2017年秋人教版九年级数学上《第二十五章概率初步》导学案
新人教版初中数学九年级上册《第二十五章概率初步:小结》公开课导学案_0
情境
教师出:
中国福利彩票第2013001期摇奖现场画面。
教师引语:
生活中处处有概率,同学们现在看到的图片便是中国福利彩票的摇奖现场画面,我们感叹中得一等奖的“幸运”,同学们知道他究竟有多幸运呢,这还要从概率说起。
同学们,我们今天来“再说概率”
通过现实生活中的问题情境激发学生的学习情趣和积极性,由此引出本节课,并为本节课留下“悬疑”。
3)转动转盘,指针指向红色的概率是
教师直接给出知识回顾的三个问题。
学生口答。
(6分54秒)
通过对概念的复习增强学生对事件发生可能性的理解。
学生需要回顾的是树状图与几何概型问题。
直接用“挂图”给出问题节约时间,另外电子白板中的画图功能还是很精确的,且易用。
巩固认知
老师今天带来了下列问题,同学们可以选择自己感兴趣的、熟悉的的问题来回答
在合作探究中不断强化树状图的应用,并通过改变游戏规则,认识游戏的公平性,提高概率的应用价值;另外通过对蚂蚁觅食问题的深入,类比化归,体验彩票中奖概率的计算方法,学生从中体验猜想与应用的数学活动;
在认知拓展中把知识还原成数学史实,提高学生的认知情趣与认知能力,进一步提高学生的分析问题与解决问题的能力。
教师通过问1与问2的设置,引领学生回忆本章内容。
学生在两个问题的回答中加强对认知的整合。
(3分35秒)
教师关注:
①学生是否理解了用数来表示事件发生的可能性;
②学生对古典概型事件概率的求解方法是否掌握熟练;
③学生对“大量试验”中的统计概率的理解。
通过对本章知识的总结,加强对概率的理解与掌握。
在古典概率求解的叙述中重点突出对求解概率过程中的“定式”语句的理解。
新人教版初中数学九年级上册《第二十五章概率初步:25.1随机事件与概率》优课导学案_1
中考复习基础篇第二十八讲概率的基础知识(教案)一.课标链接概率的基础知识概率是新课程标准新增的知识内容,这部分知识与统计有着密切的联系。
近几年概率知识在中考中考查内容也在逐渐加强,试题的形式多样,关注用概率知识解决日常生活和工作的实际问题.概率基本概念仍以填空题、选择题的形式考查,重在对事件发生可能性的刻画,来帮助人们做出合理的推断和预测,初步感受事件发生的不确定性和可能性,进一步体会事件发生可能性的含义,以及计算一些简单事件发生的可能性,正确地认识生活中的一些不确定现象.二.复习目标1.在具体情境中了解概率的意义,明确事件的三种类型,会运用列举法(树状图或列表)计算简单事件发生的的概率。
2.通过大次数重复实验,获得事件发生的概率,知道大次数重复实验时,频率可作为事件发生的概率的估计值。
3.会运用概率知识认识并解决简单的实际问题(比如对一些现象的解释、评判游戏的公平性、对某项活动的“合算”与否进行评判、会设计概率模型等).三.知识要点1.事件的分类及其概率生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件.①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<1.2.随机事件发生的可能性(概率)的计算方法我们重点学习了两种随机事件概率的计算方法:即理论计算和实验估算.(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算;(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如:利用计算器产生随机数来模拟实验的方法.注意:虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算.四.典型例题例1:请将下列事件发生的概率标在下图中(1)投掷一枚骰子,掷出7点的概率。
九年级数学上册第二十五章概率初步25.1.2概率导学案2(新版)新人教版
25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n 解决一些实际问题.重点:运用P(A)=m n解决实际问题. 难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15. 2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12. 点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D ) A .116 B .516 C .38 D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D ) A .536 B .38 C .1536 D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__. 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13. 学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。
人教版-数学-九年级上册 第25章 概率初步 复习导学案
二十五章概率初步复习总结【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用事件能区分可能与确定事件∨概率了解概率的意义∨运用列举法计算简单事件发生的概率∨了解用实验法求概率∨能解决实际问题∨∨【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。
②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。
要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进行概率估算。
如,利用计算器产生随机数来模拟实验。
【能力训练】一、填空题:1.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。
2.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。
3.一只袋内装有2个红球、3个白球、5个黄球(这些球除颜色外没有其它区别),从中任意取出一球,则取得红球的概率是___________。
4.如图,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是。
5.小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是。
6.某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是。
新人教版初中数学九年级上册《第二十五章概率初步:25.2用列举法求概率》优质课导学案_0
1、知识目标:学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
2、能力目标:经历计算理论概率的过程,在活动中培养学生的合作交流意识,提高学生对所研究问题的反思和拓广的能力。
3、情感目标:鼓励学生思维多样性,发展学生的创新意识。
教学重点和难点
教学重点:
学习用树形图法和列表法计算两步或三步试验的随机事件发生的概率。
教学难点:
正确的利用树形图法,计算三步试验随机事件的发生概率。
板书设计
用列举法求概率
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件a包含其中的m种结果,那么事件a发生的概率为
p(a)= 。
25.2.1用列举法求概率的教学设计
基本信息
课题
人教版九年级上册第二十五章第二节:用列举法求概率
教材分析
用列举法求事件的概率,探究如何画出适当的表格,列举出事件的所有等可能结果,如何用树形图列举事件的所有等可能的结果。探究什么时候使用“列表法”方便,什么时候使用“树形图法”方便。
学情分析
“用列举法求概率”这一节是由简到易的,首先是对“有限等可能性事件的意义及概率的计算”;其次是进一步加深对“有限等可能性事件的理解及其在实际中的应用;再次是涉及到在一次试验中包含两步并且包含多种结果时,会用列表法求所有可能的结果以及计算其有关概率;最后便是本节所要学习的涉及到3个或更多个因素时用“树形图”求出所有可能的结果,这样安排使学生层层深入,更易把知识系统化,对本节学习已做好了充分的铺垫.
