原理

18 33 25 2 - 1 - 35
2.2.4 放大电路的组成原则(P82~P83) 放大电路的组成原则(
一、放大电路的组成原则
1. 晶体管必须偏置在放大区: 晶体管必须偏置在放大区: ——发射结正偏,集电结反偏。 发射结正偏,集电结反偏。 发射结正偏 2. 正确设置静态工作点,使整个波形处于放大区。 正确设置静态工作点,使整个波形处于放大区。 3. 输入信号能通过输入回路作用于放大管。 输入信号能通过输入回路作用于放大管。 4. 输出回路将变化的电流作用于负载。 输出回路将变化的电流作用于负载。
IC IE
( 略 小 IB) 忽 微 量
**3、输出特性三个区域的特点 、输出特性三个区域的特点:
(1) 放大区:发射结正偏,集电结反偏。 放大区:发射结正偏,集电结反偏。 即: IC=βIB , 且 ∆IC = β ∆ IB
c b N P N e
UC>UB >UE
c b P N P e
UC<UB <UE
V BB − U BEQ + u i iB = Rb
= I BQ
= I BQ
ui + Rb + ib
2 - 1 - 30
iC = β i B
= β ( I BQ + i b ) = I CQ + i c
2 - 1 - 31
u CE = V CC − i C R c
= V CC − ( I CQ + i c ) R c
Ri越大,Ii 就越小,ui就越接近 S 越大, 就越小, 就越接近u
2 - 1 - 12
RO
表征放大电路带负载能力的。 表征放大电路带负载能力的 三、输出电阻 ------表征放大电路带负载能力的。 断开负载后, 断开负载后,向放大电路输出端看进去的等效内 定义为输出电压有效值与输出电流有效值之比 输出电压有效值与输出电流有效值之比。 阻,定义为输出电压有效值与输出电流有效值之比。

电子技术课件第二章三极管及基本放大电路

电子技术课件第二章三极管及基本放大电路
10
2.三极管的主要参数
(1)直流参数 反映三极管在直流状态下的特性。
直流电流放大系数hFE 用于表征管子IC与IB的分配比例。
漏电电流。ICBO大的三极管工作的稳定性较差。
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反向
ICBO测量电路
ICEO测量电路
加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可忽视。
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
三极管型号的读识 3 A G 54 A
规格号
第三部分是用拼音字母表示管子的类型。
X——低频小功率管,G ——高频小功率管, D——低频大功率管,A ——高频大功率管。
三极管 NP锗材料 高频小功率 序号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
饱和区 当VCE小于VBE时,三极管的发
四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主 要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
一、放大电路静态工作点不稳定的原因
(1)温度影响 (2)电源电压波动 (3)元件参数改变
二、分压式偏置放大电路 1.电路组成
Rb1是上偏置电阻,Rb2是下偏置电阻。电源电压经Rb1、Rb2串联分压后为三极 管提供基极电压VBQ。Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容。
分压式偏置放大电路
放大电路的电压和电流波形

第二章(简好用新)-基本放大电路..

第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ

VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE

模电第二章 基本放大电路

模电第二章 基本放大电路
温 T ( C 度 ) I C T ( C I C ) E I C O
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I

CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点

第2章 放大电路分析基础分析

第2章 放大电路分析基础分析

第2章 放大电路分析基础
讨论一
画图示电路的直流通路和交流通路。
第2章 放大电路分析基础
二、图解法
uBE VBB iB Rb
应用实测特性曲线
uCE VCC iC Rc
1. 静态分析:图解二元方程组
输入回路 负载线 IBQ
负载线
Q
ICQ
Q
IBQ
UBEQ
UCEQ
第2章 放大电路分析基础
第2章 放大电路分析基础
一、放大的概念及放大电路的性能指标
1、放大的概念
放大的对象:变化量
放大的本质:能量的控制
放大的特征:功率放大
判断电路能否放 大的基本出发点
放大的基本要求:不失真,放大的前提
第2章 放大电均可看成为两端口网络。
输入电流
信号源 内阻 输出电流
2)输入电阻和输出电阻
从输入端看进去的 等效电阻
Ui Ri Ii
输入电压与 输入电流有 效值之比。
U Uo U Ro ( 1) RL Uo Uo RL
' o ' o
将输出等效 成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
第2章 放大电路分析基础
第2章 放大电路分析基础
在基本共射放大电路中,电压和电流都得到放大(ic=ib, uoui),即功率得到放大。需要提醒大家的是,输出功
率并非来自输入信号 (信号源),而是来自直流电源 VCC。
正是由于 iB 或 iE 对 iC 的控制作用,使得在 ui 的作用下直 流电源VCC输出的电流中包含与 ui同样变化且被放大的 分量,即放大电路的输出功率是在输入信号的作用下 通过晶体管将直流电源的能量转换而来。因此,放大