《第二十五章概率初步》教案含教学反思教学设计人教版九年级数学上
第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。
《第二十五章概率初步》导学案含教学反思教学设计人教版九年级数学上
第二十五章概率初步25.1随机事件与概率25.随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少? 解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上; B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球. 解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果. 2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是____.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.组别频数频率46 ~50 4051 ~55 8056 ~60 16061 ~65 8066 ~70 3071~75 10从中任选一头猪,二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
最新人教版九年级数学上册导学案:第二十五章 概率初步
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、新课导入1.导入课题:情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺序,为了体现比赛的公平性,决定采取临时抽签的方式决定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取一张纸签.问题:你能猜一猜小军会抽到几吗?今天我们来学习随机事件.(板书课题)2.学习目标:(1)认识必然事件、不可能事件和随机事件.(2)会确定随机事件发生可能性的大小.3.学习重、难点:重点:认识必然事件、不可能事件和随机事件,随机事件发生可能性的大小.难点:确定随机事件发生可能性的大小.二、分层学习1.自学指导:(1)自学内容:教材第127页到第128页“练习”以上的内容.(2)自学时间:5分钟.(3)自学方法:结合自学提纲互相交流.(4)自学提纲:①问题1中(2)~(4)哪种情况可能发生?哪种情况不可能发生?(4)可能发生,(3)不可能发生.②问题2中(2)~(4)哪种情况可能发生?哪种情况不可能发生?(4)可能发生,(3)不可能发生.③问题1和2中的情况(2)一定发生吗?一定发生.④什么叫必然事件?什么叫不可能事件?什么叫随机事件?在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不发生的事件,称为随机事件.⑤各举一、两例说明必然事件,不可能事件和随机事件,然后相互交流一下.必然事件:太阳从东边升起;水涨船高不可能事件:太阳从西边升起随机事件:明天是晴天2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生的答题情况.②差异指导:教师对个别突出问题进行点拨引导.(2)生助生:引导学生相互交流帮助认识问题.4.强化:(1)必然事件、不可能事件、随机事件的概念.(2)练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①通常加热到100℃时,水沸腾;②篮球队员在罚球线上投篮一次,未投中;③掷一次骰子,向上的一面是6点;④度量三角形的内角和,结果是360°;⑤经过城市中某一有交通信号灯的路口,遇到红灯;⑥某射击运动员射击一次,命中靶心.解:必然事件:①;不可能事件:④;随机事件:②③⑤⑥.1.自学指导:(1)自学内容:教材第128页问题3到第129页的内容.(2)自学时间:5分钟.(3)自学方法:动手实验,从实验中感受随机事件发生的可能性大小.(4)探究提纲:①在问题3中,摸到哪种球的可能性大些?摸到球的可能性大小与什么有关?摸到黑球的可能性大些,摸到球的可能性大小与袋子中该种球的多少有关.②一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能相同.③举一些说明不同的随机事件发生的可能性大小不同的例子,与同桌交流一下.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生对问题3的实验过程和结果的探究以及由问题3的实验过程和结果得出的结论.②差异指导:教师对个性和共性问题进行点拨和引导.(2)生助生:小组内相互交流研讨.4.强化:(1)归纳:随机事件发生的可能性是有大小的.(2)练习:①已知地球表面陆地面积与海洋面积的比约为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”的可能性更大.②你能列举一些生活中的随机事件、不可能事件和必然事件的例子吗?解:明天会下雨,老张明天6:00起床等都是随机事件,从一个装有5个黑球和4个白球的袋子里任意取一个球,取到红球为不可能事件,取到黑球或白球为必然事件.三、评价1.学生的自我评价(围绕三维目标):这节课我学习了哪些知识,掌握了哪些技能和解决问题的方法?2.教师对学生的评价:(1)表现性评价:重点点评学生的学习态度、学习方法和实际效果及存在的问题.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):通过这些生动有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的代表性,最主要的是活动中含有大量的随机事件,可激发学生的探知欲.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”“必然”或“不可能”).2.(10分)从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是随机事件.3.(10分)下列所描述的事件:①某个数的绝对值小于0;②守株待兔;③某两个负数的积大于0;④水中捞月.其中属于不可能事件的有①④.4.(10分)一个口袋中装有红、黄、蓝三个大小和形状都相同的球,从中任取一球,得到红球与得到蓝球的可能性相同.5.(10分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中判断题的可能性较小.6.(20分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)通常温度降到0℃以下,纯净的水结冰;(2)随意翻到一本书的某页,这页的页码是奇数;(3)地面发射1枚导弹,未击中空中目标;(4)测量某天的最低气温,结果为-150℃;(5)汽车累积行驶1万千米,从未出现故障.解:(2) (3) (5)是随机事件,(1)是必然事件,(4)是不可能事件.二、综合应用(20分)7.(10分)从一副扑克牌中任取一张,摸到大王与摸到小王的可能性(A)A.相等B.不相等C.有时相等,有时不等D.无法确定8.(10分)某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,所有人都有同样的机会当选,下列叙述正确的是(B)A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定三、拓展延伸(10分)9.(10分)一个不透明的袋子中装有6个红球和4个白球,请根据此信息设计一个随机事件、一个必然事件和一个不可能事件.解:随机事件:从袋子中任取一球,取到的球是红球;必然事件:从袋子中任取一球,取到的球是红球或白球;不可能事件:从袋子中任取一球,取到的球是黑球.25.1.2概率一、新课导入1.导入课题:在同样条件下,某一随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?这是我们今天要讨论的问题.2.学习目标:(1)理解概率的概念,知道概率的值与事件发生的可能性大小的对应关系.(2)会运用列举法求一步实验和简单两步实验中事件发生的概率.(3)会根据几何图形的面积求事件发生的概率.3.学习重、难点:重点:概率的概念及求法.难点:理解()m P A n =中m,n 的意义. 二、分层学习1.自学指导:(1)自学内容:教材第130页到第131页例1上面的内容.(2)自学时间:5分钟.(3)自学方法:阅读课文,注意概率公式的运用条件.(4)自学参考提纲:①试验1中抽出的签上的号码有几种可能?每个号码被抽到的可能性相等吗? 有5种可能.每个号码被抽到的可能性相等.②试验2中向上的一面的点数有几种可能?每个点数出现的可能性相等吗? 有6种可能.每个点数出现的可能性相等.③试验1和2中每种可能性占全部可能性的比例怎么表示?试验:115;试验:126.④试验1和2中,每次试验的结果有什么共同的特点?每一次试验中,可能出现的结果只有有限个;每一次试验中,各种结果出现的可能性相等.⑤什么叫做概率?怎样记法?一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A 发生的概率,记为P(A).⑥试验1中抽到奇数有几种可能?用概率怎样表示?3种可能.用概率表示为35.⑦公式()mP An=中,m、n之间的数量关系是0≤m≤n,P(A)的取值范围是0≤P(A)≤1.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生的自学情况,发现学习中存在的问题.②差异指导:教师对学习中的个性和共性问题进行点拨引导.(2)生助生:同桌之间互相讨论.4.强化:(1)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:()mP An=,当m=n时,A为必然事件,概率P(A)=1;当m=0时,A为不可能事件,概率P(A)=0.(2)概率与事件发生的可能性大小的对应关系:1.自学指导:(1)自学内容:教材第131页例1到第132页的内容.(2)自学时间:5分钟.(3)自学方法:从例题中学习怎样求m和n的值.(4)自学参考提纲:①例1中掷骰子是否符合随机事件的两个特点?共有几种等可能的结果?符合.共有6种等可能的结果.②例2中转转盘是否符合等可能事件的两个特点?共有几种可能的结果?如果各小扇形的圆心角不同,那么问题中的概率能求吗?不符合.共有3种可能的结果.如果各小扇形的圆心角不同,那么问题中的概率不能求.③掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:a.点数是6的约数;23b.点数是质数;12c.点数是合数.132.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生通过例1、例2的学习对公式()mP An=的认识情况.②差异指导:对重点问题进行归纳引导.(2)生助生:小组间互助解决各自疑难问题.4.强化:(1)用列举法求概率的要点及解题格式.(2)把一副普通扑克牌中的13张黑桃牌洗均匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:①抽出的牌是黑桃6;②抽出的牌是黑桃10;③抽出的牌带有人像;④抽出的牌上的数小于5;⑤抽出的牌的花色是黑桃.解:①113;②113;③313;④4133;⑤1.(3)如图,有一个质地均匀的正十二面体,十二个面上分别写有1~12这十二个整数.投掷这个正十二面体一次,求下列事件的概率:①向上一面的数字是2或3;②向上一面的数字是2的倍数或3的倍数.解:①16;②23.1.自学指导:(1)自学内容:教材第133页例3.(2)自学时间:5分钟.(3)自学要求:认真学习例3中是怎样用概率来分析问题,并作出明确判断的.(4)自学参考提纲:①相互交流例3游戏的规则,理解游戏规则的实际意义.②怎样计算A区域遇到地雷的概率?A区域的方格共有8个,标号3表示在这8个方格中有3个方格里埋有1颗地雷,因此,A区遇到地雷的概率是38.③怎样计算B区域遇到地雷的概率?B区域的方格数为9×9-9=72,其中有地雷的方格数为10-3=7,因此,B区遇到地雷的概率是772.④概率越大,说明遇到地雷的可能性越大,所以第二步应点击 B 区域.⑤如果小王在游戏开始点击的第一个方格上出现了标号1时,第二步在两个区域遇到地雷的概率分别是多少?A区域:18;B区域:182.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生是否理解题意,能否顺利确定m,n的值.②差异指导:引导学生仔细阅读(特别是游戏规则),指导学生确定m,n的值.(2)生助生:学生相互交流解决疑难.4.强化:(1)总结本题的解题思路.(2)归纳几何概率的求解要点.(3)练习:①在例3中,如果小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?解:踩在哪个区域都一样.②甲、乙两人打赌,甲说,往图中的区域掷石子,它会落在阴影部分上,乙说不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.解:(甲获胜)P ==123328,(乙获胜)P ==205328.<3588,乙获胜的概率较大. ③如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6. a.若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?解:P (指向奇数区域)=12b.请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23. 解:当自由转动的转盘停止时,指针指向6的约数.三、评价1.学生的自我评价(围绕三维目标):相互交流自己的学习收获和存在的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的情感、态度、方法和存在的问题进行归纳总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探究、合作交流得出此类型概率的求法,进而掌握本节课的知识,让学生在解决问题的过程中,提高了思维能力,增强了思维的缜密性,并且培养了学生解决问题的信心.(2)在概率的古典定义基础上,教科书给出了概率的取值范围为0~1,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能,要求学生去仔细体会.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)“明天降水的概率是15%”,下列说法中,正确的是(A)A.明天降水的可能性较小B.明天将有15%的时间降水C.明天将有15%的地区降水D.明天肯定不降水2.(10分)事件A:打开电视,它正在播广告;事件B:抛掷一枚质地均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件发生的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是(B)A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)3.(10分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为(B)A. 13B.14C.15D.164.(10分)掷一枚质地均匀的硬币的试验有2 种可能的结果,它们的可能性相同,由此确定“正面向上”的概率是1 2 .5.(10分)10件外观相同的产品中有1件不合格.现从中任意抽取1件进行检测,抽到不合格产品的概率为1 10.6.(10分)袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别.从袋子中随机地取出一个球.(1)能够事先确定取出的球是哪种颜色的吗?(2)取出每种颜色的球的概率会相等吗?(3)你认为取出哪种颜色的球的概率最大?解:(1)不能;(2)不相等;(3)蓝球.7.(10分)不透明的袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?解:(1) 19;(2)13;(3)59.8.(10分)如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.解:(1) 14;(2)34.二、综合应用(10分)9.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是38,写出表示x和y关系的表达式;(2)往盒中再放进10枚黑棋,取得黑棋的概率变为12,求x和y的值.解:(1)因为xx y=+38,所以5x=3y.(2)因为xx y+=++101102,所以x+10=y,又5x=3y,所以x=15,y=25.三、拓展延伸(10分)10.(10分)如图是计算机中的一种益智小游戏“扫雷”的画面,在一个9×9的小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能埋藏1颗地雷.小红在游戏开始时首先随机地点击一个方格,该方格中出现了数字“3”,其意义表示该格的外围区域(图中阴影部分,记为A区域)有3颗地雷;接着,小红又点击了左上角第一个方格,出现了数字“1”,其外围区域(图中阴影部分)记为B区域;“A区域与B区域以及出现数字‘1’和‘3’两格”以外的部分记为C区域.小红在下一步点击时要尽可能地避开地雷,那么她应点击A、B、C中的哪个区域?请说明理由.解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷,所以点击A 区域遇到地雷的概率为38;同理,点击B 区域遇到地雷的概率为13. C 区域方格数为9×9-9-4=68.其中有地雷的方格数为10-3-1=6.所以点击C 区域遇到地雷的概率为636834.由于<<3133438,即点击C 区域遇到地雷的可能性最小,所以小红在下一步点击时应点击C 区域.25.2 用列举法求概率第1课时用列表法求概率一、新课导入1.导入课题:同时抛掷两枚质地均匀的硬币或骰子,会出现哪些可能的结果?怎样才能不重不漏地列举所有可能出现的结果呢?本节课我们学习用列表法列举所有可能出现的结果并求概率.(板书课题)2.学习目标:(1)会用直接列举法和列表法列举所有可能出现的结果.(2)会用列表法求出事件的概率.3.学习重、难点:重点:用直接列举法和列表法列举所有可能出现的结果.难点:求概率.二、分层学习1.自学指导:(1)自学内容:教材第136页例1.(2)自学时间:5分钟.(3)自学方法:阅读课文分析,理解课本是怎样列举出所有可能的结果的,并学会课本上用不同字母表示不同事件的方法和记法.(4)自学参考提纲:①掷两枚硬币会出现哪些不同的结果?你能列举出来吗?有四种不同的结果:正正、正反、反正、反反.②先后两次掷硬币和一次同时掷下两枚硬币有什么区别?出现的可能性发生变化了吗?没有区别.出现的可能性没有变化.2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:深入课堂了解学生是否理解列举这几种结果的方法.