模电 第2章

模电 第2章

第2章 基本放大电路
2.1 放大概念
I&i I&o
( 2) AVO
&' VO & 1 Vi
+
&' & & VO AVOVi Vi
Rs
+
Ro 放大 +
Ri 电路
V&

' o
+
V&s

V&i

V&o

RL
& Ri V & Vi s Rs Ri
求解示意图
106 6 1 0.5( V ) 6 10 10
C1
+
+
IB T
ui
RL
uo
共发射极组态基本放大电路
电流控制和放大。 为 IB 提供偏流 Vcc用于提供电 将变化的集电极电流 源,使三极管工作 转换为电压输出. 在线性区。 耦合电容:隔直流、传交流,保证信号传输。
第2章 基本放大电路
2.1 放大概念
模电中,以输入和 输出回路的共同端 作为电位参考点, 叫做“地”,用 “”表示。
(1)如果直接将它与10 的扬声器相接,扬声器上的电压和功率
各为多少?(2)如果在拾音头和扬声器之间接入一个放大电路, 其输入电阻Ri= 1M ,输出电阻Ro= 10 ,开路电压增益为1, 则此时扬声器上的电压和功率各为多少? 解:
Rs +
V&S
I&o
+ Rs RL +
I&i
+ Ro 放大 + Ri 电路
2、若输出为电流形式,则 Ro 越大越好。

2-基本放大电路

2-基本放大电路

2. 电压放大倍数的图解分析
此项分析需在静态工作点确定后进行! 由直流负载线方程 uBE VBB iB Rb
作出直流负载线,作出△uI。
uBE VBB uI iB Rb
I B1 I BQ iB
iC
I B1
直 流
uCE
u I
给定 uI i B iC uCE ( uO ) uO Au uI ( uO与uI 反相)
两种实用放大电路
(1)直接耦合放大电路
将两个电源 合二为一
- + UBEQ
有交流损失
有直流分量
两种实用放大电路:(2)阻容耦合放大电路
C1、C2为耦合电容!
+ - - ++
UCEQ
BE
UBEQ U
-
耦合电容的容量应足够 大,即对于交流信号近似 为短路。其作用是“隔离 直流、通过交流”。
静态时,C1、C2上电压? U C1 U BEQ,U C2 UCEQ 动态时, uBE=uI+UBEQ,信号驮载在静态之上。 负载上只有交流信号。
第二章 基本放大电路
第二章 基本放大电路
§2.1 放大的概念与放大电路的性能指标
§2.2 基本共射放大电路的工作原理
§2.3 放大电路的分析方法
§2.4 静态工作点的稳定
§2.5 晶体管放大电路的三种接法 §2.6 场效应管及其基本放大电路 §2.7 基本放大电路的派生电路
§2.1 放大的概念与放大电路 的性能指标
iC I CQ ic uCE U CEQ uce
3. 失真分析
• 截止失真:输出波形进入截止区 产生的失真。
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。 减小Rb能消除截止失真吗?

第二章 基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电

第二章  基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电
电流能够作用于负载.
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –

+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE

+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB

第2章放大电路完整版

第2章放大电路完整版

放大元件iC=iB, 工作在放大区, 要保证集电结反 偏,发射结正偏。
输入 ui ui
Rb
uo 输出 VBB
参考点
(2-9)
共射放大电路组成 +VCC RC T
基极电阻 Rb ,调整 限制IB
ui Rb VBB
使发射结正偏, 并提供适当的静 态工作点。
(2-10)
共射放大电路 +VCC RC T
大写字母、大写下标,表 示直流量。 小写字母、大写下标,表 示全量(交流+直流)。 小写字母、小写下标,表 示交流量。
iB
ib
uA
ua
(2-52)
基本放大电路的静态工作点表达式 +VCC RC
ICQ
T
I BQ
VBB U BEQ Rb
I CQ I BQ
IBQ
Rb
UCEQ VBB
U CEQ VCC I CQ RC
电子学中放大的目的是将微弱的变化信号放 大成较大的信号。电子电路放大的基本特征是 功率放大。这样,在放大电路中必须有能够控 制能量的元件,即有源元件,如晶体管等。放 大的前提是不失真,此时放大才有意义。 电压放大电路可以用有输入口和输出口的 四端网络表示,如图。
ui
Au
uo
(2-3)
放大电路的性能指标 (1) 放大倍数 电压放大倍数
列输入回路方程:
iC C VCC Rc 1 斜率 I B + Rc
VBE =VCC-IBIRb Q 列输出回路方程(直流负载线) : V
CQ
IBQ
VBE -
I+ C VCE -
C EQ
VCC
vC E 直流通路

第02章基本放大电路

第02章基本放大电路

iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb

E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~

第2章 基本放大电路

第2章 基本放大电路
静态:
VBB = 0 → 仅可放大ui 的 正半周→ 严重失真
ui=0时,放大电路的状态。
静态工作点Q:
ui=0 时,晶体管的 IB 、 IC 、 UBE 、 UCE ,记为: IBQ、ICQ、UBEQ、UCEQ。在近似分析中,认为UBEQ 为常量。Si:0.7V;Ge:0.2V。
I BQ
26
VBB U BEQ Rb
对信号源来说,放大电路是负载,这个负载的 大小可以用输入电阻来表示。 Ii
US ~ Ui
放大 电路
Io
Uo
Ui Ri Ii
输入电阻是动态电阻,它是衡量放大电路从信 号源索取电流大小的参数。一般希望得到较大的输 入电阻。因 Ri 越大,Ii 就越小,Ui 就越接近US 。
9
3. 输出电阻:反映电路相互连接时的影响
I CQ β I BQ
U CEQ VCC -I CQ RC
为什么要设置一个静态工作点? +UCC RC
C1
+
C2 T
RL
ui
-
只有在输 入电压的整 个周期内, 晶体管都工 + 作在放大状 uo 态,输出电 压才不会产 生失真
(15-27)
+UCC RB C1
+ Ui
RC
C2
T
RL
+ Uo -
47
1. 利用图解法求解静态工作点 ΔuI = 0
IB=IBQ
uBE=VBB - iBRb
48
uCE=VCC - iCRc
2. 利用图解法分析电压放大倍数
uBE=VBB + △uI –iBRb
uCE=VCC-iCRc ΔuO ΔuI Δi B ΔiC ΔuCE ( ΔuO ) Au ΔuI

第二章 放大电路

第二章 放大电路
输入端:近似满足线性关系
u BE rbe i B
基极与发射极之间用一 个交流电阻rbe等效。
图2.20 三极管的交流输入电阻rbe 常州轻工职业技术学院
输出端: 曲线平坦,间隔较均匀。 uCE几乎对iC无影响。
iC i B
集电极与发射极之间用 一个受控电流源等效。
图2.21 三极管的电流放大系数β
图2.16 交流负载线 常州轻工职业技术学院
(3)放大电路的动态工作范围
图2.17 动态工作情况 常州轻工职业技术学院
(4)非线性失真
所谓失真,是指输出信号的波形与输入信号 的波形不一致。三极管是一个非线性器件,有截 止区、放大区、饱和区三个工作区,如果信号在 放大的过程中,放大器的工作范围超出了特性曲 线的线性放大区域,进入了截止区或饱和区,集 电极电流ic与基极电流ib不再成线性比例的关系, 则会导致输出信号出现非线性失真。 非线性失真分为截止失真和饱和失真两种。
扩音机的原理图
常州轻工职业技术学院
话筒(麦克风)将较小的声音信号转换成微弱的电信 号,经放大电路放大后,变成大功率的电信号,推动扬声 器(喇叭),还原为强大的声音信号。扬声器所获得的能 量远大于话筒送出的能量。 可见,放大电路的本质是 能量的控制和转换;是在输入信号作用下,通过放大电路 将直流电源的能量转换成负载所获得的能量,使负载从电 源获得的能量大于信号源提供的能量。
(2)用微变等效电路分析法分析共射放大电路 求解步骤 找Q点 ① 画直流(通路),求Q点。 定参量 公式法估算Q点值。 画模型 ② 由Q点,定参量。 求指标 计算Q点处的参数rbe值。 ③ 由交流,画微变。 由交流通路,画出放大电路的微变等效电路。 ④ 由微变,求指标。 根据等效电路直接列方程求解Au、Ri、Ro。 注意:NPN和PNP型三极管的微变等效电路一样。