②差异指导:对共性问题进行适时点拨引导.(2)生助生:学生相互交流帮助解疑难.4.强化:(1)归纳两步试验中列举全部结果的要点.(2)练习:①袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率:a.第一次摸到红球,第二次摸到绿球.b.两次都摸到相同颜色的小球;c.两次摸到的球中有一个绿球和一个红球.解:a. 14; b12.; c.12②合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D 随机坐到其他三个座位上,求学生B坐在2号座位的概率.解:1 3③“石头、剪刀、布”是广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,求双方出现相同手势的概率.解:1 31.自学指导:(1)自学内容:教材第136页例2至第137页.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①同时掷两枚质地均匀的骰子,会出现哪些可能的结果?列表列举所有可能的结果:②由表可知:同时掷两枚骰子,可能出现的结果有36 种,并且它们出现的可能性相等.两枚骰子的点数相同的结果有 6 种,所以P(两枚骰子的点数相同)= 16;两枚骰子的点数和是9的结果有4 种,所以P(两枚骰子的点数和是9)= 19;至少有一枚骰子的点数为2的结果有11 种,所以P(至少有一枚骰子的点数为2)= 11 36.③如果把例2中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,所得到的结果有变化吗?为什么?没有变化,因为试验的条件是相同的.④当一次试验要涉及两个因素,并且可能出现的结果数目较多时,通常采用列表法.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否掌握了列表法.②差异指导:分类指导与集中辅导相结合.(2)生助生:学生之间相互交流帮助认知理解.4.强化:(1)列表法适用的条件及表格设计方法.(2)练习:①有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有36种,并且它们出现的可能性相等.其中第二次取出的数字能够整除第一次取出的数字(记为事件A )的结果有14种,所以()P A ==1473618. ②有5张看上去无差别的卡片,上面分别标有0,1,2,3,4.求: a.从中任取两张卡片,两张卡片上的数字之和等于4概率;解:列举出所有可能出现的结果:(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所有可能出现的结果共有10种,并且它们出现的可能性相等,其中满足两张卡片上的数字之和等于4(记为事件A )的结果有2种,所以()PA ==21105. b.从中任取2次卡片,每次取1张.第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于4概率.解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有25种,并且它们出现的可能性相等,其中两次取出的卡片上的数字之和恰好等于4(记为事件B )的结果有5种,所以()P B ==51255. 三、评价1.学生的自我评价:说说列举所有结果时,怎样才能做到不重不漏.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):(1)本节课通过以学生喜闻乐见的掷硬币、掷骰子等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多关于概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.(2)教师引导学生交流归纳知识点,看学生是否可以不重不漏地列举出事件发生的所有可能,能否找出事件A 中包含几种可能的结果,并能求P (A ),教学时要重点突出方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是(D )A.12B.15C.136D.11362.(10分)纸箱里有一双拖鞋,从中随机取一只,放回后再取一只,则两次取出的鞋都是左脚的鞋的概率为14. 3.(10分)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两个人同坐2号车的概率为14. 4.(10分)有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 6 的概率最大,抽到和大于8的概率为325. 5.(10分) 如图,随机闭合开关K 1,K 2,K 3中的两个,求能让两盏灯泡同时发光的概率. 解:列举出闭合三个开关中的两个的全部结果:K 1K 2,K 1K 3,K 2K 3. 所有可能的结果共有3种,并且这三种结果出现的可能性相等. 只有同时闭合K 1、K 3,才能让两盏灯泡同时发光(记为事件A ),所以()PA 13. 6.(20分)一个不透明的袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.求下列事件的概率:(1)两次取出的小球标号相同; (2)两次取出的小球标号和等于4. 解:两次取出小球的标号列举如下:。
新人教版初中数学九年级上册《第二十五章概率初步:25.1随机事件与概率》赛课导学案_0
《25.1.1随机事件》教案一、教学目标: (1)、知识与技能:知道生活中形形色色的事件可以分为三类,并能作出正确的判断。
以及理解三类事件在一定条件下是可以相互转化的。
(2)、过程与方法:通过实验和具体的例子概括出三类事件的特点,培养学生抽象概括的能力。
(3)、情感、 态度与价值观:通过生活中的实例和亲身体验,感受数学就在身边,树立学好数学的自信心。
二、重点与难点:重点:三类事件的概念及区分这三类事件。
难点:体会当条件发生改变时,确定事件和随机事件是可以互化的。
三 、 教学准备:教师准备: 教具(扑克牌、乒乓球)、多媒体课件四、教学流程:(为了突出重点,突破难点,达到已定的教学目标。
我主要安排了以下的几个教学环节。
)(一)、创设情境、引入新知欣赏日记和视频【设计意图】:根据九年级学生的年龄特点,他们好奇心强、积极向上,利用情境、视频,让学生感受生活中的神奇现象蕴含科学原理,只要肯下功夫去学习、钻研就可以取得成功与突破。
同时让学生感受生活中的不可能事件、必然事件和不确定事件。
教师:生活中存在大量形形色色的事件,能分类,可以分为哪几类?这就是我们这节课所要探究学习的内容。
(二)、师生互动、构建新知1、想一想:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号小于6吗?师生互动 构建新知 师生互动再探新知 典例导析升华新知应用巩固 承上启下 随堂练习 巩固新知 创设情境 引入新知(2)抽到的序号会是0吗?(3)抽到的序号会是1吗?学生思考,并回答:2、(1)玩一玩:摸牌游戏,把红桃、黑桃以及红、黑混合三种牌(背面朝上)分别放在讲台上(三组)。
选三位学生代表各组参加游戏,每人每次从自己选择牌中摸出一张,各小组记下颜色,放回,洗匀。
新人教版初中数学九年级上册《第二十五章概率初步:25.1随机事件与概率》公开课导学案_1
教学时间2016-09-29 课题25.1.1随机事件(第一课时)课型新授课目标知识和能力通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程和方法历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感态度价值观体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
教学重点随机事件的特点教学难点对生活中的随机事件作出准确判断教学准备教师多媒体课件、摇奖器乒乓球学生教学过程:设计意图一、课前游戏:教师展示生活中常见的一样东西——彩票,并在上课前发给每名学生一张小纸条,并从0~9中任取一个数字写在小纸条上,老师用事先做好的摇号器摇出一个数,看看谁能猜对。
引出课题随机事件二、情景引入:观看摸球实验的图片,直观感受什么是必然事件、不可能事件、随机事件,并给出定义。
三、归纳定义:根据必然事件、不可能事件、随机事件的不同特点给出确定事件和不确定事件的定义、以及事件的定义。
帮助学生分清三种事件的不同特点。
四、巩固练习:1、判断下列说法是否正确:①“从地面往上抛的硬币会落下”是随机事件;()②“用1cm,2cm,3cm长的线段可组成三角形。
”是不可能事件;()③“买一张彩票中大奖”是必然事件;()④“明天会下雨”是随机事件。
()2、填空:A、“骑自行车时车胎被玻璃扎破”是_______事件;B、“太阳从东方升起”是______事件;首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。
概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。
C、“清明时节雨纷纷”是______事件;D、“手可摘星辰”是_________事件;3、指出下列事件中,哪些是必然事件,哪些是不可能事件哪些是随机事件①在没有氧气的瓶子,蜡烛能燃烧( )②在一副扑克牌中任意抽10张牌,其中有4张A ( )③10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只( )④如果两个角是对顶角,那么这两个角相等( )⑤明天太阳从西边出来( )⑥拨打电话给同学时正好遇到忙音( )⑦马路上接连驶过的两辆汽车,它们的牌照尾数都是奇数( )⑧掷一枚均匀的硬币1000次都是正面向上( )五、发散思维:一休得罪了幕府将军,将军决定处罚一休,幸得安国寺长老和百姓们的求情,将军终于同意让一休用自己的聪明才智来决定自己的命运。
人教版数学九年级上册第25章-概率初步(教案)
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。
人教版九年级数学上册 第25章 概率初步 精品导学案 新人教版
概率初步课题:第二十五章概率初步小结序号学习目标:1、知识和技能:1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
2、过程和方法:1)初步形成评价与反思的意识。
2)通过举例,进一步发展学生随机观念和统计观念。
3)体验解决问题策略的多样性,发展实践能力和创新精神。
3、情感、态度、价值观:1)积极参与回顾与思考的过程,对数学有好奇心和求知欲。
2)形成实事求是的态度。
学习重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图。
学习难点:结合事例,理解实验频率与理论概率的关系。
导学过程一、课前预习:阅读教材152页有关内容,思考下列问题:1、将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
二、课堂导学:1、导入同学们,学完本章后,初中阶段统计与概率部分就全部学完了,你能总结出在本章的学习中你学到的知识吗?2、出示任务、自主学习1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
3、合作探究阅读教材152页有关内容,回答下列问题:1.将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
三、展示反馈完成《问题导学》140—142页自主测评1---5题四、学习小结:本节课我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概率知识的结果框架图,在自我回忆和总结中找出实验频率与理论概率的关系。
五、达标检测:1.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛 B.小麦的亩产量一定为1000公斤C.在仅装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月2.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性大3.抛掷两枚各面分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件:;写出这个实验中的一个必然事件:.4.如图4,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是.5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.6.某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球的袋中摸出1个球,再从装有编号为1、2、3的三个红球的袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.7。
人教版九年级数学上册第25章《概率初步》教案
第二十五章概率初步1、了解必然事件、不可能事件和随机事件的概念、2、在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义、3、能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率、4、能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系、5、通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题、经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率、渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力、在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义和计算教学,渗透辩证思想教育、“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测、概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义、本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小、具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用、概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题、本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要、【重点】运用列表法或树状图法计算事件的概率、【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题、1、通过实例让学生感受事件发生的可能性的大小及概率的意义、2、用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可以直接利用公式P(A)=来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算、3、要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率、4、通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系、25、1随机事件与概率1、了解必然事件、不可能事件和随机事件的概念,知道随机事件发生有可能性大小之分、2、了解概率的意义、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力、在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义教学,渗透辩证思想教育、【重点】会判断现实生活中哪些事件是随机事件、【难点】随机事件的特点、概率的意义、25、1、1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分、经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念、体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象、【重点】随机事件的特点,会判断现实生活中哪些事件是随机事件、【难点】随机事件的概念、【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子、【学生准备】复习小学学过的分数和初中学过的整式、导入一:播放一段天气预报,引出一句古语:“天有不测风云”、【课件1】请说明下列事件是否一定发生、(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解、教师给出上述问题并问“上述结果是确定的吗”、学生阅读、观察、思考、回答问题、[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性、导入二:同学们,今天我们先来玩一个摸球游戏、三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏、游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次、按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名、教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球、学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的、教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点、[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡、一、认识必然事件、不可能事件、随机事件思路一在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件、【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序、签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5、小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签、请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生、思路二请同学们把下面的事件根据发生的可能性进行分类、【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快、学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9)、教师追问:各类事件各有什么特点?