第2章+基本放大电路(含图解法)

第2章+基本放大电路(含图解法)

第2章 基本放大电路
《模拟电子技术基础》
2.2.2 设置静态工作点的必要性
一、 静态工作点 (Quiescent Point)
放大电路没有输入信号时的工作状态称为静态。
输入电压ui为零时,晶体管各极的电流、b-e间的电压、管压 降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
第2章 基本放大电路
五、非线性失真
非线性失真产生的原因
《模拟电子技术基础》
由于晶体管输入特性的非线性, 当b-e间加正弦波信号电压时,基 极电流的变化不是正弦波。
非线性失真系数
D ( A2 )2 ( A3 )2
A1
A1
第2章 基本放大电路
《模拟电子技术基础》
六、最大不失真输出电压
在输出波形没有明显失真情况下放大电路能够提供 给负载的最大输出电压(或最大输出电流)可用峰-峰值 (UOPP、IOPP)表示,或有效值表示(Uom 、Iom)。
VBB越大,
UBEQ取不同的 值所引起的IBQ 的误差越小。
列晶体管输入、输出回路方程,将UBEQ作为已知条件, 令ICQ=βIBQ,可估算出静态工作点。
第2章 基本放大电路
《模拟电子技术基础》
二、阻容耦合共射放大电路的直流通路和交流通路
直流通路
bc e
I
=VCC-U
BQ
Rb
BEQ
ICQ IBQ
4.晶体管三种基本放大电路各有什么特点?如何根据它 们的特点组成派生电路?
第2章 基本放大电路
《模拟电子技术基础》
§2.1 放大的概念与放大电路 的性能指标
2.1.1 放大的概念 2.1.2 放大电路的性能指标
第2章 基本放大电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章基本放大电路
• 2.1 放大的概念和放大电路的主要性能指标• 2.2 基本共射放大电路的工作原理
• 2.3 放大电路的分析方法
• 2.4 放大电路静态工作点的稳定
• 2.5 晶体管单管放大电路的三种基本接法
• 2.6 基本放大电路的派生电路
• 2.7 场效应管放大电路
返回
2.1放大的概念和放大电路
的主要性能指标
•图2.1.1 扩音机示意图
•图2.1.2 放大电路示意图
•图2.1.3 两个放大电路相连的示意图
•图2.1.4 放大电路的频率指示
返回
图2.1.1 扩音机示意图
返回
图2.1.2 放大电路示意图
返回
图2.1.3 两个放大电路相连的示意图
返回
图2.1.4 放大电路的频率指标
返回
2.2 基本共射放大电路的工作原理
•图2.2.1 基本共射放大电路
•图2.2.2 没有设置合适的静态工作点
•图2.2.3 基本共射放大电路的波形分析
•图2.2.4 直接耦合共射放大电路
•图2.2.5 阻容耦合共射放大电路
返回
图2.2.1 基本共射放大电路
返回
图2.2.2 没有设置合适的静态工作点
返回
图2.2.3 基本共射放大电路的波形分析
返回
图2.2.4 直接耦合共射放大电路
返回
图2.2.5 阻容耦合共射放大电路
返回
2.3 放大电路的分析方法
•图2.3.1 图2.2.1 所示基本共射放大电路的直流通路和交流通路
•图2.3.2 直接耦合共射放大电路及其直流通路和交流通路
•图2.3.3 图2.2.5(a)所示阻容耦合共射放大电路的直流通路和交流通路
•图2.3.4 基本共射放大电路
•图2.3.5 利用图解法求解静态工作点和电压放大倍数
•图2.3.6 基本共射放大电路的波形分析
•图2.3.7 基本共射放大电路的截止失真
•图2.3.8 基本共射放大电路的饱和失真
•图2.3.9 直流负载线和交流负载线
•图2.3.10 例2.3.1图