请同学们自己总结一下、学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件、引导学生归纳必然事件、不可能事件、随机事件的定义、[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点、在充分比较后,达到加深理解的目的、二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球、教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解、教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情、三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品、其中,是必然事件;是不可能事件;是随机事件、在这200件产品中任意选出1件,级品的可能性大、(如果没有请填“无”)教师引导学生理解题意,尝试答题、学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件、在这200件产品中任意选出1件,一级品的可能性大、[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起、[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间、1、在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件、2、一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、1、下列事件中,是必然事件的为()A、抛掷一枚质地均匀的硬币,落地后正面朝上B、江汉平原7月份某一天的最低气温是-2 ℃C、通常加热到100 ℃时,水沸腾D、打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件、故选C、2、下列说法正确的是 ()A、如果一件事情发生的机会只有十万分之一,那么它就不可能发生B、如果一件事情发生的可能性是100%,那么它就一定会发生C、买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D、一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件、故选B、3、下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形、其中确定性事件的个数是()A、1个B、2个C、3个D、4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件、②两个有理数的和有可能是正数、负数或零,此事件为随机事件、③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件、④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件、故确定性事件为③和④,一共有2个确定性事件、故选B、4、一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大、25、1、1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题、【选做题】教材第135页习题25、1的7题、二、课后作业【基础巩固】1、在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是()A、必然事件B、随机事件C、不可能事件D、以上都不对2、下列事件是不可能事件的是()A、某个数的绝对值小于0B、0的相反数为0C、某两个数的和为0D、某两个负数的积为正数3、某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A、冠军属于甲B、冠军属于乙C、冠军属于中国人D、冠军属于外国人【能力提升】4、袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球、下列事件是必然事件的是()A、摸出的三个球中至少有一个球是黑球B、摸出的三个球中至少有一个球是白球C、摸出的三个球中至少有两个球是黑球D、摸出的三个球中至少有两个球是白球5、下列是随机事件的是()A、角平分线上的点到角两边的距离相等B、三角形任意两边之和大于第三边C、面积相等的两个三角形全等D、三角形内心到三边距离相等6、随意从一副扑克牌中抽到Q和K的可能性大小是()A、抽到Q的可能性大B、抽到K的可能性大C、抽到Q和K的可能性一样大D、无法确定7、如果一件事情不发生的可能性为99、99%,那么它()A、必然发生B、不可能发生C、很有可能发生D、不太可能发生8、在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A、李东夺冠的可能性比较小B、李东和他的对手比赛10局,他一定赢8局C、李东夺冠的可能性比较大D、李东肯定赢9、一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10、如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来、【答案与解析】1、B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件、)2、A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B 是必然事件;选项C是随机事件;选项D是必然事件、)3、C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件、)4、A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件、)5、C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件、)6、C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同、)7、D(解析:一件事情不发生的可能性为99、99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生、)8、C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢、)9、解:(1)“摸出的球是白球”是不可能事件、(2)“摸出的球是红球”是随机事件、(3)“摸出的球不是绿球”是必然事件、(4)摸出红球的可能性大、10、解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关、①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球、连线如下图所示、本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣、学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面、指导学生联系生活实际,思考事件发生的可能性、练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件、练习(教材第129页)1、解:“落在海洋里”的可能性更大、2、解:(1)不能、(2)抽到黑桃的可能性大、(3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同、3、解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件、在写有0,1,2,…,9的这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件、(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求、当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力、在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究、本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件、为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识、(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球、下列说法中正确的是 ()A、可能性为3B、属于不可能事件C、属于随机事件D、属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义、因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1、故选D、25、1、2概率1、在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系、2、理解概率的定义及计算公式P(A)=、经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法、理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值、【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=(在一次试验中有n种等可能的结果,其中事件A包含m种)”的求概率的方法及运用、【难点】了解概率的定义,理解概率计算的两个前提条件、【教师准备】多媒体课件1~8、【学生准备】1枚质地均匀的硬币、导入一:老师有一个小麻烦,请大家一起来想想办法、【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去、我很为难,真不知该把球票给谁、请大家帮我想个办法来决定把球票给谁、学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定、追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大、在学生讨论发言后,教师给予评价并归纳总结、[设计意图]提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率、导入二:同学们,我们一起玩一个游戏好不好?【课件2】抛出你手中的硬币,记录抛出结果、抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等、[设计意图]以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画、一、概率的意义思路一在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用表示每一种点数6出现的可能性大小、刻画了试验中随机事件发生的可能性大小、一般地,对于一教师指出:6个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、[设计意图]给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义、二、求概率的方法【课件3】掷骰子、抛硬币等试验有哪些共同特点?学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等、【课件4】从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率、学生回答问题,教师进行纠正点拨、“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为、于是“抽到偶数”的概率P(抽到偶数)=;同理,“抽到奇数”的概率P(抽到奇数)=3、教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=、【课件5】根据上述求概率的方法,事件A发生的概率P(A)的取值范围是怎样的?。
九年级数学上册第二十五章概率初步概率导学案新人教
25.1.2 概率一、自主学习1.认真自学课本第130页至第131页内容,并完成以下的填空:(1)概率的定义:记为:(2)课本两个试验有什么共同的特点?每一次试验中,每一次试验中,,2、从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有种?抽到1的概率为多少?即:概率是P(抽到1号)= 3、掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?即: P(出现点数是1)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为注意:1.概率从数量上刻画了一个随机事件发生的可能性的大小. 2 .当A是必然发生的事件时,P(A)=当A是不可能发生的事件时,P(A)=归纳:事件发生的可能性,则它的概率越接近;反之,事件发生的可能性越,则它的概率越接近。
总之0≤P(A)≤1二、合作探究掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为3,(2)点数为偶数,(3)点数大于1小于5三、展示交流1、如图是一个转盘,转盘分成6个相同的三角形,颜色分为红、绿、黄三种颜色。
指针的位置固定,转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置(指针指向两个三角形的交线时,当作指向右边的三角形)。
求下列事件的概率:1)指针指向红色 .2) 指针指向黄色或绿色 .3)指针不指向绿色.2、课本133页练习。
在具体情境中了解概率意义四、随堂检测1.小冲、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.•他们约定用“石头、剪子、布”猜拳的方式确定.在1•个回合中小芳•出“布”的概率是______.2.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏.游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,•其余商标牌的背面是一张哭脸.若翻到哭脸,就不得奖.参与这个游戏的观众有3•次翻牌机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,他第三次翻牌获奖的概率是().(A)14(B)15(C)16(D)3203.如图,对角线将一个长宽不等的矩形分成4个区域,分别涂上红、黄、蓝、白四色,中间装有匀速转动的指针,则指针在每个区域内的概率是()A.一样大B.蓝白区域大C.红黄区域大D.由指针转动的速度确定4好落在灰色地面上的概率.5.“抢椅子”游戏中5人争抢去坐4张椅子,那么每个人可能坐到椅子的概率是()A.15B.19C.14D.456.一套未入住的80㎡的住宅,其中卧室①12㎡,卧室②14㎡,卧室③18㎡,卫生间8㎡,厨房8㎡,其余为客厅,一只小猫在室内地面上任意走动,那么这只小猫在各个地方的概率是多少?中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC中点,连接DF ,FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11【答案】B【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 2.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-【答案】D 【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-; 故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 4.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A .B .C .D .【答案】D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD 中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.7.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002 x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.8.如图,正六边形ABCDEF内接于O,M为EF的中点,连接DM,若O的半径为2,则MD的长度为()ABC.2 D.1 【答案】A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠∴==故选A.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.9.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.19【答案】D【解析】试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣36【答案】B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x 轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.二、填空题(本题包括8个小题)11.如图,点,A B是反比例函数(0,0)ky k xx=>>图像上的两点(点A在点B左侧),过点A作AD x⊥轴于点D,交OB于点E,延长AB交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.【答案】203【解析】过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADC S S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADCS S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S △OAD - S △OED =S △OBF 一S △OED ,即S △OAE =S 四边形DEBF =145,S △OA B =S 四边形DABF,∵2125OAB ADC S S ∆∆=, ∴2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,∵AD ∥BF ∴S △BCF ∽S △ACD ,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.