•图2.3.11 晶体管的直流模型
•图2.3.12 晶体管的共射h参数等效模型
•图2.3.13 h参数的物理意义及求解方法
•图2.3.14 简化的h参数等效模型
•图2.3.15 晶体管输入回路的分析
•图2.3.16 基本共射放大电路的动态分析
•图2.3.17 图2.2.5 (a) 所示电路的交流等效电路返回
图2.3.1 图2.2.1 所示基本共射放大电路的
直流通路和交流通路
返回
图2.3.2 直接耦合共射放大电路及其
直流通路和交流通路
返回
图2.3.3 图2.2.5(a)所示阻容耦合共射放大电路的直流通路和交流通路
返回
图2.3.4 基本共射放大电路
返回
图2.3.5 利用图解法求解静态工作点
和电压放大倍数
返回
图2.3.6 基本共射放大电路的波形分析
返回
图2.3.7 基本共射放大电路的截止失真
返回
图2.3.8 基本共射放大电路的饱和失真
返回
图2.3.9 直流负载线和交流负载线
返回
图2.3.10 例2.3.1图
返回
图2.3.11 晶体管的直流模型
返回
图2.3.12 晶体管的共射h参数等效模型
返回
图2.3.13 h参数的物理意义及求解方法
返回
图2.3.14 简化的h参数等效模型
返回
图2.3.15 晶体管输入回路的分析
返回
图2.3.16 基本共射放大电路的动态分析
返回
图2.3.17 图2.2.5 (a) 所示电路的交流等效电路
返回
2.4 放大电路静态工作点的稳定
•图2.4.1 晶体管在不同环境温度下的输出特性曲线
•图2.4.2 静态工作点稳定电路
•图2.4.3 图2.4.2 (c)所示电路的等效电路
•图2.4.4 阻容耦合Q点稳定电路的交流等效电路
•图2.4.5 静态工作点稳定电路
返回
图2.4.1 晶体管在不同环境温度下的输出特性曲线
返回
图2.4.2 静态工作点稳定电路
返回
图2.4.3 图2.4.2 (c)所示电路的等效电路
返回
图2.4.4 阻容耦合Q点稳定电路的交流等效电路
返回
图2.4.5 静态工作点稳定电路
返回
2.5 晶体管单管放大电路的三种基本接法
•图2.5.1 基本共集放大电路
•图2.5.2 基本共集放大电路的交流等效电路
•图2.5.3 共集放大电路的输出电阻
•图2.5.4 基本共基放大电路
返回
图2.5.1 基本共集放大电路
返回
图2.5.2 基本共集放大电路的交流等效电路
返回
图2.5.3 共集放大电路的输出电阻
返回
图2.5.4 基本共基放大电路
返回
2.6 基本放大电路的派生电路
•图2.6.1 复合管
•图2.6.2 阻容耦合复合管共射放大电路
•图2.6.3 阻容耦合复合管共集放大电路
•图2.6.4 共射-共基放大电路的交流通路
•图2.6.5 共集-共基放大电路的交流通路
返回
图2.6.1 复合管
返回
图2.6.2 阻容耦合复合管共射放大电路
返回
图2.6.3 阻容耦合复合管共集放大电路
返回
图2.6.4 共射-共基放大电路的交流通路
返回
图2.6.5 共集-共基放大电路的交流通路
返回
2.7 场效应管放大电路
•图2.7.1 场效应管放大电路的三种接法
•图2.7.2 基本共源放大电路
•图2.7.3 图解法求解基本共源放大电路的静态工作点
•图2.7.4 自给偏压共源放大电路
•图2.7.5 分压式偏置电路
•图2.7.6 MOS管的低频小信号等效模型
•图2.7.7 从特性曲线求g
和r ds
m
•图2.7.8 基本共源放大电路的交流等效电路
•图2.7.9 基本共漏放大电路
•图2.7.10 求解基本共漏放大电路的输出电阻
返回
图2.7.1 场效应管放大电路的三种接法
返回
图2.7.2 基本共源放大电路
返回。

相关文档
最新文档