【答案】1095【解析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA 是解题的关键.13.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)【答案】(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).14.在数轴上与2 所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.15.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1 【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.16.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果P运动一周时,点Q运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C 时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A 时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,=①当点P从O→B时,如图1、图2所示,点Q②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2④当点P从A→O时,点Q运动的路程为AO=1,∴点Q故答案为4.考点:解直角三角形17.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.18.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.【答案】a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.三、解答题(本题包括8个小题)19.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.【答案】1.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式=(+)•=•=2(x+2)=2x+4,当x =﹣时,原式=2×(﹣)+4=﹣1+4=1.【点睛】本题考查的知识点是分式的化简求值,解题的关键是熟练的掌握分式的化简求值.20.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40%100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.21.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【答案】(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:1205014030k bk b+=⎧⎨+=⎩,解得:1170kb=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W 有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.先化简22442x xx x-+-÷(x-4x),然后从正整数作为x的值代入求值.【答案】当x=-1时,原式=1=11+2-;当x=1时,原式=11=1+23【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】原式=22(2)4(2)x xx x x--÷-=()2(2)•(2)2(2)x xx x x x--+-=12x+∵xx为整数,∴若使分式有意义,x只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=123.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF 的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【答案】(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD 的解析式y=﹣34x+6得:t=7517;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.25.先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 【答案】-1【解析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】解:2211a a a a ⎛⎫-÷⎪--⎝⎭(1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•- 2a=, 当2a =-时,原式212-==-. 【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.26.如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值.【答案】1【解析】221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1.故答案为1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.5 【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AGBF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.2.据中国电子商务研究中心()发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.81159.5610⨯元B.1011.595610⨯元C.111.1595610⨯元D.81.1595610⨯元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,⊙O的直径AB垂直于弦CD,垂足为E.若60B∠=︒,AC=3,则CD的长为A.6 B.CD.3 【答案】D【解析】解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB 垂直于弦CD,60B∠=︒,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.1 【答案】C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.5.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.6.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4【答案】C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根,∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( ) A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 【答案】C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.8.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个 【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:710.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.函数y=ax2+1与ayx=(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.二、填空题(本题包括8个小题)11.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线21y x k2=+与扇形OAB的边界总有两个公共点,则实数k的取值范围是.【答案】-2<k <12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少? 解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上; B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球. 解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.13×2=1×23.∴这个游戏对双方公平.学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果. 2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.从中任选一头猪,__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。